⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
Description
;task: Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the [24 game](/tasks/24 game).
Show examples of solutions generated by the program.
;Related task:
- [Arithmetic Evaluator](/tasks/Arithmetic Evaluator)
ABAP
Will generate all possible solutions of any given four numbers according to the rules of the 24 game.
Note: the permute function was locally from here
data: lv_flag type c,
lv_number type i,
lt_numbers type table of i.
constants: c_no_val type i value 9999.
append 1 to lt_numbers.
append 1 to lt_numbers.
append 2 to lt_numbers.
append 7 to lt_numbers.
write 'Evaluating 24 with the following input: '.
loop at lt_numbers into lv_number.
write lv_number.
endloop.
perform solve_24 using lt_numbers.
form eval_formula using iv_eval type string changing ev_out type i.
call function 'EVAL_FORMULA' "analysis of a syntactically correct formula
exporting
formula = iv_eval
importing
value = ev_out
exceptions
others = 1.
if sy-subrc <> 0.
ev_out = -1.
endif.
endform.
" Solve a 24 puzzle.
form solve_24 using it_numbers like lt_numbers.
data: lv_flag type c,
lv_op1 type c,
lv_op2 type c,
lv_op3 type c,
lv_var1 type c,
lv_var2 type c,
lv_var3 type c,
lv_var4 type c,
lv_eval type string,
lv_result type i,
lv_var type i.
define retrieve_var.
read table it_numbers index &1 into lv_var.
&2 = lv_var.
end-of-definition.
define retrieve_val.
perform eval_formula using lv_eval changing lv_result.
if lv_result = 24.
write / lv_eval.
endif.
end-of-definition.
" Loop through all the possible number permutations.
do.
" Init. the operations table.
retrieve_var: 1 lv_var1, 2 lv_var2, 3 lv_var3, 4 lv_var4.
do 4 times.
case sy-index.
when 1.
lv_op1 = '+'.
when 2.
lv_op1 = '*'.
when 3.
lv_op1 = '-'.
when 4.
lv_op1 = '/'.
endcase.
do 4 times.
case sy-index.
when 1.
lv_op2 = '+'.
when 2.
lv_op2 = '*'.
when 3.
lv_op2 = '-'.
when 4.
lv_op2 = '/'.
endcase.
do 4 times.
case sy-index.
when 1.
lv_op3 = '+'.
when 2.
lv_op3 = '*'.
when 3.
lv_op3 = '-'.
when 4.
lv_op3 = '/'.
endcase.
concatenate '(' '(' lv_var1 lv_op1 lv_var2 ')' lv_op2 lv_var3 ')' lv_op3 lv_var4 into lv_eval separated by space.
retrieve_val.
concatenate '(' lv_var1 lv_op1 lv_var2 ')' lv_op2 '(' lv_var3 lv_op3 lv_var4 ')' into lv_eval separated by space.
retrieve_val.
concatenate '(' lv_var1 lv_op1 '(' lv_var2 lv_op2 lv_var3 ')' ')' lv_op3 lv_var4 into lv_eval separated by space.
retrieve_val.
concatenate lv_var1 lv_op1 '(' '(' lv_var2 lv_op2 lv_var3 ')' lv_op3 lv_var4 ')' into lv_eval separated by space.
retrieve_val.
concatenate lv_var1 lv_op1 '(' lv_var2 lv_op2 '(' lv_var3 lv_op3 lv_var4 ')' ')' into lv_eval separated by space.
retrieve_val.
enddo.
enddo.
enddo.
" Once we've reached the last permutation -> Exit.
perform permute using it_numbers changing lv_flag.
if lv_flag = 'X'.
exit.
endif.
enddo.
endform.
" Permutation function - this is used to permute:
" A = {A1...AN} -> Set of supplied variables.
" B = {B1...BN - 1} -> Set of operators.
" Can be used for an unbounded size set. Relies
" on lexicographic ordering of the set.
form permute using iv_set like lt_numbers
changing ev_last type c.
data: lv_len type i,
lv_first type i,
lv_third type i,
lv_count type i,
lv_temp type i,
lv_temp_2 type i,
lv_second type i,
lv_changed type c,
lv_perm type i.
describe table iv_set lines lv_len.
lv_perm = lv_len - 1.
lv_changed = ' '.
" Loop backwards through the table, attempting to find elements which
" can be permuted. If we find one, break out of the table and set the
" flag indicating a switch.
do.
if lv_perm <= 0.
exit.
endif.
" Read the elements.
read table iv_set index lv_perm into lv_first.
add 1 to lv_perm.
read table iv_set index lv_perm into lv_second.
subtract 1 from lv_perm.
if lv_first < lv_second.
lv_changed = 'X'.
exit.
endif.
subtract 1 from lv_perm.
enddo.
" Last permutation.
if lv_changed <> 'X'.
ev_last = 'X'.
exit.
endif.
" Swap tail decresing to get a tail increasing.
lv_count = lv_perm + 1.
do.
lv_first = lv_len + lv_perm - lv_count + 1.
if lv_count >= lv_first.
exit.
endif.
read table iv_set index lv_count into lv_temp.
read table iv_set index lv_first into lv_temp_2.
modify iv_set index lv_count from lv_temp_2.
modify iv_set index lv_first from lv_temp.
add 1 to lv_count.
enddo.
lv_count = lv_len - 1.
do.
if lv_count <= lv_perm.
exit.
endif.
read table iv_set index lv_count into lv_first.
read table iv_set index lv_perm into lv_second.
read table iv_set index lv_len into lv_third.
if ( lv_first < lv_third ) and ( lv_first > lv_second ).
lv_len = lv_count.
endif.
subtract 1 from lv_count.
enddo.
read table iv_set index lv_perm into lv_temp.
read table iv_set index lv_len into lv_temp_2.
modify iv_set index lv_perm from lv_temp_2.
modify iv_set index lv_len from lv_temp.
endform.
Sample Runs:
Evaluating 24 with the following input: 1 1 2 7 ( 1 + 2 ) * ( 1 + 7 ) ( 1 + 2 ) * ( 7 + 1 ) ( 1 + 7 ) * ( 1 + 2 ) ( 1 + 7 ) * ( 2 + 1 ) ( 2 + 1 ) * ( 1 + 7 ) ( 2 + 1 ) * ( 7 + 1 ) ( 7 + 1 ) * ( 1 + 2 ) ( 7 + 1 ) * ( 2 + 1 ) Evaluating 24 with the following input: 1 ( ( 1 + 2 ) + 3 ) * 4 ( 1 + ( 2 + 3 ) ) * 4 ( ( 1 * 2 ) * 3 ) * 4 ( 1 * 2 ) * ( 3 * 4 ) ( 1 * ( 2 * 3 ) ) * 4 1 * ( ( 2 * 3 ) * 4 ) 1 * ( 2 * ( 3 * 4 ) ) ( ( 1 * 2 ) * 4 ) * 3 ( 1 * 2 ) * ( 4 * 3 ) ( 1 * ( 2 * 4 ) ) * 3 1 * ( ( 2 * 4 ) * 3 ) 1 * ( 2 * ( 4 * 3 ) ) ( ( 1 + 3 ) + 2 ) * 4 ( 1 + ( 3 + 2 ) ) * 4 ( 1 + 3 ) * ( 2 + 4 ) ( ( 1 * 3 ) * 2 ) * 4 ( 1 * 3 ) * ( 2 * 4 ) ( 1 * ( 3 * 2 ) ) * 4 1 * ( ( 3 * 2 ) * 4 ) 1 * ( 3 * ( 2 * 4 ) ) ( 1 + 3 ) * ( 4 + 2 ) ( ( 1 * 3 ) * 4 ) * 2 ( 1 * 3 ) * ( 4 * 2 ) ( 1 * ( 3 * 4 ) ) * 2 1 * ( ( 3 * 4 ) * 2 ) 1 * ( 3 * ( 4 * 2 ) ) ( ( 1 * 4 ) * 2 ) * 3 ( 1 * 4 ) * ( 2 * 3 ) ( 1 * ( 4 * 2 ) ) * 3 1 * ( ( 4 * 2 ) * 3 ) 1 * ( 4 * ( 2 * 3 ) ) ( ( 1 * 4 ) * 3 ) * 2 ( 1 * 4 ) * ( 3 * 2 ) ( 1 * ( 4 * 3 ) ) * 2 1 * ( ( 4 * 3 ) * 2 ) 1 * ( 4 * ( 3 * 2 ) ) ( ( 2 + 1 ) + 3 ) * 4 ( 2 + ( 1 + 3 ) ) * 4 ( ( 2 * 1 ) * 3 ) * 4 ( 2 * 1 ) * ( 3 * 4 ) ( 2 * ( 1 * 3 ) ) * 4 2 * ( ( 1 * 3 ) * 4 ) 2 * ( 1 * ( 3 * 4 ) ) ( ( 2 / 1 ) * 3 ) * 4 ( 2 / 1 ) * ( 3 * 4 ) ( 2 / ( 1 / 3 ) ) * 4 2 / ( 1 / ( 3 * 4 ) ) 2 / ( ( 1 / 3 ) / 4 ) ( ( 2 * 1 ) * 4 ) * 3 ( 2 * 1 ) * ( 4 * 3 ) ( 2 * ( 1 * 4 ) ) * 3 2 * ( ( 1 * 4 ) * 3 ) 2 * ( 1 * ( 4 * 3 ) ) ( ( 2 / 1 ) * 4 ) * 3 ( 2 / 1 ) * ( 4 * 3 ) ( 2 / ( 1 / 4 ) ) * 3 2 / ( 1 / ( 4 * 3 ) ) 2 / ( ( 1 / 4 ) / 3 ) ( ( 2 + 3 ) + 1 ) * 4 ( 2 + ( 3 + 1 ) ) * 4 ( ( 2 * 3 ) * 1 ) * 4 ( 2 * 3 ) * ( 1 * 4 ) ( 2 * ( 3 * 1 ) ) * 4 2 * ( ( 3 * 1 ) * 4 ) 2 * ( 3 * ( 1 * 4 ) ) ( ( 2 * 3 ) / 1 ) * 4 ( 2 * ( 3 / 1 ) ) * 4 2 * ( ( 3 / 1 ) * 4 ) ( 2 * 3 ) / ( 1 / 4 ) 2 * ( 3 / ( 1 / 4 ) ) ( ( 2 * 3 ) * 4 ) * 1 ( 2 * 3 ) * ( 4 * 1 ) ( 2 * ( 3 * 4 ) ) * 1 2 * ( ( 3 * 4 ) * 1 ) 2 * ( 3 * ( 4 * 1 ) ) ( ( 2 * 3 ) * 4 ) / 1 ( 2 * 3 ) * ( 4 / 1 ) ( 2 * ( 3 * 4 ) ) / 1 2 * ( ( 3 * 4 ) / 1 ) 2 * ( 3 * ( 4 / 1 ) ) ( 2 + 4 ) * ( 1 + 3 ) ( ( 2 * 4 ) * 1 ) * 3 ( 2 * 4 ) * ( 1 * 3 ) ( 2 * ( 4 * 1 ) ) * 3 2 * ( ( 4 * 1 ) * 3 ) 2 * ( 4 * ( 1 * 3 ) ) ( ( 2 * 4 ) / 1 ) * 3 ( 2 * ( 4 / 1 ) ) * 3 2 * ( ( 4 / 1 ) * 3 ) ( 2 * 4 ) / ( 1 / 3 ) 2 * ( 4 / ( 1 / 3 ) ) ( 2 + 4 ) * ( 3 + 1 ) ( ( 2 * 4 ) * 3 ) * 1 ( 2 * 4 ) * ( 3 * 1 ) ( 2 * ( 4 * 3 ) ) * 1 2 * ( ( 4 * 3 ) * 1 ) 2 * ( 4 * ( 3 * 1 ) ) ( ( 2 * 4 ) * 3 ) / 1 ( 2 * 4 ) * ( 3 / 1 ) ( 2 * ( 4 * 3 ) ) / 1 2 * ( ( 4 * 3 ) / 1 ) 2 * ( 4 * ( 3 / 1 ) ) ( ( 3 + 1 ) + 2 ) * 4 ( 3 + ( 1 + 2 ) ) * 4 ( 3 + 1 ) * ( 2 + 4 ) ( ( 3 * 1 ) * 2 ) * 4 ( 3 * 1 ) * ( 2 * 4 ) ( 3 * ( 1 * 2 ) ) * 4 3 * ( ( 1 * 2 ) * 4 ) 3 * ( 1 * ( 2 * 4 ) ) ( ( 3 / 1 ) * 2 ) * 4 ( 3 / 1 ) * ( 2 * 4 ) ( 3 / ( 1 / 2 ) ) * 4 3 / ( 1 / ( 2 * 4 ) ) 3 / ( ( 1 / 2 ) / 4 ) ( 3 + 1 ) * ( 4 + 2 ) ( ( 3 * 1 ) * 4 ) * 2 ( 3 * 1 ) * ( 4 * 2 ) ( 3 * ( 1 * 4 ) ) * 2 3 * ( ( 1 * 4 ) * 2 ) 3 * ( 1 * ( 4 * 2 ) ) ( ( 3 / 1 ) * 4 ) * 2 ( 3 / 1 ) * ( 4 * 2 ) ( 3 / ( 1 / 4 ) ) * 2 3 / ( 1 / ( 4 * 2 ) ) 3 / ( ( 1 / 4 ) / 2 ) ( ( 3 + 2 ) + 1 ) * 4 ( 3 + ( 2 + 1 ) ) * 4 ( ( 3 * 2 ) * 1 ) * 4 ( 3 * 2 ) * ( 1 * 4 ) ( 3 * ( 2 * 1 ) ) * 4 3 * ( ( 2 * 1 ) * 4 ) 3 * ( 2 * ( 1 * 4 ) ) ( ( 3 * 2 ) / 1 ) * 4 ( 3 * ( 2 / 1 ) ) * 4 3 * ( ( 2 / 1 ) * 4 ) ( 3 * 2 ) / ( 1 / 4 ) 3 * ( 2 / ( 1 / 4 ) ) ( ( 3 * 2 ) * 4 ) * 1 ( 3 * 2 ) * ( 4 * 1 ) ( 3 * ( 2 * 4 ) ) * 1 3 * ( ( 2 * 4 ) * 1 ) 3 * ( 2 * ( 4 * 1 ) ) ( ( 3 * 2 ) * 4 ) / 1 ( 3 * 2 ) * ( 4 / 1 ) ( 3 * ( 2 * 4 ) ) / 1 3 * ( ( 2 * 4 ) / 1 ) 3 * ( 2 * ( 4 / 1 ) ) ( ( 3 * 4 ) * 1 ) * 2 ( 3 * 4 ) * ( 1 * 2 ) ( 3 * ( 4 * 1 ) ) * 2 3 * ( ( 4 * 1 ) * 2 ) 3 * ( 4 * ( 1 * 2 ) ) ( ( 3 * 4 ) / 1 ) * 2 ( 3 * ( 4 / 1 ) ) * 2 3 * ( ( 4 / 1 ) * 2 ) ( 3 * 4 ) / ( 1 / 2 ) 3 * ( 4 / ( 1 / 2 ) ) ( ( 3 * 4 ) * 2 ) * 1 ( 3 * 4 ) * ( 2 * 1 ) ( 3 * ( 4 * 2 ) ) * 1 3 * ( ( 4 * 2 ) * 1 ) 3 * ( 4 * ( 2 * 1 ) ) ( ( 3 * 4 ) * 2 ) / 1 ( 3 * 4 ) * ( 2 / 1 ) ( 3 * ( 4 * 2 ) ) / 1 3 * ( ( 4 * 2 ) / 1 ) 3 * ( 4 * ( 2 / 1 ) ) 4 * ( ( 1 + 2 ) + 3 ) 4 * ( 1 + ( 2 + 3 ) ) ( ( 4 * 1 ) * 2 ) * 3 ( 4 * 1 ) * ( 2 * 3 ) ( 4 * ( 1 * 2 ) ) * 3 4 * ( ( 1 * 2 ) * 3 ) 4 * ( 1 * ( 2 * 3 ) ) ( ( 4 / 1 ) * 2 ) * 3 ( 4 / 1 ) * ( 2 * 3 ) ( 4 / ( 1 / 2 ) ) * 3 4 / ( 1 / ( 2 * 3 ) ) 4 / ( ( 1 / 2 ) / 3 ) 4 * ( ( 1 + 3 ) + 2 ) 4 * ( 1 + ( 3 + 2 ) ) ( ( 4 * 1 ) * 3 ) * 2 ( 4 * 1 ) * ( 3 * 2 ) ( 4 * ( 1 * 3 ) ) * 2 4 * ( ( 1 * 3 ) * 2 ) 4 * ( 1 * ( 3 * 2 ) ) ( ( 4 / 1 ) * 3 ) * 2 ( 4 / 1 ) * ( 3 * 2 ) ( 4 / ( 1 / 3 ) ) * 2 4 / ( 1 / ( 3 * 2 ) ) 4 / ( ( 1 / 3 ) / 2 ) ( 4 + 2 ) * ( 1 + 3 ) 4 * ( ( 2 + 1 ) + 3 ) 4 * ( 2 + ( 1 + 3 ) ) ( ( 4 * 2 ) * 1 ) * 3 ( 4 * 2 ) * ( 1 * 3 ) ( 4 * ( 2 * 1 ) ) * 3 4 * ( ( 2 * 1 ) * 3 ) 4 * ( 2 * ( 1 * 3 ) ) ( ( 4 * 2 ) / 1 ) * 3 ( 4 * ( 2 / 1 ) ) * 3 4 * ( ( 2 / 1 ) * 3 ) ( 4 * 2 ) / ( 1 / 3 ) 4 * ( 2 / ( 1 / 3 ) ) ( 4 + 2 ) * ( 3 + 1 ) 4 * ( ( 2 + 3 ) + 1 ) 4 * ( 2 + ( 3 + 1 ) ) ( ( 4 * 2 ) * 3 ) * 1 ( 4 * 2 ) * ( 3 * 1 ) ( 4 * ( 2 * 3 ) ) * 1 4 * ( ( 2 * 3 ) * 1 ) 4 * ( 2 * ( 3 * 1 ) ) ( ( 4 * 2 ) * 3 ) / 1 ( 4 * 2 ) * ( 3 / 1 ) ( 4 * ( 2 * 3 ) ) / 1 4 * ( ( 2 * 3 ) / 1 ) 4 * ( 2 * ( 3 / 1 ) ) 4 * ( ( 3 + 1 ) + 2 ) 4 * ( 3 + ( 1 + 2 ) ) ( ( 4 * 3 ) * 1 ) * 2 ( 4 * 3 ) * ( 1 * 2 ) ( 4 * ( 3 * 1 ) ) * 2 4 * ( ( 3 * 1 ) * 2 ) 4 * ( 3 * ( 1 * 2 ) ) ( ( 4 * 3 ) / 1 ) * 2 ( 4 * ( 3 / 1 ) ) * 2 4 * ( ( 3 / 1 ) * 2 ) ( 4 * 3 ) / ( 1 / 2 ) 4 * ( 3 / ( 1 / 2 ) ) 4 * ( ( 3 + 2 ) + 1 ) 4 * ( 3 + ( 2 + 1 ) ) ( ( 4 * 3 ) * 2 ) * 1 ( 4 * 3 ) * ( 2 * 1 ) ( 4 * ( 3 * 2 ) ) * 1 4 * ( ( 3 * 2 ) * 1 ) 4 * ( 3 * ( 2 * 1 ) ) ( ( 4 * 3 ) * 2 ) / 1 ( 4 * 3 ) * ( 2 / 1 ) ( 4 * ( 3 * 2 ) ) / 1 4 * ( ( 3 * 2 ) / 1 ) 4 * ( 3 * ( 2 / 1 ) ) Evaluating 24 with the following input: 5 6 7 8 5 * ( 6 - ( 8 / 7 ) ) ( 5 + 7 ) * ( 8 - 6 ) ( ( 5 + 7 ) - 8 ) * 6 ( 5 + ( 7 - 8 ) ) * 6 ( ( 5 - 8 ) + 7 ) * 6 ( 5 - ( 8 - 7 ) ) * 6 6 * ( ( 5 + 7 ) - 8 ) 6 * ( 5 + ( 7 - 8 ) ) 6 * ( ( 5 - 8 ) + 7 ) 6 * ( 5 - ( 8 - 7 ) ) 6 * ( ( 7 + 5 ) - 8 ) 6 * ( 7 + ( 5 - 8 ) ) ( 6 / ( 7 - 5 ) ) * 8 6 / ( ( 7 - 5 ) / 8 ) 6 * ( ( 7 - 8 ) + 5 ) 6 * ( 7 - ( 8 - 5 ) ) ( 6 * 8 ) / ( 7 - 5 ) 6 * ( 8 / ( 7 - 5 ) ) ( 6 - ( 8 / 7 ) ) * 5 ( 7 + 5 ) * ( 8 - 6 ) ( ( 7 + 5 ) - 8 ) * 6 ( 7 + ( 5 - 8 ) ) * 6 ( ( 7 - 8 ) + 5 ) * 6 ( 7 - ( 8 - 5 ) ) * 6 ( 8 - 6 ) * ( 5 + 7 ) ( 8 * 6 ) / ( 7 - 5 ) 8 * ( 6 / ( 7 - 5 ) ) ( 8 - 6 ) * ( 7 + 5 ) ( 8 / ( 7 - 5 ) ) * 6 8 / ( ( 7 - 5 ) / 6 ) ``` ## Argile *Works with: Argile 1.0.0* ```Argile die "Please give 4 digits as argument 1\n" if argc < 2 print a function that given four digits argv[1] subject to the rules of \ the _24_ game, computes an expression to solve the game if possible. use std, array let digits be an array of 4 byte let operators be an array of 4 byte (: reordered arrays :) let (type of digits) rdigits let (type of operators) roperators .: a function that given four digitssubject to the rules of the _24_ game, computes an expression to solve the game if possible. :. -> text if #digits != 4 {return "[error: need exactly 4 digits]"} operators[0] = '+' ; operators[1] = '-' operators[2] = '*' ; operators[3] = '/' for each (val int d) from 0 to 3 if (digits[d] < '1') || (digits[d] > '9') return "[error: non-digit character given]" (super digits)[d] = digits[d] let expr = for each operand order stuff return "" if expr is nil expr .:for each operand order stuff:. -> text for each (val int a) from 0 to 3 for each (val int b) from 0 to 3 next if (b == a) for each (val int c) from 0 to 3 next if (c == b) or (c == a) for each (val int d) from 0 to 3 next if (d == c) or (d == b) or (d == a) rdigits[0] = digits[a] ; rdigits[1] = digits[b] rdigits[2] = digits[c] ; rdigits[3] = digits[d] let found = for each operator order stuff return found unless found is nil nil .:for each operator order stuff:. -> text for each (val int i) from 0 to 3 for each (val int j) from 0 to 3 for each (val int k) from 0 to 3 roperators[0] = operators[i] roperators[1] = operators[j] roperators[2] = operators[k] let found = for each RPN pattern stuff return found if found isn't nil nil our (raw array of text) RPN_patterns = Cdata "xx.x.x." "xx.xx.." "xxx..x." "xxx.x.." "xxxx..." our (raw array of text) formats = Cdata "((%c%c%c)%c%c)%c%c" "(%c%c%c)%c(%c%c%c)" "(%c%c(%c%c%c))%c%c" "%c%c((%c%c%c)%c%c)" "%c%c(%c%c(%c%c%c))" our (raw array of array of 3 int) rrop = Cdata {0;1;2}; {0;2;1}; {1;0;2}; {2;0;1}; {2;1;0} .:for each RPN pattern stuff:. -> text let RPN_stack be an array of 4 real for each (val int rpn) from 0 to 4 let (nat) sp=0, op=0, dg=0. let text p for (p = RPN_patterns[rpn]) (*p != 0) (p++) if *p == 'x' if sp >= 4 {die "RPN stack overflow\n"} if dg > 3 {die "RPN digits overflow\n"} RPN_stack[sp++] = (rdigits[dg++] - '0') as real if *p == '.' if sp < 2 {die "RPN stack underflow\n"} if op > 2 {die "RPN operators overflow\n"} sp -= 2 let x = RPN_stack[sp] let y = RPN_stack[sp + 1] switch roperators[op++] case '+' {x += y} case '-' {x -= y} case '*' {x *= y} case '/' {x /= y} default {die "RPN operator unknown\n"} RPN_stack[sp++] = x if RPN_stack[0] == 24.0 our array of 12 byte buffer (: 4 paren + 3 ops + 4 digits + null :) snprintf (buffer as text) (size of buffer) (formats[rpn]) \ (rdigits[0]) (roperators[(rrop[rpn][0])]) (rdigits[1]) \ (roperators[(rrop[rpn][1])]) (rdigits[2]) \ (roperators[(rrop[rpn][2])]) (rdigits[3]); return buffer as text nil ``` Examples: ```txt $ arc 24_game_solve.arg -o 24_game_solve.c $ gcc -Wall 24_game_solve.c -o 24_game_solve $ ./24_game_solve 1234 ((1+2)+3)*4 $ ./24_game_solve 9999 $ ./24_game_solve 5678 ((5+7)-8)*6 $ ./24_game_solve 1127 (1+2)*(1+7) ``` ## AutoHotkey *Works with: AutoHotkey_L* Output is in RPN. ```AHK #NoEnv InputBox, NNNN ; user input 4 digits NNNN := RegExReplace(NNNN, "(\d)(?=\d)", "$1,") ; separate with commas for the sort command sort NNNN, d`, ; sort in ascending order for the permutations to work StringReplace NNNN, NNNN, `,, , All ; remove comma separators after sorting ops := "+-*/" patterns := [ "x x.x.x." ,"x x.x x.." ,"x x x..x." ,"x x x.x.." ,"x x x x..." ] ; build bruteforce operator list ("+++, ++-, ++* ... ///") a := b := c := 0 While (++a<5){ While (++b<5){ While (++c<5){ l := SubStr(ops, a, 1) . SubStr(ops, b, 1) . SubStr(ops, c, 1) ; build bruteforce template ("x x+x+x+, x x+x x++ ... x x x x///") For each, pattern in patterns { Loop 3 StringReplace, pattern, pattern, ., % SubStr(l, A_Index, 1) pat .= pattern "`n" } }c := 0 }b := 0 } StringTrimRight, pat, pat, 1 ; remove trailing newline ; permutate input. As the lexicographic algorithm is used, each permutation generated is unique While NNNN { StringSplit, N, NNNN ; substitute numbers in for x's and evaluate Loop Parse, pat, `n { eval := A_LoopField ; current line Loop 4 StringReplace, eval, eval, x, % N%A_Index% ; substitute number for "x" If Round(evalRPN(eval), 4) = 24 final .= eval "`n" } NNNN := perm_next(NNNN) ; next lexicographic permutation of user's digits } MsgBox % final ? clipboard := final : "No solution" ; simple stack-based evaluation. Integers only. Whitespace is used to push a value. evalRPN(s){ stack := [] Loop Parse, s If A_LoopField is number t .= A_LoopField else { If t stack.Insert(t), t := "" If InStr("+-/*", l := A_LoopField) { a := stack.Remove(), b := stack.Remove() stack.Insert( l = "+" ? b + a :l = "-" ? b - a :l = "*" ? b * a :l = "/" ? b / a :0 ) } } return stack.Remove() } perm_Next(str){ p := 0, sLen := StrLen(str) Loop % sLen { If A_Index=1 continue t := SubStr(str, sLen+1-A_Index, 1) n := SubStr(str, sLen+2-A_Index, 1) If ( t < n ) { p := sLen+1-A_Index, pC := SubStr(str, p, 1) break } } If !p return false Loop { t := SubStr(str, sLen+1-A_Index, 1) If ( t > pC ) { n := sLen+1-A_Index, nC := SubStr(str, n, 1) break } } return SubStr(str, 1, p-1) . nC . Reverse(SubStr(str, p+1, n-p-1) . pC . SubStr(str, n+1)) } Reverse(s){ Loop Parse, s o := A_LoopField o return o } ``` ### Outputfor 1127: ```txt 1 2+1 7+* 1 2+7 1+* 1 7+1 2+* 1 7+2 1+* 2 1+1 7+* 2 1+7 1+* 7 1+1 2+* 7 1+2 1+* ``` And for 8338: ```txt 8 3 8 3/-/ ``` ## BBC BASIC ```bbcbasic PROCsolve24("1234") PROCsolve24("6789") PROCsolve24("1127") PROCsolve24("5566") END DEF PROCsolve24(s$) LOCAL F%, I%, J%, K%, L%, P%, T%, X$, o$(), p$(), t$() DIM o$(4), p$(24,4), t$(11) o$() = "", "+", "-", "*", "/" RESTORE FOR T% = 1 TO 11 READ t$(T%) NEXT DATA "abcdefg", "(abc)defg", "ab(cde)fg", "abcd(efg)", "(abc)d(efg)", "(abcde)fg" DATA "ab(cdefg)", "((abc)de)fg", "(ab(cde))fg", "ab((cde)fg)", "ab(cd(efg))" FOR I% = 1 TO 4 FOR J% = 1 TO 4 FOR K% = 1 TO 4 FOR L% = 1 TO 4 IF I%<>J% IF J%<>K% IF K%<>L% IF I%<>K% IF J%<>L% IF I%<>L% THEN P% += 1 p$(P%,1) = MID$(s$,I%,1) p$(P%,2) = MID$(s$,J%,1) p$(P%,3) = MID$(s$,K%,1) p$(P%,4) = MID$(s$,L%,1) ENDIF NEXT NEXT NEXT NEXT FOR I% = 1 TO 4 FOR J% = 1 TO 4 FOR K% = 1 TO 4 FOR T% = 1 TO 11 FOR P% = 1 TO 24 X$ = t$(T%) MID$(X$, INSTR(X$,"a"), 1) = p$(P%,1) MID$(X$, INSTR(X$,"b"), 1) = o$(I%) MID$(X$, INSTR(X$,"c"), 1) = p$(P%,2) MID$(X$, INSTR(X$,"d"), 1) = o$(J%) MID$(X$, INSTR(X$,"e"), 1) = p$(P%,3) MID$(X$, INSTR(X$,"f"), 1) = o$(K%) MID$(X$, INSTR(X$,"g"), 1) = p$(P%,4) F% = TRUE : ON ERROR LOCAL F% = FALSE IF F% IF EVAL(X$) = 24 THEN PRINT X$ : EXIT FOR I% RESTORE ERROR NEXT NEXT NEXT NEXT NEXT IF I% > 4 PRINT "No solution found" ENDPROC ``` ### Output ```txt (1+2+3)*4 6*8/(9-7) (1+2)*(1+7) (5+5-6)*6 ``` ## C This is a solver that's generic enough to deal with more than 4 numbers, goals other than 24, or different digit ranges. It guarantees a solution if there is one. Its output format is reasonably good looking, though not necessarily optimal. ```c #include #include #include #define n_cards 4 #define solve_goal 24 #define max_digit 9 typedef struct { int num, denom; } frac_t, *frac; typedef enum { C_NUM = 0, C_ADD, C_SUB, C_MUL, C_DIV } op_type; typedef struct expr_t *expr; typedef struct expr_t { op_type op; expr left, right; int value; } expr_t; void show_expr(expr e, op_type prec, int is_right) { const char * op; switch(e->op) { case C_NUM: printf("%d", e->value); return; case C_ADD: op = " + "; break; case C_SUB: op = " - "; break; case C_MUL: op = " x "; break; case C_DIV: op = " / "; break; } if ((e->op == prec && is_right) || e->op < prec) printf("("); show_expr(e->left, e->op, 0); printf("%s", op); show_expr(e->right, e->op, 1); if ((e->op == prec && is_right) || e->op < prec) printf(")"); } void eval_expr(expr e, frac f) { frac_t left, right; if (e->op == C_NUM) { f->num = e->value; f->denom = 1; return; } eval_expr(e->left, &left); eval_expr(e->right, &right); switch (e->op) { case C_ADD: f->num = left.num * right.denom + left.denom * right.num; f->denom = left.denom * right.denom; return; case C_SUB: f->num = left.num * right.denom - left.denom * right.num; f->denom = left.denom * right.denom; return; case C_MUL: f->num = left.num * right.num; f->denom = left.denom * right.denom; return; case C_DIV: f->num = left.num * right.denom; f->denom = left.denom * right.num; return; default: fprintf(stderr, "Unknown op: %d\n", e->op); return; } } int solve(expr ex_in[], int len) { int i, j; expr_t node; expr ex[n_cards]; frac_t final; if (len == 1) { eval_expr(ex_in[0], &final); if (final.num == final.denom * solve_goal && final.denom) { show_expr(ex_in[0], 0, 0); return 1; } return 0; } for (i = 0; i < len - 1; i++) { for (j = i + 1; j < len; j++) ex[j - 1] = ex_in[j]; ex[i] = &node; for (j = i + 1; j < len; j++) { node.left = ex_in[i]; node.right = ex_in[j]; for (node.op = C_ADD; node.op <= C_DIV; node.op++) if (solve(ex, len - 1)) return 1; node.left = ex_in[j]; node.right = ex_in[i]; node.op = C_SUB; if (solve(ex, len - 1)) return 1; node.op = C_DIV; if (solve(ex, len - 1)) return 1; ex[j] = ex_in[j]; } ex[i] = ex_in[i]; } return 0; } int solve24(int n[]) { int i; expr_t ex[n_cards]; expr e[n_cards]; for (i = 0; i < n_cards; i++) { e[i] = ex + i; ex[i].op = C_NUM; ex[i].left = ex[i].right = 0; ex[i].value = n[i]; } return solve(e, n_cards); } int main() { int i, j, n[] = { 3, 3, 8, 8, 9 }; srand(time(0)); for (j = 0; j < 10; j++) { for (i = 0; i < n_cards; i++) { n[i] = 1 + (double) rand() * max_digit / RAND_MAX; printf(" %d", n[i]); } printf(": "); printf(solve24(n) ? "\n" : "No solution\n"); } return 0; } ``` ### Output ```txt 1 8 2 1: 1 x 8 x (2 + 1) 6 8 2 8: 6 + 8 + 2 + 8 4 2 8 1: (4 - 2 + 1) x 8 3 1 9 9: (9 - 1) / (3 / 9) 5 7 5 1: No solution 5 8 4 1: (5 + 1) x (8 - 4) 8 3 4 9: 8 + 3 + 4 + 9 3 7 4 4: ((3 + 7) - 4) x 4 5 6 4 1: 4 / (1 - 5 / 6) 5 5 9 8: 5 x 5 - 9 + 8 ``` For the heck of it, using seven numbers ranging from 0 to 99, trying to calculate 1: ```txt 54 64 44 67 60 54 97: (54 + 64 + 44) / 54 + 60 / (67 - 97) 83 3 52 50 14 48 55: 55 - (((83 + 3 + 52) - 50 + 14) - 48) 70 14 26 6 4 50 19: ((70 + 14 + 26) / 4 - 19) x 6 - 50 75 29 61 95 1 6 73: 6 / (73 - ((75 + 29 + 61) - 95)) - 1 99 65 59 54 29 3 21: 3 - (99 + 65 + 54) / (59 + 29 + 21) 88 57 18 72 60 70 22: (72 - 70) x (60 + 22) - (88 + 57 + 18) 73 18 76 44 32 3 49: 32 / (49 - (44 + 3)) - ((73 + 18) - 76) 36 53 68 12 82 30 8: ((36 + 53 + 68) - 82) / 30 - 12 / 8 83 35 81 82 99 40 36: ((83 + 35) x 81 - 82 x 99) / 40 / 36 29 43 57 18 1 74 89: (1 + 74) / (((29 + 43) - 57) / 18) - 89 ``` ## C++ *Works with: C++11* *Works with: GCC 4.8* This code may be extended to work with more than 4 numbers, goals other than 24, or different digit ranges. Operations have been manually determined for these parameters, with the belief they are complete. ```cpp #include #include #include #include #include typedef short int Digit; // Typedef for the digits data type. constexpr Digit nDigits{4}; // Amount of digits that are taken into the game. constexpr Digit maximumDigit{9}; // Maximum digit that may be taken into the game. constexpr short int gameGoal{24}; // Desired result. typedef std::array digitSet; // Typedef for the set of digits in the game. digitSet d; void printTrivialOperation(std::string operation) { // Prints a commutative operation taking all the digits. bool printOperation(false); for(const Digit& number : d) { if(printOperation) std::cout << operation; else printOperation = true; std::cout << number; } std::cout << std::endl; } void printOperation(std::string prefix, std::string operation1, std::string operation2, std::string operation3, std::string suffix = "") { std::cout << prefix << d[0] << operation1 << d[1] << operation2 << d[2] << operation3 << d[3] << suffix << std::endl; } int main() { std::mt19937_64 randomGenerator; std::uniform_int_distribution digitDistro{1, maximumDigit}; // Let