⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Data Structures}} [[Category:Simple]]
;Task: Show how to concatenate two arrays in your language.
If this is as simple as array1 + array2
, so be it.
11l
V arr1 = [1, 2, 3]
V arr2 = [4, 5, 6]
print(arr1 [+] arr2)
{{out}}
[1, 2, 3, 4, 5, 6]
8th
[1,2,3] [4,5,6] a:+ .
{{out}}
[1,2,3,4,5,6]
ABAP
The concept of arrays does not exist in ABAP, instead internal tables are used. This works in ABAP version 7.40 and above.
report z_array_concatenation.
data(itab1) = value int4_table( ( 1 ) ( 2 ) ( 3 ) ).
data(itab2) = value int4_table( ( 4 ) ( 5 ) ( 6 ) ).
append lines of itab2 to itab1.
loop at itab1 assigning field-symbol(<line>).
write <line>.
endloop.
{{out}}
1 2 3 4 5 6
ACL2
This is for lists, not arrays; ACL2's array support is limited.
(append xs ys)
ActionScript
var array1:Array = new Array(1, 2, 3);
var array2:Array = new Array(4, 5, 6);
var array3:Array = array1.concat(array2); //[1, 2, 3, 4, 5, 6]
Ada
In [[Ada]] arrays are concatenated using the operation &. It works with any one dimensioned array:
type T is array (Positive range <>) of Integer;
X : T := (1, 2, 3);
Y : T := X & (4, 5, 6); -- Concatenate X and (4, 5, 6)
Aime
ac(list a, b)
{
list o;
o.copy(a);
b.ucall(l_append, 1, o);
o;
}
main(void)
{
list a, b, c;
a = list(1, 2, 3, 4);
b = list(5, 6, 7, 8);
c = ac(a, b);
c.ucall(o_, 1, " ");
0;
}
{{Out}}
1 2 3 4 5 6 7 8
ALGOL 68
{{works with|ALGOL 68|Standard - no extensions to language used}}
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}}
Includes operators for ''appending'' and ''prefixing'' an array to an existing flexible array:
MODE ARGTYPE = INT;
MODE ARGLIST = FLEX[0]ARGTYPE;
OP + = (ARGLIST a, b)ARGLIST: (
[LWB a:UPB a - LWB a + 1 + UPB b - LWB b + 1 ]ARGTYPE out;
(
out[LWB a:UPB a]:=a,
out[UPB a+1:]:=b
);
out
);
# Append #
OP +:= = (REF ARGLIST lhs, ARGLIST rhs)ARGLIST: lhs := lhs + rhs;
OP PLUSAB = (REF ARGLIST lhs, ARGLIST rhs)ARGLIST: lhs := lhs + rhs;
# Prefix #
OP +=: = (ARGLIST lhs, REF ARGLIST rhs)ARGLIST: rhs := lhs + rhs;
OP PLUSTO = (ARGLIST lhs, REF ARGLIST rhs)ARGLIST: rhs := lhs + rhs;
ARGLIST a := (1,2),
b := (3,4,5);
print(("a + b",a + b, new line));
VOID(a +:= b);
print(("a +:= b", a, new line));
VOID(a +=: b);
print(("a +=: b", b, new line))
a + b +1 +2 +3 +4 +5
a +:= b +1 +2 +3 +4 +5
a +=: b +1 +2 +3 +4 +5 +3 +4 +5
ALGOL W
Algol W does not allow procedures to return arrays and has no mechanism for procedures to find the bounds of their parameters, so the caller must supply an array to concatenate into and the bounds of the arrays.
begin
integer array a ( 1 :: 5 );
integer array b ( 2 :: 4 );
integer array c ( 1 :: 8 );
% concatenates the arrays a and b into c %
% the lower and upper bounds of each array must be specified in %
% the corresponding *Lb and *Ub parameters %
procedure arrayConcatenate ( integer array a ( * )
; integer value aLb, aUb
; integer array b ( * )
; integer value bLb, bUb
; integer array c ( * )
; integer value cLb, cUb
) ;
begin
integer cPos;
assert( ( cUb - cLb ) + 1 >= ( ( aUb + bUb ) - ( aLb + bLb ) ) - 2 );
cPos := cLb;
for aPos := aLb until aUb do begin
c( cPos ) := a( aPos );
cPos := cPos + 1
end for_aPos ;
for bPos := bLb until bUb do begin
c( cPos ) := b( bPos );
cPos := cPos + 1
end for_bPos
end arrayConcatenate ;
% test arrayConcatenate %
for aPos := 1 until 5 do a( aPos ) := aPos;
for bPos := 2 until 4 do b( bPos ) := - bPos;
arrayConcatenate( a, 1, 5, b, 2, 4, c, 1, 8 );
for cPos := 1 until 8 do writeon( i_w := 1, s_w := 1, c( cPos ) )
end.
{{out}}
1 2 3 4 5 -2 -3 -4
AntLang
b: <"Hello"; 42>
c: a,b
APL
1 2 3 , 4 5 6
1 2 3 4 5 6
Apex
{ 'apple' };
List<String> listB = new List<String> { 'banana' };
listA.addAll(listB);
System.debug(listA); // Prints (apple, banana)
AppleScript
set listA to {1, 2, 3}
set listB to {4, 5, 6}
return listA & listB
{{out}}
{1, 2, 3, 4, 5, 6}
Or, if we treat the concatenation of two lists as a special case of the more general problem of concatenating N lists, we can write:
{{trans|JavaScript}}
on run
concat([["alpha", "beta", "gamma"], ¬
["delta", "epsilon", "zeta"], ¬
["eta", "theta", "iota"]])
end run
-- concat :: [[a]] -> [a]
on concat(xxs)
set lst to {}
repeat with xs in xxs
set lst to lst & xs
end repeat
return lst
end concat
{{Out}}
{"alpha", "beta", "gamma", "delta", "epsilon", "zeta", "eta", "theta", "iota"}
ARM Assembly
{{works with|as|Raspberry Pi}}
/* ARM assembly Raspberry PI */
/* program concAreaString.s */
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
.equ NBMAXITEMS, 20 @
/* Initialized data */
.data
szMessLenArea: .ascii "The length of area 3 is : "
sZoneconv: .fill 12,1,' '
szCarriageReturn: .asciz "\n"
/* areas strings */
szString1: .asciz "Apples"
szString2: .asciz "Oranges"
szString3: .asciz "Pommes"
szString4: .asciz "Raisins"
szString5: .asciz "Abricots"
/* pointer items area 1*/
tablesPoi1:
pt1_1: .int szString1
pt1_2: .int szString2
ptVoid_1: .int 0
/* pointer items area 2*/
tablesPoi2:
pt2_1: .int szString3
pt2_2: .int szString4
pt2_3: .int szString5
ptVoid_2: .int 0
/* UnInitialized data */
.bss
tablesPoi3: .skip 4 * NBMAXITEMS
/* code section */
.text
.global main
main: /* entry of program */
push {fp,lr} /* saves 2 registers */
@ copy area 1 -> area 3
ldr r1,iAdrtablesPoi1 @ begin pointer area 1
ldr r3,iAdrtablesPoi3 @ begin pointer area 3
mov r0,#0 @ counter
1:
ldr r2,[r1,r0,lsl #2] @ read string pointer address item r0 (4 bytes by pointer)
cmp r2,#0 @ is null ?
strne r2,[r3,r0,lsl #2] @ no store pointer in area 3
addne r0,#1 @ increment counter
bne 1b @ and loop
@ copy area 2 -> area 3
ldr r1,iAdrtablesPoi2 @ begin pointer area 2
ldr r3,iAdrtablesPoi3 @ begin pointer area 3
mov r4,#0 @ counter area 2
2: @ r0 contains the first void item in area 3
ldr r2,[r1,r4,lsl #2] @ read string pointer address item r0 (4 bytes by pointer)
cmp r2,#0 @ is null ?
strne r2,[r3,r0,lsl #2] @ no store pointer in area 3
addne r0,#1 @ increment counter
addne r4,#1 @ increment counter
bne 2b @ and loop
@ count items number in area 3
ldr r1,iAdrtablesPoi3 @ begin pointer table
mov r0,#0 @ counter
3: @ begin loop
ldr r2,[r1,r0,lsl #2] @ read string pointer address item r0 (4 bytes by pointer)
cmp r2,#0 @ is null ?