us set up a number of trials: for(int trial{10}; trial; --trial) { for(Digit& digit : d) { digit = digitDistro(randomGenerator); std::cout << digit << " "; } std::cout << std::endl; std::sort(d.begin(), d.end()); // We start with the most trivial, commutative operations: if(std::accumulate(d.cbegin(), d.cend(), 0) == gameGoal) printTrivialOperation(" + "); if(std::accumulate(d.cbegin(), d.cend(), 1, std::multiplies {}) == gameGoal) printTrivialOperation(" * "); // Now let's start working on every permutation of the digits. do { // Operations with 2 symbols + and one symbol -: if(d[0] + d[1] + d[2] - d[3] == gameGoal) printOperation("", " + ", " + ", " - "); // If gameGoal is ever changed to a smaller value, consider adding more operations in this category. // Operations with 2 symbols + and one symbol *: if(d[0] * d[1] + d[2] + d[3] == gameGoal) printOperation("", " * ", " + ", " + "); if(d[0] * (d[1] + d[2]) + d[3] == gameGoal) printOperation("", " * ( ", " + ", " ) + "); if(d[0] * (d[1] + d[2] + d[3]) == gameGoal) printOperation("", " * ( ", " + ", " + ", " )"); // Operations with one symbol + and 2 symbols *: if((d[0] * d[1] * d[2]) + d[3] == gameGoal) printOperation("( ", " * ", " * ", " ) + "); if(d[0] * d[1] * (d[2] + d[3]) == gameGoal) printOperation("( ", " * ", " * ( ", " + ", " )"); if((d[0] * d[1]) + (d[2] * d[3]) == gameGoal) printOperation("( ", " * ", " ) + ( ", " * ", " )"); // Operations with one symbol - and 2 symbols *: if((d[0] * d[1] * d[2]) - d[3] == gameGoal) printOperation("( ", " * ", " * ", " ) - "); if(d[0] * d[1] * (d[2] - d[3]) == gameGoal) printOperation("( ", " * ", " * ( ", " - ", " )"); if((d[0] * d[1]) - (d[2] * d[3]) == gameGoal) printOperation("( ", " * ", " ) - ( ", " * ", " )"); // Operations with one symbol +, one symbol *, and one symbol -: if(d[0] * d[1] + d[2] - d[3] == gameGoal) printOperation("", " * ", " + ", " - "); if(d[0] * (d[1] + d[2]) - d[3] == gameGoal) printOperation("", " * ( ", " + ", " ) - "); if(d[0] * (d[1] - d[2]) + d[3] == gameGoal) printOperation("", " * ( ", " - ", " ) + "); if(d[0] * (d[1] + d[2] - d[3]) == gameGoal) printOperation("", " * ( ", " + ", " - ", " )"); if(d[0] * d[1] - (d[2] + d[3]) == gameGoal) printOperation("", " * ", " - ( ", " + ", " )"); // Operations with one symbol *, one symbol /, one symbol +: if(d[0] * d[1] == (gameGoal - d[3]) * d[2]) printOperation("( ", " * ", " / ", " ) + "); if(((d[0] * d[1]) + d[2]) == gameGoal * d[3]) printOperation("(( ", " * ", " ) + ", " ) / "); if((d[0] + d[1]) * d[2] == gameGoal * d[3]) printOperation("(( ", " + ", " ) * ", " ) / "); if(d[0] * d[1] == gameGoal * (d[2] + d[3])) printOperation("( ", " * ", " ) / ( ", " + ", " )"); // Operations with one symbol *, one symbol /, one symbol -: if(d[0] * d[1] == (gameGoal + d[3]) * d[2]) printOperation("( ", " * ", " / ", " ) - "); if(((d[0] * d[1]) - d[2]) == gameGoal * d[3]) printOperation("(( ", " * ", " ) - ", " ) / "); if((d[0] - d[1]) * d[2] == gameGoal * d[3]) printOperation("(( ", " - ", " ) * ", " ) / "); if(d[0] * d[1] == gameGoal * (d[2] - d[3])) printOperation("( ", " * ", " ) / ( ", " - ", " )"); // Operations with 2 symbols *, one symbol /: if(d[0] * d[1] * d[2] == gameGoal * d[3]) printOperation("", " * ", " * ", " / "); if(d[0] * d[1] == gameGoal * d[2] * d[3]) printOperation("", " * ", " / ( ", " * ", " )"); // Operations with 2 symbols /, one symbol -: if(d[0] * d[3] == gameGoal * (d[1] * d[3] - d[2])) printOperation("", " / ( ", " - ", " / ", " )"); // Operations with 2 symbols /, one symbol *: if(d[0] * d[1] == gameGoal * d[2] * d[3]) printOperation("( ", " * ", " / ", " ) / ", ""); } while(std::next_permutation(d.begin(), d.end())); // All operations are repeated for all possible permutations of the numbers. } return 0; } ``` ### Output ```txt 8 3 7 9 3 * ( 7 + 9 - 8 ) 3 * ( 9 + 7 - 8 ) 1 4 3 1 ( 3 * 4 * ( 1 + 1 ) ( 4 * 3 * ( 1 + 1 ) 5 4 3 6 6 * ( 3 + 5 - 4 ) 6 * ( 5 + 3 - 4 ) 2 5 5 8 5 4 7 3 3 * 4 + 5 + 7 3 * 4 + 7 + 5 ( 3 * 4 * ( 7 - 5 ) 3 * ( 5 + 7 - 4 ) 3 * ( 7 + 5 - 4 ) 4 * 3 + 5 + 7 4 * 3 + 7 + 5 ( 4 * 3 * ( 7 - 5 ) 4 * 5 + 7 - 3 5 * 4 + 7 - 3 5 * ( 7 - 3 ) + 4 3 3 9 2 2 * 9 + 3 + 3 3 * ( 2 + 3 ) + 9 3 * ( 2 + 9 - 3 ) 3 * ( 3 + 2 ) + 9 3 * ( 9 - 2 ) + 3 3 * ( 9 + 2 - 3 ) 9 * 2 + 3 + 3 3 2 7 9 3 * ( 7 - 2 ) + 9 (( 7 + 9 ) * 3 ) / 2 (( 9 + 7 ) * 3 ) / 2 7 1 5 3 7 6 9 4 (( 7 + 9 ) * 6 ) / 4 (( 9 + 7 ) * 6 ) / 4 3 5 3 1 ( 1 * 3 * ( 3 + 5 ) ( 1 * 3 * ( 5 + 3 ) ( 3 * 1 * ( 3 + 5 ) ( 3 * 1 * ( 5 + 3 ) (( 3 + 5 ) * 3 ) / 1 (( 5 + 3 ) * 3 ) / 1 ``` ## Ceylon Don't forget to import ceylon.random in your module.ceylon file. ```ceylon import ceylon.random { DefaultRandom } shared sealed class Rational(numerator, denominator = 1) satisfies Numeric { shared Integer numerator; shared Integer denominator; Integer gcd(Integer a, Integer b) => if (b == 0) then a else gcd(b, a % b); shared Rational inverted => Rational(denominator, numerator); shared Rational simplified => let (largestFactor = gcd(numerator, denominator)) Rational(numerator / largestFactor, denominator / largestFactor); divided(Rational other) => (this * other.inverted).simplified; negated => Rational(-numerator, denominator).simplified; plus(Rational other) => let (top = numerator*other.denominator + other.numerator*denominator, bottom = denominator * other.denominator) Rational(top, bottom).simplified; times(Rational other) => Rational(numerator * other.numerator, denominator * other.denominator).simplified; shared Integer integer => numerator / denominator; shared Float float => numerator.float / denominator.float; string => denominator == 1 then numerator.string else "``numerator``/``denominator``"; shared actual Boolean equals(Object that) { if (is Rational that) { value simplifiedThis = this.simplified; value simplifiedThat = that.simplified; return simplifiedThis.numerator==simplifiedThat.numerator && simplifiedThis.denominator==simplifiedThat.denominator; } else { return false; } } } shared Rational? rational(Integer numerator, Integer denominator = 1) => if (denominator == 0) then null else Rational(numerator, denominator).simplified; shared Rational numeratorOverOne(Integer numerator) => Rational(numerator); shared abstract class Operation(String lexeme) of addition | subtraction | multiplication | division { shared formal Rational perform(Rational left, Rational right); string => lexeme; } shared object addition extends Operation("+") { perform(Rational left, Rational right) => left + right; } shared object subtraction extends Operation("-") { perform(Rational left, Rational right) => left - right; } shared object multiplication extends Operation("*") { perform(Rational left, Rational right) => left * right; } shared object division extends Operation("/") { perform(Rational left, Rational right) => left / right; } shared Operation[] operations = `Operation`.caseValues; shared interface Expression of NumberExpression | OperationExpression { shared formal Rational evaluate(); } shared class NumberExpression(Rational number) satisfies Expression { evaluate() => number; string => number.string; } shared class OperationExpression(Expression left, Operation op, Expression right) satisfies Expression { evaluate() => op.perform(left.evaluate(), right.evaluate()); string => "(``left`` ``op`` ``right``)"; } shared void run() { value twentyfour = numeratorOverOne(24); value random = DefaultRandom(); function buildExpressions({Rational*} numbers, Operation* ops) { assert (is NumberExpression[4] numTuple = numbers.collect(NumberExpression).tuple()); assert (is Operation[3] opTuple = ops.sequence().tuple()); value [a, b, c, d] = numTuple; value [op1, op2, op3] = opTuple; value opExp = OperationExpression; // this is just to give it a shorter name return [ opExp(opExp(opExp(a, op1, b), op2, c), op3, d), opExp(opExp(a, op1, opExp(b, op2, c)), op3, d), opExp(a, op1, opExp(opExp(b, op2, c), op3, d)), opExp(a, op1, opExp(b, op2, opExp(c, op3, d))) ]; } print("Please enter your 4 numbers to see how they form 24 or enter the letter r for random numbers."); if (exists line = process.readLine()) { Rational[] chosenNumbers; if (line.trimmed.uppercased == "R") { chosenNumbers = random.elements(1..9).take(4).collect((Integer element) => numeratorOverOne(element)); print("The random numbers are ``chosenNumbers``"); } else { chosenNumbers = line.split().map(Integer.parse).narrow ().collect(numeratorOverOne); } value expressions = { for (numbers in chosenNumbers.permutations) for (op1 in operations) for (op2 in operations) for (op3 in operations) for (exp in buildExpressions(numbers, op1, op2, op3)) if (exp.evaluate() == twentyfour) exp }; print("The solutions are:"); expressions.each(print); } } ``` ## Clojure ```Clojure (ns rosettacode.24game.solve (:require [clojure.math.combinatorics :as c] [clojure.walk :as w])) (def ^:private op-maps (map #(zipmap [:o1 :o2 :o3] %) (c/selections '(* + - /) 3))) (def ^:private patterns '( (:o1 (:o2 :n1 :n2) (:o3 :n3 :n4)) (:o1 :n1 (:o2 :n2 (:o3 :n3 :n4))) (:o1 (:o2 (:o3 :n1 :n2) :n3) :n4))) (defn play24 [& digits] {:pre (and (every? #(not= 0 %) digits) (= (count digits) 4))} (->> (for [:let [digit-maps (->> digits sort c/permutations (map #(zipmap [:n1 :n2 :n3 :n4] %)))] om op-maps, dm digit-maps] (w/prewalk-replace dm (w/prewalk-replace om patterns))) (filter #(= (eval %) 24)) (map println) doall count)) ``` The function play24
works by substituting the given digits and the four operations into the binary tree patterns (o (o n n) (o n n)), (o (o (o n n) n) n), and (o n (o n (o n n))). The substitution is the complex part of the program: two pairs of nested maps (the function) are used to substitute in operations and digits, which are replaced into the tree patterns. ## COBOL ```cobol> > SOURCE FORMAT FREE *> This code is dedicated to the public domain *> This is GNUCobol 2.0 identification division. program-id. twentyfoursolve. environment division. configuration section. repository. function all intrinsic. input-output section. file-control. select count-file assign to count-file-name file status count-file-status organization line sequential. data division. file section. fd count-file. 01 count-record pic x(7). working-storage section. 01 count-file-name pic x(64) value 'solutioncounts'. 01 count-file-status pic xx. 01 command-area. 03 nd pic 9. 03 number-definition. 05 n occurs 4 pic 9. 03 number-definition-9 redefines number-definition pic 9(4). 03 command-input pic x(16). 03 command pic x(5). 03 number-count pic 9999. 03 l1 pic 99. 03 l2 pic 99. 03 expressions pic zzz,zzz,zz9. 01 number-validation. 03 px pic 99. 03 permutations value '1234' & '1243' & '1324' & '1342' & '1423' & '1432' & '2134' & '2143' & '2314' & '2341' & '2413' & '2431' & '3124' & '3142' & '3214' & '3241' & '3423' & '3432' & '4123' & '4132' & '4213' & '4231' & '4312' & '4321'. 05 permutation occurs 24 pic x(4). 03 cpx pic 9. 03 current-permutation pic x(4). 03 od1 pic 9. 03 od2 pic 9. 03 od3 pic 9. 03 operator-definitions pic x(4) value '+-*/'. 03 cox pic 9. 03 current-operators pic x(3). 03 rpn-forms value 'nnonono' & 'nnonnoo' & 'nnnonoo' & 'nnnoono' & 'nnnnooo'. 05 rpn-form occurs 5 pic x(7). 03 rpx pic 9. 03 current-rpn-form pic x(7). 01 calculation-area. 03 oqx pic 99. 03 output-queue pic x(7). 03 work-number pic s9999. 03 top-numerator pic s9999 sign leading separate. 03 top-denominator pic s9999 sign leading separate. 03 rsx pic 9. 03 result-stack occurs 8. 05 numerator pic s9999. 05 denominator pic s9999. 03 divide-by-zero-error pic x. 01 totals. 03 s pic 999. 03 s-lim pic 999 value 600. 03 s-max pic 999 value 0. 03 solution occurs 600 pic x(7). 03 sc pic 999. 03 sc1 pic 999. 03 sc2 pic 9. 03 sc-max pic 999 value 0. 03 sc-lim pic 999 value 600. 03 solution-counts value zeros. 05 solution-count occurs 600 pic 999. 03 ns pic 9999. 03 ns-max pic 9999 value 0. 03 ns-lim pic 9999 value 6561. 03 number-solutions occurs 6561. 05 ns-number pic x(4). 05 ns-count pic 999. 03 record-counts pic 9999. 03 total-solutions pic 9999. 01 infix-area. 03 i pic 9. 03 i-s pic 9. 03 i-s1 pic 9. 03 i-work pic x(16). 03 i-stack occurs 7 pic x(13). procedure division. start-twentyfoursolve. display 'start twentyfoursolve' perform display-instructions perform get-command perform until command-input = spaces display space initialize command number-count unstring command-input delimited by all space into command number-count move command-input to number-definition move spaces to command-input evaluate command when 'h' when 'help' perform display-instructions when 'list' if ns-max = 0 perform load-solution-counts end-if perform list-counts when 'show' if ns-max = 0 perform load-solution-counts end-if perform show-numbers when other if number-definition-9 not numeric display 'invalid number' else perform get-solutions perform display-solutions end-if end-evaluate if command-input = spaces perform get-command end-if end-perform display 'exit twentyfoursolve' stop run . display-instructions. display space display 'enter a numberas four integers from 1-9 to see its solutions' display 'enter list to see counts of solutions for all numbers' display 'enter show to see numbers having solutions' display ' ends the program' . get-command. display space move spaces to command-input display '(h for help)?' with no advancing accept command-input . ask-for-more. display space move 0 to l1 add 1 to l2 if l2 = 10 display 'more ( )?' with no advancing accept command-input move 0 to l2 end-if . list-counts. add 1 to sc-max giving sc display 'there are ' sc ' solution counts' display space display 'solutions/numbers' move 0 to l1 move 0 to l2 perform varying sc from 1 by 1 until sc > sc-max or command-input <> spaces if solution-count(sc) > 0 subtract 1 from sc giving sc1 *> offset to capture zero counts display sc1 '/' solution-count(sc) space with no advancing add 1 to l1 if l1 = 8 perform ask-for-more end-if end-if end-perform if l1 > 0 display space end-if . show-numbers. *> with number-count solutions add 1 to number-count giving sc1 *> offset for zero count evaluate true when number-count >= sc-max display 'no number has ' number-count ' solutions' exit paragraph when solution-count(sc1) = 1 and number-count = 1 display '1 number has 1 solution' when solution-count(sc1) = 1 display '1 number has ' number-count ' solutions' when number-count = 1 display solution-count(sc1) ' numbers have 1 solution' when other display solution-count(sc1) ' numbers have ' number-count ' solutions' end-evaluate display space move 0 to l1 move 0 to l2 perform varying ns from 1 by 1 until ns > ns-max or command-input <> spaces if ns-count(ns) = number-count display ns-number(ns) space with no advancing add 1 to l1 if l1 = 14 perform ask-for-more end-if end-if end-perform if l1 > 0 display space end-if . display-solutions. evaluate s-max when 0 display number-definition ' has no solutions' when 1 display number-definition ' has 1 solution' when other display number-definition ' has ' s-max ' solutions' end-evaluate display space move 0 to l1 move 0 to l2 perform varying s from 1 by 1 until s > s-max or command-input <> spaces *> convert rpn solution(s) to infix move 0 to i-s perform varying i from 1 by 1 until i > 7 if solution(s)(i:1) >= '1' and <= '9' add 1 to i-s move solution(s)(i:1) to i-stack(i-s) else subtract 1 from i-s giving i-s1 move spaces to i-work string '(' i-stack(i-s1) solution(s)(i:1) i-stack(i-s) ')' delimited by space into i-work move i-work to i-stack(i-s1) subtract 1 from i-s end-if end-perform display solution(s) space i-stack(1) space space with no advancing add 1 to l1 if l1 = 3 perform ask-for-more end-if end-perform if l1 > 0 display space end-if . load-solution-counts. move 0 to ns-max *> numbers and their solution count move 0 to sc-max *> solution counts move spaces to count-file-status open input count-file if count-file-status <> '00' perform create-count-file move 0 to ns-max *> numbers and their solution count move 0 to sc-max *> solution counts open input count-file end-if read count-file move 0 to record-counts move zeros to solution-counts perform until count-file-status <> '00' add 1 to record-counts perform increment-ns-max move count-record to number-solutions(ns-max) add 1 to ns-count(ns-max) giving sc *> offset 1 for zero counts if sc > sc-lim display 'sc ' sc ' exceeds sc-lim ' sc-lim stop run end-if if sc > sc-max move sc to sc-max end-if add 1 to solution-count(sc) read count-file end-perform close count-file . create-count-file. open output count-file display 'Counting solutions for all numbers' display 'We will examine 9*9*9*9 numbers' display 'For each number we will examine 4! permutations of the digits' display 'For each permutation we will examine 4*4*4 combinations of operators' display 'For each permutation and combination we will examine 5 rpn forms' display 'We will count the number of unique solutions for the given number' display 'Each number and its counts will be written to file ' trim(count-file-name) compute expressions = 9*9*9*9*factorial(4)*4*4*4*5 display 'So we will evaluate ' trim(expressions) ' statements' display 'This will take a few minutes' display 'In the future if ' trim(count-file-name) ' exists, this step will be bypassed' move 0 to record-counts move 0 to total-solutions perform varying n(1) from 1 by 1 until n(1) = 0 perform varying n(2) from 1 by 1 until n(2) = 0 display n(1) n(2) '..' *> show progress perform varying n(3) from 1 by 1 until n(3) = 0 perform varying n(4) from 1 by 1 until n(4) = 0 perform get-solutions perform increment-ns-max move number-definition to ns-number(ns-max) move s-max to ns-count(ns-max) move number-solutions(ns-max) to count-record write count-record add s-max to total-solutions add 1 to record-counts add 1 to ns-count(ns-max) giving sc *> offset by 1 for zero counts if sc > sc-lim display 'error: ' sc ' solution count exceeds ' sc-lim stop run end-if add 1 to solution-count(sc) end-perform end-perform end-perform end-perform close count-file display record-counts ' numbers and counts written to ' trim(count-file-name) display total-solutions ' total solutions' display space . increment-ns-max. if ns-max >= ns-lim display 'error: numbers exceeds ' ns-lim stop run end-if add 1 to ns-max . get-solutions. move 0 to s-max perform varying px from 1 by 1 until px > 24 move permutation(px) to current-permutation perform varying od1 from 1 by 1 until od1 > 4 move operator-definitions(od1:1) to current-operators(1:1) perform varying od2 from 1 by 1 until od2 > 4 move operator-definitions(od2:1) to current-operators(2:1) perform varying od3 from 1 by 1 until od3 > 4 move operator-definitions(od3:1) to current-operators(3:1) perform varying rpx from 1 by 1 until rpx > 5 move rpn-form(rpx) to current-rpn-form move 0 to cpx cox move spaces to output-queue perform varying oqx from 1 by 1 until oqx > 7 if current-rpn-form(oqx:1) = 'n' add 1 to cpx move current-permutation(cpx:1) to nd move n(nd) to output-queue(oqx:1) else add 1 to cox move current-operators(cox:1) to output-queue(oqx:1) end-if end-perform perform evaluate-rpn if divide-by-zero-error = space and 24 * top-denominator = top-numerator perform varying s from 1 by 1 until s > s-max or solution(s) = output-queue continue end-perform if s > s-max if s >= s-lim display 'error: solutions ' s ' for ' number-definition ' exceeds ' s-lim stop run end-if move s to s-max move output-queue to solution(s-max) end-if end-if end-perform end-perform end-perform end-perform end-perform . evaluate-rpn. move space to divide-by-zero-error move 0 to rsx *> stack depth perform varying oqx from 1 by 1 until oqx > 7 if output-queue(oqx:1) >= '1' and <= '9' *> push the digit onto the stack add 1 to rsx move top-numerator to numerator(rsx) move top-denominator to denominator(rsx) move output-queue(oqx:1) to top-numerator move 1 to top-denominator else *> apply the operation evaluate output-queue(oqx:1) when '+' compute top-numerator = top-numerator * denominator(rsx) + top-denominator * numerator(rsx) compute top-denominator = top-denominator * denominator(rsx) when '-' compute top-numerator = top-denominator * numerator(rsx) - top-numerator * denominator(rsx) compute top-denominator = top-denominator * denominator(rsx) when '*' compute top-numerator = top-numerator * numerator(rsx) compute top-denominator = top-denominator * denominator(rsx) when '/' compute work-number = numerator(rsx) * top-denominator compute top-denominator = denominator(rsx) * top-numerator if top-denominator = 0 move 'y' to divide-by-zero-error exit paragraph end-if move work-number to top-numerator end-evaluate *> pop the stack subtract 1 from rsx end-if end-perform . end program twentyfoursolve. ``` ### Output ```txt prompt$ cobc -xj twentyfoursolve.cob start twentyfoursolve enter a number as four integers from 1-9 to see its solutions enter list to see counts of solutions for all numbers enter show to see numbers having solutions ends the program (h for help)?5678 5678 has 026 solutions 57+8-6* (((5+7)-8)*6) 57+86-* ((5+7)*(8-6)) 578-+6* ((5+(7-8))*6) 58-7+6* (((5-8)+7)*6) 587--6* ((5-(8-7))*6) 657+8-* (6*((5+7)-8)) 6578-+* (6*(5+(7-8))) 658-7+* (6*((5-8)+7)) 6587--* (6*(5-(8-7))) 675+8-* (6*((7+5)-8)) 6758-+* (6*(7+(5-8))) 675-/8* ((6/(7-5))*8) 675-8// (6/((7-5)/8)) 678-5+* (6*((7-8)+5)) 6785--* (6*(7-(8-5))) 6875-/* (6*(8/(7-5))) 68*75-/ ((6*8)/(7-5)) 75+8-6* (((7+5)-8)*6) 75+86-* ((7+5)*(8-6)) 758-+6* ((7+(5-8))*6) 86-57+* ((8-6)*(5+7)) 86-75+* ((8-6)*(7+5)) 8675-/* (8*(6/(7-5))) 86*75-/ ((8*6)/(7-5)) 875-/6* ((8/(7-5))*6) 875-6// (8/((7-5)/6)) (h for help)? ``` ## CoffeeScript ```coffeescript # This program tries to find some way to turn four digits into an arithmetic # expression that adds up to 24. # # Example solution for 5, 7, 8, 8: # (((8 + 7) * 8) / 5) solve_24_game = (digits...) -> # Create an array of objects for our helper functions arr = for digit in digits { val: digit expr: digit } combo4 arr... combo4 = (a, b, c, d) -> arr = [a, b, c, d] # Reduce this to a three-node problem by combining two # nodes from the array. permutations = [ [0, 1, 2, 3] [0, 2, 1, 3] [0, 3, 1, 2] [1, 2, 0, 3] [1, 3, 0, 2] [2, 3, 0, 1] ] for permutation in permutations [i, j, k, m] = permutation for combo in combos arr[i], arr[j] answer = combo3 combo, arr[k], arr[m] return answer if answer null combo3 = (a, b, c) -> arr = [a, b, c] permutations = [ [0, 1, 2] [0, 2, 1] [1, 2, 0] ] for permutation in permutations [i, j, k] = permutation for combo in combos arr[i], arr[j] answer = combo2 combo, arr[k] return answer if answer null combo2 = (a, b) -> for combo in combos a, b return combo.expr if combo.val == 24 null combos = (a, b) -> [ val: a.val + b.val expr: "(#{a.expr} + #{b.expr})" , val: a.val * b.val expr: "(#{a.expr} * #{b.expr})" , val: a.val - b.val expr: "(#{a.expr} - #{b.expr})" , val: b.val - a.val expr: "(#{b.expr} - #{a.expr})" , val: a.val / b.val expr: "(#{a.expr} / #{b.expr})" , val: b.val / a.val expr: "(#{b.expr} / #{a.expr})" , ] # test do -> rand_digit = -> 1 + Math.floor (9 * Math.random()) for i in [1..15] a = rand_digit() b = rand_digit() c = rand_digit() d = rand_digit() solution = solve_24_game a, b, c, d console.log "Solution for #{[a,b,c,d]}: #{solution ? 