addne r0,#1 @ no increment counter
bne 3b @ and loop
ldr r1,iAdrsZoneconv @ conversion decimal
bl conversion10S
ldr r0,iAdrszMessLenArea
bl affichageMess
100: /* standard end of the program */
mov r0, #0 @ return code
pop {fp,lr} @restaur 2 registers
mov r7, #EXIT @ request to exit program
swi 0 @ perform the system call
iAdrtablesPoi1: .int tablesPoi1
iAdrtablesPoi2: .int tablesPoi2
iAdrtablesPoi3: .int tablesPoi3
iAdrszMessLenArea: .int szMessLenArea
iAdrsZoneconv: .int sZoneconv
iAdrszCarriageReturn: .int szCarriageReturn
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {fp,lr} /* save registres */
push {r0,r1,r2,r7} /* save others registers */
mov r2,#0 /* counter length */
1: /* loop length calculation */
ldrb r1,[r0,r2] /* read octet start position + index */
cmp r1,#0 /* if 0 its over */
addne r2,r2,#1 /* else add 1 in the length */
bne 1b /* and loop */
/* so here r2 contains the length of the message */
mov r1,r0 /* address message in r1 */
mov r0,#STDOUT /* code to write to the standard output Linux */
mov r7, #WRITE /* code call system "write" */
swi #0 /* call systeme */
pop {r0,r1,r2,r7} /* restaur others registers */
pop {fp,lr} /* restaur des 2 registres */
bx lr /* return */
/***************************************************/
/* conversion register signed décimal */
/***************************************************/
/* r0 contient le registre */
/* r1 contient l adresse de la zone de conversion */
conversion10S:
push {r0-r5,lr} /* save des registres */
mov r2,r1 /* debut zone stockage */
mov r5,#'+' /* par defaut le signe est + */
cmp r0,#0 /* nombre négatif ? */
movlt r5,#'-' /* oui le signe est - */
mvnlt r0,r0 /* et inversion en valeur positive */
addlt r0,#1
mov r4,#10 /* longueur de la zone */
1: /* debut de boucle de conversion */
bl divisionpar10 /* division */
add r1,#48 /* ajout de 48 au reste pour conversion ascii */
strb r1,[r2,r4] /* stockage du byte en début de zone r5 + la position r4 */
sub r4,r4,#1 /* position précedente */
cmp r0,#0
bne 1b /* boucle si quotient different de zéro */
strb r5,[r2,r4] /* stockage du signe à la position courante */
subs r4,r4,#1 /* position précedente */
blt 100f /* si r4 < 0 fin */
/* sinon il faut completer le debut de la zone avec des blancs */
mov r3,#' ' /* caractere espace */
2:
strb r3,[r2,r4] /* stockage du byte */
subs r4,r4,#1 /* position précedente */
bge 2b /* boucle si r4 plus grand ou egal a zero */
100: /* fin standard de la fonction */
pop {r0-r5,lr} /*restaur desregistres */
bx lr
/***************************************************/
/* division par 10 signé */
/* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/*
/* and http://www.hackersdelight.org/ */
/***************************************************/
/* r0 contient le dividende */
/* r0 retourne le quotient */
/* r1 retourne le reste */
divisionpar10:
/* r0 contains the argument to be divided by 10 */
push {r2-r4} /* save registers */
mov r4,r0
ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */
smull r1, r2, r3, r0 /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */
mov r2, r2, ASR #2 /* r2 <- r2 >> 2 */
mov r1, r0, LSR #31 /* r1 <- r0 >> 31 */
add r0, r2, r1 /* r0 <- r2 + r1 */
add r2,r0,r0, lsl #2 /* r2 <- r0 * 5 */
sub r1,r4,r2, lsl #1 /* r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) */
pop {r2-r4}
bx lr /* leave function */
bx lr /* leave function */
.Ls_magic_number_10: .word 0x66666667
Arturo
arr1 #(1 2 3)
arr2 #("four" "five" "six")
print arr1 + arr2
{{out}}
#(1 2 3 "four" "five" "six")
AutoHotkey
True Arrays
{{works with|AutoHotkey_L}}
List1 := [1, 2, 3]
List2 := [4, 5, 6]
cList := Arr_concatenate(List1, List2)
MsgBox % Arr_disp(cList) ; [1, 2, 3, 4, 5, 6]
Arr_concatenate(p*) {
res := Object()
For each, obj in p
For each, value in obj
res.Insert(value)
return res
}
Arr_disp(arr) {
for each, value in arr
res .= ", " value
return "[" SubStr(res, 3) "]"
}
Legacy versions
[[AutoHotkey_Basic]] does not have real Arrays, but the user can implement them quite easily. For example:
List1 = 1,2,3
List2 = 4,5,6
List2Array(List1 , "Array1_")
List2Array(List2 , "Array2_")
ConcatArrays("Array1_", "Array2_", "MyArray")
MsgBox, % Array2List("MyArray")
;---------------------------------------------------------------------------
ConcatArrays(A1, A2, A3) { ; concatenates the arrays A1 and A2 to A3
;---------------------------------------------------------------------------
local i := 0
%A3%0 := %A1%0 + %A2%0
Loop, % %A1%0
i++, %A3%%i% := %A1%%A_Index%
Loop, % %A2%0
i++, %A3%%i% := %A2%%A_Index%
}
;---------------------------------------------------------------------------
List2Array(List, Array) { ; creates an array from a comma separated list
;---------------------------------------------------------------------------
global
StringSplit, %Array%, List, `,
}
;---------------------------------------------------------------------------
Array2List(Array) { ; returns a comma separated list from an array
;---------------------------------------------------------------------------
Loop, % %Array%0
List .= (A_Index = 1 ? "" : ",") %Array%%A_Index%
Return, List
}
Message box shows:
1,2,3,4,5,6
AutoIt
_ArrayConcatenate is a standard function in Autoit, there´s no need to write it on your own
_ArrayConcatenate($avArray, $avArray2)
Func _ArrayConcatenate(ByRef $avArrayTarget, Const ByRef $avArraySource, $iStart = 0)
If Not IsArray($avArrayTarget) Then Return SetError(1, 0, 0)
If Not IsArray($avArraySource) Then Return SetError(2, 0, 0)
If UBound($avArrayTarget, 0) <> 1 Then
If UBound($avArraySource, 0) <> 1 Then Return SetError(5, 0, 0)
Return SetError(3, 0, 0)
EndIf
If UBound($avArraySource, 0) <> 1 Then Return SetError(4, 0, 0)
Local $iUBoundTarget = UBound($avArrayTarget) - $iStart, $iUBoundSource = UBound($avArraySource)
ReDim $avArrayTarget[$iUBoundTarget + $iUBoundSource]
For $i = $iStart To $iUBoundSource - 1
$avArrayTarget[$iUBoundTarget + $i] = $avArraySource[$i]
Next
Return $iUBoundTarget + $iUBoundSource
EndFunc ;==>_ArrayConcatenate
AWK
#!/usr/bin/awk -f
BEGIN {
split("cul-de-sac",a,"-")
split("1-2-3",b,"-")
concat_array(a,b,c)
for (i in c) {
print i,c[i]
}
}
function concat_array(a,b,c) {
for (i in a) {
c[++nc]=a[i]
}
for (i in b) {
c[++nc]=b[i]
}
}
Babel
[1 2 3] [4 5 6] cat ;
{{Out}}
[val 0x1 0x2 0x3 0x4 0x5 0x6 ]
bash
x=("1 2" "3 4")
y=(5 6)
sum=( "${x[@]}" "${y[@]}" )
for i in "${sum[@]}" ; do echo "$i" ; done
1 2
3 4
5
6
BASIC
=
BaCon
=
' Array concatenation
OPTION BASE 1
CONST asize = 2
CONST bsize = 3
DECLARE a[asize] TYPE NUMBER
DECLARE b[bsize] TYPE NUMBER
' BaCon has no array concatenation builtin, it will need to be done by hand
LOCAL c TYPE NUMBER ARRAY asize + bsize
FOR i = 1 TO asize
c[i] = a[i]
NEXT
FOR i = 1 TO bsize
c[asize + i] = b[i]
NEXT
=
BBC BASIC
= {{works with|BBC BASIC for Windows}}
DIM a(3), b(4)
a() = 1, 2, 3, 4
b() = 5, 6, 7, 8, 9
PROCconcat(a(), b(), c())
FOR i% = 0 TO DIM(c(),1)
PRINT c(i%)
NEXT
END
DEF PROCconcat(a(), b(), RETURN c())
LOCAL s%, na%, nb%
s% = ^a(1) - ^a(0) : REM Size of each array element
na% = DIM(a(),1)+1 : REM Number of elements in a()
nb% = DIM(b(),1)+1 : REM Number of elements in b()
DIM c(na%+nb%-1)
SYS "RtlMoveMemory", ^c(0), ^a(0), s%*na%
SYS "RtlMoveMemory", ^c(na%), ^b(0), s%*nb%
ENDPROC
=
Commodore BASIC
= (Based on ZX Spectrum BASIC version)
10 X=4 : Y=5
20 DIM A(X) : DIM B(Y) : DIM C(X+Y)
30 FOR I=1 TO X
40 : A(I) = I
50 NEXT
60 FOR I=1 TO Y
70 : B(I) = I*10
80 NEXT
90 FOR I=1 TO X
100 : C(I) = A(I)
110 NEXT
120 FOR I=1 TO Y
130 : C(X+I) = B(I)
140 NEXT
150 FOR I=1 TO X+Y
160 : PRINT C(I);
170 NEXT
Bracmat
Bracmat concatenates lists composed with the comma, space, addition and multiplication operators. Furthermore, lists composed with the addition and multiplication operators are canonically sorted and like terms or factors are combined algebraically. Lists composed with the space operator automatically delete any elements with zero-length atoms and no prefixes. All these lists except the comma-separated list support a notion of 'array index', but as the underlying datastructure is a linked list and not an array, accessing, say, the millionth element can be slow. Examples of concatenation (entered on the Bracmat command line):
{?} (a,b,c,d,e),(n,m)
{!} a,b,c,d,e,n,m
{?} (a,m,y),(b,n,y,z)
{!} a,m,y,b,n,y,z
{?} (a m y) (b n y z)
{!} a m y b n y z
{?} (a+m+y)+(b+n+y+z)
{!} a+b+m+n+2*y+z
{?} (a*m*y)*(b*n*y*z)
{!} a*b*m*n*y^2*z
Concatenate three lists and split the concatenated list using a position operator:
{?} (a b c d) (e f g h) (i j k):?A [7 ?Z
{!} a b c d e f g h i j k
{?} !A
{!} a b c d e f g
{?} !Z
{!} h i j k
Burlesque
blsq ) {1 2 3}{4 5 6}_+
{1 2 3 4 5 6}
C
A way to concatenate two C arrays when you know their size (and usually so it is)
#include <iostream>
#include <stdio.h>
#include <string.h>
#define ARRAY_CONCAT(TYPE, A, An, B, Bn) \
(TYPE *)array_concat((const void *)(A), (An), (const void *)(B), (Bn), sizeof(TYPE));
void *array_concat(const void *a, size_t an,
const void *b, size_t bn, size_t s)
{
char *p = malloc(s * (an + bn));
memcpy(p, a, an*s);
memcpy(p + an*s, b, bn*s);
return p;
}
// testing
const int a[] = { 1, 2, 3, 4, 5 };
const int b[] = { 6, 7, 8, 9, 0 };
int main(void)
{
unsigned int i;
int *c = ARRAY_CONCAT(int, a, 5, b, 5);
for(i = 0; i < 10; i++)
printf("%d\n", c[i]);
free(c);
return EXIT_SUCCCESS;
}
C++
#include <vector>
#include <iostream>
int main()
{
std::vector<int> a(3), b(4);
a[0] = 11; a[1] = 12; a[2] = 13;
b[0] = 21; b[1] = 22; b[2] = 23; b[3] = 24;
a.insert(a.end(), b.begin(), b.end());
for (int i = 0; i < a.size(); ++i)
std::cout << "a[" << i << "] = " << a[i] << "\n";
}
{{works with|C++11}} Similar to above but using initialization schematics.