'no solution'}" ``` ### Output ```txt > coffee 24_game.coffee Solution for 8,3,1,8: ((1 + 8) * (8 / 3)) Solution for 6,9,5,7: (6 - ((5 - 7) * 9)) Solution for 4,2,1,1: no solution Solution for 3,5,1,3: (((3 + 5) * 1) * 3) Solution for 6,4,1,7: ((7 - (4 - 1)) * 6) Solution for 8,1,3,1: (((8 + 1) - 1) * 3) Solution for 6,1,3,3: (((6 + 1) * 3) + 3) Solution for 7,1,5,6: (((7 - 1) * 5) - 6) Solution for 4,2,3,1: ((3 + 1) * (4 + 2)) Solution for 8,8,5,8: ((5 * 8) - (8 + 8)) Solution for 3,8,4,1: ((1 - (3 - 8)) * 4) Solution for 6,4,3,8: ((8 - (6 / 3)) * 4) Solution for 2,1,8,7: (((2 * 8) + 1) + 7) Solution for 5,2,7,5: ((2 * 7) + (5 + 5)) Solution for 2,4,8,9: ((9 - (2 + 4)) * 8) ``` ## Common Lisp ```lisp (defconstant +ops+ '(* / + -)) (defun digits () (sort (loop repeat 4 collect (1+ (random 9))) #'<)) (defun expr-value (expr) (eval expr)) (defun divides-by-zero-p (expr) (when (consp expr) (destructuring-bind (op &rest args) expr (or (divides-by-zero-p (car args)) (and (eq op '/) (or (and (= 1 (length args)) (zerop (expr-value (car args)))) (some (lambda (arg) (or (divides-by-zero-p arg) (zerop (expr-value arg)))) (cdr args)))))))) (defun solvable-p (digits &optional expr) (unless (divides-by-zero-p expr) (if digits (destructuring-bind (next &rest rest) digits (if expr (some (lambda (op) (solvable-p rest (cons op (list next expr)))) +ops+) (solvable-p rest (list (car +ops+) next)))) (when (and expr (eql 24 (expr-value expr))) (merge-exprs expr))))) (defun merge-exprs (expr) (if (atom expr) expr (destructuring-bind (op &rest args) expr (if (and (member op '(* +)) (= 1 (length args))) (car args) (cons op (case op ((* +) (loop for arg in args for merged = (merge-exprs arg) when (and (consp merged) (eq op (car merged))) append (cdr merged) else collect merged)) (t (mapcar #'merge-exprs args)))))))) (defun solve-24-game (digits) "Generate a lisp form using the operators in +ops+ and the given digits which evaluates to 24. The first form found is returned, or NIL if there is no solution." (solvable-p digits)) ``` ### Output ```txt CL-USER 138 > (loop repeat 24 for soln = (solve-24-game (digits)) when soln do (pprint soln)) (+ 7 5 (* 4 3)) (* 6 4 (- 3 2)) (+ 9 8 4 3) (* 8 (- 6 (* 3 1))) (* 6 4 (/ 2 2)) (* 9 (/ 8 (- 8 5))) NIL ``` ## D This uses the Rational struct and permutations functions of two other Rosetta Code Tasks. {{trans|Scala}} ```d import std.stdio, std.algorithm, std.range, std.conv, std.string, std.concurrency, permutations2, arithmetic_rational; string solve(in int target, in int[] problem) { static struct T { Rational r; string e; } Generator!T computeAllOperations(in Rational[] L) { return new typeof(return)({ if (!L.empty) { immutable x = L[0]; if (L.length == 1) { yield(T(x, x.text)); } else { foreach (const o; computeAllOperations(L.dropOne)) { immutable y = o.r; auto sub = [T(x * y, "*"), T(x + y, "+"), T(x - y, "-")]; if (y) sub ~= [T(x / y, "/")]; foreach (const e; sub) yield(T(e.r, format("(%s%s%s)", x, e.e, o.e))); } } } }); } foreach (const p; problem.map!Rational.array.permutations!false) foreach (const sol; computeAllOperations(p)) if (sol.r == target) return sol.e; return "No solution"; } void main() { foreach (const prob; [[6, 7, 9, 5], [3, 3, 8, 8], [1, 1, 1, 1]]) writeln(prob, ": ", solve(24, prob)); } ``` ### Output ```txt [6, 7, 9, 5]: (6+(9*(7-5))) [3, 3, 8, 8]: (8/(3-(8/3))) [1, 1, 1, 1]: No solution ``` ## EchoLisp The program takes n numbers - not limited to 4 - builds the all possible legal rpn expressions according to the game rules, and evaluates them. Time saving : 4 5 + is the same as 5 4 + . Do not generate twice. Do not generate expressions like 5 6 * + which are not legal. ```scheme ;; use task [[RPN_to_infix_conversion#EchoLisp]] to print results (define (rpn->string rpn) (if (vector? rpn) (infix->string (rpn->infix rpn)) "😥 Not found")) (string-delimiter "") (define OPS #(* + - // )) ;; use float division (define-syntax-rule (commutative? op) (or (= op *) (= op +))) ;; --------------------------------- ;; calc rpn -> num value or #f if bad rpn ;; rpn is a vector of ops or numbers ;; ---------------------------------- (define (calc rpn) (define S (stack 'S)) (for ((token rpn)) (if (procedure? token) (let [(op2 (pop S)) (op1 (pop S))] (if (and op1 op2) (push S (apply token (list op1 op2))) (push S #f))) ;; not-well formed (push S token )) #:break (not (stack-top S))) (if (= 1 (stack-length S)) (pop S) #f)) ;; check for legal rpn -> #f if not legal (define (rpn? rpn) (define S (stack 'S)) (for ((token rpn)) (if (procedure? token) (push S (and (pop S) (pop S))) (push S token )) #:break (not (stack-top S))) (stack-top S)) ;; -------------------------------------- ;; build-rpn : push next rpn op or number ;; dleft is number of not used digits ;; --------------------------------------- (define count 0) (define (build-rpn into: rpn depth maxdepth digits ops dleft target &hit ) (define cmpop #f) (cond ;; tooo long [(> (++ count) 200_000) (set-box! &hit 'not-found)] ;; stop on first hit [(unbox &hit) &hit] ;; partial rpn must be legal [(not (rpn? rpn)) #f] ;; eval rpn if complete [(> depth maxdepth) (when (= target (calc rpn)) (set-box! &hit rpn))] ;; else, add a digit to rpn [else [when (< depth maxdepth) ;; digits anywhere except last (for [(d digits) (i 10)] #:continue (zero? d) (vector-set! digits i 0) ;; mark used (vector-set! rpn depth d) (build-rpn rpn (1+ depth) maxdepth digits ops (1- dleft) target &hit) (vector-set! digits i d)) ;; mark unused ] ;; add digit ;; or, add an op ;; ops anywhere except positions 0,1 [when (and (> depth 1) (<= (+ depth dleft) maxdepth));; cutter : must use all digits (set! cmpop (and (number? [rpn (1- depth)]) (number? [rpn (- depth 2)]) (> [rpn (1- depth)] [rpn (- depth 2)]))) (for [(op ops)] #:continue (and cmpop (commutative? op)) ;; cutter : 3 4 + === 4 3 + (vector-set! rpn depth op) (build-rpn rpn (1+ depth) maxdepth digits ops dleft target &hit) (vector-set! rpn depth 0))] ;; add op ] ; add something to rpn vector )) ; build-rpn ;;------------------------ ;;gen24 : num random numbers ;;------------------------ (define (gen24 num maxrange) (->> (append (range 1 maxrange)(range 1 maxrange)) shuffle (take num))) ;;------------------------------------------- ;; try-rpn : sets starter values for build-rpn ;;------------------------------------------- (define (try-rpn digits target) (set! digits (list-sort > digits)) ;; seems to accelerate things (define rpn (make-vector (1- (* 2 (length digits))))) (define &hit (box #f)) (set! count 0) (build-rpn rpn starter-depth: 0 max-depth: (1- (vector-length rpn)) (list->vector digits) OPS remaining-digits: (length digits) target &hit ) (writeln target '= (rpn->string (unbox &hit)) 'tries= count)) ;; ------------------------------- ;; (task numdigits target maxrange) ;; -------------------------------- (define (task (numdigits 4) (target 24) (maxrange 10)) (define digits (gen24 numdigits maxrange)) (writeln digits '→ target) (try-rpn digits target)) ``` ### Output ```txt (task 4) ;; standard 24-game (7 9 2 4) → 24 24 = 9 + 7 + 4 * 2 tries= 35 (task 4) (1 9 3 4) → 24 24 = 9 + (4 + 1) * 3 tries= 468 (task 5 ) ;; 5 digits (4 8 6 9 8) → 24 24 = 9 * 8 * (8 / (6 * 4)) tries= 104 (task 5 100) ;; target = 100 (5 6 5 1 3) → 100 100 = (6 + (5 * 3 - 1)) * 5 tries= 10688 (task 5 (random 100)) (1 1 8 6 8) → 31 31 = 8 * (6 - 1) - (8 + 1) tries= 45673 (task 6 (random 100)) ;; 6 digits (7 2 7 8 3 1) → 40 40 = 8 / (7 / (7 * (3 + 2 * 1))) tries= 154 (task 6 (random 1000) 100) ;; 6 numbers < 100 , target < 1000 (19 15 83 74 61 48) → 739 739 = (83 + (74 - (61 + 48))) * 15 + 19 tries= 29336 (task 6 (random 1000) 100) ;; 6 numbers < 100 (73 29 65 78 22 43) → 1 1 = 😥 Not found tries= 200033 (task 7 (random 1000) 100) ;; 7 numbers < 100 (7 55 94 4 71 58 93) → 705 705 = 94 + 93 + 71 + 58 + 55 * 7 + 4 tries= 5982 (task 6 (random -100) 10) ;; negative target (5 9 7 3 6 3) → -54 -54 = 9 * (7 + (6 - 5 * 3)) * 3 tries= 2576 ``` ## Elixir {{trans|Ruby}} ```elixir defmodule Game24 do @expressions [ ["((", "", ")", "", ")", ""], ["(", "(", "", "", "))", ""], ["(", "", ")", "(", "", ")"], ["", "((", "", "", ")", ")"], ["", "(", "", "(", "", "))"] ] def solve(digits) do dig_perm = permute(digits) |> Enum.uniq operators = perm_rep(~w[+ - * /], 3) for dig <- dig_perm, ope <- operators, expr <- @expressions, check?(str = make_expr(dig, ope, expr)), do: str end defp check?(str) do try do {val, _} = Code.eval_string(str) val == 24 rescue ArithmeticError -> false # division by zero end end defp permute([]), do: [[]] defp permute(list) do for x <- list, y <- permute(list -- [x]), do: [x|y] end defp perm_rep([], _), do: [[]] defp perm_rep(_, 0), do: [[]] defp perm_rep(list, i) do for x <- list, y <- perm_rep(list, i-1), do: [x|y] end defp make_expr([a,b,c,d], [x,y,z], [e0,e1,e2,e3,e4,e5]) do e0 <> a <> x <> e1 <> b <> e2 <> y <> e3 <> c <> e4 <> z <> d <> e5 end end case Game24.solve(System.argv) do [] -> IO.puts "no solutions" solutions -> IO.puts "found #{length(solutions)} solutions, including #{hd(solutions)}" IO.inspect Enum.sort(solutions) end ``` ### Output ```txt C:\Elixir>elixir game24.exs 1 1 3 4 found 12 solutions, including ((1+1)*3)*4 ["((1+1)*3)*4", "((1+1)*4)*3", "(1+1)*(3*4)", "(1+1)*(4*3)", "(3*(1+1))*4", "(3*4)*(1+1)", "(4*(1+1))*3", "(4*3)*(1+1)", "3*((1+1)*4)", "3*(4*(1+1))", "4*((1+1)*3)", "4*(3*(1+1))"] C:\Elixir>elixir game24.exs 6 7 8 9 found 8 solutions, including (6*8)/(9-7) ["(6*8)/(9-7)", "(6/(9-7))*8", "(8*6)/(9-7)", "(8/(9-7))*6", "6*(8/(9-7))", "6/((9-7)/8)", "8*(6/(9-7))", "8/((9-7)/6)"] C:\Elixir>elixir game24.exs 1 2 2 3 no solutions ``` ## ERRE ERRE hasn't an "EVAL" function so we must write an evaluation routine; this task is solved via "brute-force". ```ERR PROGRAM 24SOLVE LABEL 98,99,2540,2550,2560 ! possible brackets CONST NBRACKETS=11,ST_CONST$="+-*/^(" DIM D[4],PERM[24,4] DIM BRAKETS$[NBRACKETS] DIM OP$[3] DIM STACK$[50] PROCEDURE COMPATTA_STACK IF NS>1 THEN R=1 WHILE R =NS2 THEN GOTO 99 END IF N1#=VAL(STACK$[L-1]) N2#=VAL(STACK$[L+1]) NOP=NOP-1 IF STACK$[L]="^" THEN RI#=N1#^N2# END IF STACK$[L-1]=STR$(RI#) N=L WHILE N<=NS2-2 DO STACK$[N]=STACK$[N+2] N=N+1 END WHILE NS2=NS2-2 L=NS1-1 END IF L=L+1 END WHILE L=NS1 WHILE L<=NS2 DO IF STACK$[L]="*" OR STACK$[L]="/" THEN IF L>=NS2 THEN GOTO 99 END IF N1#=VAL(STACK$[L-1]) N2#=VAL(STACK$[L+1]) NOP=NOP-1 IF STACK$[L]="*" THEN RI#=N1#*N2# ELSE IF N2#<>0 THEN RI#=N1#/N2# ELSE NERR=6 RI#=0 END IF END IF STACK$[L-1]=STR$(RI#) N=L WHILE N<=NS2-2 DO STACK$[N]=STACK$[N+2] N=N+1 END WHILE NS2=NS2-2 L=NS1-1 END IF L=L+1 END WHILE L=NS1 WHILE L<=NS2 DO IF STACK$[L]="+" OR STACK$[L]="-" THEN EXIT IF L>=NS2 N1#=VAL(STACK$[L-1]) N2#=VAL(STACK$[L+1]) NOP=NOP-1 IF STACK$[L]="+" THEN RI#=N1#+N2# ELSE RI#=N1#-N2# END IF STACK$[L-1]=STR$(RI#) N=L WHILE N<=NS2-2 DO STACK$[N]=STACK$[N+2] N=N+1 END WHILE NS2=NS2-2 L=NS1-1 END IF L=L+1 END WHILE 99: IF NOP<2 THEN ! precedenza tra gli operatori DB#=VAL(STACK$[NS1]) ELSE IF NOP<3 THEN DB#=VAL(STACK$[NS1+2]) ELSE DB#=VAL(STACK$[NS1+4]) END IF END IF END PROCEDURE PROCEDURE SVOLGI_PAR NPA=NPA-1 FOR J=NS TO 1 STEP -1 DO EXIT IF STACK$[J]="(" END FOR IF J=0 THEN NS1=1 NS2=NS CALC_ARITM NERR=7 ELSE FOR R=J TO NS-1 DO STACK$[R]=STACK$[R+1] END FOR NS1=J NS2=NS-1 CALC_ARITM IF NS1=2 THEN NS1=1 STACK$[1]=STACK$[2] END IF NS=NS1 COMPATTA_STACK END IF END PROCEDURE PROCEDURE MYEVAL(EXPRESSION$,DB#,NERR->DB#,NERR) NOP=0 NPA=0 NS=1 K$="" NERR=0 STACK$[1]="@" ! init stack FOR W=1 TO LEN(EXPRESSION$) DO LOOP CODE=ASC(MID$(EXPRESSION$,W,1)) IF (CODE>=48 AND CODE<=57) OR CODE=46 THEN K$=K$+CHR$(CODE) W=W+1 IF W>LEN(EXPRESSION$) THEN GOTO 98 END IF ELSE EXIT IF K$="" IF NS>1 OR (NS=1 AND STACK$[1]<>"@") THEN NS=NS+1 END IF IF FLAG=0 THEN STACK$[NS]=K$ ELSE STACK$[NS]=STR$(VAL(K$)*FLAG) END IF K$="" FLAG=0 EXIT END IF END LOOP IF CODE=43 THEN K$="+" END IF IF CODE=45 THEN K$="-" END IF IF CODE=42 THEN K$="*" END IF IF CODE=47 THEN K$="/" END IF IF CODE=94 THEN K$="^" END IF CASE CODE OF 43,45,42,47,94-> ! +-*/^ IF MID$(EXPRESSION$,W+1,1)="-" THEN FLAG=-1 W=W+1 END IF IF INSTR(ST_CONST$,STACK$[NS])<>0 THEN NERR=5 ELSE NS=NS+1 STACK$[NS]=K$ NOP=NOP+1 IF NOP>=2 THEN FOR J=NS TO 1 STEP -1 DO IF STACK$[J]<>"(" THEN GOTO 2540 END IF IF J 40-> ! ( IF NS>1 OR (NS=1 AND STACK$[1]<>"@") THEN NS=NS+1 END IF STACK$[NS]="(" NPA=NPA+1 IF MID$(EXPRESSION$,W+1,1)="-" THEN FLAG=-1 W=W+1 END IF END -> 41-> ! ) SVOLGI_PAR IF NERR=7 THEN NERR=0 NOP=0 NPA=0 NS=1 ELSE IF NERR=0 OR NERR=1 THEN DB#=VAL(STACK$[NS]) REGISTRO_X#=DB# ELSE NOP=0 NPA=0 NS=1 END IF END IF END -> OTHERWISE NERR=8 END CASE K$="" END FOR 98: IF K$<>"" THEN IF NS>1 OR (NS=1 AND STACK$[1]<>"@") THEN NS=NS+1 END IF IF FLAG=0 THEN STACK$[NS]=K$ ELSE STACK$[NS]=STR$(VAL(K$)*FLAG) END IF END IF IF INSTR(ST_CONST$,STACK$[NS])<>0 THEN NERR=6 ELSE WHILE NPA<>0 DO SVOLGI_PAR END WHILE IF NERR<>7 THEN NS1=1 NS2=NS CALCARITM END IF END IF NS=1 NOP=0 NPA=0 END PROCEDURE BEGIN PRINT(CHR$(12);) ! CLS ! possible brackets DATA("4#4#4#4") DATA("(4#4)#4#4") DATA("4#(4#4)#4") DATA("4#4#(4#4)") DATA("(4#4)#(4#4)") DATA("(4#4#4)#4") DATA("4#(4#4#4)") DATA("((4#4)#4)#4") DATA("(4#(4#4))#4") DATA("4#((4#4)#4)") DATA("4#(4#(4#4))") FOR I=1 TO NBRACKETS DO READ(BRAKETS$[I]) END FOR INPUT("ENTER 4 DIGITS: ",A$) ND=0 FOR I=1 TO LEN(A$) DO C$=MID$(A$,I,1) IF INSTR("123456789",C$)>0 THEN ND=ND+1 D[ND]=VAL(C$) END IF END FOR ! precompute permutations. dumb way. NPERM=1*2*3*4 N=0 FOR I=1 TO 4 DO FOR J=1 TO 4 DO FOR K=1 TO 4 DO FOR L=1 TO 4 DO ! valid permutation (no dupes) IF I<>J AND I<>K AND I<>L AND J<>K AND J<>L AND K<>L THEN N=N+1 ! actually,we can as well permute given digits PERM[N,1]=D[I] PERM[N,2]=D[J] PERM[N,3]=D[K] PERM[N,4]=D[L] END IF END FOR END FOR END FOR END FOR ! operations: full search COUNT=0 OPS$="+-*/" FOR OP1=1 TO 4 DO OP$[1]=MID$(OPS$,OP1,1) FOR OP2=1 TO 4 DO OP$[2]=MID$(OPS$,OP2,1) FOR OP3=1 TO 4 DO OP$[3]=MID$(OPS$,OP3,1) ! substitute all brackets FOR T=1 TO NBRACKETS DO TMPL$=BRAKETS$[T] ! now,substitute all digits: permutations. FOR P=1 TO NPERM DO RES$="" NOP=0 ND=0 FOR I=1 TO LEN(TMPL$) DO C$=MID$(TMPL$,I,1) CASE C$ OF "#"-> ! operations NOP=NOP+1 RES$=RES$+OP$[NOP] END -> "4"-> ! digits ND=NOP+1 RES$=RES$+MID$(STR$(PERM[P,ND]),2) END -> OTHERWISE ! brackets goes here RES$=RES$+C$ END CASE END FOR ! eval here MY_EVAL(RES$,DB#,NERR->DB#,NERR) IF DB#=24 AND NERR=0 THEN PRINT("24=";RES$) COUNT=COUNT+1 END IF END FOR END FOR END FOR END FOR END FOR IF COUNT=0 THEN PRINT("If you see this, probably task cannot be solved with these digits") ELSE PRINT("Total=";COUNT) END IF END PROGRAM ``` ### Output ```txt ENTER 4 DIGITS: ? 6759 24=6+(7-5)*9 24=6+((7-5)*9) 24=6+9*(7-5) 24=6+(9*(7-5)) 24=6-(5-7)*9 24=6-((5-7)*9) 24=(7-5)*9+6 24=((7-5)*9)+6 24=6-9*(5-7) 24=6-(9*(5-7)) 24=9*(7-5)+6 24=(9*(7-5))+6 Total= 12 ``` ## Euler Math Toolbox Via brute force. ```Euler Math Toolbox >function try24 (v) ... $n=cols(v); $if n==1 and v[1]~=24 then $ "Solved the problem", $ return 1; $endif $loop 1 to n $ w=tail(v,2); $ loop 1 to n-1 $ h=w; a=v[1]; b=w[1]; $ w[1]=a+b; if try24(w); ""+a+"+"+b+"="+(a+b), return 1; endif; $ w[1]=a-b; if try24(w); ""+a+"-"+b+"="+(a-b), return 1; endif; $ w[1]=a*b; if try24(w); ""+a+"*"+b+"="+(a*b), return 1; endif; $ if not b~=0 then $ w[1]=a/b; if try24(w); ""+a+"/"+b+"="+(a/b), return 1; endif; $ endif; $ w=rotright(w); $ end; $ v=rotright(v); $end; $return 0; $endfunction ``` ```Euler Math Toolbox >try24([1,2,3,4]); Solved the problem 6*4=24 3+3=6 1+2=3 >try24([8,7,7,1]); Solved the problem 22+2=24 14+8=22 7+7=14 >try24([8,4,7,1]); Solved the problem 6*4=24 7-1=6 8-4=4 >try24([3,4,5,6]); Solved the problem 4*6=24 -1+5=4 3-4=-1 ``` ## F_Sharp|F# The program wants to give all solutions for a given set of 4 digits. It eliminates all duplicate solutions which result from transposing equal digits. The basic solution is an adaption of the OCaml program. ```fsharp open System let rec gcd x y = if x = y || x = 0 then y else if x < y then gcd y x else gcd y (x-y) let abs (x : int) = Math.Abs x let sign (x: int) = Math.Sign x let cint s = Int32.Parse(s) type Rat(x : int, y : int) = let g = if y = 0 then 0 else gcd (abs x) (abs y) member this.n = if g = 0 then sign y * sign x else sign y * x / g // store a minus sign in the numerator member this.d = if y = 0 then 0 else sign y * y / g static member (~-) (x : Rat) = Rat(-x.n, x.d) static member (+) (x : Rat, y : Rat) = Rat(x.n * y.d + y.n * x.d, x.d * y.d) static member (-) (x : Rat, y : Rat) = x + Rat(-y.n, y.d) static member (*) (x : Rat, y : Rat) = Rat(x.n * y.n, x.d * y.d) static member (/) (x : Rat, y : Rat) = x * Rat(y.d, y.n) interface System.IComparable with member this.CompareTo o = match o with | :? Rat as that -> compare (this.n * that.d) (that.n * this.d) | _ -> invalidArg "o" "cannot compare values of differnet types." override this.Equals(o) = match o with | :? Rat as that -> this.n = that.n && this.d = that.d | _ -> false override this.ToString() = if this.d = 1 then this.n.ToString() else sprintf @"<%d,%d>" this.n this.d new(x : string, y : string) = if y = "" then Rat(cint x, 1) else Rat(cint x, cint y) type expression = | Const of Rat | Sum of expression * expression | Diff of expression * expression | Prod of expression * expression | Quot of expression * expression let rec eval = function | Const c -> c | Sum (f, g) -> eval f + eval g | Diff(f, g) -> eval f - eval g | Prod(f, g) -> eval f * eval g | Quot(f, g) -> eval f / eval g let print_expr expr = let concat (s : seq ) = System.String.Concat s let paren p prec op_prec = if prec > op_prec then p else "" let rec print prec = function | Const c -> c.ToString() | Sum(f, g) -> concat [ (paren "(" prec 0); (print 0 f); " + "; (print 0 g); (paren ")" prec 0) ] | Diff(f, g) -> concat [ (paren "(" prec 0); (print 0 f); " - "; (print 1 g); (paren ")" prec 0) ] | Prod(f, g) -> concat [ (paren "(" prec 2); (print 2 f); " * "; (print 2 g); (paren ")" prec 2) ] | Quot(f, g) -> concat [ (paren "(" prec 2); (print 2 f); " / "; (print 3 g); (paren ")" prec 2) ] print 0 expr let rec normal expr = let norm epxr = match expr with | Sum(x, y) -> if eval x <= eval y then expr else Sum(normal y, normal x) | Prod(x, y) -> if eval x <= eval y then expr else Prod(normal y, normal x) | _ -> expr match expr with | Const c -> expr | Sum(x, y) -> norm (Sum(normal x, normal y)) | Prod(x, y) -> norm (Prod(normal x, normal y)) | Diff(x, y) -> Diff(normal x, normal y) | Quot(x, y) -> Quot(normal x, normal y) let rec insert v = function | [] -> [[v]] | x::xs as li -> (v::li) :: (List.map (fun y -> x::y) (insert v xs)) let permutations li = List.foldBack (fun x z -> List.concat (List.map (insert x) z)) li [[]] let rec comp expr rest = seq { match rest with | x::xs -> yield! comp (Sum (expr, x)) xs; yield! comp (Diff(x, expr)) xs; yield! comp (Diff(expr, x)) xs; yield! comp (Prod(expr, x)) xs; yield! comp (Quot(x, expr)) xs; yield! comp (Quot(expr, x)) xs; | [] -> if eval expr = Rat(24,1) then yield print_expr (normal expr) } [ ] let main argv = let digits = List.init 4 (fun i -> Const (Rat(argv.[i],""))) let solutions = permutations digits |> Seq.groupBy (sprintf "%A") |> Seq.map snd |> Seq.map Seq.head |> Seq.map (fun x -> comp (List.head x) (List.tail x)) |> Seq.choose (fun x -> if Seq.isEmpty x then None else Some x) |> Seq.concat if Seq.isEmpty solutions then printfn "No solutions." else solutions |> Seq.groupBy id |> Seq.iter (fun x -> printfn "%s" (fst x)) 0 ``` ### Output ```txt >solve24 3 3 3 4 4 * (3 * 3 - 3) 3 + 3 * (3 + 4) >solve24 3 3 3 5 No solutions. solve24 3 3 3 6 6 + 3 * (3 + 3) (3 / 3 + 3) * 6 3 * (3 + 6) - 3 3 + 3 + 3 * 6 >solve24 3 3 8 8 8 / (3 - 8 / 3) >solve24 3 8 8 9 3 * (9 - 8 / 8) (9 - 8) * 3 * 8 3 / (9 - 8) * 8 8 / ((9 - 8) / 3) 3 * (9 - 8) * 8 3 * 8 / (9 - 8) 3 / ((9 - 8) / 8) ``` ## Factor Factor is well-suited for this task due to its homoiconicity and because it is a reverse-Polish notation evaluator. All we're doing is grouping each permutation of digits with three selections of the possible operators into quotations (blocks of code that can be stored like sequences). Then we call
each quotation and print out the ones that equal 24. Therecover
word is an exception handler that is used to intercept divide-by-zero errors and continue gracefully by removing those quotations from consideration. ```factor USING: continuations grouping io kernel math math.combinatorics prettyprint quotations random sequences sequences.deep ; IN: rosetta-code.24-game : 4digits ( -- seq ) 4 9 random-integers [ 1 + ] map ; : expressions ( digits -- exprs ) all-permutations [ [ + - * / ] 3 selections [ append ] with map ] map flatten 7 group ; : 24= ( exprs -- ) >quotation dup call( -- x ) 24 = [ . ] [ drop ] if ; : 24-game ( -- ) 4digits dup "The numbers: " write . "The solutions: " print expressions [ [ 24= ] [ 2drop ] recover ] each ; 24-game ``` ### Output ```txt The numbers: { 4 9 3 1 } The solutions: [ 4 9 3 1 * - * ] [ 4 9 3 1 / - * ] [ 4 9 1 3 * - * ] [ 4 1 9 3 - * * ] [ 4 1 9 3 - / / ] [ 9 3 4 1 + * + ] [ 9 3 1 4 + * + ] [ 1 4 9 3 - * * ] [ 1 4 9 3 * - - ] [ 1 4 3 9 * - - ] The numbers: { 1 7 4 9 } The solutions: The numbers: { 1 5 6 8 } The solutions: [ 6 1 5 8 - - * ] [ 6 1 8 5 - + * ] [ 6 8 1 5 - + * ] [ 6 8 5 1 - - * ] ``` ## Fortran ```Fortran program solve_24 use helpers implicit none real :: vector(4), reals(4), p, q, r, s integer :: numbers(4), n, i, j, k, a, b, c, d character, parameter :: ops(4) = (/ '+', '-', '*', '/' /) logical :: last real,parameter :: eps = epsilon(1.0) do n=1,12 call random_number(vector) reals = 9 * vector + 1 numbers = int(reals) call Insertion_Sort(numbers) permutations: do a = numbers(1); b = numbers(2); c = numbers(3); d = numbers(4) reals = real(numbers) p = reals(1); q = reals(2); r = reals(3); s = reals(4) ! combinations of operators: do i=1,4 do j=1,4 do k=1,4 if ( abs(op(op(op(p,i,q),j,r),k,s)-24.0) < eps ) then write (*,*) numbers, ' : ', '((',a,ops(i),b,')',ops(j),c,')',ops(k),d exit permutations else if ( abs(op(op(p,i,op(q,j,r)),k,s)-24.0) < eps ) then write (*,*) numbers, ' : ', '(',a,ops(i),'(',b,ops(j),c,'))',ops(k),d exit permutations else if ( abs(op(p,i,op(op(q,j,r),k,s))-24.0) < eps ) then write (*,*) numbers, ' : ', a,ops(i),'((',b,ops(j),c,')',ops(k),d,')' exit permutations else if ( abs(op(p,i,op(q,j,op(r,k,s)))-24.0) < eps ) then write (*,*) numbers, ' : ', a,ops(i),'(',b,ops(j),'(',c,ops(k),d,'))' exit permutations else if ( abs(op(op(p,i,q),j,op(r,k,s))-24.0) < eps ) then write (*,*) numbers, ' : ', '(',a,ops(i),b,')',ops(j),'(',c,ops(k),d,')' exit permutations end if end do end do end do call nextpermutation(numbers,last) if ( last ) then write (*,*) numbers, ' : no solution.' exit permutations end if end do permutations end do contains pure real function op(x,c,y) integer, intent(in) :: c real, intent(in) :: x,y select case ( ops(c) ) case ('+') op = x+y case ('-') op = x-y case ('*') op = x*y case ('/') op = x/y end select end function op end program solve_24 ``` ```Fortran module helpers contains pure subroutine Insertion_Sort(a) integer, intent(inout) :: a(:) integer :: temp, i, j do i=2,size(a) j = i-1 temp = a(i) do while ( j>=1 .and. a(j)>temp ) a(j+1) = a(j) j = j - 1 end do a(j+1) = temp end do end subroutine Insertion_Sort subroutine nextpermutation(perm,last) integer, intent(inout) :: perm(:) logical, intent(out) :: last integer :: k,l k = largest1() last = k == 0 if ( .not. last ) then l = largest2(k) call swap(l,k) call reverse(k) end if contains pure integer function largest1() integer :: k, max max = 0 do k=1,size(perm)-1 if ( perm(k) < perm(k+1) ) then max = k end if end do largest1 = max end function largest1 pure integer function largest2(k) integer, intent(in) :: k integer :: l, max max = k+1 do l=k+2,size(perm) if ( perm(k) < perm(l) ) then max = l end if end do largest2 = max end function largest2 subroutine swap(l,k) integer, intent(in) :: k,l integer :: temp temp = perm(k) perm(k) = perm(l) perm(l) = temp end subroutine swap subroutine reverse(k) integer, intent(in) :: k integer :: i do i=1,(size(perm)-k)/2 call swap(k+i,size(perm)+1-i) end do end subroutine reverse end subroutine nextpermutation end module helpers ``` ### Output (using g95): ```txt 3 6 7 9 : 3 *(( 6 - 7 )+ 9 ) 3 9 5 8 : (( 3 * 9 )+ 5 )- 8 4 5 6 9 : (( 4 + 5 )+ 6 )+ 9 2 9 9 8 : ( 2 +( 9 / 9 ))* 8 1 4 7 5 : ( 1 +( 4 * 7 ))- 5 8 7 7 6 : no solution. 3 3 8 9 : ( 3 *( 3 + 8 ))- 9 1 5 6 7 : ( 1 +( 5 * 6 ))- 7 2 3 5 3 : 2 *(( 3 * 5 )- 3 ) 4 5 6 9 : (( 4 + 5 )+ 6 )+ 9 1 1 3 6 : ( 1 +( 1 * 3 ))* 6 2 4 6 8 : (( 2 / 4 )* 6 )* 8 ``` ## GAP ```gap # Solution in **RPN** check := function(x, y, z) local r, c, s, i, j, k, a, b, p; i := 0; j := 0; k := 0; s := [ ]; r := ""; for c in z do if c = 'x' then i := i + 1; k := k + 1; s[k] := x[i]; Append(r, String(x[i])); else j := j + 1; b := s[k]; k := k - 1; a := s[k]; p := y[j]; r[Size(r) + 1] := p; if p = '+' then a := a + b; elif p = '-' then a := a - b; elif p = '*' then a := a * b; elif p = '/' then if b = 0 then continue; else a := a / b; fi; else return fail; fi; s[k] := a; fi; od; if s[1] = 24 then return r; else return fail; fi; end; Player24 := function(digits) local u, v, w, x, y, z, r; u := PermutationsList(digits); v := Tuples("+-*/", 3); w := ["xx*x*x*", "xx*xx**", "xxx**x*", "xxx*x**", "xxxx***"]; for x in u do for y in v do for z in w do r := check(x, y, z); if r <> fail then return r; fi; od; od; od; return fail; end; Player24([1,2,7,7]); # "77*1-2/" Player24([9,8,7,6]); # "68*97-/" Player24([1,1,7,7]); # fail # Solutions with only one distinct digit are found only for 3, 4, 5, 6: Player24([3,3,3,3]); # "33*3*3-" Player24([4,4,4,4]); # "44*4+4+" Player24([5,5,5,5]); # "55*55/-" Player24([6,6,6,6]); # "66*66+-" # A tricky one: Player24([3,3,8,8]); "8383/-/" ``` ## Go ```go package main import ( "fmt" "math/rand" "time" ) const ( op_num = iota op_add op_sub op_mul op_div ) type frac struct { num, denom int } // Expression: can either be a single number, or a result of binary // operation from left and right node type Expr struct { op int left, right *Expr value frac } var n_cards = 4 var goal = 24 var digit_range = 9 func (x *Expr) String() string { if x.op == op_num { return fmt.Sprintf("%d", x.value.num) } var bl1, br1, bl2, br2, opstr string switch { case x.left.op == op_num: case x.left.op >= x.op: case x.left.op == op_add && x.op == op_sub: bl1, br1 = "", "" default: bl1, br1 = "(", ")" } if x.right.op == op_num || x.op < x.right.op { bl2, br2 = "", "" } else { bl2, br2 = "(", ")" } switch { case x.op == op_add: opstr = " + " case x.op == op_sub: opstr = " - " case x.op == op_mul: opstr = " * " case x.op == op_div: opstr = " / " } return bl1 + x.left.String() + br1 + opstr + bl2 + x.right.String() + br2 } func expr_eval(x *Expr) (f frac) { if x.op == op_num { return x.value } l, r := expr_eval(x.left), expr_eval(x.right) switch x.op { case op_add: f.num = l.num*r.denom + l.denom*r.num f.denom = l.denom * r.denom return case op_sub: f.num = l.num*r.denom - l.denom*r.num f.denom = l.denom * r.denom return case op_mul: f.num = l.num * r.num f.denom = l.denom * r.denom return case op_div: f.num = l.num * r.denom f.denom = l.denom * r.num return } return } func solve(ex_in []*Expr) bool { // only one expression left, meaning all numbers are arranged into // a binary tree, so evaluate and see if we get 24 if len(ex_in) == 1 { f := expr_eval(ex_in[0]) if f.denom != 0 && f.num == f.denom*goal { fmt.Println(ex_in[0].String()) return true } return false } var node Expr ex := make([]*Expr, len(ex_in)-1) // try to combine a pair of expressions into one, thus reduce // the list length by 1, and recurse down for i := range ex { copy(ex[i:len(ex)], ex_in[i+1:len(ex_in)]) ex[i] = &node for j := i + 1; j < len(ex_in); j++ { node.left = ex_in[i] node.right = ex_in[j] // try all 4 operators for o := op_add; o <= op_div; o++ { node.op = o if solve(ex) { return true } } // also - and / are not commutative, so swap arguments node.left = ex_in[j] node.right = ex_in[i] node.op = op_sub if solve(ex) { return true } node.op = op_div if solve(ex) { return true } if j < len(ex) { ex[j] = ex_in[j] } } ex[i] = ex_in[i] } return false } func main() { cards := make([]*Expr, n_cards) rand.Seed(time.Now().Unix()) for k := 0; k < 10; k++ { for i := 0; i < n_cards; i++ { cards[i] = &Expr{op_num, nil, nil, frac{rand.Intn(digit_range-1) + 1, 1}} fmt.Printf(" %d", cards[i].value.num) } fmt.Print(": ") if !solve(cards) { fmt.Println("No solution") } } } ``` ### Output ```txt 8 6 7 6: No solution 7 2 6 6: (7 - 2) * 6 - 6 4 8 7 3: 4 * (7 - 3) + 8 3 8 8 7: 3 * 8 * (8 - 7) 5 7 3 7: No solution 5 7 8 3: 5 * 7 - 8 - 3 3 6 5 2: ((3 + 5) * 6) / 2 8 4 5 4: (8 - 4) * 5 + 4 2 2 8 8: (2 + 2) * 8 - 8 6 8 8 2: 6 + 8 + 8 + 2 ``` ## Gosu ```Gosu uses java.lang.Integer uses java.lang.Double uses java.lang.System uses java.util.ArrayList uses java.util.LinkedList uses java.util.List uses java.util.Scanner uses java.util.Stack function permutations( lst : List ) : List > { if( lst.size() == 0 ) return {} if( lst.size() == 1 ) return { lst } var pivot = lst.get(lst.size()-1) var sublist = new ArrayList
( lst ) sublist.remove( sublist.size() - 1 ) var subPerms = permutations( sublist ) var ret = new ArrayList >() for( x in subPerms ) { for( e in x index i ) { var next = new LinkedList
( x ) next.add( i, pivot ) ret.add( next ) } x.add( pivot ) ret.add( x ) } return ret } function readVals() : List { var line = new java.io.BufferedReader( new java.io.InputStreamReader( System.in ) ).readLine() var scan = new Scanner( line ) var ret = new ArrayList () for( i in 0..3 ) { var next = scan.nextInt() if( 0 >= next || next >= 10 ) { print( "Invalid entry: ${next}" ) return null } ret.add( next ) } return ret } function getOp( i : int ) : char[] { var ret = new char[3] var ops = { '+', '-', '*', '/' } ret[0] = ops[i / 16] ret[1] = ops[(i / 4) % 4 ] ret[2] = ops[i % 4 ] return ret } function isSoln( nums : List , ops : char[] ) : boolean { var stk = new Stack () for( n in nums ) { stk.push( n ) } for( c in ops ) { var r = stk.pop().doubleValue() var l = stk.pop().doubleValue() if( c == '+' ) { stk.push( l + r ) } else if( c == '-' ) { stk.push( l - r ) } else if( c == '*' ) { stk.push( l * r ) } else if( c == '/' ) { // Avoid division by 0 if( r == 0.0 ) { return false } stk.push( l / r ) } } return java.lang.Math.abs( stk.pop().doubleValue() - 24.0 ) < 0.001 } function printSoln( nums : List , ops : char[] ) { // RPN: a b c d + - * // Infix (a * (b - (c + d))) print( "Found soln: (${nums.get(0)} ${ops[0]} (${nums.get(1)} ${ops[1]} (${nums.get(2)} ${ops[2]} ${nums.get(3)})))" ) } System.out.print( "#> " ) var vals = readVals() var opPerms = 0..63 var solnFound = false for( i in permutations( vals ) ) { for( j in opPerms ) { var opList = getOp( j ) if( isSoln( i, opList ) ) { printSoln( i, opList ) solnFound = true } } } if( ! solnFound ) { print( "No solution!" ) } ``` ## Haskell ```haskell import Data.List import Data.Ratio import Control.Monad import System.Environment (getArgs) data Expr = Constant Rational | Expr :+ Expr | Expr :- Expr | Expr :* Expr | Expr :/ Expr deriving (Eq) ops = [(:+), (:-), (:*), (:/)] instance Show Expr where show (Constant x) = show $ numerator x -- In this program, we need only print integers. show (a :+ b) = strexp "+" a b show (a :- b) = strexp "-" a b show (a :* b) = strexp "*" a b show (a :/ b) = strexp "/" a b strexp :: String -> Expr -> Expr -> String strexp op a b = "(" ++ show a ++ " " ++ op ++ " " ++ show b ++ ")" templates :: [[Expr] -> Expr] templates = do op1 <- ops op2 <- ops op3 <- ops [\[a, b, c, d] -> op1 a $ op2 b $ op3 c d, \[a, b, c, d] -> op1 (op2 a b) $ op3 c d, \[a, b, c, d] -> op1 a $ op2 (op3 b c) d, \[a, b, c, d] -> op1 (op2 a $ op3 b c) d, \[a, b, c, d] -> op1 (op2 (op3 a b) c) d] eval :: Expr -> Maybe Rational eval (Constant c) = Just c eval (a :+ b) = liftM2 (+) (eval a) (eval b) eval (a :- b) = liftM2 (-) (eval a) (eval b) eval (a :* b) = liftM2 (*) (eval a) (eval b) eval (a :/ b) = do denom <- eval b guard $ denom /= 0 liftM (/ denom) $ eval a solve :: Rational -> [Rational] -> [Expr] solve target r4 = filter (maybe False (== target) . eval) $ liftM2 ($) templates $ nub $ permutations $ map Constant r4 main = getArgs >>= mapM_ print . solve 24 . map (toEnum . read) ``` Example use: ```txt $ runghc 24Player.hs 2 3 8 9 (8 * (9 - (3 * 2))) (8 * (9 - (2 * 3))) ((9 - (2 * 3)) * 8) ((9 - (3 * 2)) * 8) ((9 - 3) * (8 / 2)) ((8 / 2) * (9 - 3)) (8 * ((9 - 3) / 2)) (((9 - 3) / 2) * 8) ((9 - 3) / (2 / 8)) ((8 * (9 - 3)) / 2) (((9 - 3) * 8) / 2) (8 / (2 / (9 - 3))) ``` ### Alternative version ```haskell import Control.Applicative import Data.List import Text.PrettyPrint data Expr = C Int | Op String Expr Expr toDoc (C x ) = int x toDoc (Op op x y) = parens $ toDoc x <+> text op <+> toDoc y ops :: [(String, Int -> Int -> Int)] ops = [("+",(+)), ("-",(-)), ("*",(*)), ("/",div)] solve :: Int -> [Int] -> [Expr] solve res = filter ((Just res ==) . eval) . genAst where genAst [x] = [C x] genAst xs = do (ys,zs) <- split xs let f (Op op _ _) = op `notElem` ["+","*"] || ys <= zs filter f $ Op <$> map fst ops <*> genAst ys <*> genAst zs eval (C x ) = Just x eval (Op "/" _ y) | Just 0 <- eval y = Nothing eval (Op op x y) = lookup op ops <*> eval x <*> eval y select :: Int -> [Int] -> [[Int]] select 0 _ = [[]] select n xs = [x:zs | k <- [0..length xs - n] , let (x:ys) = drop k xs , zs <- select (n - 1) ys ] split :: [Int] -> [([Int],[Int])] split xs = [(ys, xs \\ ys) | n <- [1..length xs - 1] , ys <- nub . sort $ select n xs ] main = mapM_ (putStrLn . render . toDoc) $ solve 24 [2,3,8,9] ``` ### Output ```txt ((8 / 2) * (9 - 3)) ((2 / 9) + (3 * 8)) ((3 * 8) - (2 / 9)) ((8 - (2 / 9)) * 3) (((2 / 9) + 8) * 3) (((8 + 9) / 2) * 3) ((2 + (8 * 9)) / 3) ((3 - (2 / 9)) * 8) ((9 - (2 * 3)) * 8) (((2 / 9) + 3) * 8) (((2 + 9) / 3) * 8) (((9 - 3) / 2) * 8) (((9 - 3) * 8) / 2) ``` ## Icon and Unicon This shares code with and solves the [24 game](/tasks/24_game#Icon_and_Unicon). A series of pattern expressions are built up and then populated with the permutations of the selected digits. Equations are skipped if they have been seen before. The procedure 'eval' was modified to catch zero divides. The solution will find either all occurrences or just the first occurrence of a solution. ```Icon invocable all link strings # for csort, deletec, permutes procedure main() static eL initial { eoP := [] # set-up expression and operator permutation patterns every ( e := !["a@b#c$d", "a@(b#c)$d", "a@b#(c$d)", "a@(b#c$d)", "a@(b#(c$d))"] ) & ( o := !(opers := "+-*/") || !opers || !opers ) do put( eoP, map(e,"@#$",o) ) # expr+oper perms eL := [] # all cases every ( e := !eoP ) & ( p := permutes("wxyz") ) do put(eL, map(e,"abcd",p)) } write("This will attempt to find solutions to 24 for sets of numbers by\n", "combining 4 single digits between 1 and 9 to make 24 using only + - * / and ( ).\n", "All operations have equal precedence and are evaluated left to right.\n", "Enter 'use n1 n2 n3 n4' or just hit enter (to use a random set),", "'first'/'all' shows the first or all solutions, 'quit' to end.\n\n") repeat { e := trim(read()) | fail e ? case tab(find(" ")|0) of { "q"|"quit" : break "u"|"use" : e := tab(0) "f"|"first": first := 1 & next "a"|"all" : first := &null & next "" : e := " " ||(1+?8) || " " || (1+?8) ||" " || (1+?8) || " " || (1+?8) } writes("Attempting to solve 24 for",e) e := deletec(e,' \t') # no whitespace if e ? ( tab(many('123456789')), pos(5), pos(0) ) then write(":") else write(" - invalid, only the digits '1..9' are allowed.") & next eS := set() every ex := map(!eL,"wxyz",e) do { if member(eS,ex) then next # skip duplicates of final expression insert(eS,ex) if ex ? (ans := eval(E()), pos(0)) then # parse and evaluate if ans = 24 then { write("Success ",image(ex)," evaluates to 24.") if \first then break } } } write("Quiting.") end procedure eval(X) #: return the evaluated AST if type(X) == "list" then { x := eval(get(X)) while o := get(X) do if y := get(X) then x := o( real(x), (o ~== "/" | fail, eval(y) )) else write("Malformed expression.") & fail } return \x | X end procedure E() #: expression put(lex := [],T()) while put(lex,tab(any('+-*/'))) do put(lex,T()) suspend if *lex = 1 then lex[1] else lex # strip useless [] end procedure T() #: Term suspend 2(="(", E(), =")") | # parenthesized subexpression, or ... tab(any(&digits)) # just a value end ``` *Library: Icon Programming Library* [strings.icn provides deletec and permutes](http://www.cs.arizona.edu/icon/library/src/procs/strings.icn) ## J ```J perm=: (A.&i.~ !) 4 ops=: ' ',.'+-*%' {~ >,{i.each 4 4 4 cmask=: 1 + 0j1 * i.@{:@$@[ e. ] left=: [ #!.'('~"1 cmask right=: [ #!.')'~"1 cmask paren=: 2 :'[: left&m right&n' parens=: ], 0 paren 3, 0 paren 5, 2 paren 5, [: 0 paren 7 (0 paren 3) all=: [: parens [:,/ ops ,@,."1/ perm { [:;":each answer=: ({.@#~ 24 = ".)@all ``` This implementation tests all 7680 candidate sentences. Example use: answer 2 3 5 7 2+7+3*5 answer 8 4 7 1 8*7-4*1 answer 1 1 2 7 (1+2)*1+7 The answer will be either a suitable J sentence or blank if none can be found. "J sentence" means that, for example, the sentence 8*7-4*1
is equivalent to the sentence8*(7-(4*1))
. [Many infix languages use operator precedence to make polynomials easier to express without parenthesis, but J has other mechanisms for expressing polynomials and minimal operator precedence makes the language more regular.] ## Java *Works with: Java 7* Playable version, will print solution on request. Note that this version does not extend to different digit ranges. ```java import java.util.*; public class Game24Player { final String[] patterns = {"nnonnoo", "nnonono", "nnnoono", "nnnonoo", "nnnnooo"}; final String ops = "+-*/^"; String solution; Listdigits; public static void main(String[] args) { new Game24Player().play(); } void play() { digits = getSolvableDigits(); Scanner in = new Scanner(System.in); while (true) { System.out.print("Make 24 using these digits: "); System.out.println(digits); System.out.println("(Enter 'q' to quit, 's' for a solution)"); System.out.print("> "); String line = in.nextLine(); if (line.equalsIgnoreCase("q")) { System.out.println("\nThanks for playing"); return; } if (line.equalsIgnoreCase("s")) { System.out.println(solution); digits = getSolvableDigits(); continue; } char[] entry = line.replaceAll("[^*+-/)(\\d]", "").toCharArray(); try { validate(entry); if (evaluate(infixToPostfix(entry))) { System.out.println("\nCorrect! Want to try another? "); digits = getSolvableDigits(); } else { System.out.println("\nNot correct."); } } catch (Exception e) { System.out.printf("%n%s Try again.%n", e.getMessage()); } } } void validate(char[] input) throws Exception { int total1 = 0, parens = 0, opsCount = 0; for (char c : input) { if (Character.isDigit(c)) total1 += 1 << (c - '0') * 4; else if (c == '(') parens++; else if (c == ')') parens--; else if (ops.indexOf(c) != -1) opsCount++; if (parens < 0) throw new Exception("Parentheses mismatch."); } if (parens != 0) throw new Exception("Parentheses mismatch."); if (opsCount != 3) throw new Exception("Wrong number of operators."); int total2 = 0; for (int d : digits) total2 += 1 << d * 4; if (total1 != total2) throw new Exception("Not the same digits."); } boolean evaluate(char[] line) throws Exception { Stack s = new Stack<>(); try { for (char c : line) { if ('0' <= c && c <= '9') s.push((float) c - '0'); else s.push(applyOperator(s.pop(), s.pop(), c)); } } catch (EmptyStackException e) { throw new Exception("Invalid entry."); } return (Math.abs(24 - s.peek()) < 0.001F); } float applyOperator(float a, float b, char c) { switch (c) { case '+': return a + b; case '-': return b - a; case '*': return a * b; case '/': return b / a; default: return Float.NaN; } } List randomDigits() { Random r = new Random(); List result = new ArrayList<>(4); for (int i = 0; i < 4; i++) result.add(r.nextInt(9) + 1); return result; } List getSolvableDigits() { List result; do { result = randomDigits(); } while (!isSolvable(result)); return result; } boolean isSolvable(List digits) { Set > dPerms = new HashSet<>(4 * 3 * 2); permute(digits, dPerms, 0); int total = 4 * 4 * 4; List
> oPerms = new ArrayList<>(total); permuteOperators(oPerms, 4, total); StringBuilder sb = new StringBuilder(4 + 3); for (String pattern : patterns) { char[] patternChars = pattern.toCharArray(); for (List
dig : dPerms) { for (List opr : oPerms) { int i = 0, j = 0; for (char c : patternChars) { if (c == 'n') sb.append(dig.get(i++)); else sb.append(ops.charAt(opr.get(j++))); } String candidate = sb.toString(); try { if (evaluate(candidate.toCharArray())) { solution = postfixToInfix(candidate); return true; } } catch (Exception ignored) { } sb.setLength(0); } } } return false; } String postfixToInfix(String postfix) { class Expression { String op, ex; int prec = 3; Expression(String e) { ex = e; } Expression(String e1, String e2, String o) { ex = String.format("%s %s %s", e1, o, e2); op = o; prec = ops.indexOf(o) / 2; } } Stack expr = new Stack<>(); for (char c : postfix.toCharArray()) { int idx = ops.indexOf(c); if (idx != -1) { Expression r = expr.pop(); Expression l = expr.pop(); int opPrec = idx / 2; if (l.prec < opPrec) l.ex = '(' + l.ex + ')'; if (r.prec <= opPrec) r.ex = '(' + r.ex + ')'; expr.push(new Expression(l.ex, r.ex, "" + c)); } else { expr.push(new Expression("" + c)); } } return expr.peek().ex; } char[] infixToPostfix(char[] infix) throws Exception { StringBuilder sb = new StringBuilder(); Stack s = new Stack<>(); try { for (char c : infix) { int idx = ops.indexOf(c); if (idx != -1) { if (s.isEmpty()) s.push(idx); else { while (!s.isEmpty()) { int prec2 = s.peek() / 2; int prec1 = idx / 2; if (prec2 >= prec1) sb.append(ops.charAt(s.pop())); else break; } s.push(idx); } } else if (c == '(') { s.push(-2); } else if (c == ')') { while (s.peek() != -2) sb.append(ops.charAt(s.pop())); s.pop(); } else { sb.append(c); } } while (!s.isEmpty()) sb.append(ops.charAt(s.pop())); } catch (EmptyStackException e) { throw new Exception("Invalid entry."); } return sb.toString().toCharArray(); } void permute(List lst, Set > res, int k) { for (int i = k; i < lst.size(); i++) { Collections.swap(lst, i, k); permute(lst, res, k + 1); Collections.swap(lst, k, i); } if (k == lst.size()) res.add(new ArrayList<>(lst)); } void permuteOperators(List
> res, int n, int total) { for (int i = 0, npow = n * n; i < total; i++) res.add(Arrays.asList((i / npow), (i % npow) / n, i % n)); } } ``` ### Output ```txt Make 24 using these digits: [5, 7, 1, 8] (Enter 'q' to quit, 's' for a solution) > (8-5) * (7+1) Correct! Want to try another? Make 24 using these digits: [3, 9, 2, 9] (Enter 'q' to quit, 's' for a solution) > (3*2) + 9 + 9 Correct! Want to try another? Make 24 using these digits: [4, 4, 8, 5] (Enter 'q' to quit, 's' for a solution) > s 4 * 5 - (4 - 8) Make 24 using these digits: [2, 5, 9, 1] (Enter 'q' to quit, 's' for a solution) > 2+5+9+1 Not correct. Make 24 using these digits: [2, 5, 9, 1] (Enter 'q' to quit, 's' for a solution) > 2 * 9 + 5 + 1 Correct! Want to try another? Make 24 using these digits: [8, 4, 3, 1] (Enter 'q' to quit, 's' for a solution) > s (8 + 4) * (3 - 1) Make 24 using these digits: [9, 4, 5, 6] (Enter 'q' to quit, 's' for a solution) > (9 +4) * 2 - 2 Not the same digits. Try again. Make 24 using these digits: [9, 4, 5, 6] (Enter 'q' to quit, 's' for a solution) > q Thanks for playing ``` ## JavaScript This is a translation of the C code. ```javascript var ar=[],order=[0,1,2],op=[],val=[]; var NOVAL=9999,oper="+-*/",out; function rnd(n){return Math.floor(Math.random()*n)} function say(s){ try{document.write(s+" ")} catch(e){WScript.Echo(s)} } function getvalue(x,dir){ var r=NOVAL; if(dir>0)++x; while(1){ if(val[x]!=NOVAL){ r=val[x]; val[x]=NOVAL; break; } x+=dir; } return r*1; } function calc(){ var c=0,l,r,x; val=ar.join('/').split('/'); while(c<3){ x=order[c]; l=getvalue(x,-1); r=getvalue(x,1); switch(op[x]){ case 0:val[x]=l+r;break; case 1:val[x]=l-r;break; case 2:val[x]=l*r;break; case 3: if(!r||l%r)return 0; val[x]=l/r; } ++c; } return getvalue(-1,1); } function shuffle(s,n){ var x=n,p=eval(s),r,t; while(x--){ r=rnd(n); t=p[x]; p[x]=p[r]; p[r]=t; } } function parenth(n){ while(n>0)--n,out+='('; while(n<0)++n,out+=')'; } function getpriority(x){ for(var z=3;z--;)if(order[z]==x)return 3-z; return 0; } function showsolution(){ var x=0,p=0,lp=0,v=0; while(x<4){ if(x<3){ lp=p; p=getpriority(x); v=p-lp; if(v>0)parenth(v); } out+=ar[x]; if(x<3){ if(v<0)parenth(v); out+=oper.charAt(op[x]); } ++x; } parenth(-p); say(out); } function solve24(s){ var z=4,r; while(z--)ar[z]=s.charCodeAt(z)-48; out=""; for(z=100000;z--;){ r=rnd(256); op[0]=r&3; op[1]=(r>>2)&3; op[2]=(r>>4)&3; shuffle("ar",4); shuffle("order",3); if(calc()!=24)continue; showsolution(); break; } } solve24("1234"); solve24("6789"); solve24("1127"); ``` Examples: ```txt (((3*1)*4)*2) ((6*8)/((9-7))) (((1+7))*(2+1)) ``` ## jq *Works with: jq 1.4* The following solution is generic: the objective (e.g. 24) is specified as the argument to solve/1, and the user may specify any number of numbers. **Infrastructure:** ```jq # Generate a stream of the permutations of the input array. def permutations: if length == 0 then [] else range(0;length) as $i | [.[$i]] + (del(.[$i])|permutations) end ; # Generate a stream of arrays of length n, # with members drawn from the input array. def take(n): length as $l | if n == 1 then range(0;$l) as $i | [ .[$i] ] else take(n-1) + take(1) end; # Emit an array with elements that alternate between those in the input array and those in short, # starting with the former, and using nothing if "short" is too too short. def intersperse(short): . as $in | reduce range(0;length) as $i ([]; . + [ $in[$i], (short[$i] // empty) ]); # Emit a stream of all the nested triplet groupings of the input array elements, # e.g. [1,2,3,4,5] => # [1,2,[3,4,5]] # [[1,2,3],4,5] # def triples: . as $in | if length == 3 then . elif length == 1 then $in[0] elif length < 3 then empty else (range(0; (length-1) / 2) * 2 + 1) as $i | ($in[0:$i] | triples) as $head | ($in[$i+1:] | triples) as $tail | [$head, $in[$i], $tail] end; ``` **Evaluation and pretty-printing of allowed expressions** ```jq # Evaluate the input, which must be a number or a triple: [x, op, y] def eval: if type == "array" then .