#include <vector>
#include <iostream>
int main() {
std::vector<int> a {1, 2, 3, 4};
std::vector<int> b {5, 6, 7, 8, 9};
a.insert(a.end(), b.begin(), b.end());
for(int& i: a) std::cout << i << " ";
std::cout << std::endl;
return 0;
}
This is another solution with function level templates and pointers.
#include <iostream>
using namespace std;
template <typename T1, typename T2>
int* concatArrays( T1& array_1, T2& array_2) {
int arrayCount_1 = sizeof(array_1) / sizeof(array_1[0]);
int arrayCount_2 = sizeof(array_2) / sizeof(array_2[0]);
int newArraySize = arrayCount_1 + arrayCount_2;
int *p = new int[newArraySize];
for (int i = 0; i < arrayCount_1; i++) {
p[i] = array_1[i];
}
for (int i = arrayCount_1; i < newArraySize; i++) {
int newIndex = i-arrayCount_2;
if (newArraySize % 2 == 1)
newIndex--;
p[i] = array_2[newIndex];
cout << "i: " << i << endl;
cout << "array_2[i]: " << array_2[newIndex] << endl;
cout << endl;
}
return p;
}
int main() {
int ary[4] = {1, 2, 3, 123};
int anotherAry[3] = {4, 5, 6};
int *r = concatArrays(ary, anotherAry);
cout << *(r + 0) << endl;
cout << *(r + 1) << endl;
cout << *(r + 2) << endl;
cout << *(r + 3) << endl;
cout << *(r + 4) << endl;
cout << *(r + 5) << endl;
cout << *(r + 6) << endl;
delete r;
return 0;
}
C#
using System;
namespace RosettaCode
{
class Program
{
static void Main(string[] args)
{
int[] a = { 1, 2, 3 };
int[] b = { 4, 5, 6 };
int[] c = new int[a.Length + b.Length];
a.CopyTo(c, 0);
b.CopyTo(c, a.Length);
foreach(int n in c)
{
Console.WriteLine(n.ToString());
}
}
}
}
Alternatively, using LINQ extension methods:
{{works with|C sharp|C#|3}}
using System.Linq;
class Program
{
static void Main(string[] args)
{
int[] a = { 1, 2, 3 };
int[] b = { 4, 5, 6 };
int[] c = a.Concat(b).ToArray();
}
}
Ceylon
shared void arrayConcatenation() {
value a = Array {1, 2, 3};
value b = Array {4, 5, 6};
value c = concatenate(a, b);
print(c);
}
Clojure
(concat [1 2 3] [4 5 6])
The inputs can be any collection, including Java arrays, and returns a lazy sequence of the elements.
A vector is the closest Clojure thing to an array. If a vector is wanted, then use
(into [1 2 3] [4 5 6])
COBOL
identification division.
program-id. array-concat.
environment division.
configuration section.
repository.
function all intrinsic.
data division.
working-storage section.
01 table-one.
05 int-field pic 999 occurs 0 to 5 depending on t1.
01 table-two.
05 int-field pic 9(4) occurs 0 to 10 depending on t2.
77 t1 pic 99.
77 t2 pic 99.
77 show pic z(4).
procedure division.
array-concat-main.
perform initialize-tables
perform concatenate-tables
perform display-result
goback.
initialize-tables.
move 4 to t1
perform varying tally from 1 by 1 until tally > t1
compute int-field of table-one(tally) = tally * 3
end-perform
move 3 to t2
perform varying tally from 1 by 1 until tally > t2
compute int-field of table-two(tally) = tally * 6
end-perform
.
concatenate-tables.
perform varying tally from 1 by 1 until tally > t1
add 1 to t2
move int-field of table-one(tally)
to int-field of table-two(t2)
end-perform
.
display-result.
perform varying tally from 1 by 1 until tally = t2
move int-field of table-two(tally) to show
display trim(show) ", " with no advancing
end-perform
move int-field of table-two(tally) to show
display trim(show)
.
end program array-concat.
{{out}}
prompt$ cobc -xjd array-concatenation.cob
6, 12, 18, 3, 6, 9, 12
CoffeeScript
# like in JavaScript
a = [1, 2, 3]
b = [4, 5, 6]
c = a.concat b
Common Lisp
[http://www.lispworks.com/documentation/HyperSpec/Body/f_concat.htm concatenate]
is a general function for concatenating any type of sequence. It takes the type of sequence to produce, followed by any number of sequences of any type.
(concatenate 'vector #(0 1 2 3) #(4 5 6 7))
=> #(0 1 2 3 4 5 6 7)
Alternate solution
I use [https://franz.com/downloads/clp/survey Allegro CL 10.1]
(setf arr1 (make-array '(3) :initial-contents '(1 2 3)))
(setf arr2 (make-array '(3) :initial-contents '(4 5 6)))
(setf arr3 (make-array '(3) :initial-contents '(7 8 9)))
(setf arr4 (make-array '(6)))
(setf arr5 (make-array '(9)))
(setf arr4 (concatenate `(vector ,(array-element-type arr1)) arr1 arr2))
(format t "~a" "concatenate arr1 and arr2: ")
(write arr4)
(terpri)
(setf arr5 (concatenate `(vector ,(array-element-type arr1)) arr4 arr3))
(format t "~a" "concatenate arr4 and arr3: ")
(write arr5)
(terpri)
Output:
concatenate arr1 and arr2: #(1 2 3 4 5 6)
concatenate arr4 and arr3: #(1 2 3 4 5 6 7 8 9)
Component Pascal
BlackBox Component Builder
MODULE ArrayConcat;
IMPORT StdLog;
PROCEDURE Concat(x: ARRAY OF INTEGER; y: ARRAY OF INTEGER; OUT z: ARRAY OF INTEGER);
VAR
i: INTEGER;
BEGIN
ASSERT(LEN(x) + LEN(y) <= LEN(z));
FOR i := 0 TO LEN(x) - 1 DO z[i] := x[i] END;
FOR i := 0 TO LEN(y) - 1 DO z[i + LEN(x)] := y[i] END
END Concat;
PROCEDURE Concat2(x: ARRAY OF INTEGER;y: ARRAY OF INTEGER): POINTER TO ARRAY OF INTEGER;
VAR
z: POINTER TO ARRAY OF INTEGER;
i: INTEGER;
BEGIN
NEW(z,LEN(x) + LEN(y));
FOR i := 0 TO LEN(x) - 1 DO z[i] := x[i] END;
FOR i := 0 TO LEN(y) - 1 DO z[i + LEN(x)] := y[i] END;
RETURN z;
END Concat2;
PROCEDURE ShowArray(x: ARRAY OF INTEGER);
VAR
i: INTEGER;
BEGIN
i := 0;
StdLog.Char('[');
WHILE (i < LEN(x)) DO
StdLog.Int(x[i]);IF i < LEN(x) - 1 THEN StdLog.Char(',') END;
INC(i)
END;
StdLog.Char(']');StdLog.Ln;
END ShowArray;
PROCEDURE Do*;
VAR
x: ARRAY 10 OF INTEGER;
y: ARRAY 15 OF INTEGER;
z: ARRAY 25 OF INTEGER;
w: POINTER TO ARRAY OF INTEGER;
i: INTEGER;
BEGIN
FOR i := 0 TO LEN(x) - 1 DO x[i] := i END;
FOR i := 0 TO LEN(y) - 1 DO y[i] := i END;
Concat(x,y,z);StdLog.String("1> ");ShowArray(z);
NEW(w,LEN(x) + LEN(y));
Concat(x,y,z);StdLog.String("2:> ");ShowArray(z);
StdLog.String("3:> ");ShowArray(Concat2(x,y));
END Do;
END ArrayConcat.