[1] as $op | if .[0] == null or .[2] == null then null else (.[0] | eval) as $left | (.[2] | eval) as $right | if $left == null or $right == null then null elif $op == "+" then $left + $right elif $op == "-" then $left - $right elif $op == "*" then $left * $right elif $op == "/" then if $right == 0 then null else $left / $right end else "invalid arithmetic operator: \($op)" | error end end else . end; def pp: "\(.)" | explode | map([.] | implode | if . == "," then " " elif . == "\"" then "" else . end) | join(""); ``` **24 Game**: ```jq def OPERATORS: ["+", "-", "*", "/"]; # Input: an array of 4 digits # o: an array of 3 operators # Output: a stream def EXPRESSIONS(o): intersperse( o ) | triples; def solve(objective): length as $length | [ (OPERATORS | take($length-1)) as $poperators | permutations | EXPRESSIONS($poperators) | select( eval == objective) ] as $answers | if $answers|length > 3 then "That was too easy. I found \($answers|length) answers, e.g. \($answers[0] | pp)" elif $answers|length > 1 then $answers[] | pp else "You lose! There are no solutions." end ; solve(24), "Please try again." ``` ### Output ```sh $ jq -r -f Solve.jq [1,2,3,4] That was too easy. I found 242 answers, e.g. [4 * [1 + [2 + 3]]] Please try again. [1,2,3,40,1] That was too easy. I found 636 answers, e.g. [[[1 / 2] * 40] + [3 + 1]] Please try again. [3,8,9] That was too easy. I found 8 answers, e.g. [[8 / 3] * 9] Please try again. [4,5,6] You lose! There are no solutions. Please try again. [1,2,3,4,5,6] That was too easy. I found 197926 answers, e.g. [[2 * [1 + 4]] + [3 + [5 + 6]]] Please try again. ``` ## Julia For julia version 0.5 and higher, the Combinatorics package must be installed and imported (`using Combinatorics`). Combinatorial functions like `nthperm` have been moved from Base to that package and are not available by default anymore. ```julia function solve24(nums) length(nums) != 4 && error("Input must be a 4-element Array") syms = [+,-,*,/] for x in syms, y in syms, z in syms for i = 1:24 a,b,c,d = nthperm(nums,i) if round(x(y(a,b),z(c,d)),5) == 24 return "($a$y$b)$x($c$z$d)" elseif round(x(a,y(b,z(c,d))),5) == 24 return "$a$x($b$y($c$z$d))" elseif round(x(y(z(c,d),b),a),5) == 24 return "(($c$z$d)$y$b)$x$a" elseif round(x(y(b,z(c,d)),a),5) == 24 return "($b$y($c$z$d))$x$a" end end end return "0" end ``` ### Output ```txt julia> for i in 1:10 nums = rand(1:9, 4) println("solve24($nums) -> $(solve24(nums))") end solve24([9,4,4,5]) -> 0 solve24([1,7,2,7]) -> ((7*7)-1)/2 solve24([5,7,5,4]) -> 4*(7-(5/5)) solve24([1,4,6,6]) -> 6+(6*(4-1)) solve24([2,3,7,3]) -> ((2+7)*3)-3 solve24([8,7,9,7]) -> 0 solve24([1,6,2,6]) -> 6+(6*(1+2)) solve24([7,9,4,1]) -> (7-4)*(9-1) solve24([6,4,2,2]) -> (2-2)+(6*4) solve24([5,7,9,7]) -> (5+7)*(9-7) ``` ## Kotlin {{trans|C}} ```scala // version 1.1.3 import java.util.Random const val N_CARDS = 4 const val SOLVE_GOAL = 24 const val MAX_DIGIT = 9 class Frac(val num: Int, val den: Int) enum class OpType { NUM, ADD, SUB, MUL, DIV } class Expr( var op: OpType = OpType.NUM, var left: Expr? = null, var right: Expr? = null, var value: Int = 0 ) fun showExpr(e: Expr?, prec: OpType, isRight: Boolean) { if (e == null) return val op = when (e.op) { OpType.NUM -> { print(e.value); return } OpType.ADD -> " + " OpType.SUB -> " - " OpType.MUL -> " x " OpType.DIV -> " / " } if ((e.op == prec && isRight) || e.op < prec) print("(") showExpr(e.left, e.op, false) print(op) showExpr(e.right, e.op, true) if ((e.op == prec && isRight) || e.op < prec) print(")") } fun evalExpr(e: Expr?): Frac { if (e == null) return Frac(0, 1) if (e.op == OpType.NUM) return Frac(e.value, 1) val l = evalExpr(e.left) val r = evalExpr(e.right) return when (e.op) { OpType.ADD -> Frac(l.num * r.den + l.den * r.num, l.den * r.den) OpType.SUB -> Frac(l.num * r.den - l.den * r.num, l.den * r.den) OpType.MUL -> Frac(l.num * r.num, l.den * r.den) OpType.DIV -> Frac(l.num * r.den, l.den * r.num) else -> throw IllegalArgumentException("Unknown op: ${e.op}") } } fun solve(ea: Array
, len: Int): Boolean { if (len == 1) { val final = evalExpr(ea[0]) if (final.num == final.den * SOLVE_GOAL && final.den != 0) { showExpr(ea[0], OpType.NUM, false) return true } } val ex = arrayOfNulls (N_CARDS) for (i in 0 until len - 1) { for (j in i + 1 until len) ex[j - 1] = ea[j] val node = Expr() ex[i] = node for (j in i + 1 until len) { node.left = ea[i] node.right = ea[j] for (k in OpType.values().drop(1)) { node.op = k if (solve(ex, len - 1)) return true } node.left = ea[j] node.right = ea[i] node.op = OpType.SUB if (solve(ex, len - 1)) return true node.op = OpType.DIV if (solve(ex, len - 1)) return true ex[j] = ea[j] } ex[i] = ea[i] } return false } fun solve24(n: IntArray) = solve (Array(N_CARDS) { Expr(value = n[it]) }, N_CARDS) fun main(args: Array ) { val r = Random() val n = IntArray(N_CARDS) for (j in 0..9) { for (i in 0 until N_CARDS) { n[i] = 1 + r.nextInt(MAX_DIGIT) print(" ${n[i]}") } print(": ") println(if (solve24(n)) "" else "No solution") } } ``` Sample output: ```txt 8 4 1 7: (8 - 4) x (7 - 1) 6 1 4 1: ((6 + 1) - 1) x 4 8 8 5 4: (8 / 8 + 5) x 4 9 6 9 8: 8 / ((9 - 6) / 9) 6 6 9 6: (6 x 6) / 9 x 6 9 9 7 7: No solution 1 1 2 5: No solution 6 9 4 1: 6 x (9 - 4 - 1) 7 7 6 4: 7 + 7 + 6 + 4 4 8 8 4: 4 + 8 + 8 + 4 ``` ## Liberty BASIC ```lb dim d(4) input "Enter 4 digits: "; a$ nD=0 for i =1 to len(a$) c$=mid$(a$,i,1) if instr("123456789",c$) then nD=nD+1 d(nD)=val(c$) end if next 'for i = 1 to 4 ' print d(i); 'next 'precompute permutations. Dumb way. nPerm = 1*2*3*4 dim perm(nPerm, 4) n = 0 for i = 1 to 4 for j = 1 to 4 for k = 1 to 4 for l = 1 to 4 'valid permutation (no dupes?) if i<>j and i<>k and i<>l _ and j<>k and j<>l _ and k<>l then n=n+1 ' ' perm(n,1)=i ' perm(n,2)=j ' perm(n,3)=k ' perm(n,4)=l 'actually, we can as well permute given digits perm(n,1)=d(i) perm(n,2)=d(j) perm(n,3)=d(k) perm(n,4)=d(l) end if next next next next 'check if permutations look OK. They are 'for i =1 to n ' print i, ' for j =1 to 4: print perm(i,j);:next ' print 'next 'possible brackets NBrackets = 11 dim Brakets$(NBrackets) DATA "4#4#4#4" DATA "(4#4)#4#4" DATA "4#(4#4)#4" DATA "4#4#(4#4)" DATA "(4#4)#(4#4)" DATA "(4#4#4)#4" DATA "4#(4#4#4)" DATA "((4#4)#4)#4" DATA "(4#(4#4))#4" DATA "4#((4#4)#4)" DATA "4#(4#(4#4))" for i = 1 to NBrackets read Tmpl$: Brakets$(i) = Tmpl$ next 'operations: full search count = 0 Ops$="+ - * /" dim Op$(3) For op1=1 to 4 Op$(1)=word$(Ops$,op1) For op2=1 to 4 Op$(2)=word$(Ops$,op2) For op3=1 to 4 Op$(3)=word$(Ops$,op3) 'print "*" 'substitute all brackets for t = 1 to NBrackets Tmpl$=Brakets$(t) 'print , Tmpl$ 'now, substitute all digits: permutations. for p = 1 to nPerm res$= "" nOp=0 nD=0 for i = 1 to len(Tmpl$) c$ = mid$(Tmpl$, i, 1) select case c$ case "#" 'operations nOp = nOp+1 res$ = res$+Op$(nOp) case "4" 'digits nD = nOp+1 res$ = res$; perm(p,nD) case else 'brackets goes here res$ = res$+ c$ end select next 'print,, res$ 'eval here if evalWithErrCheck(res$) = 24 then print "24 = ";res$ end 'comment it out if you want to see all versions end if count = count + 1 next next Next Next next print "If you see this, probably task cannot be solved with these digits" 'print count end function evalWithErrCheck(expr$) on error goto [handler] evalWithErrCheck=eval(expr$) exit function [handler] end function ``` ## Lua Generic solver: pass card of any size with 1st argument and target number with second. ```lua local SIZE = #arg[1] local GOAL = tonumber(arg[2]) or 24 local input = {} for v in arg[1]:gmatch("%d") do table.insert(input, v) end assert(#input == SIZE, 'Invalid input') local operations = {'+', '-', '*', '/'} local function BinaryTrees(vert) if vert == 0 then return {false} else local buf = {} for leften = 0, vert - 1 do local righten = vert - leften - 1 for _, left in pairs(BinaryTrees(leften)) do for _, right in pairs(BinaryTrees(righten)) do table.insert(buf, {left, right}) end end end return buf end end local trees = BinaryTrees(SIZE-1) local c, opc, oper, str local max = math.pow(#operations, SIZE-1) local function op(a,b) opc = opc + 1 local i = math.floor(oper/math.pow(#operations, opc-1))%#operations+1 return '('.. a .. operations[i] .. b ..')' end local function EvalTree(tree) if tree == false then c = c + 1 return input[c-1] else return op(EvalTree(tree[1]), EvalTree(tree[2])) end end local function printResult() for _, v in ipairs(trees) do for i = 0, max do c, opc, oper = 1, 0, i str = EvalTree(v) loadstring('res='..str)() if(res == GOAL) then print(str, '=', res) end end end end local uniq = {} local function permgen (a, n) if n == 0 then local str = table.concat(a) if not uniq[str] then printResult() uniq[str] = true end else for i = 1, n do a[n], a[i] = a[i], a[n] permgen(a, n - 1) a[n], a[i] = a[i], a[n] end end end permgen(input, SIZE) ``` ### Output ```txt $ lua 24game.solve.lua 2389 (8*(9-(3*2))) = 24 (8*((9-3)/2)) = 24 ((8*(9-3))/2) = 24 ((9-3)*(8/2)) = 24 (((9-3)*8)/2) = 24 (8*(9-(2*3))) = 24 (8/(2/(9-3))) = 24 ((8/2)*(9-3)) = 24 ((9-3)/(2/8)) = 24 ((9-(3*2))*8) = 24 (((9-3)/2)*8) = 24 ((9-(2*3))*8) = 24 $ lua 24game.solve.lua 1172 ((1+7)*(2+1)) = 24 ((7+1)*(2+1)) = 24 ((1+2)*(7+1)) = 24 ((2+1)*(7+1)) = 24 ((1+2)*(1+7)) = 24 ((2+1)*(1+7)) = 24 ((1+7)*(1+2)) = 24 ((7+1)*(1+2)) = 24 $ lua 24game.solve.lua 123456789 1000 (2*(3+(4-(5+(6-(7*(8*(9*1)))))))) = 1000 (2*(3+(4-(5+(6-(7*(8*(9/1)))))))) = 1000 (2*(3*(4*(5+(6*(7-(8/(9*1)))))))) = 1000 (2*(3*(4*(5+(6*(7-(8/(9/1)))))))) = 1000 (2*(3+(4-(5+(6-(7*((8*9)*1))))))) = 1000 (2*(3+(4-(5+(6-(7*((8*9)/1))))))) = 1000 (2*(3*(4*(5+(6*(7-((8/9)*1))))))) = 1000 (2*(3*(4*(5+(6*(7-((8/9)/1))))))) = 1000 ..... ``` ## Mathematica / Wolfram Language The code: ```Mathematica treeR[n_] := Table[o[trees[a], trees[n - a]], {a, 1, n - 1}] treeR[1] := n tree[n_] := Flatten[treeR[n] //. {o[a_List, b_] :> (o[#, b] & /@ a), o[a_, b_List] :> (o[a, #] & /@ b)}] game24play[val_List] := Union[StringReplace[StringTake[ToString[#, InputForm], {10, -2}], "-1*" ~~ n_ :> "-" <> n] & /@ (HoldForm /@ Select[Union@ Flatten[Outer[# /. {o[q_Integer] :> #2[[q]], n[q_] :> #3[[q]]} &, Block[{O = 1, N = 1}, # /. {o :> o[O++], n :> n[N++]}] & /@ tree[4], Tuples[{Plus, Subtract, Times, Divide}, 3], Permutations[Array[v, 4]], 1]], Quiet[(# /. v[q_] :> val[[q]]) == 24] &] /. Table[v[q] -> val[[q]], {q, 4}])] ``` The treeR
method recursively computes all possible operator trees for a certain number of inputs. It does this by tabling all combinations of distributions of inputs across the possible values. (For example,treeR[4]
is allotted 4 inputs, so it returns{o[treeR[3],treeR[1]],o[treeR[2],treeR[2]],o[treeR[1],treeR[3]]}
, whereo
is the operator (generic at this point). The base casetreeR[1]
returnsn
(the input). The final output oftree[4]
(the 24 game has 4 random inputs) (tree
cleans up the output oftreeR
) is: ```txt {o[n, o[n, o[n, n]]], o[n, o[o[n, n], n]], o[o[n, n], o[n, n]], o[o[n, o[n, n]], n], o[o[o[n, n], n], n]} ```game24play
takes the four random numbers as input and does the following (the%
refers to code output from previous bullets): *Block[{O = 1, N = 1}, # /. {o :> o[O++], n :> n[N++]}] & /@ tree[4]
** Assign ascending numbers to the input and operator placeholders. ** Ex:o[1][o[2][n[1], n[2]], o[3][n[3], n[4]]]
*Tuples[{Plus, Subtract, Times, Divide}, 3]
** Find all combinations (Tuples
allows repeats) of the four allowed operations. ** Ex:{{Plus, Plus, Plus}, {Plus, Plus, Subtract}, <<60>>, {Divide, Divide, Times}, {Divide, Divide, Divide}}
*Permutations[Array[v, 4]]
** Find all permutations (Permutations
does not allow repeats) of the four given values. ** Ex:{{v[1],v[2],v[3],v[4]}, {v[1],v[2],v[4],v[3]}, <<20>>, {v[4],v[3],v[1],v[2]}, {v[4],v[3],v[2],v[1]}}
*Outer[# /.
** Perform an outer join on the three above lists (every combination of each element) and with each combination put into the first (the operator tree) the second (the operation at each level) and the third (the value *indexes*, not actual values). ** Ex:{o[q_Integer] :> #2[[q]], n[q_] :> #3[[q]]} &, %%%, %%, %, 1]v[1] + v[2] - v[3] + v[4]
*Union@Flatten[%]
** Get rid of any sublists caused byOuter
and remove any duplicates (Union
). *Select[%, Quiet[
** Select the elements of the above list where substituting the real values returns 24 (and do it(# /. v[q_] :> val[[q]]) == 24] &]Quiet
ly because of div-0 concerns). *HoldForm /@ % /.
** ApplyTable[v[q] -> val[[q]], {q, 4}] HoldForm
so that substituting numbers will not cause evaluation (otherwise it would only ever return lists like{24, 24, 24}
!) and substitute the numbers in. *Union[StringReplace[StringTake[ToString[#, InputForm], {10, -2}], "-1*" ~~ n_ :> "-" <> n] & /@ %]
**For each result, turn the expression into a string (for easy manipulation), strip the "HoldForm
" wrapper, replace numbers like "-1*7" with "-7" (a idiosyncrasy of the conversion process), and remove any lingering duplicates. Some duplicates will still remain, notably constructs like "3 - 3" vs. "-3 + 3" and trivially similar expressions like "(8*3)*(6-5)" vs "(8*3)/(6-5)". Example run input and outputs: ```Mathematica game24play[RandomInteger[{1, 9}, 4]] ``` ### Output ```txt {7, 2, 9, 5} {-2 - 9 + 7*5} ``` ```txt {7, 5, 6, 2} {6*(7 - 5 + 2), (7 - 5)*6*2, 7 + 5 + 6*2} ``` ```txt {7, 6, 7, 7} {} ``` ```txt {3, 7, 6, 1} {(-3 + 6)*(7 + 1), ((-3 + 7)*6)/1, (-3 + 7)*6*1, 6 - 3*(-7 + 1), 6*(-3 + 7*1), 6*(-3 + 7/1), 6 + 3*(7 - 1), 6*(7 - 3*1), 6*(7 - 3/1), 7 + 3*6 - 1} ``` Note that although this program is designed to be extensible to higher numbers of inputs, the largest working set in the program (the output of theOuter
function can get very large: *tree[n]
returns a list with the length being the (n-1)-th [Catalan number](https://en.wikipedia.org/wiki/Catalan number). *Tuples[{Plus, Subtract, Times, Divide}, 3]
has fixed length 64 (or *p3* for *p* operations). *Permutations[Array[v, n]]
returns permutations. Therefore, the size of the working set is , where is the [quadruple factorial](https://en.wikipedia.org/wiki/quadruple factorial). It goes without saying that this number increases very fast. For this game, the total is 7680 elements. For higher numbers of inputs, it is {7 680, 107 520, 1 935 360, 42 577 920, 1 107 025 920, ...}. An alternative solution operates on Mathematica expressions directly without using any inert intermediate form for the expression tree, but by usingHold
to prevent Mathematica from evaluating the expression tree. ```Mathematica evaluate[HoldForm[op_[l_, r_]]] := op[evaluate[l], evaluate[r]]; evaluate[x_] := x; combine[l_, r_ /; evaluate[r] != 0] := {HoldForm[Plus[l, r]], HoldForm[Subtract[l, r]], HoldForm[Times[l, r]], HoldForm[Divide[l, r]] }; combine[l_, r_] := {HoldForm[Plus[l, r]], HoldForm[Subtract[l, r]], HoldForm[Times[l, r]]}; split[items_] := Table[{items[[1 ;; i]], items[[i + 1 ;; Length[items]]]}, {i, 1, Length[items] - 1}]; expressions[{x_}] := {x}; expressions[items_] := Flatten[Table[ Flatten[Table[ combine[l, r], {l, expressions[sp[[1]]]}, {r, expressions[sp[[2]]]}], 2], {sp, split[items]}]]; (* Must use all atoms in given order. *) solveMaintainOrder[goal_, items_] := Select[expressions[items], (evaluate[#] == goal) &]; (* Must use all atoms, but can permute them. *) solveCanPermute[goal_, items_] := Flatten[Table[ solveMaintainOrder[goal, pitems], {pitems, Permutations[items]}]]; (* Can use any subset of atoms. *) solveSubsets[goal_, items_] := Flatten[Table[ solveCanPermute[goal, is], {is, Subsets[items, {1, Length[items]}]}], 2]; (* Demonstration to find all the ways to create 1/5 from {2, 3, 4, 5}. *) solveMaintainOrder[1/5, Range[2, 5]] solveCanPermute[1/5, Range[2, 5]] solveSubsets[1/5, Range[2, 5]] ``` ## Nim {{trans|Python Succinct}} *Works with: Nim Compiler 0.19.4* ```nim import algorithm, sequtils, strformat type Operation = enum opAdd = "+" opSub = "-" opMul = "*" opDiv = "/" const Ops = @[opAdd, opSub, opMul, opDiv] func opr(o: Operation, a, b: float): float = case o of opAdd: a + b of opSub: a - b of opMul: a * b of opDiv: a / b func solve(nums: array[4, int]): string = func `~=`(a, b: float): bool = abs(a - b) <= 1e-5 result = "not found" let sortedNums = nums.sorted.mapIt float it for i in product Ops.repeat 3: let (x, y, z) = (i[0], i[1], i[2]) var nums = sortedNums while true: let (a, b, c, d) = (nums[0], nums[1], nums[2], nums[3]) if x.opr(y.opr(a, b), z.opr(c, d)) ~= 24.0: return fmt"({a:0} {y} {b:0}) {x} ({c:0} {z} {d:0})" if x.opr(a, y.opr(b, z.opr(c, d))) ~= 24.0: return fmt"{a:0} {x} ({b:0} {y} ({c:0} {z} {d:0}))" if x.opr(y.opr(z.opr(c, d), b), a) ~= 24.0: return fmt"(({c:0} {z} {d:0}) {y} {b:0}) {x} {a:0}" if x.opr(y.opr(b, z.opr(c, d)), a) ~= 24.0: return fmt"({b:0} {y} ({c:0} {z} {d:0})) {x} {a:0}" if not nextPermutation(nums): break proc main() = for nums in [ [9, 4, 4, 5], [1, 7, 2, 7], [5, 7, 5, 4], [1, 4, 6, 6], [2, 3, 7, 3], [8, 7, 9, 7], [1, 6, 2, 6], [7, 9, 4, 1], [6, 4, 2, 2], [5, 7, 9, 7], [3, 3, 8, 8], # Difficult case requiring precise division ]: echo fmt"solve({nums}) -> {solve(nums)}" when isMainModule: main() ``` ### Output ```txt solve([9, 4, 4, 5]) -> not found solve([1, 7, 2, 7]) -> ((7 * 7) - 1) / 2 solve([5, 7, 5, 4]) -> 4 * (7 - (5 / 5)) solve([1, 4, 6, 6]) -> 6 - (6 * (1 - 4)) solve([2, 3, 7, 3]) -> (7 - 3) * (2 * 3) solve([8, 7, 9, 7]) -> not found solve([1, 6, 2, 6]) -> (6 - 2) / (1 / 6) solve([7, 9, 4, 1]) -> (1 - 9) * (4 - 7) solve([6, 4, 2, 2]) -> 2 * (4 / (2 / 6)) solve([5, 7, 9, 7]) -> (5 + 7) * (9 - 7) solve([3, 3, 8, 8]) -> 8 / (3 - (8 / 3)) ``` ## OCaml ```ocaml type expression = | Const of float | Sum of expression * expression (* e1 + e2 *) | Diff of expression * expression (* e1 - e2 *) | Prod of expression * expression (* e1 * e2 *) | Quot of expression * expression (* e1 / e2 *) let rec eval = function | Const c -> c | Sum (f, g) -> eval f +. eval g | Diff(f, g) -> eval f -. eval g | Prod(f, g) -> eval f *. eval g | Quot(f, g) -> eval f /. eval g let print_expr expr = let open_paren prec op_prec = if prec > op_prec then print_string "(" in let close_paren prec op_prec = if prec > op_prec then print_string ")" in let rec print prec = function (* prec is the current precedence *) | Const c -> Printf.printf "%g" c | Sum(f, g) -> open_paren prec 0; print 0 f; print_string " + "; print 0 g; close_paren prec 0 | Diff(f, g) -> open_paren prec 0; print 0 f; print_string " - "; print 1 g; close_paren prec 0 | Prod(f, g) -> open_paren prec 2; print 2 f; print_string " * "; print 2 g; close_paren prec 2 | Quot(f, g) -> open_paren prec 2; print 2 f; print_string " / "; print 3 g; close_paren prec 2 in print 0 expr let rec insert v = function | [] -> [[v]] | x::xs as li -> (v::li) :: (List.map (fun y -> x::y) (insert v xs)) let permutations li = List.fold_right (fun x z -> List.concat (List.map (insert x) z)) li [[]] let rec comp expr = function | x::xs -> comp (Sum (expr, x)) xs; comp (Diff(expr, x)) xs; comp (Prod(expr, x)) xs; comp (Quot(expr, x)) xs; | [] -> if (eval expr) = 24.0 then (print_expr expr; print_newline()) ;; let () = Random.self_init(); let digits = Array.init 4 (fun _ -> 1 + Random.int 9) in print_string "Input digits: "; Array.iter (Printf.printf " %d") digits; print_newline(); let digits = Array.to_list(Array.map float_of_int digits) in let digits = List.map (fun v -> Const v) digits in let all = permutations digits in List.iter (function | x::xs -> comp x xs | [] -> assert false ) all ``` ```txt Input digits: 5 7 4 1 7 * 4 - 5 + 1 7 * 4 + 1 - 5 4 * 7 - 5 + 1 4 * 7 + 1 - 5 (5 - 1) * 7 - 4 ``` (notice that the printer only puts parenthesis when needed) ## Perl Will generate all possible solutions of any given four numbers according to the rules of the [24 game](/tasks/24 game). Note: thepermute