Execute: ^Q ArrayConcat.Do
{{out}}
1> [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
2:> [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
3:> [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
D
import std.stdio: writeln;
void main() {
int[] a = [1, 2];
int[] b = [4, 5, 6];
writeln(a, " ~ ", b, " = ", a ~ b);
}
{{out}}
[1, 2] ~ [4, 5, 6] = [1, 2, 4, 5, 6]
Delphi
type
TReturnArray = array of integer; //you need to define a type to be able to return it
function ConcatArray(a1,a2:array of integer):TReturnArray;
var
i,r:integer;
begin
{ Low(array) is not necessarily 0 }
SetLength(result,High(a1)-Low(a1)+High(a2)-Low(a2)+2); //BAD idea to set a length you won't release, just to show the idea!
r:=0; //index on the result may be different to indexes on the sources
for i := Low(a1) to High(a1) do begin
result[r] := a1[i];
Inc(r);
end;
for i := Low(a2) to High(a2) do begin
result[r] := a2[i];
Inc(r);
end;
end;
procedure TForm1.Button1Click(Sender: TObject);
var
a1,a2:array of integer;
r1:array of integer;
i:integer;
begin
SetLength(a1,4);
SetLength(a2,3);
for i := Low(a1) to High(a1) do
a1[i] := i;
for i := Low(a2) to High(a2) do
a2[i] := i;
TReturnArray(r1) := ConcatArray(a1,a2);
for i := Low(r1) to High(r1) do
showMessage(IntToStr(r1[i]));
Finalize(r1); //IMPORTANT!
ShowMessage(IntToStr(High(r1)));
end;
Dyalect
var xs = [1,2,3]
var ys = [4,5,6]
var alls = Array.concat(xs, ys)
print(alls)
{{out}}
[1, 2, 3, 4, 5, 6]
E
? [1,2] + [3,4]
# value: [1, 2, 3, 4]
EasyLang
## EchoLisp
The native operators are '''append''' for lists, and '''vector-append''' for vectors (1-dim arrays).
```scheme
;;;; VECTORS
(vector-append (make-vector 6 42) (make-vector 4 666))
→ #( 42 42 42 42 42 42 666 666 666 666)
;;;; LISTS
(append (iota 5) (iota 6))
→ (0 1 2 3 4 0 1 2 3 4 5)
;; NB - append may also be used with sequences (lazy lists)
(lib 'sequences)
(take (append [1 .. 7] [7 6 .. 0]) #:all)
→ (1 2 3 4 5 6 7 6 5 4 3 2 1)
ECL
C := A + B;
## Efene
using the ++ operator and the lists.append function
```efene
@public
run = fn () {
A = [1, 2, 3, 4]
B = [5, 6, 7, 8]
C = A ++ B
D = lists.append([A, B])
io.format("~p~n", [C])
io.format("~p~n", [D])
}
EGL
{{works with|EDT}}
program ArrayConcatenation
function main()
a int[] = [ 1, 2, 3 ];
b int[] = [ 4, 5, 6 ];
c int[];
c.appendAll(a);
c.appendAll(b);
for (i int from 1 to c.getSize())
SysLib.writeStdout("Element " :: i :: " = " :: c[i]);
end
end
end
Ela
xs = [1,2,3]
ys = [4,5,6]
xs ++ ys
{{out}}
[1,2,3,4,5,6]
Elena
ELENA 4.1 :
import extensions;
public program()
{
var a := new int[]::(1,2,3);
var b := new int[]::(4,5);
console.printLine(
"(",a.asEnumerable(),") + (",b.asEnumerable(),
") = (",(a + b).asEnumerable(),")").readChar();
}
Elixir
iex(1)> [1, 2, 3] ++ [4, 5, 6]
[1, 2, 3, 4, 5, 6]
iex(2)> Enum.concat([[1, [2], 3], [4], [5, 6]])
[1, [2], 3, 4, 5, 6]
iex(3)> Enum.concat([1..3, [4,5,6], 7..9])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
Elm
import Element exposing (show, toHtml) -- elm-package install evancz/elm-graphics
import Html.App exposing (beginnerProgram)
import Array exposing (Array, append, initialize)
xs : Array Int
xs =
initialize 3 identity -- [0, 1, 2]
ys : Array Int
ys =
initialize 3 <| (+) 3 -- [3, 4, 5]
main = beginnerProgram { model = ()
, view = \_ -> toHtml (show (append xs ys))
, update = \_ _ -> ()
}
-- Array.fromList [0,1,2,3,4,5]
Emacs Lisp
The ''vconcat'' function returns a new array containing all the elements of it's arguments.
(vconcat '[1 2 3] '[4 5] '[6 7 8 9])
=> [1 2 3 4 5 6 7 8 9]
Erlang
In erlang, you can use the ++ operator or lists:append, which is implemented via ++.
On the shell,
1> [1, 2, 3] ++ [4, 5, 6].
[1,2,3,4,5,6]
2> lists:append([1, 2, 3], [4, 5, 6]).
[1,2,3,4,5,6]
3>
ERRE
DIM A[5],B[5],C[10]
! ! for rosettacode.org !
BEGIN DATA(1,2,3,4,5) DATA(6,7,8,9,0)
FOR I=1 TO 5 DO ! read array A[.] READ(A[I]) END FOR FOR I=1 TO 5 DO ! read array B[.] READ(B[I]) END FOR
FOR I=1 TO 10 DO ! append B[.] to A[.] IF I>5 THEN C[I]=B[I-5] ELSE C[I]=A[I] END IF PRINT(C[I];) ! print single C value END FOR
END PROGRAM
## Euphoria
```Euphoria
sequence s1,s2,s3
s1 = {1,2,3}
s2 = {4,5,6}
s3 = s1 & s2
? s3
{{out}} {1,2,3,4,5,6}
=={{header|F Sharp|F#}}== Array concatenation.
let a = [|1; 2; 3|]
let b = [|4; 5; 6;|]
let c = Array.append a b
List concatenation (@ and List.append are equivalent).
let x = [1; 2; 3]
let y = [4; 5; 6]
let z1 = x @ y
let z2 = List.append x y
FBSL
Array concatenation:
#APPTYPE CONSOLE
DIM aint[] ={1, 2, 3}, astr[] ={"one", "two", "three"}, asng[] ={!1, !2, !3}
FOREACH DIM e IN ARRAYMERGE(aint, astr, asng)
PRINT e, " ";
NEXT
PAUSE
{{out}}
1 2 3 one two three 1.000000 2.000000 3.000000
Press any key to continue...
Factor
'''Example''':
```factor
( scratchpad ) USE: sequences
( scratchpad ) { 1 2 } { 3 4 } append .
{ 1 2 3 4 }
Fantom
In fansh:
> a := [1,2,3]
> b := [4,5,6]
> a.addAll(b)
> a
[1,2,3,4,5,6]
Note 'addAll' is destructive. Write 'a.dup.addAll(b)' to create a fresh list.
Forth
: $!+ ( a u a' -- a'+u )
2dup + >r swap move r> ;
: cat ( a2 u2 a1 u1 -- a3 u1+u2 )
align here dup >r $!+ $!+ r> tuck - dup allot ;
\ TEST
create a1 1 , 2 , 3 ,
create a2 4 , 5 ,
a2 2 cells a1 3 cells cat dump
8018425F0: 01 00 00 00 00 00 00 00 - 02 00 00 00 00 00 00 00 ................
801842600: 03 00 00 00 00 00 00 00 - 04 00 00 00 00 00 00 00 ................
801842610: 05 00 00 00 00 00 00 00 - ........
Fortran
{{works with|Fortran|90 and later}}
program Concat_Arrays
implicit none
! Note: in Fortran 90 you must use the old array delimiters (/ , /)
integer, dimension(3) :: a = [1, 2, 3] ! (/1, 2, 3/)
integer, dimension(3) :: b = [4, 5, 6] ! (/4, 5, 6/)
integer, dimension(:), allocatable :: c, d
allocate(c(size(a)+size(b)))
c(1 : size(a)) = a
c(size(a)+1 : size(a)+size(b)) = b
print*, c
! alternative
d = [a, b] ! (/a, b/)
print*, d
end program Concat_Arrays
FreeBASIC
' FB 1.05.0 Win64
Sub ConcatArrays(a() As String, b() As String, c() As String)
Dim aSize As Integer = UBound(a) - LBound(a) + 1
Dim bSize As Integer = UBound(b) - LBound(b) + 1
Dim cSize As Integer = aSize + bSize
Redim c(0 To cSize - 1)
Dim i As Integer
For i = 0 To aSize - 1
c(i) = a(LBound(a) + i)
Next
For i = 0 To bSize - 1
c(UBound(a) + i + 1) = b(LBound(b) + i)
Next
End Sub
Dim a(3) As String = {"The", "quick", "brown", "fox"}
Dim b(4) As String = {"jumped", "over", "the", "lazy", "dog"}
Dim c() As String
ConcatArrays(a(), b(), c())
For i As Integer = LBound(c) To UBound(c)
Print c(i); " ";
Next
Print : Print
Print "Press any key to quit the program"
Sleep
{{out}}
The quick brown fox jumped over the lazy dog
Free Pascal
Since FPC (Free Pascal compiler) version 3.2.0., the dynamic array concatenation operator +
is available, provided {$modeSwitch arrayOperators+}
(which is enabled by default in {$mode Delphi}
).