function was taken from [here](http://faq.perl.org/perlfaq4.html#How_do_I_permute_N_e) ```Perl # Fischer-Krause ordered permutation generator # http://faq.perl.org/perlfaq4.html#How_do_I_permute_N_e sub permute (&@) { my $code = shift; my @idx = 0..$#_; while ( $code->(@_[@idx]) ) { my $p = $#idx; --$p while $idx[$p-1] > $idx[$p]; my $q = $p or return; push @idx, reverse splice @idx, $p; ++$q while $idx[$p-1] > $idx[$q]; @idx[$p-1,$q]=@idx[$q,$p-1]; } } @formats = ( '((%d %s %d) %s %d) %s %d', '(%d %s (%d %s %d)) %s %d', '(%d %s %d) %s (%d %s %d)', '%d %s ((%d %s %d) %s %d)', '%d %s (%d %s (%d %s %d))', ); # generate all possible combinations of operators @op = qw( + - * / ); @operators = map{ $a=$_; map{ $b=$_; map{ "$a $b $_" }@op }@op }@op; while(1) { print "Enter four integers or 'q' to exit: "; chomp($ent = <>); last if $ent eq 'q'; if($ent !~ /^[1-9] [1-9] [1-9] [1-9]$/){ print "invalid input\n"; next } @n = split / /,$ent; permute { push @numbers,join ' ',@_ }@n; for $format (@formats) { for(@numbers) { @n = split; for(@operators) { @o = split; $str = sprintf $format,$n[0],$o[0],$n[1],$o[1],$n[2],$o[2],$n[3]; $r = eval($str); print "$str\n" if $r == 24; } } } } ``` ### Output ```txt E:\Temp>24solve.pl Enter four integers or 'q' to exit: 1 3 3 8 ((1 + 8) * 3) - 3 ((1 + 8) * 3) - 3 ((8 + 1) * 3) - 3 ((8 - 1) * 3) + 3 ((8 + 1) * 3) - 3 ((8 - 1) * 3) + 3 (3 * (1 + 8)) - 3 (3 * (8 + 1)) - 3 (3 * (8 - 1)) + 3 (3 * (1 + 8)) - 3 (3 * (8 + 1)) - 3 (3 * (8 - 1)) + 3 3 - ((1 - 8) * 3) 3 + ((8 - 1) * 3) 3 - ((1 - 8) * 3) 3 + ((8 - 1) * 3) 3 - (3 * (1 - 8)) 3 + (3 * (8 - 1)) 3 - (3 * (1 - 8)) 3 + (3 * (8 - 1)) Enter four integers or 'q' to exit: q E:\Temp> ``` ## Perl 6 ### With EVAL A loose translation of the Perl entry. Does not return every possible permutation of the possible solutions. Filters out duplicates (from repeated digits) and only reports the solution for a particular order of digits and operators with the fewest parenthesis (avoids reporting duplicate solutions only differing by unnecessary parenthesis). Does not guarantee the order in which results are returned. Since Perl 6 uses Rational numbers for division (whenever possible) there is no loss of precision as is common with floating point division. So a comparison like (1 + 7) / (1 / 3) == 24 "Just Works"™ ```perl6 use MONKEY-SEE-NO-EVAL; my @digits; my $amount = 4; # Get $amount digits from the user, # ask for more if they don't supply enough while @digits.elems < $amount { @digits.append: (prompt "Enter {$amount - @digits} digits from 1 to 9, " ~ '(repeats allowed): ').comb(/<[1..9]>/); } # Throw away any extras @digits = @digits[^$amount]; # Generate combinations of operators my @ops = [X,] <+ - * /> xx 3; # Enough sprintf formats to cover most precedence orderings my @formats = ( '%d %s %d %s %d %s %d', '(%d %s %d) %s %d %s %d', '(%d %s %d %s %d) %s %d', '((%d %s %d) %s %d) %s %d', '(%d %s %d) %s (%d %s %d)', '%d %s (%d %s %d %s %d)', '%d %s (%d %s (%d %s %d))', ); # Brute force test the different permutations (unique @digits.permutations).race.map: -> @p { for @ops -> @o { for @formats -> $format { my $string = sprintf $format, flat roundrobin(|@p; |@o); my $result = EVAL($string); say "$string = 24" and last if $result and $result == 24; } } } # Only return unique sub-arrays sub unique (@array) { my %h = map { $_.Str => $_ }, @array; %h.values; } ``` ### Output ```txt Enter 4 digits from 1 to 9, (repeats allowed): 3711 (1 + 7) * 3 * 1 = 24 (1 + 7) * 3 / 1 = 24 (1 * 3) * (1 + 7) = 24 3 * (1 + 1 * 7) = 24 (3 * 1) * (1 + 7) = 24 3 * (1 / 1 + 7) = 24 (3 / 1) * (1 + 7) = 24 3 / (1 / (1 + 7)) = 24 (1 + 7) * 1 * 3 = 24 (1 + 7) / 1 * 3 = 24 (1 + 7) / (1 / 3) = 24 (1 * 7 + 1) * 3 = 24 (7 + 1) * 3 * 1 = 24 (7 + 1) * 3 / 1 = 24 (7 - 1) * (3 + 1) = 24 (1 + 1 * 7) * 3 = 24 (1 * 1 + 7) * 3 = 24 (1 / 1 + 7) * 3 = 24 (3 + 1) * (7 - 1) = 24 3 * (1 + 7 * 1) = 24 3 * (1 + 7 / 1) = 24 (3 * 1) * (7 + 1) = 24 (3 / 1) * (7 + 1) = 24 3 / (1 / (7 + 1)) = 24 (1 + 3) * (7 - 1) = 24 (1 * 3) * (7 + 1) = 24 (7 + 1) * 1 * 3 = 24 (7 + 1) / 1 * 3 = 24 (7 + 1) / (1 / 3) = 24 (7 - 1) * (1 + 3) = 24 (7 * 1 + 1) * 3 = 24 (7 / 1 + 1) * 3 = 24 3 * (7 + 1 * 1) = 24 3 * (7 + 1 / 1) = 24 3 * (7 * 1 + 1) = 24 3 * (7 / 1 + 1) = 24 Enter 4 digits from 1 to 9, (repeats allowed): 5 5 5 5 5 * 5 - 5 / 5 = 24 Enter 4 digits from 1 to 9, (repeats allowed): 8833 8 / (3 - 8 / 3) = 24 ``` ### No EVAL Alternately, a version that doesn't use EVAL. More general case. Able to handle 3 or 4 integers, able to select the goal value. ```perl6 my %*SUB-MAIN-OPTS = :named-anywhere; sub MAIN (*@parameters, Int :$goal = 24) { my @numbers; if +@parameters == 1 { @numbers = @parameters[0].comb(/\d/); USAGE() and exit unless 2 < @numbers < 5; } elsif +@parameters > 4 { USAGE() and exit; } elsif +@parameters == 3|4 { @numbers = @parameters; USAGE() and exit if @numbers.any ~~ /<-[-\d]>/; } else { USAGE(); exit if +@parameters == 2; @numbers = 3,3,8,8; say 'Running demonstration with: ', |@numbers, "\n"; } solve @numbers, $goal } sub solve (@numbers, $goal = 24) { my @operators = < + - * / >; my @ops = [X] @operators xx (@numbers - 1); my @perms = @numbers.permutations.unique( :with(&[eqv]) ); my @order = (^(@numbers - 1)).permutations; my @sol; @sol[250]; # preallocate some stack space my $batch = ceiling +@perms/4; my atomicint $i; @perms.race(:batch($batch)).map: -> @p { for @ops -> @o { for @order -> @r { my $result = evaluate(@p, @o, @r); @sol[$i⚛++] = $result[1] if $result[0] and $result[0] == $goal; } } } @sol.=unique; say @sol.join: "\n"; my $pl = +@sol == 1 ?? '' !! 's'; my $sg = $pl ?? '' !! 's'; say +@sol, " equation{$pl} evaluate{$sg} to $goal using: {@numbers}"; } sub evaluate ( @digit, @ops, @orders ) { my @result = @digit.map: { [ $_, $_ ] }; my @offset = 0 xx +@orders; for ^@orders { my $this = @orders[$_]; my $order = $this - @offset[$this]; my $op = @ops[$this]; my $result = op( $op, @result[$order;0], @result[$order+1;0] ); return [ NaN, Str ] unless defined $result; my $string = "({@result[$order;1]} $op {@result[$order+1;1]})"; @result.splice: $order, 2, [ $[ $result, $string ] ]; @offset[$_]++ if $order < $_ for ^@offset; } @result[0]; } multi op ( '+', $m, $n ) { $m + $n } multi op ( '-', $m, $n ) { $m - $n } multi op ( '/', $m, $n ) { $n == 0 ?? fail() !! $m / $n } multi op ( '*', $m, $n ) { $m * $n } my $txt = "\e[0;96m"; my $cmd = "\e[0;92m> {$*EXECUTABLE-NAME} {$*PROGRAM-NAME}"; sub USAGE { say qq:to ' ### ================================================================== ' {$txt}Supply 3 or 4 integers on the command line, and optionally a value to equate to. Integers may be all one group: {$cmd} 2233{$txt} Or, separated by spaces: {$cmd} 2 4 6 7{$txt} If you wish to supply multi-digit or negative numbers, you must separate them with spaces: {$cmd} -2 6 12{$txt} If you wish to use a different equate value, supply a new --goal parameter: {$cmd} --goal=17 2 -3 1 9{$txt} If you don't supply any parameters, will use 24 as the goal, will run a demo and will show this message.\e[0m ### ================================================================== } ``` ### Output When supplied 1399 on the command line: ```txt (((9 - 1) / 3) * 9) ((9 - 1) / (3 / 9)) ((9 / 3) * (9 - 1)) (9 / (3 / (9 - 1))) ((9 * (9 - 1)) / 3) (9 * ((9 - 1) / 3)) (((9 - 1) * 9) / 3) ((9 - 1) * (9 / 3)) 8 equations evaluate to 24 using: 1 3 9 9 ``` ## Phix ```Phix -- -- 24_game_solve.exw -- ### =========== -- -- Write a function that given four digits subject to the rules of the 24 game, computes an expression to solve the game if possible. -- Show examples of solutions generated by the function -- -- The following 5 parse expressions are possible. -- Obviously numbers 1234 represent 24 permutations from -- {1,2,3,4} to {4,3,2,1} of indexes to the real numbers. -- Likewise "+-*" is like "123" representing 64 combinations -- from {1,1,1} to {4,4,4} of indexes to "+-*/". -- Both will be replaced if/when the strings get printed. -- constant OPS = "+-*/" constant expressions = {"1+(2-(3*4))", "1+((2-3)*4)", "(1+2)-(3*4)", "(1+(2-3))*4", "((1+2)-3)*4"} -- (equivalent to "1+2-3*4") --TODO: I'm sure there is a simple (recursive) way to programatically -- generate the above (for n=2..9) but I'm not seeing it yet... -- The above represented as three sequential operations (the result gets -- left in <(map)1>, ie vars[perms[operations[i][3][1]]] aka vars[lhs]): constant operations = {{{3,'*',4},{2,'-',3},{1,'+',2}}, --3*=4; 2-=3; 1+=2 {{2,'-',3},{2,'*',4},{1,'+',2}}, --2-=3; 2*=4; 1+=2 {{1,'+',2},{3,'*',4},{1,'-',3}}, --1+=2; 3*=4; 1-=3 {{2,'-',3},{1,'+',2},{1,'*',4}}, --2-=3; 1+=2; 1*=4 {{1,'+',2},{1,'-',3},{1,'*',4}}} --1+=2; 1-=3; 1*=4 --TODO: ... and likewise for parsing "expressions" to yield "operations". function evalopset(sequence opset, sequence perms, sequence ops, sequence vars) -- invoked 5*24*64 = 7680 times, to try all possible expressions/vars/operators -- (btw, vars is copy-on-write, like all parameters not explicitly returned, so -- we can safely re-use it without clobbering the callee version.) integer lhs,op,rhs atom inf for i=1 to length(opset) do {lhs,op,rhs} = opset[i] lhs = perms[lhs] op = ops[find(op,OPS)] rhs = perms[rhs] if op='+' then vars[lhs] += vars[rhs] elsif op='-' then vars[lhs] -= vars[rhs] elsif op='*' then vars[lhs] *= vars[rhs] elsif op='/' then if vars[rhs]=0 then inf = 1e300*1e300 return inf end if vars[lhs] /= vars[rhs] end if end for return vars[lhs] end function integer nSolutions sequence xSolutions procedure success(string expr, sequence perms, sequence ops, sequence vars, atom r) integer ch for i=1 to length(expr) do ch = expr[i] if ch>='1' and ch<='9' then expr[i] = vars[perms[ch-'0']]+'0' else ch = find(ch,OPS) if ch then expr[i] = ops[ch] end if end if end for if not find(expr,xSolutions) then -- avoid duplicates for eg {1,1,2,7} because this has found -- the "same" solution but with the 1st and 2nd 1s swapped, -- and likewise whenever an operator is used more than once. printf(1,"success: %s = %s\n",{expr,sprint(r)}) nSolutions += 1 xSolutions = append(xSolutions,expr) end if end procedure procedure tryperms(sequence perms, sequence ops, sequence vars) atom r for i=1 to length(operations) do -- 5 parse expressions r = evalopset(operations[i], perms, ops, vars) if r=24 then success(expressions[i], perms, ops, vars, r) end if end for end procedure include builtins/factorial.e include builtins/permute.e procedure tryops(sequence ops, sequence vars) for p=1 to factorial(4) do -- 24 var permutations tryperms(permute(p,{1,2,3,4}),ops, vars) end for end procedure global procedure solve24(sequence vars) nSolutions = 0 xSolutions = {} for op1=1 to 4 do for op2=1 to 4 do for op3=1 to 4 do -- 64 operator combinations tryops({OPS[op1],OPS[op2],OPS[op3]},vars) end for end for end for printf(1,"\n%d solutions\n",{nSolutions}) end procedure solve24({1,1,2,7}) if getc(0) then end if ``` ### Output ```txt success: (1+2)*(7+1) = 24 success: (1+7)*(1+2) = 24 success: (1+2)*(1+7) = 24 success: (2+1)*(7+1) = 24 success: (7+1)*(1+2) = 24 success: (2+1)*(1+7) = 24 success: (1+7)*(2+1) = 24 success: (7+1)*(2+1) = 24 8 solutions ``` ## Picat ```Picat import util. main => Target=24, Nums = [5,6,7,8], All=findall(Expr, solve_num(Nums,Target,Expr)), foreach(Expr in All) println(Expr.flatten()) end, println(len=All.length), nl. % A string based approach, inspired by - among others - the Perl6 solution. solve_num(Nums, Target,Expr) => Patterns = [ "A X B Y C Z D", "(A X B) Y C Z D", "(A X B Y C) Z D", "((A X B) Y C) Z D", "(A X B) Y (C Z D)", "A X (B Y C Z D)", "A X (B Y (C Z D))" ], permutation(Nums,[A,B,C,D]), Syms = [+,-,*,/], member(X ,Syms), member(Y ,Syms), member(Z ,Syms), member(Pattern,Patterns), Expr = replace_all(Pattern, "ABCDXYZ", [A,B,C,D,X,Y,Z]), catch(Target =:= Expr.eval(), E, ignore(E)). eval(Expr) = parse_term(Expr.flatten()).apply(). ignore(_E) => fail. % ignore zero_divisor errors % Replace all occurrences in S with From -> To. replace_all(S,From,To) = Res => R = S, foreach({F,T} in zip(From,To)) R := replace(R, F,T.to_string()) end, Res = R. ``` Test: ```txt Picat> main (5 + 7 - 8) * 6 ((5 + 7) - 8) * 6 (5 + 7) * (8 - 6) (5 - 8 + 7) * 6 ((5 - 8) + 7) * 6 6 * (5 + 7 - 8) 6 * (5 + (7 - 8)) 6 * (5 - 8 + 7) 6 * (5 - (8 - 7)) 6 * (7 + 5 - 8) 6 * (7 + (5 - 8)) 6 * (7 - 8 + 5) 6 * (7 - (8 - 5)) (6 * 8) / (7 - 5) 6 * (8 / (7 - 5)) (7 + 5 - 8) * 6 ((7 + 5) - 8) * 6 (7 + 5) * (8 - 6) (7 - 8 + 5) * 6 ((7 - 8) + 5) * 6 (8 - 6) * (5 + 7) (8 - 6) * (7 + 5) (8 * 6) / (7 - 5) 8 * (6 / (7 - 5)) len = 24 ``` Another approach: ```Picat import util. main => Target=24, Nums = [5,6,7,8], _ = findall(Expr, solve_num2(Nums,Target)), nl. solve_num2(Nums, Target) => Syms = [+,-,*,/], Perms = permutations([I.to_string() : I in Nums]), Seen = new_map(), % weed out duplicates foreach(X in Syms,Y in Syms, Z in Syms) foreach(P in Perms) [A,B,C,D] = P, if catch(check(A,X,B,Y,C,Z,D,Target,Expr),E,ignore(E)), not Seen.has_key(Expr) then println(Expr.flatten()=Expr.eval().round()), Seen.put(Expr,1) end end end. to_string2(Expr) = [E.to_string() : E in Expr].flatten(). ignore(_E) => fail. % ignore zero_divisor errors check(A,X,B,Y,C,Z,D,Target,Expr) ?=> Expr = ["(",A,Y,B,")",X,"(",C,Z,D,")"].to_string2(), Target =:= Expr.eval(). check(A,X,B,Y,C,Z,D,Target,Expr) ?=> Expr = [A,X,"(",B,Y,"(",C,Z,D,")",")"].to_string2(), Target =:= Expr.eval(). check(A,X,B,Y,C,Z,D,Target,Expr) ?=> Expr = ["(","(",C,Z,D,")",Y,B,")",X,A].to_string2(), Target =:= Expr.eval(). check(A,X,B,Y,C,Z,D,Target,Expr) ?=> Expr = ["(",B,Y,"(",C,Z,D,")",")",X,A].to_string2(), Target =:= Expr.eval(). check(A,X,B,Y,C,Z,D,Target,Expr) => Expr = [A,X,"(","(",B,Y,C,")", Z,D,")"].to_string2(), Target =:= Expr.eval(). ``` Test: ```txt > main 6*(5+(7-8)) = 24 6*(7+(5-8)) = 24 (5+7)*(8-6) = 24 (7+5)*(8-6) = 24 6*((7-8)+5) = 24 6*((5-8)+7) = 24 ((5+7)-8)*6 = 24 ((7+5)-8)*6 = 24 (8-6)*(5+7) = 24 (8-6)*(7+5) = 24 6*(7-(8-5)) = 24 6*(5-(8-7)) = 24 6*(8/(7-5)) = 24 8*(6/(7-5)) = 24 6/((7-5)/8) = 24 8/((7-5)/6) = 24 (6*8)/(7-5) = 24 (8*6)/(7-5) = 24 ``` ## PicoLisp We use Pilog (PicoLisp Prolog) to solve this task ```PicoLisp (be play24 (@Lst @Expr) # Define Pilog rule (permute @Lst (@A @B @C @D)) (member @Op1 (+ - * /)) (member @Op2 (+ - * /)) (member @Op3 (+ - * /)) (or ((equal @Expr (@Op1 (@Op2 @A @B) (@Op3 @C @D)))) ((equal @Expr (@Op1 @A (@Op2 @B (@Op3 @C @D))))) ) (^ @ (= 24 (catch '("Div/0") (eval (-> @Expr))))) ) (de play24 (A B C D) # Define PicoLisp function (pilog (quote @L (list A B C D) (play24 @L @X) ) (println @X) ) ) (play24 5 6 7 8) # Call 'play24' function ``` ### Output ```txt (* (+ 5 7) (- 8 6)) (* 6 (+ 5 (- 7 8))) (* 6 (- 5 (- 8 7))) (* 6 (- 5 (/ 8 7))) (* 6 (+ 7 (- 5 8))) (* 6 (- 7 (- 8 5))) (* 6 (/ 8 (- 7 5))) (/ (* 6 8) (- 7 5)) (* (+ 7 5) (- 8 6)) (* (- 8 6) (+ 5 7)) (* (- 8 6) (+ 7 5)) (* 8 (/ 6 (- 7 5))) (/ (* 8 6) (- 7 5)) ``` ## ProDOS Note This example uses the math module: ```ProDOS editvar /modify -random- = <10 :a editvar /newvar /withothervar /value=-random- /title=1 editvar /newvar /withothervar /value=-random- /title=2 editvar /newvar /withothervar /value=-random- /title=3 editvar /newvar /withothervar /value=-random- /title=4 printline These are your four digits: -1- -2- -3- -4- printline Use an algorithm to make the number 24. editvar /newvar /value=a /userinput=1 /title=Algorithm: do -a- if -a- /hasvalue 24 printline Your algorithm worked! & goto :b ( ) else printline Your algorithm did not work. editvar /newvar /value=b /userinput=1 /title=Do you want to see how you could have done it? if -b- /hasvalue y goto :c else goto :b :b editvar /newvar /value=c /userinput=1 /title=Do you want to play again? if -c- /hasvalue y goto :a else exitcurrentprogram :c editvar /newvar /value=do -1- + -2- + -3- + -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve editvar /newvar /value=do -1- - -2- + -3- + -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve editvar /newvar /value=do -1- / -2- + -3- + -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve editvar /newvar /value=do -1- * -2- + -3- + -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve editvar /newvar /value=do -1- + -2- - -3- + -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve editvar /newvar /value=do -1- + -2- / -3- + -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve editvar /newvar /value=do -1- + -2- * -3- + -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve editvar /newvar /value=do -1- + -2- + -3- - -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve editvar /newvar /value=do -1- + -2- + -3- / -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve editvar /newvar /value=do -1- + -2- + -3- * -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve editvar /newvar /value=do -1- - -2- - -3- - -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve editvar /newvar /value=do -1- / -2- / -3- / -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve editvar /newvar /value=do -1- * -2- * -3- * -4- /title=c & do -c- >d & if -d- /hasvalue 24 goto :solve :solve printline you could have done it by doing -c- stoptask goto :b ``` ### Output ```txt These are your four digits: 1 4 5 2 Use an algorithm to make the number 24. Algorithm: 4 + 2 - 5 + 1 Your algorithm did not work. Do you want to play again? y These are your four digits: 1 8 9 6 Use an algorithm to make the number 24. Algorithm: 1 + 8 + 9 + 6 Your algorithm worked! Do you want to play again? n ``` ## Prolog Works with SWI-Prolog.
The game is generic, you can choose to play with a goal different of 24, any number of numbers in other ranges than 1 .. 9 !
rdiv/2 is use instead of //2 to enable the program to solve difficult cases as [3 3 8 8]. ```Prolog play24(Len, Range, Goal) :- game(Len, Range, Goal, L, S), maplist(my_write, L), format(': ~w~n', [S]). game(Len, Range, Value, L, S) :- length(L, Len), maplist(choose(Range), L), compute(L, Value, [], S). choose(Range, V) :- V is random(Range) + 1. write_tree([M], [M]). write_tree([+, M, N], S) :- write_tree(M, MS), write_tree(N, NS), append(MS, [+ | NS], S). write_tree([-, M, N], S) :- write_tree(M, MS), write_tree(N, NS), ( is_add(N) -> append(MS, [-, '(' | NS], Temp), append(Temp, ')', S) ; append(MS, [- | NS], S)). write_tree([Op, M, N], S) :- member(Op, [*, /]), write_tree(M, MS), write_tree(N, NS), ( is_add(M) -> append(['(' | MS], [')'], TempM) ; TempM = MS), ( is_add(N) -> append(['(' | NS], [')'], TempN) ; TempN = NS), append(TempM, [Op | TempN], S). is_add([Op, _, _]) :- member(Op, [+, -]). compute([Value], Value, [[_R-S1]], S) :- write_tree(S1, S2), with_output_to(atom(S), maplist(write, S2)). compute(L, Value, CS, S) :- select(M, L, L1), select(N, L1, L2), next_value(M, N, R, CS, Expr), compute([R|L2], Value, Expr, S). next_value(M, N, R, CS,[[R - [+, M1, N1]] | CS2]) :- R is M+N, ( member([M-ExprM], CS) -> select([M-ExprM], CS, CS1), M1 = ExprM ; M1 = [M], CS1 = CS ), ( member([N-ExprN], CS1) -> select([N-ExprN], CS1, CS2), N1 = ExprN ; N1 = [N], CS2 = CS1 ). next_value(M, N, R, CS,[[R - [-, M1, N1]] | CS2]) :- R is M-N, ( member([M-ExprM], CS) -> select([M-ExprM], CS, CS1), M1 = ExprM ; M1 = [M], CS1 = CS ), ( member([N-ExprN], CS1) -> select([N-ExprN], CS1, CS2), N1 = ExprN ; N1 = [N], CS2 = CS1 ). next_value(M, N, R, CS,[[R - [*, M1, N1]] | CS2]) :- R is M*N, ( member([M-ExprM], CS) -> select([M-ExprM], CS, CS1), M1 = ExprM ; M1 = [M], CS1 = CS ), ( member([N-ExprN], CS1) -> select([N-ExprN], CS1, CS2), N1 = ExprN ; N1 = [N], CS2 = CS1 ). next_value(M, N, R, CS,[[R - [/, M1, N1]] | CS2]) :- N \= 0, R is rdiv(M,N), ( member([M-ExprM], CS) -> select([M-ExprM], CS, CS1), M1 = ExprM ; M1 = [M], CS1 = CS ), ( member([N-ExprN], CS1) -> select([N-ExprN], CS1, CS2), N1 = ExprN ; N1 = [N], CS2 = CS1 ). my_write(V) :- format('~w ', [V]). ``` ### Output ```txt ?- play24(4,9, 24). 6 2 3 4 : (6-2+4)*3 true ; 6 2 3 4 : 3*(6-2+4) true ; 6 2 3 4 : (6-2+4)*3 true ; 6 2 3 4 : 3*(6-2+4) true ; 6 2 3 4 : (6*2-4)*3 true ; 6 2 3 4 : 3*(6*2-4) true ; 6 2 3 4 : 3*4+6*2 true ; 6 2 3 4 : 3*4+6*2 true ; 6 2 3 4 : 4*3+6*2 true ; 6 2 3 4 : 4*3+6*2 true ; 6 2 3 4 : (6/2+3)*4 true ; 6 2 3 4 : 4*(6/2+3) true ; 6 2 3 4 : (6/2+3)*4 true ; 6 2 3 4 : 4*(6/2+3) true ; 6 2 3 4 : (6-3)*2*4 true ; 6 2 3 4 : 4*(6-3)*2 true ; 6 2 3 4 : (6-3)*4*2 ... ?- play24(7,99, 1). 66 40 2 76 95 59 12 : (66+40)/2-76+95-59-12 true ; 66 40 2 76 95 59 12 : (66+40)/2-76+95-12-59 true ; 66 40 2 76 95 59 12 : (66+40)/2-76-59+95-12 true ; 66 40 2 76 95 59 12 : (66+40)/2-76-59-12+95 true ; 66 40 2 76 95 59 12 : 95+(66+40)/2-76-59-12 true ; 66 40 2 76 95 59 12 : 95+(66+40)/2-76-59-12 true ; 66 40 2 76 95 59 12 : 95-12+(66+40)/2-76-59 true ; 66 40 2 76 95 59 12 : (66+40)/2-76-59+95-12 .... ``` ### Minimal version {{incorrect|Prolog|Does not follow 24 game rules for division:Division should use floating point or rational arithmetic, etc, to preserve remainders.}} {{Works with|GNU Prolog|1.4.4}} Little efforts to remove duplicates (e.g. output for [4,6,9,9]). ```prolog :- initialization(main). solve(N,Xs,Ast) :- Err = evaluation_error(zero_divisor) , gen_ast(Xs,Ast), catch(Ast =:= N, error(Err,_), fail) . gen_ast([N],N) :- between(1,9,N). gen_ast(Xs,Ast) :- Ys = [_|_], Zs = [_|_], split(Xs,Ys,Zs) , ( member(Op, [(+),(*)]), Ys @=< Zs ; member(Op, [(-),(//)]) ) , gen_ast(Ys,A), gen_ast(Zs,B), Ast =.. [Op,A,B] . split(Xs,Ys,Zs) :- sublist(Ys,Xs), select_all(Ys,Xs,Zs). % where select_all([],Xs,Xs). select_all([Y|Ys],Xs,Zs) :- select(Y,Xs,X1), !, select_all(Ys,X1,Zs). test(T) :- solve(24, [2,3,8,9], T). main :- forall(test(T), (write(T), nl)), halt. ``` ### Output ```txt (9-3)*8//2 3*8-2//9 (8+9)//2*3 (8-2//9)*3 (2//9+8)*3 (2+8*9)//3 2//9+3*8 8//2*(9-3) (9-3)//2*8 (9-2*3)*8 (3-2//9)*8 (2//9+3)*8 (2+9)//3*8 ``` ## Python ### Python Original The function is called **solve**, and is integrated into the game player. The docstring of the solve function shows examples of its use when isolated at the Python command line. ```Python ''' The 24 Game Player Given any four digits in the range 1 to 9, which may have repetitions, Using just the +, -, *, and / operators; and the possible use of brackets, (), show how to make an answer of 24. An answer of "q" will quit the game. An answer of "!" will generate a new set of four digits. An answer of "!!" will ask you for a new set of four digits. An answer of "?" will compute an expression for the current digits. Otherwise you are repeatedly asked for an expression until it evaluates to 24 Note: you cannot form multiple digit numbers from the supplied digits, so an answer of 12+12 when given 1, 2, 2, and 1 would not be allowed. ''' from __future__ import division, print_function from itertools import permutations, combinations, product, \ chain from pprint import pprint as pp from fractions import Fraction as F import random, ast, re import sys if sys.version_info[0] < 3: input = raw_input from itertools import izip_longest as zip_longest else: from itertools import zip_longest def choose4(): 'four random digits >0 as characters' return [str(random.randint(1,9)) for i in range(4)] def ask4(): 'get four random digits >0 from the player' digits = '' while len(digits) != 4 or not all(d in '123456789' for d in digits): digits = input('Enter the digits to solve for: ') digits = ''.join(digits.strip().split()) return list(digits) def welcome(digits): print (__doc__) print ("Your four digits: " + ' '.join(digits)) def check(answer, digits): allowed = set('() +-*/\t'+''.join(digits)) ok = all(ch in allowed for ch in answer) and \ all(digits.count(dig) == answer.count(dig) for dig in set(digits)) \ and not re.search('\d\d', answer) if ok: try: ast.parse(answer) except: ok = False return ok def solve(digits): """\ >>> for digits in '3246 4788 1111 123456 1127 3838'.split(): solve(list(digits)) Solution found: 2 + 3 * 6 + 4 '2 + 3 * 6 + 4' Solution found: ( 4 + 7 - 8 ) * 8 '( 4 + 7 - 8 ) * 8' No solution found for: 1 1 1 1 '!' Solution found: 1 + 2 + 3 * ( 4 + 5 ) - 6 '1 + 2 + 3 * ( 4 + 5 ) - 6' Solution found: ( 1 + 2 ) * ( 1 + 7 ) '( 1 + 2 ) * ( 1 + 7 )' Solution found: 8 / ( 3 - 8 / 3 ) '8 / ( 3 - 8 / 3 )' >>> """ digilen = len(digits) # length of an exp without brackets exprlen = 2 * digilen - 1 # permute all the digits digiperm = sorted(set(permutations(digits))) # All the possible operator combinations opcomb = list(product('+-*/', repeat=digilen-1)) # All the bracket insertion points: brackets = ( [()] + [(x,y) for x in range(0, exprlen, 2) for y in range(x+4, exprlen+2, 2) if (x,y) != (0,exprlen+1)] + [(0, 3+1, 4+2, 7+3)] ) # double brackets case for d in digiperm: for ops in opcomb: if '/' in ops: d2 = [('F(%s)' % i) for i in d] # Use Fractions for accuracy else: d2 = d ex = list(chain.from_iterable(zip_longest(d2, ops, fillvalue=''))) for b in brackets: exp = ex[::] for insertpoint, bracket in zip(b, '()'*(len(b)//2)): exp.insert(insertpoint, bracket) txt = ''.join(exp) try: num = eval(txt) except ZeroDivisionError: continue if num == 24: if '/' in ops: exp = [ (term if not term.startswith('F(') else term[2]) for term in exp ] ans = ' '.join(exp).rstrip() print ("Solution found:",ans) return ans print ("No solution found for:", ' '.join(digits)) return '!' def main(): digits = choose4() welcome(digits) trial = 0 answer = '' chk = ans = False while not (chk and ans == 24): trial +=1 answer = input("Expression %i: " % trial) chk = check(answer, digits) if answer == '?': solve(digits) answer = '!' if answer.lower() == 'q': break if answer == '!': digits = choose4() trial = 0 print ("\nNew digits:", ' '.join(digits)) continue if answer == '!!': digits = ask4() trial = 0 print ("\nNew digits:", ' '.join(digits)) continue if not chk: print ("The input '%s' was wonky!" % answer) else: if '/' in answer: # Use Fractions for accuracy in divisions answer = ''.join( (('F(%s)' % char) if char in '123456789' else char) for char in answer ) ans = eval(answer) print (" = ", ans) if ans == 24: print ("Thats right!") print ("Thank you and goodbye") main() ``` ### Output ```txt The 24 Game Player Given any four digits in the range 1 to 9, which may have repetitions, Using just the +, -, *, and / operators; and the possible use of brackets, (), show how to make an answer of 24. An answer of "q" will quit the game. An answer of "!" will generate a new set of four digits. An answer of "?" will compute an expression for the current digits. Otherwise you are repeatedly asked for an expression until it evaluates to 24 Note: you cannot form multiple digit numbers from the supplied digits, so an answer of 12+12 when given 1, 2, 2, and 1 