## Frink
```frink
a = [1,2]
b = [3,4]
a.pushAll[b]
FunL
arr1 = array( [1, 2, 3] )
arr2 = array( [4, 5, 6] )
arr3 = array( [7, 8, 9] )
println( arr1 + arr2 + arr3 )
{{out}}
ArraySeq(1, 2, 3, 4, 5, 6, 7, 8, 9)
Futhark
Array concatenation is done with the built-in function concat
, which can take any number of arguments:
concat as bs cd
Gambas
'''[https://gambas-playground.proko.eu/?gist=314bea6fba7f177a1cfaec8a7a8b5ccb Click this link to run this code]'''
Public Sub Main()
Dim sString1 As String[] = ["The", "quick", "brown", "fox"]
Dim sString2 As String[] = ["jumped", "over", "the", "lazy", "dog"]
sString1.Insert(sString2)
Print sString1.Join(" ")
End
Output:
The quick brown fox jumped over the lazy dog
GAP
# Concatenate arrays
Concatenation([1, 2, 3], [4, 5, 6], [7, 8, 9]);
# [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
# Append to a variable
a := [1, 2, 3];
Append(a, [4, 5, 6);
Append(a, [7, 8, 9]);
a;
# [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
Genie
[indent=4]
/*
Array concatenation, in Genie
Tectonics: valac array-concat.gs
*/
/* Creates a new array */
def int_array_concat(x:array of int, y:array of int):array of int
var a = new Array of int(false, true, 0) /* (zero-terminated, clear, size) */
a.append_vals (x, x.length)
a.append_vals (y, y.length)
z:array of int = (owned) a.data
return z
def int_show_array(a:array of int)
for element in a do stdout.printf("%d ", element)
stdout.printf("\n")
init
x: array of int = {1, 2, 3}
y: array of int = {3, 2, 1, 0, -1}
z: array of int = int_array_concat(x, y)
stdout.printf("x: "); int_show_array(x)
stdout.printf("y: "); int_show_array(y)
stdout.printf("z: "); int_show_array(z)
print "%d elements in new array", z.length
{{out}}
prompt$ valac array-concat.gs
prompt$ ./array-concat
x: 1 2 3
y: 3 2 1 0 -1
z: 1 2 3 3 2 1 0 -1
8 elements in new array
Go
package main
import "fmt"
func main() {
// Example 1: Idiomatic in Go is use of the append function.
// Elements must be of identical type.
a := []int{1, 2, 3}
b := []int{7, 12, 60} // these are technically slices, not arrays
c := append(a, b...)
fmt.Println(c)
// Example 2: Polymorphism.
// interface{} is a type too, one that can reference values of any type.
// This allows a sort of polymorphic list.
i := []interface{}{1, 2, 3}
j := []interface{}{"Crosby", "Stills", "Nash", "Young"}
k := append(i, j...) // append will allocate as needed
fmt.Println(k)
// Example 3: Arrays, not slices.
// A word like "array" on RC often means "whatever array means in your
// language." In Go, the common role of "array" is usually filled by
// Go slices, as in examples 1 and 2. If by "array" you really mean
// "Go array," then you have to do a little extra work. The best
// technique is almost always to create slices on the arrays and then
// use the copy function.
l := [...]int{1, 2, 3}
m := [...]int{7, 12, 60} // arrays have constant size set at compile time
var n [len(l) + len(m)]int
copy(n[:], l[:]) // [:] creates a slice that references the entire array
copy(n[len(l):], m[:])
fmt.Println(n)
}
{{out}}
[1 2 3 7 12 60]
[1 2 3 Crosby Stills Nash Young]
[1 2 3 7 12 60]
Array concatenation needs can vary. Here is another set of examples that illustrate different techniques.
package main
import (
"reflect"
"fmt"
)
// Generic version
// Easier to make the generic version accept any number of arguments,
// and loop trough them. Otherwise there will be lots of code duplication.
func ArrayConcat(arrays ...interface{}) interface{} {
if len(arrays) == 0 {
panic("Need at least one arguemnt")
}
var vals = make([]*reflect.SliceValue, len(arrays))
var arrtype *reflect.SliceType
var totalsize int
for i,a := range arrays {
v := reflect.NewValue(a)
switch t := v.Type().(type) {
case *reflect.SliceType:
if arrtype == nil {
arrtype = t
} else if t != arrtype {
panic("Unequal types")
}
vals[i] = v.(*reflect.SliceValue)
totalsize += vals[i].Len()
default: panic("not a slice")
}
}
ret := reflect.MakeSlice(arrtype,totalsize,totalsize)
targ := ret
for _,v := range vals {
reflect.Copy(targ, v)
targ = targ.Slice(v.Len(),targ.Len())
}
return ret.Interface()
}
// Type specific version
func ArrayConcatInts(a, b []int) []int {
ret := make([]int, len(a) + len(b))
copy(ret, a)
copy(ret[len(a):], b)
return ret
}
func main() {
test1_a, test1_b := []int{1,2,3}, []int{4,5,6}
test1_c := ArrayConcatInts(test1_a, test1_b)
fmt.Println(test1_a, " + ", test1_b, " = ", test1_c)
test2_a, test2_b := []string{"a","b","c"}, []string{"d","e","f"}
test2_c := ArrayConcat(test2_a, test2_b).([]string)
fmt.Println(test2_a, " + ", test2_b, " = ", test2_c)
}
{{out}}
[1 2 3] + [4 5 6] = [1 2 3 4 5 6]
[a b c] + [d e f] = [a b c d e f]
Gosu
var listA = { 1, 2, 3 }
var listB = { 4, 5, 6 }
var listC = listA.concat( listB )
print( listC ) // prints [1, 2, 3, 4, 5, 6]
Groovy
Solution:
def list = [1, 2, 3] + ["Crosby", "Stills", "Nash", "Young"]
Test:
{{out}}
```txt
[1, 2, 3, Crosby, Stills, Nash, Young]
Haskell
A list is in Haskell one of the most common composite data types (constructed from other types). In the documentation we read for the append operation ++:
(++) :: [a] -> [a] -> [a]
Append two lists, i.e.:
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
[x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
HicEst
REAL :: a(7), b(3), c(10)
c = a
DO i = 1, LEN(b)
c(i + LEN(a)) = b(i)
ENDDO
Hy
(setv a [1 2 3])
=> a
[1, 2, 3]
=> (+ a [4 5 6]) ; returns the concatenation
[1, 2, 3, 4, 5, 6]
=> a
[1, 2, 3]
=> (.extend a [7 8 9]) ; modifies the list in place
=> a
[1, 2, 3, 7, 8, 9]
=> (+ [1 2] [3 4] [5 6]) ; can accept multiple arguments
[1, 2, 3, 4, 5, 6]
i
main
a $= [1, 2, 3]
b $= [4, 5, 6]
print(a + b)
}
=={{header|Icon}} and {{header|Unicon}}== Both languages have list concatenation built in. Lists are fully dynamic arrays which can be truncated or extended at either end.
procedure main()
L1 := [1, 2, 3, 4]
L2 := [11, 12, 13, 14]
L3 := L1 ||| L2
sep := ""
every writes(sep, !L3) do
sep := ", "
write()
end
IDL
Array concatenation can mean different things, depending on the number of dimensions of the arguments and the result. In the simplest case, with 1-dimensional arrays to begin with, there are two obvious ways to concatenate them. If my arrays are these:
> a = [1,2,3]
> b = [4,5,6]
> help,a
A INT = Array[3]
> help,b
B INT = Array[3]
> print,a
1 2 3
> print,b
4 5 6
Then they can be concatenated "at the ends":
> help,[a,b]
<Expression> INT = Array[6]
> print,[a,b]
1 2 3 4 5 6
or "at the sides":
> help,[[a],[b]]
<Expression> INT = Array[3, 2]
> print,[[a],[b]]
1 2 3
4 5 6
Note that this requires that the arrays have the same size at the side at which they are concatenated:
> b = transpose(b)
> help,b
B INT = Array[1, 3]
> print,b
4
5
6
> print,[a,b]
Unable to concatenate variables because the dimensions do not agree: B.
Execution halted at: $MAIN$
> print,[[a],[b]]
Unable to concatenate variables because the dimensions do not agree: B.