would not be allowed. Your four digits: 6 7 9 5 Expression 1: ? Solution found: 6 - ( 5 - 7 ) * 9 Thank you and goodbye ``` ### Difficult case requiring precise division The digits 3,3,8 and 8 have a solution that is not equal to 24 when using Pythons double-precision floating point because of a division in all answers. The solver above switches to precise fractional arithmetic when division is involved and so can both recognise and solve for cases like this, (rather than allowing some range of closeness to 24). **Evaluation needing precise division** ### Output ```txt ... Expression 1: !! Enter the digits to solve for: 3388 New digits: 3 3 8 8 Expression 1: 8/(3-(8/3)) = 24 Thats right! Thank you and goodbye ``` **Solving needing precise division** ### Output ```txt ... Expression 1: !! Enter the digits to solve for: 3388 New digits: 3 3 8 8 Expression 1: ? Solution found: 8 / ( 3 - 8 / 3 ) ``` ### Python Succinct Based on the Julia example above. ```python # -*- coding: utf-8 -*- import operator from itertools import product, permutations def mydiv(n, d): return n / d if d != 0 else 9999999 syms = [operator.add, operator.sub, operator.mul, mydiv] op = {sym: ch for sym, ch in zip(syms, '+-*/')} def solve24(nums): for x, y, z in product(syms, repeat=3): for a, b, c, d in permutations(nums): if round(x(y(a,b),z(c,d)),5) == 24: return f"({a} {op[y]} {b}) {op[x]} ({c} {op[z]} {d})" elif round(x(a,y(b,z(c,d))),5) == 24: return f"{a} {op[x]} ({b} {op[y]} ({c} {op[z]} {d}))" elif round(x(y(z(c,d),b),a),5) == 24: return f"(({c} {op[z]} {d}) {op[y]} {b}) {op[x]} {a}" elif round(x(y(b,z(c,d)),a),5) == 24: return f"({b} {op[y]} ({c} {op[z]} {d})) {op[x]} {a}" return '--Not Found--' if __name__ == '__main__': #nums = eval(input('Four integers in the range 1:9 inclusive, separated by commas: ')) for nums in [ [9,4,4,5], [1,7,2,7], [5,7,5,4], [1,4,6,6], [2,3,7,3], [8,7,9,7], [1,6,2,6], [7,9,4,1], [6,4,2,2], [5,7,9,7], [3,3,8,8], # Difficult case requiring precise division ]: print(f"solve24({nums}) -> {solve24(nums)}") ``` ### Output ```txt solve24([9, 4, 4, 5]) -> --Not Found-- solve24([1, 7, 2, 7]) -> ((7 * 7) - 1) / 2 solve24([5, 7, 5, 4]) -> 4 * (7 - (5 / 5)) solve24([1, 4, 6, 6]) -> 6 + (6 * (4 - 1)) solve24([2, 3, 7, 3]) -> ((2 + 7) * 3) - 3 solve24([8, 7, 9, 7]) -> --Not Found-- solve24([1, 6, 2, 6]) -> 6 + (6 * (1 + 2)) solve24([7, 9, 4, 1]) -> (7 - 4) * (9 - 1) solve24([6, 4, 2, 2]) -> (2 - 2) + (6 * 4) solve24([5, 7, 9, 7]) -> (5 + 7) * (9 - 7) solve24([3, 3, 8, 8]) -> 8 / (3 - (8 / 3)) ``` ### Python Recursive This works for any amount of numbers by recursively picking two and merging them using all available operands until there is only one value left. ```python # -*- coding: utf-8 -*- # Python 3 from operator import mul, sub, add def div(a, b): if b == 0: return 999999.0 return a / b ops = {mul: '*', div: '/', sub: '-', add: '+'} def solve24(num, how, target): if len(num) == 1: if round(num[0], 5) == round(target, 5): yield str(how[0]).replace(',', '').replace("'", '') else: for i, n1 in enumerate(num): for j, n2 in enumerate(num): if i != j: for op in ops: new_num = [n for k, n in enumerate(num) if k != i and k != j] + [op(n1, n2)] new_how = [h for k, h in enumerate(how) if k != i and k != j] + [(how[i], ops[op], how[j])] yield from solve24(new_num, new_how, target) tests = [ [1, 7, 2, 7], [5, 7, 5, 4], [1, 4, 6, 6], [2, 3, 7, 3], [1, 6, 2, 6], [7, 9, 4, 1], [6, 4, 2, 2], [5, 7, 9, 7], [3, 3, 8, 8], # Difficult case requiring precise division [8, 7, 9, 7], # No solution [9, 4, 4, 5], # No solution ] for nums in tests: print(nums, end=' : ') try: print(next(solve24(nums, nums, 24))) except StopIteration: print("No solution found") ``` ### Output ```txt [1, 7, 2, 7] : (((7 * 7) - 1) / 2) [5, 7, 5, 4] : (4 * (7 - (5 / 5))) [1, 4, 6, 6] : (6 - (6 * (1 - 4))) [2, 3, 7, 3] : ((2 * 3) * (7 - 3)) [1, 6, 2, 6] : ((1 * 6) * (6 - 2)) [7, 9, 4, 1] : ((7 - 4) * (9 - 1)) [6, 4, 2, 2] : ((6 * 4) * (2 / 2)) [5, 7, 9, 7] : ((5 + 7) * (9 - 7)) [3, 3, 8, 8] : (8 / (3 - (8 / 3))) [8, 7, 9, 7] : No solution found [9, 4, 4, 5] : No solution found ``` ## R This uses exhaustive search and makes use of R's ability to work with expressions as data. It is in principle general for any set of operands and binary operators. ```r library(gtools) solve24 <- function(vals=c(8, 4, 2, 1), goal=24, ops=c("+", "-", "*", "/")) { val.perms <- as.data.frame(t( permutations(length(vals), length(vals)))) nop <- length(vals)-1 op.perms <- as.data.frame(t( do.call(expand.grid, replicate(nop, list(ops))))) ord.perms <- as.data.frame(t( do.call(expand.grid, replicate(n <- nop, 1:((n <<- n-1)+1))))) for (val.perm in val.perms) for (op.perm in op.perms) for (ord.perm in ord.perms) { expr <- as.list(vals[val.perm]) for (i in 1:nop) { expr[[ ord.perm[i] ]] <- call(as.character(op.perm[i]), expr[[ ord.perm[i] ]], expr[[ ord.perm[i]+1 ]]) expr <- expr[ -(ord.perm[i]+1) ] } if (identical(eval(expr[[1]]), goal)) return(expr[[1]]) } return(NA) } ``` ### Output ```r > solve24() 8 * (4 - 2 + 1) > solve24(c(6,7,9,5)) 6 + (7 - 5) * 9 > solve24(c(8,8,8,8)) [1] NA > solve24(goal=49) #different goal value 8 * (4 + 2) + 1 > solve24(goal=52) #no solution [1] NA > solve24(ops=c('-', '/')) #restricted set of operators (8 - 2)/(1/4) ``` ## Racket The sequence of all possible variants of expressions with given numbers *n1, n2, n3, n4* and operations *o1, o2, o3*. ```racket (define (in-variants n1 o1 n2 o2 n3 o3 n4) (let ([o1n (object-name o1)] [o2n (object-name o2)] [o3n (object-name o3)]) (with-handlers ((exn:fail:contract:divide-by-zero? (λ (_) empty-sequence))) (in-parallel (list (o1 (o2 (o3 n1 n2) n3) n4) (o1 (o2 n1 (o3 n2 n3)) n4) (o1 (o2 n1 n2) (o3 n3 n4)) (o1 n1 (o2 (o3 n2 n3) n4)) (o1 n1 (o2 n2 (o3 n3 n4)))) (list `(((,n1 ,o3n ,n2) ,o2n ,n3) ,o1n ,n4) `((,n1 ,o2n (,n2 ,o3n ,n3)) ,o1n ,n4) `((,n1 ,o2n ,n2) ,o1n (,n3 ,o3n ,n4)) `(,n1 ,o1n ((,n2 ,o3n ,n3) ,o2n ,n4)) `(,n1 ,o1n (,n2 ,o2n (,n3 ,o3n ,n4)))))))) ``` Search for all solutions using brute force: ```racket (define (find-solutions numbers (goal 24)) (define in-operations (list + - * /)) (remove-duplicates (for*/list ([n1 numbers] [n2 (remove-from numbers n1)] [n3 (remove-from numbers n1 n2)] [n4 (remove-from numbers n1 n2 n3)] [o1 in-operations] [o2 in-operations] [o3 in-operations] [(res expr) (in-variants n1 o1 n2 o2 n3 o3 n4)] #:when (= res goal)) expr))) (define (remove-from numbers . n) (foldr remq numbers n)) ``` Examples: ```txt > (find-solutions '(3 8 3 8)) '((8 / (3 - (8 / 3)))) > (find-solutions '(3 8 2 9)) '(((8 / 2) * (9 - 3)) (8 / (2 / (9 - 3))) (8 * (9 - (3 * 2))) (8 * ((9 - 3) / 2)) ((8 * (9 - 3)) / 2) (8 * (9 - (2 * 3))) ((9 - 3) * (8 / 2)) (((9 - 3) * 8) / 2) ((9 - (3 * 2)) * 8) (((9 - 3) / 2) * 8) ((9 - 3) / (2 / 8)) ((9 - (2 * 3)) * 8)) ``` In order to find just one solution effectively one needs to change for*/list to for*/first in the function find-solutions. ## REXX ```rexx /*REXX program helps the user find solutions to the game of 24. */ /* start-of-help ┌───────────────────────────────────────────────────────────────────────┐ │ Argument is either of three forms: (blank) │~ │ ssss │~ │ ssss,tot │~ │ ssss-ffff │~ │ ssss-ffff,tot │~ │ -ssss │~ │ +ssss │~ │ │~ │ where SSSS and/or FFFF must be exactly four numerals (digits) │~ │ comprised soley of the numerals (digits) 1 ──> 9 (no zeroes). │~ │ │~ │ SSSS is the start, │~ │ FFFF is the start. │~ │ │~ │ │~ │ If ssss has a leading plus (+) sign, it is used as the number, and │~ │ the user is prompted to find a solution. │~ │ │~ │ If ssss has a leading minus (-) sign, a solution is looked for and │~ │ the user is told there is a solution (but no solutions are shown). │~ │ │~ │ If no argument is specified, this program finds a four digits (no │~ │ zeroes) which has at least one solution, and shows the digits to │~ │ the user, requesting that they enter a solution. │~ │ │~ │ If tot is entered, it is the desired answer. The default is 24. │~ │ │~ │ A solution to be entered can be in the form of: │ │ │ │ digit1 operator digit2 operator digit3 operator digit4 │ │ │ │ where DIGITn is one of the digits shown (in any order), and │ │ OPERATOR can be any one of: + - * / │ │ │ │ Parentheses () may be used in the normal manner for grouping, as │ │ well as brackets [] or braces {}. Blanks can be used anywhere. │ │ │ │ I.E.: for the digits 3448 the following could be entered. │ │ │ │ 3*8 + (4-4) │ └───────────────────────────────────────────────────────────────────────┘ end-of-help */ numeric digits 12 /*where rational arithmetic is needed. */ parse arg orig /*get the guess from the command line*/ orig= space(orig, 0) /*remove all blanks from ORIG. */ negatory= left(orig,1)=='-' /*=1, suppresses showing. */ pository= left(orig,1)=='+' /*=1, force $24 to use specific number.*/ if pository | negatory then orig=substr(orig,2) /*now, just use the absolute vaue. */ parse var orig orig ',' ?? /*get ?? (if specified, def=24). */ parse var orig start '-' finish /*get start and finish (maybe). */ opers= '*' || "/+-" /*legal arith. opers;order is important*/ ops= length(opers) /*the number of arithmetic operators. */ groupsym= '()[]{}' /*allowed grouping symbols. */ indent= left('', 30) /*indents display of solutions. */ show= 1 /*=1, shows solutions (semifore). */ digs= 123456789 /*numerals/digs that can be used. */ abuttals = 0 /*=1, allows digit abutal: 12+12 */ if ??=='' then ??= 24 /*the name of the game. */ ??= ?? / 1 /*normalize the answer. */ @abc= 'abcdefghijklmnopqrstuvwxyz' /*the Latin alphabet in order. */ @abcu= @abc; upper @abcu /*an uppercase version of @abc. */ x.= 0 /*method used to not re-interpret. */ do j=1 for ops; o.j=substr(opers, j, 1) end /*j*/ /*used for fast execution. */ y= ?? if \datatype(??,'N') then do; call ger "isn't numeric"; exit 13; end if start\=='' & \pository then do; call ranger start,finish; exit 13; end show= 0 /*stop SOLVE blabbing solutions. */ do forever while \negatory /*keep truckin' until a solution. */ x.= 0 /*way to hold unique expressions. */ rrrr= random(1111, 9999) /*get a random set of digits. */ if pos(0, rrrr)\==0 then iterate /*but don't the use of zeroes. */ if solve(rrrr)\==0 then leave /*try to solve for these digits. */ end /*forever*/ if left(orig,1)=='+' then rrrr=start /*use what's specified. */ show= 1 /*enable SOLVE to show solutions. */ rrrr= sortc(rrrr) /*sort four elements. */ rd.= 0 do j=1 for 9 /*count for each digit in RRRR. */ _= substr(rrrr, j, 1); rd._= countchars(rrrr, _) end do guesses=1; say say 'Using the digits' rrrr", enter an expression that equals" ?? ' (? or QUIT):' pull y; y= space(y, 0) if countchars(y, @abcu)>2 then exit /*the user must be desperate. */ helpstart= 0 if y=='?' then do j=1 for sourceline() /*use a lazy way to show help. */ _= sourceline(j) if p(_)=='start-of-help' then do; helpstart=1; iterate; end if p(_)=='end-of-help' then iterate guesses if \helpstart then iterate if right(_,1)=='~' then iterate say ' ' _ end _v= verify(y, digs || opers || groupsym) /*any illegal characters? */ if _v\==0 then do; call ger 'invalid character:' substr(y, _v, 1); iterate; end if y='' then do; call validate y; iterate; end do j=1 for length(y)-1 while \abuttals /*check for two digits adjacent. */ if \datatype(substr(y,j,1), 'W') then iterate if datatype(substr(y,j+1,1),'W') then do call ger 'invalid use of digit abuttal' substr(y,j,2) iterate guesses end end /*j*/ yd= countchars(y, digs) /*count of legal digits 123456789 */ if yd<4 then do; call ger 'not enough digits entered.'; iterate guesses; end if yd>4 then do; call ger 'too many digits entered.' ; iterate guesses; end do j=1 for length(groupsym) by 2 if countchars(y,substr(groupsym,j ,1))\==, countchars(y,substr(groupsym,j+1,1)) then do call ger 'mismatched' substr(groupsym,j,2) iterate guesses end end /*j*/ do k=1 for 2 /*check for ** and // */ _= copies( substr( opers, k, 1), 2) if pos(_, y)\==0 then do; call ger 'illegal operator:' _; iterate guesses; end end /*k*/ do j=1 for 9; if rd.j==0 then iterate; _d= countchars(y, j) if _d==rd.j then iterate if _d/div(yyy) */ origE= e /*keep original version for the display*/ pd= pos('/(', e) /*find pos of /( in E. */ if pd\==0 then do /*Found? Might have possible ÷ by zero*/ eo= e lr= lastpos(')', e) /*find last right ) */ lm= pos('-', e, pd+1) /*find - after ( */ if lm>pd & lm 4 then call ger 'too many digits entered, must be 4' when pos(0,y)\==0 then call ger "can't use the digit 0 (zero)" when _v\==0 then call ger 'illegal character:' substr(y,_v,1) otherwise nop end /*select*/ return \errCode /*──────────────────────────────────────────────────────────────────────────────────────*/ div: procedure; parse arg q; if q=0 then q=1e9; return q /*tests if dividing by zero.*/ ger: say= '***error*** for argument:' y; say arg(1); errCode= 1; return 0 p: return word( arg(1), 1) s: if arg(1)==1 then return arg(3); return word( arg(2) 's', 1) ``` Some older REXXes don't have a '''changestr''' BIF, so one is included here ──► [[CHANGESTR.REX]]. ### output|text= when using the input of: 1156-1162 a solution for 1156: 24= [1*5-1]*6 a solution for 1156: 24= [[1*5-1]*6] a solution for 1156: 24= 1*[5-1]*6 a solution for 1156: 24= 1*[[5-1]*6] a solution for 1156: 24= [1*6]*[5-1] a solution for 1156: 24= 1*[6*[5-1]] a solution for 1156: 24= [5*1-1]*6 a solution for 1156: 24= [[5*1-1]*6] a solution for 1156: 24= [5/1-1]*6 a solution for 1156: 24= [[5/1-1]*6] a solution for 1156: 24= [5-1]*1*6 a solution for 1156: 24= [5-1*1]*6 a solution for 1156: 24= [5-1]*[1*6] a solution for 1156: 24= [[5-1*1]*6] a solution for 1156: 24= [5-1]/1*6 a solution for 1156: 24= [5-1/1]*6 a solution for 1156: 24= [[5-1/1]*6] a solution for 1156: 24= [5-1]/[1/6] a solution for 1156: 24= [5-1]*6*1 a solution for 1156: 24= [5-1]*[6*1] a solution for 1156: 24= [5-1]*6/1 a solution for 1156: 24= [5-1]*[6/1] a solution for 1156: 24= 5*[6-1]-1 a solution for 1156: 24= [6*1]*[5-1] a solution for 1156: 24= [6*[1*5-1]] a solution for 1156: 24= 6*[1*5-1] a solution for 1156: 24= 6*[1*[5-1]] a solution for 1156: 24= 6*[[1*5]-1] a solution for 1156: 24= [6/1]*[5-1] a solution for 1156: 24= 6/[1/[5-1]] a solution for 1156: 24= [6-1]*5-1 a solution for 1156: 24= [6*[5*1-1]] a solution for 1156: 24= 6*[5*1-1] a solution for 1156: 24= 6*[[5*1]-1] a solution for 1156: 24= [6*[5/1-1]] a solution for 1156: 24= 6*[5/1-1] a solution for 1156: 24= 6*[[5/1]-1] a solution for 1156: 24= [6*[5-1*1]] a solution for 1156: 24= 6*[5-1]*1 a solution for 1156: 24= 6*[5-1*1] a solution for 1156: 24= 6*[5-[1*1]] a solution for 1156: 24= 6*[[5-1]*1] a solution for 1156: 24= [6*[5-1/1]] a solution for 1156: 24= 6*[5-1]/1 a solution for 1156: 24= 6*[5-1/1] a solution for 1156: 24= 6*[5-[1/1]] a solution for 1156: 24= 6*[[5-1]/1] 47 solutions found for 1156 a solution for 1157: 24= [1+1]*[5+7] a solution for 1157: 24= [1+1]*[7+5] a solution for 1157: 24= [1-5]*[1-7] a solution for 1157: 24= [1-7]*[1-5] a solution for 1157: 24= [5-1]*[7-1] a solution for 1157: 24= [5+7]*[1+1] a solution for 1157: 24= [7-1]*[5-1] a solution for 1157: 24= [7+5]*[1+1] 8 solutions found for 1157 a solution for 1158: 24= [5-1-1]*8 a solution for 1158: 24= [[5-1-1]*8] a solution for 1158: 24= 8*[5-[1+1]] a solution for 1158: 24= [8*[5-1-1]] a solution for 1158: 24= 8*[5-1-1] a solution for 1158: 24= 8*[[5-1]-1] 6 solutions found for 1158 No solutions found for 1159 No solutions found for 1161 a solution for 1162: 24= [1+1]*2*6 a solution for 1162: 24= [1+1]*[2*6] a solution for 1162: 24= [1+1+2]*6 a solution for 1162: 24= [[1+1+2]*6] a solution for 1162: 24= [1+1]*6*2 a solution for 1162: 24= [1+1]*[6*2] a solution for 1162: 24= [1+2+1]*6 a solution for 1162: 24= [[1+2+1]*6] a solution for 1162: 24= 2*[1+1]*6 a solution for 1162: 24= 2*[[1+1]*6] a solution for 1162: 24= [2+1+1]*6 a solution for 1162: 24= [[2+1+1]*6] a solution for 1162: 24= [2*6]*[1+1] a solution for 1162: 24= 2*[6*[1+1]] a solution for 1162: 24= 6*[1+1]*2 a solution for 1162: 24= 6*[[1+1]*2] a solution for 1162: 24= [6*[1+1+2]] a solution for 1162: 24= 6*[1+1+2] a solution for 1162: 24= 6*[1+[1+2]] a solution for 1162: 24= 6*[[1+1]+2] a solution for 1162: 24= [6*[1+2+1]] a solution for 1162: 24= 6*[1+2+1] a solution for 1162: 24= 6*[1+[2+1]] a solution for 1162: 24= 6*[[1+2]+1] a solution for 1162: 24= [6*2]*[1+1] a solution for 1162: 24= 6*[2*[1+1]] a solution for 1162: 24= [6*[2+1+1]] a solution for 1162: 24= 6*[2+1+1] a solution for 1162: 24= 6*[2+[1+1]] a solution for 1162: 24= 6*[[2+1]+1] 30 solutions found for 1162 ``` ## Ruby {{trans|Tcl}} *Works with: Ruby 2.1* ```ruby class TwentyFourGame EXPRESSIONS = [ '((%dr %s %dr) %s %dr) %s %dr', '(%dr %s (%dr %s %dr)) %s %dr', '(%dr %s %dr) %s (%dr %s %dr)', '%dr %s ((%dr %s %dr) %s %dr)', '%dr %s (%dr %s (%dr %s %dr))', ] OPERATORS = [:+, :-, :*, :/].repeated_permutation(3).to_a def self.solve(digits) solutions = [] perms = digits.permutation.to_a.uniq perms.product(OPERATORS, EXPRESSIONS) do |(a,b,c,d), (op1,op2,op3), expr| # evaluate using rational arithmetic text = expr % [a, op1, b, op2, c, op3, d] value = eval(text) rescue next # catch division by zero solutions << text.delete("r") if value == 24 end solutions end end # validate user input digits = ARGV.map do |arg| begin Integer(arg) rescue ArgumentError raise "error: not an integer: '#{arg}'" end end digits.size == 4 or raise "error: need 4 digits, only have #{digits.size}" solutions = TwentyFourGame.solve(digits) if solutions.empty? puts "no solutions" else puts "found #{solutions.size} solutions, including #{solutions.first}" puts solutions.sort end ``` ### Output ```txt $ ruby game24_solver.rb 1 1 1 1 no solutions $ ruby game24_solver.rb 1 1 2 7 found 8 solutions, including (1 + 2) * (1 + 7) (1 + 2) * (1 + 7) (1 + 2) * (7 + 1) (1 + 7) * (1 + 2) (1 + 7) * (2 + 1) (2 + 1) * (1 + 7) (2 + 1) * (7 + 1) (7 + 1) * (1 + 2) (7 + 1) * (2 + 1) $ ruby game24_solver.rb 2 3 8 9 found 12 solutions, including (8 / 2) * (9 - 3) ((9 - 3) * 8) / 2 ((9 - 3) / 2) * 8 (8 * (9 - 3)) / 2 (8 / 2) * (9 - 3) (9 - (2 * 3)) * 8 (9 - (3 * 2)) * 8 (9 - 3) * (8 / 2) (9 - 3) / (2 / 8) 8 * ((9 - 3) / 2) 8 * (9 - (2 * 3)) 8 * (9 - (3 * 2)) 8 / (2 / (9 - 3)) ``` ## Rust *Works with: Rust 1.17* ```rust #[derive(Clone, Copy, Debug)] enum Operator { Sub, Plus, Mul, Div, } #[derive(Clone, Debug)] struct Factor { content: String, value: i32, } fn apply(op: Operator, left: &[Factor], right: &[Factor]) -> Vec{ let mut ret = Vec::new(); for l in left.iter() { for r in right.iter() { use Operator::*; ret.push(match op { Sub if l.value > r.value => Factor { content: format!("({} - {})", l.content, r.content), value: l.value - r.value, }, Plus => Factor { content: format!("({} + {})", l.content, r.content), value: l.value + r.value, }, Mul => Factor { content: format!("({} x {})", l.content, r.content), value: l.value * r.value, }, Div if l.value >= r.value && r.value > 0 && l.value % r.value == 0 => Factor { content: format!("({} / {})", l.content, r.content), value: l.value / r.value, }, _ => continue, }) } } ret } fn calc(op: [Operator; 3], numbers: [i32; 4]) -> Vec { fn calc(op: &[Operator], numbers: &[i32], acc: &[Factor]) -> Vec { use Operator::*; if op.is_empty() { return Vec::from(acc) } let mut ret = Vec::new(); let mono_factor = [Factor { content: numbers[0].to_string(), value: numbers[0], }]; match op[0] { Mul => ret.extend_from_slice(&apply(op[0], acc, &mono_factor)), Div => { ret.extend_from_slice(&apply(op[0], acc, &mono_factor)); ret.extend_from_slice(&apply(op[0], &mono_factor, acc)); }, Sub => { ret.extend_from_slice(&apply(op[0], acc, &mono_factor)); ret.extend_from_slice(&apply(op[0], &mono_factor, acc)); }, Plus => ret.extend_from_slice(&apply(op[0], acc, &mono_factor)), } calc(&op[1..], &numbers[1..], &ret) } calc(&op, &numbers[1..], &[Factor { content: numbers[0].to_string(), value: numbers[0] }]) } fn solutions(numbers: [i32; 4]) -> Vec { use std::collections::hash_set::HashSet; let mut ret = Vec::new(); let mut hash_set = HashSet::new(); for ops in OpIter(0) { for o in orders().iter() { let numbers = apply_order(numbers, o); let r = calc(ops, numbers); ret.extend(r.into_iter().filter(|&Factor { value, ref content }| value == 24 && hash_set.insert(content.to_owned()))) } } ret } fn main() { let mut numbers = Vec::new(); if let Some(input) = std::env::args().skip(1).next() { for c in input.chars() { if let Ok(n) = c.to_string().parse() { numbers.push(n) } if numbers.len() == 4 { let numbers = [numbers[0], numbers[1], numbers[2], numbers[3]]; let solutions = solutions(numbers); let len = solutions.len(); if len == 0 { println!("no solution for {}, {}, {}, {}", numbers[0], numbers[1], numbers[2], numbers[3]); return } println!("solutions for {}, {}, {}, {}", numbers[0], numbers[1], numbers[2], numbers[3]); for s in solutions { println!("{}", s.content) } println!("{} solutions found", len); return } } } else { println!