Execution halted at: $MAIN$
This can get a lot more complicated as a 3x4x5-element three-dimensional array can be concatenated with a 5x2x3-element array at exactly two "surfaces".
Idris
Idris will disambiguate functions based on type, so both List
(arbitrary length) and Vect
(fixed length) can be concatenated in the same way:
Idris> [1, 2] ++ [4, 5, 6]
[1, 2, 3, 4, 5] : List Integer
Idris> :module Data.Vect
*Data/Vect> (the (Vect 2 Nat) [1, 2]) ++ (the (Vect 3 Nat) [3, 4, 5])
[1, 2, 3, 4, 5] : Vect 5 Nat
Inform 7
let A be {1, 2, 3};
let B be {4, 5, 6};
add B to A;
Ioke
[1,2,3] + [3,2,1]
[1,2,3] + [3,2,1]
+> [1, 2, 3, 3, 2, 1]
J
'''Solution''': ,
'''Example''':
array1 =: 1 2 3
array2 =: 4 5 6
array1 , array2
1 2 3 4 5 6
Of course, in J, array concatenation works (consistently) on arrays of any rank or dimension.
The verb ,
concatenates by treating the argument array with the largest number of dimensions as a list. Other primary verbs concatenate along other axes.
]ab=: 3 3 $ 'aaabbbccc'
aaa
bbb
ccc
]wx=: 3 3 $ 'wxyz'
wxy
zwx
yzw
ab , wx
aaa
bbb
ccc
wxy
zwx
yzw
ab ,. wx
aaawxy
bbbzwx
cccyzw
ab ,: wx
aaa
bbb
ccc
wxy
zwx
yzw
$ ab , wx NB. applies to first (highest) axis
6 3
$ ab ,. wx NB. applies to last (atomic) axis
3 6
$ ab ,: wx NB. applies to new (higher) axis
2 3 3
Java
public static Object[] concat(Object[] arr1, Object[] arr2) {
Object[] res = new Object[arr1.length + arr2.length];
System.arraycopy(arr1, 0, res, 0, arr1.length);
System.arraycopy(arr2, 0, res, arr1.length, arr2.length);
return res;
}
JavaScript
The Array.concat()
method returns a new array comprised of this array joined with other array(s) and/or value(s).
var a = [1,2,3],
b = [4,5,6],
c = a.concat(b); //=> [1,2,3,4,5,6]
Or, if we consider the concatenation of two arrays as a particular instance of the more general problem of concatenating 2 or more arrays, we can write a generic function:
{{trans|Haskell}} See, for a function with an analogous type signature, '''concat''' in the Haskell Prelude.
(function () {
'use strict';
// concat :: [[a]] -> [a]
function concat(xs) {
return [].concat.apply([], xs);
}
return concat(
[["alpha", "beta", "gamma"],
["delta", "epsilon", "zeta"],
["eta", "theta", "iota"]]
);
})();
{{Out}}
["alpha", "beta", "gamma", "delta", "epsilon", "zeta", "eta", "theta", "iota"]
jq
If a and b are two arrays, then a+b is their concatenation. Similarly for a+b+c.
To concatenate the component arrays of an array, A, the add filter can be used: A|add
jq also supports streams, which are somewhat array-like, so it may be worth mentioning that the concatenation of two or more streams can be accomplished using "," instead of "+".
[1,2] + [3] + [null] # => [1,2,3,null]
[range(1;3), 3, null] # => [1,2,3,null]
Julia
a = [1,2,3]
b = [4,5,6]
ab = [a;b]
# the above bracket notation simply generates a call to vcat
ab = vcat(a,b)
# hcat is short for `horizontal concatenation`
ab = hcat(a,b) #ab -> 3x2 matrix
# the append!(a,b) method is mutating, appending `b` to `a`
append!(a,b) # a now equals [1,2,3,4,5,6]
K
a: 1 2 3
b: 4 5 6
a,b
1 2 3 4 5 6
Concatenations on larger dimensions also use ",", often combined with other operations.
ab:3 3#"abcdefghi"
("abc"
"def"
"ghi")
dd:3 3#"012345678"
("012"
"345"
"678")
ab,dd
("abc"
"def"
"ghi"
"012"
"345"
"678")
+ab,dd / flip (transpose) join
("adg036"
"beh147"
"cfi258")
ab,'dd / eachpair join
("abc012"
"def345"
"ghi678")
+(+ab),dd
("abc036"
"def147"
"ghi258")
Klong
[1 2 3],[4 5 6] :" join "
[1 2 3 4 5 6]
[1 2],:\[[3 4] [5 6] [7 8]] :" join each-left "
[[1 2 3 4] [1 2 5 6] [1 2 7 8]]
[1 2],:/[[3 4] [5 6] [7 8]] :" join each-right "
[[3 4 1 2] [5 6 1 2] [7 8 1 2]]
Kotlin
There is no operator or standard library function for concatenating Array
types. One option is to convert to Collection
s, concatenate, and convert back:
fun main(args: Array<String>) {
val a: Array<Int> = arrayOf(1, 2, 3) // initialise a
val b: Array<Int> = arrayOf(4, 5, 6) // initialise b
val c: Array<Int> = (a.toList() + b.toList()).toTypedArray()
println(c)
}
Alternatively, we can write our own concatenation function:
fun arrayConcat(a: Array<Any>, b: Array<Any>): Array<Any> {
return Array(a.size + b.size, { if (it in a.indices) a[it] else b[it - a.size] })
}
When working directly with Collection
s, we can simply use the +
operator:
fun main(args: Array<String>) {
val a: Collection<Int> = listOf(1, 2, 3) // initialise a
val b: Collection<Int> = listOf(4, 5, 6) // initialise b
val c: Collection<Int> = a + b
println(c)
}
LabVIEW
Use the Build Array function.
{{VI snippet}}
[[File:LabVIEW_Array_concatenation.png]]
Lang5
[1 2] [3 4] append collapse .
Lasso
local(arr1 = array(1, 2, 3))
local(arr2 = array(4, 5, 6))
local(arr3 = #arr1->asCopy) // make arr3 a copy of arr2
#arr3->merge(#arr2) // concatenate 2 arrays
Result:
arr1 = array(1, 2, 3)
arr2 = array(4, 5, 6)
arr3 = array(4, 5, 6)
arr3 = array(1, 2, 3, 4, 5, 6)
LFE
> (++ '(1 2 3) '(4 5 6))
(1 2 3 4 5 6)
> (: lists append '(1 2 3) '(4 5 6))
(1 2 3 4 5 6)
Liberty BASIC
x=10
y=20
dim array1(x)
dim array2(y)
[concatenate]
dim array3(x + y)
for i = 1 to x
array3(i) = array1(i)
next
for i = 1 to y
array3(i + x) = array2(i)
next
[print]
for i = 1 to x + y
print array3(i)
next
LIL
LIL uses lists instead of arrays. The builtin '''append''' command could be used as '''append a $b'''. That would add the entire list in variable '''b''' as one item to list '''a'''. Below '''quote''' is used to flatten the lists into a single new list of all items.
##
Array concatenation in LIL
##
set a [list 1 2 3]
set b [list 4 5 6]
set c [quote $a $b]
print $c
print "[index $c 0] [index $c 3]"
{{out}}
prompt$ lil arrayConcatenation.lil
1 2 3 4 5 6
1 4
Limbo
implement Command;
include "sys.m";
sys: Sys;
include "draw.m";
include "sh.m";
init(nil: ref Draw->Context, nil: list of string)
{
sys = load Sys Sys->PATH;
a := array[] of {1, 2};
b := array[] of {3, 4, 5};
c := array[len a + len b] of int;
c[:] = a;
c[len a:] = b;
for (i := 0; i < len c; i++)
sys->print("%d\n", c[i]);
}
Lingo
a = [1,2]
b = [3,4,5]
repeat with v in b
a.append(v)
end repeat
put a
-- [1, 2, 3, 4, 5]
Little
void main() {
int a[] = {0, 1, 2, 3, 4};
int b[] = {5, 6, 7, 8, 9};
int c[] = {(expand)a, (expand)b};
puts(c);
}
Logo
COMBINE is used to combine lists or words. SENTENCE is used to combine lists and words into a single list.
to combine-arrays :a1 :a2
output listtoarray sentence arraytolist :a1 arraytolist :a2
end
show combine-arrays {1 2 3} {4 5 6} ; {1 2 3 4 5 6}
Lua
a = {1, 2, 3}
b = {4, 5, 6}
for _, v in pairs(b) do
table.insert(a, v)
end
print(table.concat(a, ", "))
{{out}}
1, 2, 3, 4, 5, 6
Maple
There is a built-in procedure for concatenating arrays (and similar objects such as matrices or vectors). Arrays can be concatenated along any given dimension, which is specified as the first argument.
> A := Array( [ 1, 2, 3 ] );
A := [1, 2, 3]
> B := Vector['row']( [ sin( x ), cos( x ), tan( x ) ] );
B := [sin(x), cos(x), tan(x)]
> ArrayTools:-Concatenate( 1, A, B ); # stack vertically
[ 1 2 3 ]
[ ]
[sin(x) cos(x) tan(x)]
> ArrayTools:-Concatenate( 2, A, B ); # stack horizontally
[1, 2, 3, sin(x), cos(x), tan(x)]
> M := << a, b, c ; d, e, f >>; # a matrix
[a b c]
M := [ ]
[d e f]
> ArrayTools:-Concatenate( 1, M, A );
[a b c]
[ ]
[d e f]
[ ]
[1 2 3]
Of course, the order of the arguments is important.