("empty input") } } struct OpIter (usize); impl Iterator for OpIter { type Item = [Operator; 3]; fn next(&mut self) -> Option<[Operator; 3]> { use Operator::*; const OPTIONS: [Operator; 4] = [Mul, Sub, Plus, Div]; if self.0 >= 1 << 6 { return None } let f1 = OPTIONS[(self.0 & (3 << 4)) >> 4]; let f2 = OPTIONS[(self.0 & (3 << 2)) >> 2]; let f3 = OPTIONS[(self.0 & (3 << 0)) >> 0]; self.0 += 1; Some([f1, f2, f3]) } } fn orders() -> [[usize; 4]; 24] { [ [0, 1, 2, 3], [0, 1, 3, 2], [0, 2, 1, 3], [0, 2, 3, 1], [0, 3, 1, 2], [0, 3, 2, 1], [1, 0, 2, 3], [1, 0, 3, 2], [1, 2, 0, 3], [1, 2, 3, 0], [1, 3, 0, 2], [1, 3, 2, 0], [2, 0, 1, 3], [2, 0, 3, 1], [2, 1, 0, 3], [2, 1, 3, 0], [2, 3, 0, 1], [2, 3, 1, 0], [3, 0, 1, 2], [3, 0, 2, 1], [3, 1, 0, 2], [3, 1, 2, 0], [3, 2, 0, 1], [3, 2, 1, 0] ] } fn apply_order(numbers: [i32; 4], order: &[usize; 4]) -> [i32; 4] { [numbers[order[0]], numbers[order[1]], numbers[order[2]], numbers[order[3]]] } ``` ### Output ```txt $cargo run 5598 solutions for 5, 5, 9, 8 (((5 x 5) - 9) + 8) (((5 x 5) + 8) - 9) (((8 - 5) x 5) + 9) 3 solutions found ``` ## Scala A non-interactive player. ```scala def permute(l: List[Double]): List[List[Double]] = l match { case Nil => List(Nil) case x :: xs => for { ys <- permute(xs) position <- 0 to ys.length (left, right) = ys splitAt position } yield left ::: (x :: right) } def computeAllOperations(l: List[Double]): List[(Double,String)] = l match { case Nil => Nil case x :: Nil => List((x, "%1.0f" format x)) case x :: xs => for { (y, ops) <- computeAllOperations(xs) (z, op) <- if (y == 0) List((x*y, "*"), (x+y, "+"), (x-y, "-")) else List((x*y, "*"), (x/y, "/"), (x+y, "+"), (x-y, "-")) } yield (z, "(%1.0f%s%s)" format (x,op,ops)) } def hasSolution(l: List[Double]) = permute(l) flatMap computeAllOperations filter (_._1 == 24) map (_._2) ``` Example: ```txt val problemsIterator = ( Iterator continually List.fill(4)(scala.util.Random.nextInt(9) + 1 toDouble) filter (!hasSolution(_).isEmpty) ) val solutionIterator = problemsIterator map hasSolution scala> solutionIterator.next res8: List[String] = List((3*(5-(3-6))), (3*(5-(3-6))), (3*(5+(6-3))), (3+(6+(3*5))), (3*(6-(3-5))), (3+(6+(5*3))), (3*( 6+(5-3))), (3*(5+(6-3))), (3+(6+(5*3))), (3*(6+(5-3))), (6+(3+(5*3))), (6*(5-(3/3))), (6*(5-(3/3))), (3+(6+(3*5))), (3*( 6-(3-5))), (6+(3+(3*5))), (6+(3+(3*5))), (6+(3+(5*3)))) scala> solutionIterator.next res9: List[String] = List((4-(5*(5-9))), (4-(5*(5-9))), (4+(5*(9-5))), (4+(5*(9-5))), (9-(5-(4*5))), (9-(5-(5*4))), (9-( 5-(4*5))), (9-(5-(5*4)))) scala> solutionIterator.next res10: List[String] = List((2*(4+(3+5))), (2*(3+(4+5))), (2*(3+(5+4))), (4*(3-(2-5))), (4*(3+(5-2))), (2*(4+(5+3))), (2* (5+(4+3))), (2*(5+(3+4))), (4*(5-(2-3))), (4*(5+(3-2)))) scala> solutionIterator.next res11: List[String] = List((4*(5-(2-3))), (2*(4+(5+3))), (2*(5+(4+3))), (2*(5+(3+4))), (2*(4+(3+5))), (2*(3+(4+5))), (2* (3+(5+4))), (4*(5+(3-2))), (4*(3+(5-2))), (4*(3-(2-5)))) ``` ## Scheme This version outputs an S-expression that will **eval** to 24 (rather than converting to infix notation). ```scheme #!r6rs (import (rnrs) (rnrs eval) (only (srfi :1 lists) append-map delete-duplicates iota)) (define (map* fn . lis) (if (null? lis) (list (fn)) (append-map (lambda (x) (apply map* (lambda xs (apply fn x xs)) (cdr lis))) (car lis)))) (define (insert x li n) (if (= n 0) (cons x li) (cons (car li) (insert x (cdr li) (- n 1))))) (define (permutations li) (if (null? li) (list ()) (map* insert (list (car li)) (permutations (cdr li)) (iota (length li))))) (define (evaluates-to-24 expr) (guard (e ((assertion-violation? e) #f)) (= 24 (eval expr (environment '(rnrs base)))))) (define (tree n o0 o1 o2 xs) (list-ref (list `(,o0 (,o1 (,o2 ,(car xs) ,(cadr xs)) ,(caddr xs)) ,(cadddr xs)) `(,o0 (,o1 (,o2 ,(car xs) ,(cadr xs)) ,(caddr xs)) ,(cadddr xs)) `(,o0 (,o1 ,(car xs) (,o2 ,(cadr xs) ,(caddr xs))) ,(cadddr xs)) `(,o0 (,o1 ,(car xs) ,(cadr xs)) (,o2 ,(caddr xs) ,(cadddr xs))) `(,o0 ,(car xs) (,o1 (,o2 ,(cadr xs) ,(caddr xs)) ,(cadddr xs))) `(,o0 ,(car xs) (,o1 ,(cadr xs) (,o2 ,(caddr xs) ,(cadddr xs))))) n)) (define (solve a b c d) (define ops '(+ - * /)) (define perms (delete-duplicates (permutations (list a b c d)))) (delete-duplicates (filter evaluates-to-24 (map* tree (iota 6) ops ops ops perms)))) ``` Example output: ```scheme > (solve 1 3 5 7) ((* (+ 1 5) (- 7 3)) (* (+ 5 1) (- 7 3)) (* (+ 5 7) (- 3 1)) (* (+ 7 5) (- 3 1)) (* (- 3 1) (+ 5 7)) (* (- 3 1) (+ 7 5)) (* (- 7 3) (+ 1 5)) (* (- 7 3) (+ 5 1))) > (solve 3 3 8 8) ((/ 8 (- 3 (/ 8 3)))) > (solve 3 4 9 10) () ``` ## Sidef **With eval():** ```ruby var formats = [ '((%d %s %d) %s %d) %s %d', '(%d %s (%d %s %d)) %s %d', '(%d %s %d) %s (%d %s %d)', '%d %s ((%d %s %d) %s %d)', '%d %s (%d %s (%d %s %d))', ] var op = %w( + - * / ) var operators = op.map { |a| op.map {|b| op.map {|c| "#{a} #{b} #{c}" } } }.flat loop { var input = read("Enter four integers or 'q' to exit: ", String) input == 'q' && break if (input !~ /^\h*[1-9]\h+[1-9]\h+[1-9]\h+[1-9]\h*$/) { say "Invalid input!" next } var n = input.split.map{.to_n} var numbers = n.permutations formats.each { |format| numbers.each { |n| operators.each { |operator| var o = operator.split; var str = (format % (n[0],o[0],n[1],o[1],n[2],o[2],n[3])) eval(str) == 24 && say str } } } } ``` **Without eval():** ```ruby var formats = [ {|a,b,c| Hash( func => {|d,e,f,g| ((d.$a(e)).$b(f)).$c(g) }, format => "((%d #{a} %d) #{b} %d) #{c} %d" ) }, {|a,b,c| Hash( func => {|d,e,f,g| (d.$a((e.$b(f)))).$c(g) }, format => "(%d #{a} (%d #{b} %d)) #{c} %d", ) }, {|a,b,c| Hash( func => {|d,e,f,g| (d.$a(e)).$b(f.$c(g)) }, format => "(%d #{a} %d) #{b} (%d #{c} %d)", ) }, {|a,b,c| Hash( func => {|d,e,f,g| (d.$a(e)).$b(f.$c(g)) }, format => "(%d #{a} %d) #{b} (%d #{c} %d)", ) }, {|a,b,c| Hash( func => {|d,e,f,g| d.$a(e.$b(f.$c(g))) }, format => "%d #{a} (%d #{b} (%d #{c} %d))", ) }, ]; var op = %w( + - * / ) var blocks = op.map { |a| op.map { |b| op.map { |c| formats.map { |format| format(a,b,c) }}}}.flat loop { var input = Sys.scanln("Enter four integers or 'q' to exit: "); input == 'q' && break; if (input !~ /^\h*[1-9]\h+[1-9]\h+[1-9]\h+[1-9]\h*$/) { say "Invalid input!" next } var n = input.split.map{.to_n} var numbers = n.permutations blocks.each { |block| numbers.each { |n| if (block{:func}.call(n...) == 24) { say (block{:format} % (n...)) } } } } ``` ### Output ```txt Enter four integers or 'q' to exit: 8 7 9 6 (8 / (9 - 7)) * 6 (6 / (9 - 7)) * 8 (8 * 6) / (9 - 7) (6 * 8) / (9 - 7) 8 / ((9 - 7) / 6) 6 / ((9 - 7) / 8) 8 * (6 / (9 - 7)) 6 * (8 / (9 - 7)) Enter four integers or 'q' to exit: q ``` ## Simula ```simula BEGIN CLASS EXPR; BEGIN REAL PROCEDURE POP; BEGIN IF STACKPOS > 0 THEN BEGIN STACKPOS := STACKPOS - 1; POP := STACK(STACKPOS); END; END POP; PROCEDURE PUSH(NEWTOP); REAL NEWTOP; BEGIN STACK(STACKPOS) := NEWTOP; STACKPOS := STACKPOS + 1; END PUSH; REAL PROCEDURE CALC(OPERATOR, ERR); CHARACTER OPERATOR; LABEL ERR; BEGIN REAL X, Y; X := POP; Y := POP; IF OPERATOR = '+' THEN PUSH(Y + X) ELSE IF OPERATOR = '-' THEN PUSH(Y - X) ELSE IF OPERATOR = '*' THEN PUSH(Y * X) ELSE IF OPERATOR = '/' THEN BEGIN IF X = 0 THEN BEGIN EVALUATEDERR :- "DIV BY ZERO"; GOTO ERR; END; PUSH(Y / X); END ELSE BEGIN EVALUATEDERR :- "UNKNOWN OPERATOR"; GOTO ERR; END END CALC; PROCEDURE READCHAR(CH); NAME CH; CHARACTER CH; BEGIN IF T.MORE THEN CH := T.GETCHAR ELSE CH := EOT; END READCHAR; PROCEDURE SKIPWHITESPACE(CH); NAME CH; CHARACTER CH; BEGIN WHILE (CH = SPACE) OR (CH = TAB) OR (CH = CR) OR (CH = LF) DO READCHAR(CH); END SKIPWHITESPACE; PROCEDURE BUSYBOX(OP, ERR); INTEGER OP; LABEL ERR; BEGIN CHARACTER OPERATOR; REAL NUMBR; BOOLEAN NEGATIVE; SKIPWHITESPACE(CH); IF OP = EXPRESSION THEN BEGIN NEGATIVE := FALSE; WHILE (CH = '+') OR (CH = '-') DO BEGIN IF CH = '-' THEN NEGATIVE := NOT NEGATIVE; READCHAR(CH); END; BUSYBOX(TERM, ERR); IF NEGATIVE THEN BEGIN NUMBR := POP; PUSH(0 - NUMBR); END; WHILE (CH = '+') OR (CH = '-') DO BEGIN OPERATOR := CH; READCHAR(CH); BUSYBOX(TERM, ERR); CALC(OPERATOR, ERR); END; END ELSE IF OP = TERM THEN BEGIN BUSYBOX(FACTOR, ERR); WHILE (CH = '*') OR (CH = '/') DO BEGIN OPERATOR := CH; READCHAR(CH); BUSYBOX(FACTOR, ERR); CALC(OPERATOR, ERR) END END ELSE IF OP = FACTOR THEN BEGIN IF (CH = '+') OR (CH = '-') THEN BUSYBOX(EXPRESSION, ERR) ELSE IF (CH >= '0') AND (CH <= '9') THEN BUSYBOX(NUMBER, ERR) ELSE IF CH = '(' THEN BEGIN READCHAR(CH); BUSYBOX(EXPRESSION, ERR); IF CH = ')' THEN READCHAR(CH) ELSE GOTO ERR; END ELSE GOTO ERR; END ELSE IF OP = NUMBER THEN BEGIN NUMBR := 0; WHILE (CH >= '0') AND (CH <= '9') DO BEGIN NUMBR := 10 * NUMBR + RANK(CH) - RANK('0'); READCHAR(CH); END; IF CH = '.' THEN BEGIN REAL FAKTOR; READCHAR(CH); FAKTOR := 10; WHILE (CH >= '0') AND (CH <= '9') DO BEGIN NUMBR := NUMBR + (RANK(CH) - RANK('0')) / FAKTOR; FAKTOR := 10 * FAKTOR; READCHAR(CH); END; END; PUSH(NUMBR); END; SKIPWHITESPACE(CH); END BUSYBOX; BOOLEAN PROCEDURE EVAL(INP); TEXT INP; BEGIN EVALUATEDERR :- NOTEXT; STACKPOS := 0; T :- COPY(INP.STRIP); READCHAR(CH); BUSYBOX(EXPRESSION, ERRORLABEL); IF NOT T.MORE AND STACKPOS = 1 AND CH = EOT THEN BEGIN EVALUATED := POP; EVAL := TRUE; GOTO NOERRORLABEL; END; ERRORLABEL: EVAL := FALSE; IF EVALUATEDERR = NOTEXT THEN EVALUATEDERR :- "INVALID EXPRESSION: " & INP; NOERRORLABEL: END EVAL; REAL PROCEDURE RESULT; RESULT := EVALUATED; TEXT PROCEDURE ERR; ERR :- EVALUATEDERR; TEXT T; INTEGER EXPRESSION; INTEGER TERM; INTEGER FACTOR; INTEGER NUMBER; CHARACTER TAB; CHARACTER LF; CHARACTER CR; CHARACTER SPACE; CHARACTER EOT; CHARACTER CH; REAL ARRAY STACK(0:31); INTEGER STACKPOS; REAL EVALUATED; TEXT EVALUATEDERR; EXPRESSION := 1; TERM := 2; FACTOR := 3; NUMBER := 4; TAB := CHAR(9); LF := CHAR(10); CR := CHAR(13); SPACE := CHAR(32); EOT := CHAR(0); END EXPR; INTEGER ARRAY DIGITS(1:4); INTEGER SEED, I; REF(EXPR) E; INTEGER SOLUTION; INTEGER D1,D2,D3,D4; INTEGER O1,O2,O3; TEXT OPS; OPS :- "+-*/"; E :- NEW EXPR; OUTTEXT("ENTER FOUR INTEGERS: "); OUTIMAGE; FOR I := 1 STEP 1 UNTIL 4 DO DIGITS(I) := ININT; !RANDINT(0, 9, SEED); ! DIGITS ; FOR D1 := 1 STEP 1 UNTIL 4 DO FOR D2 := 1 STEP 1 UNTIL 4 DO IF D2 <> D1 THEN FOR D3 := 1 STEP 1 UNTIL 4 DO IF D3 <> D2 AND D3 <> D1 THEN FOR D4 := 1 STEP 1 UNTIL 4 DO IF D4 <> D3 AND D4 <> D2 AND D4 <> D1 THEN ! OPERATORS ; FOR O1 := 1 STEP 1 UNTIL 4 DO FOR O2 := 1 STEP 1 UNTIL 4 DO FOR O3 := 1 STEP 1 UNTIL 4 DO BEGIN PROCEDURE P(FMT); TEXT FMT; BEGIN INTEGER PLUS; TRY.SETPOS(1); WHILE FMT.MORE DO BEGIN CHARACTER C; C := FMT.GETCHAR; IF (C >= '1') AND (C <= '4') THEN BEGIN INTEGER DIG; CHARACTER NCH; DIG := IF C = '1' THEN DIGITS(D1) ELSE IF C = '2' THEN DIGITS(D2) ELSE IF C = '3' THEN DIGITS(D3) ELSE DIGITS(D4); NCH := CHAR( DIG + RANK('0') ); TRY.PUTCHAR(NCH); END ELSE IF C = '+' THEN BEGIN PLUS := PLUS + 1; OPS.SETPOS(IF PLUS = 1 THEN O1 ELSE IF PLUS = 2 THEN O2 ELSE O3); TRY.PUTCHAR(OPS.GETCHAR); END ELSE IF (C = '(') OR (C = ')') OR (C = ' ') THEN TRY.PUTCHAR(C) ELSE ERROR("ILLEGAL EXPRESSION"); END; IF E.EVAL(TRY) THEN BEGIN IF ABS(E.RESULT - 24) < 0.001 THEN BEGIN SOLUTION := SOLUTION + 1; OUTTEXT(TRY); OUTTEXT(" = "); OUTFIX(E.RESULT, 4, 10); OUTIMAGE; END; END ELSE BEGIN IF E.ERR <> "DIV BY ZERO" THEN BEGIN OUTTEXT(TRY); OUTIMAGE; OUTTEXT(E.ERR); OUTIMAGE; END; END; END P; TEXT TRY; TRY :- BLANKS(17); P("(1 + 2) + (3 + 4)"); P("(1 + (2 + 3)) + 4"); P("((1 + 2) + 3) + 4"); P("1 + ((2 + 3) + 4)"); P("1 + (2 + (3 + 4))"); END; OUTINT(SOLUTION, 0); OUTTEXT(" SOLUTIONS FOUND"); OUTIMAGE; END. ``` ### Output ```txt ENTER FOUR INTEGERS: 8 7 9 6 (8 / (9 - 7)) * 6 = 24.0000 8 / ((9 - 7) / 6) = 24.0000 (8 * 6) / (9 - 7) = 24.0000 8 * (6 / (9 - 7)) = 24.0000 (6 * 8) / (9 - 7) = 24.0000 6 * (8 / (9 - 7)) = 24.0000 (6 / (9 - 7)) * 8 = 24.0000 6 / ((9 - 7) / 8) = 24.0000 8 SOLUTIONS FOUND 2 garbage collection(s) in 0.0 seconds. ``` ## Swift ```swift import Darwin import Foundation var solution = "" println("24 Game") println("Generating 4 digits...") func randomDigits() -> [Int] { var result = [Int]() for i in 0 ..< 4 { result.append(Int(arc4random_uniform(9)+1)) } return result } // Choose 4 digits let digits = randomDigits() print("Make 24 using these digits : ") for digit in digits { print("\(digit) ") } println() // get input from operator var input = NSString(data:NSFileHandle.fileHandleWithStandardInput().availableData, encoding:NSUTF8StringEncoding)! var enteredDigits = [Double]() var enteredOperations = [Character]() let inputString = input as String // store input in the appropriate table for character in inputString { switch character { case "1", "2", "3", "4", "5", "6", "7", "8", "9": let digit = String(character) enteredDigits.append(Double(digit.toInt()!)) case "+", "-", "*", "/": enteredOperations.append(character) case "\n": println() default: println("Invalid expression") } } // check value of expression provided by the operator var value = 0.0 if enteredDigits.count == 4 && enteredOperations.count == 3 { value = enteredDigits[0] for (i, operation) in enumerate(enteredOperations) { switch operation { case "+": value = value + enteredDigits[i+1] case "-": value = value - enteredDigits[i+1] case "*": value = value * enteredDigits[i+1] case "/": value = value / enteredDigits[i+1] default: println("This message should never happen!") } } } func evaluate(dPerm: [Double], oPerm: [String]) -> Bool { var value = 0.0 if dPerm.count == 4 && oPerm.count == 3 { value = dPerm[0] for (i, operation) in enumerate(oPerm) { switch operation { case "+": value = value + dPerm[i+1] case "-": value = value - dPerm[i+1] case "*": value = value * dPerm[i+1] case "/": value = value / dPerm[i+1] default: println("This message should never happen!") } } } return (abs(24 - value) < 0.001) } func isSolvable(inout digits: [Double]) -> Bool { var result = false var dPerms = [[Double]]() permute(&digits, &dPerms, 0) let total = 4 * 4 * 4 var oPerms = [[String]]() permuteOperators(&oPerms, 4, total) for dig in dPerms { for opr in oPerms { var expression = "" if evaluate(dig, opr) { for digit in dig { expression += "\(digit)" } for oper in opr { expression += oper } solution = beautify(expression) result = true } } } return result } func permute(inout lst: [Double], inout res: [[Double]], k: Int) -> Void { for i in k ..< lst.count { swap(&lst[i], &lst[k]) permute(&lst, &res, k + 1) swap(&lst[k], &lst[i]) } if k == lst.count { res.append(lst) } } // n=4, total=64, npow=16 func permuteOperators(inout res: [[String]], n: Int, total: Int) -> Void { let posOperations = ["+", "-", "*", "/"] let npow = n * n for i in 0 ..< total { res.append([posOperations[(i / npow)], posOperations[((i % npow) / n)], posOperations[(i % n)]]) } } func beautify(infix: String) -> String { let newString = infix as NSString var solution = "" solution += newString.substringWithRange(NSMakeRange(0, 1)) solution += newString.substringWithRange(NSMakeRange(12, 1)) solution += newString.substringWithRange(NSMakeRange(3, 1)) solution += newString.substringWithRange(NSMakeRange(13, 1)) solution += newString.substringWithRange(NSMakeRange(6, 1)) solution += newString.substringWithRange(NSMakeRange(14, 1)) solution += newString.substringWithRange(NSMakeRange(9, 1)) return solution } if value != 24 { println("The value of the provided expression is \(value) instead of 24!") if isSolvable(&enteredDigits) { println("A possible solution could have been " + solution) } else { println("Anyway, there was no known solution to this one.") } } else { println("Congratulations, you found a solution!") } ``` ### OutputThe program in action: 24 Game Generating 4 digits... Make 24 using these digits : 2 4 1 9 2+1*4+9 The value of the provided expression is 21.0 instead of 24! A possible solution could have been 9-2-1*4 24 Game Generating 4 digits... Make 24 using these digits : 2 7 2 3 7-2*2*3 The value of the provided expression is 30.0 instead of 24! A possible solution could have been 3+7+2*2 24 Game Generating 4 digits... Make 24 using these digits : 4 6 3 4 4+4+6+3 The value of the provided expression is 17.0 instead of 24! A possible solution could have been 3*4-6*4 24 Game Generating 4 digits... Make 24 using these digits : 8 8 2 6 8+8+2+6 Congratulations, you found a solution! 24 Game Generating 4 digits... Make 24 using these digits : 6 7 8 9 6+7+8+9 The value of the provided expression is 30.0 instead of 24! Anyway, there was no known solution to this one. ``` ## Tcl This is a complete Tcl script, intended to be invoked from the command line. {{tcllib|struct::list}} ```tcl package require struct::list # Encoding the various expression trees that are possible set patterns { {((A x B) y C) z D} {(A x (B y C)) z D} {(A x B) y (C z D)} {A x ((B y C) z D)} {A x (B y (C z D))} } # Encoding the various permutations of digits set permutations [struct::list map [struct::list permutations {a b c d}] \ {apply {v {lassign $v a b c d; list A $a B $b C $c D $d}}}] # The permitted operations set operations {+ - * /} # Given a list of four integers (precondition not checked!) # return a list of solutions to the 24 game using those four integers. proc find24GameSolutions {values} { global operations patterns permutations set found {} # For each possible structure with numbers at the leaves... foreach pattern $patterns { foreach permutation $permutations { set p [string map [subst { a [lindex $values 0].0 b [lindex $values 1].0 c [lindex $values 2].0 d [lindex $values 3].0 }] [string map $permutation $pattern]] # For each possible structure with operators at the branches... foreach x $operations { foreach y $operations { foreach z $operations { set e [string map [subst {x $x y $y z $z}] $p] # Try to evaluate (div-zero is an issue!) and add it to # the result if it is 24 catch { if {[expr $e] == 24.0} { lappend found [string map {.0 {}} $e] } } } } } } } return $found } # Wrap the solution finder into a player proc print24GameSolutionFor {values} { set found [lsort -unique [find24GameSolutions $values]] if {![llength $found]} { puts "No solution possible" } else { puts "Total [llength $found] solutions (may include logical duplicates)" puts "First solution: [lindex $found 0]" } } print24GameSolutionFor $argv ``` ### Output Demonstrating it in use: *bash$* tclsh8.4 24player.tcl 3 2 8 9 **Total 12 solutions (may include logical duplicates)** **First solution: ((9 - 3) * 8) / 2** *bash$* tclsh8.4 24player.tcl 1 1 2 7 **Total 8 solutions (may include logical duplicates)** **First solution: (1 + 2) * (1 + 7)** *bash$* tclsh8.4 24player.tcl 1 1 1 1 **No solution possible** ## Ursala This uses exhaustive search and exact rational arithmetic to enumerate all solutions. The algorithms accommodate data sets with any number of digits and any target value, but will be limited in practice by combinatorial explosion as noted elsewhere. (Rationals are stored as pairs of integers, hence("n",1)
for n/1, etc..) Thetree_shapes
function generates a list of binary trees of all possible shapes for a given number of leaves. Thewith_leaves
function substitutes a list of numbers into the leaves of a tree in every possible way. Thewith_roots
function substitutes a list of operators into the non-terminal nodes of a tree in every possible way. Thevalue
function evaluates a tree and theformat
function displays it in a readable form. ```Ursala #import std #import nat #import rat tree_shapes = "n". (@vLPiYo //eql iota "n")*~ (rep"n" ~&iiiK0NlrNCCVSPTs) {0^:<>} with_leaves = ^|DrlDrlK34SPSL/permutations ~& with_roots = ^DrlDrlK35dlPvVoPSPSL\~&r @lrhvdNCBvLPTo2DlS @hiNCSPtCx ~&K0=> value = *^ ~&v?\(@d ~&\1) ^|H\~&hthPX '+-*/'-$format = *^ ~&v?\-+~&h,%zP@d+- ^H/mat@d *v ~&t?\~& :/`(+ --')' game"n" "d" = format* value==("n",1)*~ with_roots/'+-*/' with_leaves/"d"*-1 tree_shapes length "d" ``` test program: ```Ursala #show+ test_games = mat` * pad` *K7 pad0 game24* <<2,3,8,9>,<5,7,4,1>,<5,6,7,8>> ``` output: ```txt 8/(2/(9-3)) 1-(5-(7*4)) 6*(5+(7-8)) 8*(9-(2*3)) 1-(5-(4*7)) 6*(7+(5-8)) 8*(9-(3*2)) 1+((7*4)-5) 6*(7-(8-5)) 8*((9-3)/2) 1+((4*7)-5) 6*(5-(8-7)) (8/2)*(9-3) (7*4)-(5-1) 6*(8/(7-5)) (9-3)/(2/8) (7*4)+(1-5) 8*(6/(7-5)) (9-3)*(8/2) (4*7)-(5-1) 6*((5+7)-8) (8*(9-3))/2 (4*7)+(1-5) 6*((7+5)-8) (9-(2*3))*8 (1-5)+(7*4) 6/((7-5)/8) (9-(3*2))*8 (1-5)+(4*7) 6*((7-8)+5) ((9-3)/2)*8 (7*(5-1))-4 6*((5-8)+7) ((9-3)*8)/2 (1+(7*4))-5 8/((7-5)/6) (1+(4*7))-5 (5+7)*(8-6) ((7*4)-5)+1 (7+5)*(8-6) ((7*4)+1)-5 (6*8)/(7-5) ((4*7)-5)+1 (8-6)*(5+7) ((4*7)+1)-5 (8-6)*(7+5) ((5-1)*7)-4 (8*6)/(7-5) (6/(7-5))*8 (5+(7-8))*6 (7+(5-8))*6 (7-(8-5))*6 (5-(8-7))*6 (8/(7-5))*6 ((5+7)-8)*6 ((7+5)-8)*6 ((7-8)+5)*6 ((5-8)+7)*6 ``` ## Yabasic ```Yabasic operators$ = "*+-/" space$ = " " sub present() clear screen print "24 Game" print " ### ====== \n" print "Computer provide 4 numbers (1 to 9). With operators +, -, * and / you try to\nobtain 24." print "Use Reverse Polish Notation (first operand and then the operators)" print "For example: instead of 2 + 4, type 2 4 +\n\n" end sub repeat present() serie$ = sortString$(genSerie$()) valid$ = serie$+operators$ print "If you give up, press ENTER and the program attempts to find a solution." line input "Write your solution: " input$ if input$ = "" then print "Thinking ... " res$ = explorer$() if res$ = "" print "Can not get 24 with these numbers.." else input$ = delSpace$(input$) inputSort$ = sortString$(input$) if (right$(inputSort$,4) <> serie$) or (len(inputSort$)<>7) then print "Syntax error" else result = evalInput(input$) print "Your solution = ",result," is "; if result = 24 then print "Correct!" else print "Wrong!" end if end if end if print "\nDo you want to try again? (press N for exit, other key to continue)" until(upper$(left$(inkey$(),1)) = "N") exit sub genSerie$() local i, c$, s$ print "The numbers you should use are: "; i = ran() for i = 1 to 4 c$ = str$(int(ran(9))+1) print c$," "; s$ = s$ + c$ next i print return s$ end sub sub evalInput(entr$) local d1, d2, c$, n(4), i while(entr$<>"") c$ = left$(entr$,1) entr$ = mid$(entr$,2) if instr(serie$,c$) then i = i + 1 n(i) = val(c$) elseif instr(operators$,c$) then d2 = n(i) n(i) = 0 i = i - 1 if i = 0 return d1 = n(i) n(i) = evaluator(d1, d2, c$) else print "Invalid symbol" return end if wend return n(i) end sub sub evaluator(d1, d2, op$) local t switch op$ case "+": t = d1 + d2 : break case "-": t = d1 - d2 : break case "*": t = d1 * d2 : break case "/": t = d1 / d2 : break end switch return t end sub sub delSpace$(entr$) local n, i, s$, t$(1) n = token(entr$,t$()," ") for i=1 to n s$ = s$ + t$(i) next i return s$ end sub sub sortString$(string$) local signal, n, fin, c$ fin = len(string$)-1 repeat signal = false for n = 1 to fin if mid$(string$,n,1) > mid$(string$,n+1,1) then signal = true c$ = mid$(string$,n,1) mid$(string$,n,1) = mid$(string$,n+1,1) mid$(string$,n+1,1) = c$ end if next n until(signal = false) return string$ end sub sub explorer$() local d1,d2,o3,x4,x5,x6,o7,p$,result,solution,solutions$,n for d1 = 1 to 4 for d2 = 1 to 4 for o3 = 1 to 4 for x4 = 1 to 8 for x5 = 1 to 8 for x6 = 1 to 8 for o7 = 1 to 4 p$ = mid$(serie$,d1,1)+mid$(serie$,d2,1)+mid$(operators$,o3,1) p$ = p$+mid$(valid$,x4,1)+mid$(valid$,x5,1)+mid$(valid$,x6,1) p$ = p$+mid$(operators$,o7,1) if not instr(solutions$,p$) then if validateInput(p$) then result = evalInput(p$) if result = 24 then solution = solution + 1 print "Solution: ",solution," = "; solutions$ = solutions$ + p$ for n = 1 to 7 print mid$(p$,n,1)," "; next n print end if end if end if next o7 next x6 next x5 next x4 next o3 next d2 next d1 return p$ end sub sub validateInput(e$) local n, inputSort$ inputSort$ = sortString$(e$) if serie$ <> right$(inputSort$,4) return false for n=1 to 3 if not instr(operators$,mid$(inputSort$,n,1)) then return false end if next n return true end sub ``` ## zkl A brute for search for all solutions. Lexicographical duplicates are removed. File solve24.zkl: ```zkl var [const] H=Utils.Helpers; fcn u(xs){ xs.reduce(fcn(us,s){us.holds(s) and us or us.append(s) },L()) } var ops=u(H.combosK(3,"+-*/".split("")).apply(H.permute).flatten()); var fs=T( fcn f0(a,b,c,d,x,y,z){ Op(z)(Op(y)(Op(x)(a,b),c),d) }, // ((AxB)yC)zD fcn f1(a,b,c,d,x,y,z){ Op(y)(Op(x)(a,b),Op(z)(c,d)) }, // (AxB)y(CzD) fcn f2(a,b,c,d,x,y,z){ Op(z)(Op(x)(a,Op(y)(b,c)),d) }, // (Ax(ByC))zD fcn f3(a,b,c,d,x,y,z){ Op(x)(a,Op(z)(Op(y)(b,c),d)) }, // Ax((ByC)zD) fcn f4(a,b,c,d,x,y,z){ Op(x)(a,Op(y)(b,Op(z)(c,d))) }, // Ax(By(CzD)) ); var fts= // format strings for human readable formulas T("((d.d).d).d", "(d.d).(d.d)", "(d.(d.d)).d", "d.((d.d).d)", "d.(d.(d.d))") .pump(List,T("replace","d","%d"),T("replace",".","%s")); fcn f2s(digits,ops,f){ fts[f.name[1].toInt()].fmt(digits.zip(ops).flatten().xplode(),digits[3]); } fcn game24Solver(digitsString){ digits:=digitsString.split("").apply("toFloat"); [[(digits4,ops3,f); H.permute(digits); ops; // list comprehension fs,{ try{f(digits4.xplode(),ops3.xplode()).closeTo(24,0.001) } catch(MathError){ False } }; { f2s(digits4,ops3,f) }]]; } ``` ```zkl solutions:=u(game24Solver(ask(0,"digits: "))); println(solutions.len()," solutions:"); solutions.apply2(Console.println); ``` One trick used is to look at the solving functions name and use the digit in it to index into the formats list. ### Output ```txt zkl solve24.zkl 6795 6 solutions: 6+((7-5)*9) 6-((5-7)*9) 6-(9*(5-7)) 6+(9*(7-5)) (9*(7-5))+6 ((7-5)*9)+6 zkl solve24.zkl 1111 0 solutions: zkl solve24.zkl 3388 1 solutions: 8/(3-(8/3)) zkl solve24.zkl 1234 242 solutions: ((1+2)+3)*4 ... ``` {{omit from|GUISS}} {{omit from|ML/I}}