> ArrayTools:-Concatenate( 1, A, M );
[1 2 3]
[ ]
[a b c]
[ ]
[d e f]
Lists, in Maple, might be considered to be a kind of "array" (in the sense that they look like arrays in memory), though they are actually immutable objects. However, they can be concatenated as follows.
> L1 := [ 1, 2, 3 ];
L1 := [1, 2, 3]
> L2 := [ a, b, c ];
L2 := [a, b, c]
> [ op( L1 ), op( L2 ) ];
[1, 2, 3, a, b, c]
> [ L1[], L2[] ]; # equivalent, just different syntax
[1, 2, 3, a, b, c]
M2000 Interpreter
a=(1,2,3,4,5)
b=Cons(a, (6,7,8),a)
Print b
1 2 3 4 5 6 7 8 1 2 3 4 5
Adding 2 dimension arrays
Dim Base 0, A(2,2)=1, B(1,2)=6
A()=Cons(A(), B(), A(), B())
\\ Restore the dimensions (without erasing items)
Dim A(Dimension(A(),1)/2, 2)
For I=0 to Dimension(A(),1)-1 {
For j=0 to Dimension(A(),2)-1 {
Print A(i, j),
}
Print
}
{{out}}
1 1
1 1
6 6
1 1
1 1
6 6
</pre >
=={{header|Mathematica}} / {{header|Wolfram Language}}==
```Mathematica
Join[{1,2,3}, {4,5,6}]
-> {1, 2, 3, 4, 5, 6}
=={{header|MATLAB}} / {{header|Octave}}== Two arrays are concatenated by placing the two arrays between a pair of square brackets. A space between the two array names will concatenate them horizontally, and a semi-colon between array names will concatenate vertically.
a = [1 2 3]
a =
1 2 3
>> b = [4 5 6]
b =
4 5 6
>> concat = [a b]
concat =
1 2 3 4 5 6
>> concat = [a;b]
concat =
1 2 3
4 5 6
For multi-dimensional arrays, there is also the function cat():
c = randn([3,4,5]);
>> d = randn([3,4,7]);
>> e = cat(3,c,d);
>> size(e)
ans =
3 4 12
Maxima
/* There are also functions for matrices */
a: matrix([6, 1, 8], [7, 5, 3], [2, 9, 4])$
addcol(a, ident(3)); /* matrix([6, 1, 8, 1, 0, 0], [7, 5, 3, 0, 1, 0], [2, 9, 4, 0, 0, 1]) */
addrow(a, ident(3)); /* matrix([6, 1, 8], [7, 5, 3], [2, 9, 4], [1, 0, 0], [0, 1, 0], [0, 0, 1]) */
## Mercury
```Mercury
A `append` B = C
It ''could'' be "as simple as array1 + array2", but the 'array' module names the operation 'append' rather than '+'. It's tempting to just say that Mercury supports ad-hoc polymorphism - it can infer that a bare '+' refers to 'float.+' or 'int.+' (or that the 'append' above is array.append, rather than list.append), by the types involved - but it also handles other ambiguities in the same way. For instance, Mercury (like Prolog and Erlang) treats the arity of a function as part of its name, where ''a(1, 2)'' and ''a(1)'' involve the distinct functions a/2 and a/1. But Mercury also (unlike Prolog and Erlang) supports [[currying]], where ''a(1)'' is a function that accepts a/2's second argument. So, is ''[a(X), a(Y), a(Z)]'' a list of whatever type a/1 evaluates to, or is it a list of curried a/2?
min
{{works with|min|0.19.3}}
(1 2 3) (4 "apple" 6) concat print
{{out}}
(1 2 3 4 "apple" 6)
MiniScript
arrOne = [1, 2, 3]
arrTwo = [4, 5, 6]
print arrOne + arrTwo
Neko
/*
Array concatenation, in Neko
*/
var a1 = $array(1,2,3,4)
var a2 = $array("abc", "def")
/* $array(a1, a2) creates an array of two arrays, $aconcat merges to one */
var ac = $aconcat($array(a1, a2))
$print(ac, "\n")
{{out}}
prompt$ nekoc array-concatenation.neko
prompt$ neko array-concatenation.n
[1,2,3,4,abc,def]
Nemerle
using System.Console;
using Nemerle.Collections;
module ArrayCat
{
Main() : void
{
def arr1 = array[1, 2, 3]; def arr2 = array[4, 5, 6];
def arr12 = arr1.Append(arr2); // <----
foreach (i in arr12) Write($"$i ");
}
}
NetRexx
NetRexx arrays are identical to [[Java|Java's]] so all the techniques described in the [[#Java|Java]] section apply to NetRexx too. This example uses the Collection classes to merge two arrays.
/* NetRexx */
options replace format comments java crossref nobinary
cymru = [ 'Ogof Ffynnon Ddu', 'Ogof Draenen' ]
dlm = '-'.copies(40)
say dlm
loop c_ = 0 to cymru.length - 1
say c_ cymru[c_]
end c_
yorks = [ 'Malham Tarn Pot', 'Greygill Hole' ]
say dlm
loop y_ = 0 to yorks.length - 1
say y_ yorks[y_]
end y_
merge = ArrayList()
merge.addAll(Arrays.asList(cymru))
merge.addAll(Arrays.asList(yorks))
say dlm
merged = merge.toArray()
loop m_ = 0 to merged.length - 1
say m_ merged[m_]
end m_
{{out}}
----------------------------------------
0 Ogof Ffynnon Ddu
1 Ogof Draenen
----------------------------------------
0 Malham Tarn Pot
1 Greygill Hole
----------------------------------------
0 Ogof Ffynnon Ddu
1 Ogof Draenen
2 Malham Tarn Pot
3 Greygill Hole
NewLISP
; file: arraycon.lsp
; url: http://rosettacode.org/wiki/Array_concatenation
; author: oofoe 2012-01-28
(println "Append lists: " (append '(3 a 5 3) (sequence 1 9)))
(println "Multi append: "
(append '(this is)
'(a test)
'(of the emergency)
(sequence 3 1)))
(println "Append arrays: "
(append '((x 56) (b 99)) '((z 34) (c 23) (r 88))))
(exit)
{{out}}
Append lists: (3 a 5 3 1 2 3 4 5 6 7 8 9)
Multi append: (this is a test of the emergency 3 2 1)
Append arrays: ((x 56) (b 99) (z 34) (c 23) (r 88))
Nial
Examples tested to work with Q'Nial7
a:= 1 2 3
+-+-+-+
|1|2|3|
+-+-+-+
b:= 4 5 6
+-+-+-+
|4|5|6|
+-+-+-+
Table of lists:
a b
+-------+-------+
|+-+-+-+|+-+-+-+|
||1|2|3|||4|5|6||
|+-+-+-+|+-+-+-+|
+-------+-------+
Simple concatenation of two arrays/lists:
link a b
+-+-+-+-+-+-+
|1|2|3|4|5|6|
+-+-+-+-+-+-+
Convert list of lists to table:
mix a b
+-+-+-+
|1|2|3|
+-+-+-+
|4|5|6|
+-+-+-+
Interchange levels of a list of lists:
pack a b
+-----+-----+-----+
|+-+-+|+-+-+|+-+-+|
||1|4|||2|5|||3|6||
|+-+-+|+-+-+|+-+-+|
+-----+-----+-----+
Nim
Dynamic sized Sequences can simply be concatenated:
var
x = @[1,2,3,4,5,6]
y = @[7,8,9,10,11]
z = x & y
Static sized Arrays:
var
a = [1,2,3,4,5,6]
b = [7,8,9,10,11]
c: array[11, int]
c[0..5] = a
c[6..10] = b
=={{header|Oberon-2}}==
MODULE ArrayConcat;
IMPORT
Out;
TYPE
IntArray = POINTER TO ARRAY OF INTEGER;
VAR
x, y, z: IntArray;
PROCEDURE InitArray(VAR x: IntArray;from: INTEGER);
VAR
i: LONGINT;
BEGIN
FOR i := 0 TO LEN(x^) - 1 DO
x[i] := from;
INC(from)
END
END InitArray;
PROCEDURE Concat(x,y: IntArray; VAR z: IntArray);
VAR
i: LONGINT;
BEGIN
ASSERT(LEN(x^) + LEN(y^) <= LEN(z^));
FOR i := 0 TO LEN(x^) - 1 DO z[i] := x[i] END;
FOR i := 0 TO LEN(y^) - 1 DO z[i + LEN(x^)] := y[i] END
END Concat;
PROCEDURE Show(x: IntArray);
VAR
i: INTEGER;
BEGIN
i := 0;
Out.Char('[');
WHILE (i < LEN(x^)) DO
Out.LongInt(x[i],3);IF i < LEN(x^) - 1 THEN Out.Char(',') END;
INC(i)
END;
Out.Char(']');Out.Ln
END Show;
BEGIN
(* Standard types *)
NEW(x,5);InitArray(x,1);
NEW(y,10);InitArray(y,6);
NEW(z,LEN(x^) + LEN(y^));
Concat(x,y,z);
Show(z)
END ArrayConcat.
{{out}}
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Objeck
bundle Default {
class Arithmetic {
function : Main(args : String[]) ~ Nil {
array1 := [3, 5, 7];
array2 := [2, 4, 6];
array3 := Copy(array1, array2);
each(i : array3) {
array3[i]->PrintLine();
};
}
function : native : Copy(array1 : Int[], array2 : Int[]) ~ Int[] {
max := array1->Size() + array2->Size();
array3 := Int->New[max];
i := 0;
for(i := i; i < array1->Size(); i += 1;) {
array3[i] := array1[i];
};
j := 0;
for(i := i; i < max; i += 1;) {
array3[i] := array2[j];
j += 1;
};
return array3;
}
}
}
=={{header|Objective-C}}== with immutable arrays:
NSArray *arr1 = @[@1, @2, @3];
NSArray *arr2 = @[@4, @5, @6];
NSArray *arr3 = [arr1 arrayByAddingObjectsFromArray:arr2];
or adding onto a mutable array:
NSArray *arr1 = @[@1, @2, @3];
NSArray *arr2 = @[@4, @5, @6];
NSMutableArray *arr3 = [NSMutableArray arrayWithArray:arr1];
[arr3 addObjectsFromArray:arr2];
OCaml
It is more natural in OCaml to use lists instead of arrays:
# let list1 = [1; 2; 3];;
val list1 : int list = [1; 2; 3]
# let list2 = [4; 5; 6];;
val list2 : int list = [4; 5; 6]
# let list1and2 = list1 @ list2;;
val list1and2 : int list = [1; 2; 3; 4; 5; 6]
If you want to use arrays:
# let array1 = [|1; 2; 3|];;
val array1 : int array = [|1; 2; 3|]
# let array2 = [|4; 5; 6|];;
val array2 : int array = [|4; 5; 6|]
# let array1and2 = Array.append array1 array2;;
val array1and2 : int array = [|1; 2; 3; 4; 5; 6|]
Oforth
import: mapping
[1, 2, 3 ] [ 4, 5, 6, 7 ] +
Onyx
# With two arrays on the stack, cat pops
# them, concatenates them, and pushes the result back
# on the stack. This works with arrays of integers,
# strings, or whatever. For example,
[1 2 3] [4 5 6] cat # result: [1 2 3 4 5 6]
[`abc' `def'] [`ghi' `jkl'] cat # result: [`abc' `def' `ghi' `jkl']
# To concatenate more than two arrays, push the number of arrays
# to concatenate onto the stack and use ncat. For example,
[1 true `a'] [2 false `b'] [`3rd array'] 3 ncat
# leaves [1 true `a' 2 false `b' `3rd array'] on the stack
ooRexx
a = .array~of(1,2,3)
say "Array a has " a~items "items"
b = .array~of(4,5,6)
say "Array b has " b~items "items"
a~appendall(b) -- adds all items from b to a
say "Array a now has " a~items "items"
{{out}}
Array a has 3 items
Array b has 3 items
Array a now has 6 items
Order
Order supports two main aggregate types: tuples and sequences (similar to lists in other languages). Most "interesting" operations are limited to sequences, but both support an append operation, and each can be converted to the other.
#include <order/interpreter.h>
ORDER_PP( 8tuple_append(8tuple(1, 2, 3), 8tuple(4, 5, 6), 8pair(7, 8)) )
// -> (1,2,3,4,5,6,7,8)
ORDER_PP( 8seq_append(8seq(1, 2, 3), 8seq(4, 5, 6), 8seq(7, 8)) )
// -> (1)(2)(3)(4)(5)(6)(7)(8)
OxygenBasic
'CREATE DYNAMIC ARRAY SPACES USING STRINGS
string sa=nuls 5* sizeof float
string sb=sa
'MAP ARRAY VARIABLES ONTO STRINGS
float a at *sa
float b at *sb
'ASSIGN SOME VALUES
a<=10,20,30,40,50
b<=60,70,80,90,00
'ADD ARRAY B TO A BY STRING CONCATENATION
sa+=sb
'TEST
print a[7] 'result 70
Oz
List are concatenated with List.append
(shortcut: Append
). Tuples are concatened with Tuple.append
. Arrays do exist in Oz, but are rarely used.
%% concatenating 2 lists
{Append [a b] [c d]} = [a b c d]
%% concatenating 2 tuples
{Tuple.append t(1 2 3) u(4 5 6)} = u(1 2 3 4 5 6)
PARI/GP
concat(u,v)
Pascal
''See [[#Delphi|Delphi]] and [[#Free Pascal|Free Pascal]]''
Perl
In Perl, arrays placed into list context are flattened:
my @arr1 = (1, 2, 3);
my @arr2 = (4, 5, 6);
my @arr3 = (@arr1, @arr2);
The [http://perldoc.perl.org/functions/push.html push]
function appends elements onto an existing array:
my @arr1 = (1, 2, 3);
my @arr2 = (4, 5, 6);
push @arr1, @arr2;
print "@arr1\n"; # prints "1 2 3 4 5 6"
Perl 6
{{works with|Rakudo|2018.06}}
my @array1 = 1, 2, 3;
my @array2 = 4, 5, 6;
# If you want to concatenate two array to form a third,
# either use the slip operator "|", to flatten each array.
my @array3 = |@array1, |@array2;
say @array3;
# or just flatten both arrays in one fell swoop
@array3 = flat @array1, @array2;
say @array3;
# On the other hand, if you just want to add the elements
# of the second array to the first, use the .append method.
say @array1.append: @array2;
{{Out}}
[1 2 3 4 5 6]
[1 2 3 4 5 6]
[1 2 3 4 5 6]
Phix
sequence s1 = {1,2,3}, s2 = {4,5,6}
? s1 & s2
{{out}}
{1,2,3,4,5,6}
PHP
$arr1 = array(1, 2, 3);
$arr2 = array(4, 5, 6);
$arr3 = array_merge($arr1, $arr2);
PicoLisp
PicoLisp has no built-in array data type. Lists are used instead.
There are destructive concatenations:
: (setq A (1 2 3) B '(a b c))
-> (a b c)
: (conc A B) # Concatenate lists in 'A' and 'B'
-> (1 2 3 a b c)
: A
-> (1 2 3 a b c) # Side effect: List in 'A' is modified!
and non-destructive concatenations:
: (setq A (1 2 3) B '(a b c))
-> (a b c)
: (append A B) # Append lists in 'A' and 'B'
-> (1 2 3 a b c)
: A
-> (1 2 3)
: B
-> (a b c) # Arguments are not modified
PL/I
Trivial example requires no computational statement. Note that the arrays are not in static storage:
declare x(12) fixed;
declare b(5) fixed defined x;
declare c(7) fixed defined x(1sub+5);
A more general example using dynamic bounds.
Again, no computation statement is required.
An alternative, that can be used to advantage for matrices
as well as vectors, follows. This example illustrates
extending a matrix diagonally. Although fixed array bounds
are used in the declarations, the bounds can be dynamic.
Matrix B is extended by placing matrix C on its diagonal:
<lang>
declare a(5,6) fixed;
declare b(3,4) fixed defined a(1sub, 2sub);
declare c(2,2) fixed defined a(1sub+hbound(b,1), 2sub+hbound(b,2));
declare (i, j, k) fixed;
a = 0;
put skip list ('Please type elements for a 3 x 4 matrix:');
get list (b);
put skip list ('Please type elements for a 2 x 2 matrix:');
get list (c);
put skip edit (c) ( skip, (hbound(c,2)) f(5,0) );
put skip list ('Composite matrix:');
put skip edit (a) ( skip, (hbound(a,2)) f(5,0) );
{{out}}
Please type elements for a 2 x 2 matrix:
13 14 15 16 Composite matrix:
1 2 3 4 0 0
5 6 7 8 0 0
9 10 11 12 0 0
0 0 0 0 13 14
0 0 0 0 15 16
## Pony
```pony
actor Main
new create(env:Env)=>
var a:Array[I32]=Array[I32](4)
var b:Array[I32]=Array[I32](2)
a.push(1)
a.push(2)
a.push(3)
a.push(4)
b.push(5)
b.push(6)
a.concat(b.values())
for i in a.values() do
env.out.print(i.string())
end
PostScript
{{libheader|initlib}}
[1 2 3 4] [5 6 7 8] concat
PowerShell
$a = 1,2,3
$b = 4,5,6
$c = $a + $b
Write-Host $c
Prolog
?- append([1,2,3],[4,5,6],R).
R = [1, 2, 3, 4, 5, 6].
PureBasic
Procedure displayArray(Array a(1), msg.s)
Protected i
Print(msg + " [")
For i = 0 To ArraySize(a())
Print(Str(a(i)))
If i <> ArraySize(a())
Print(", ")
EndIf
Next
PrintN("]")
EndProcedure
Procedure randomElements(Array a(1), lo, hi)
Protected i
For i = 0 To ArraySize(a())
a(i) = random(hi - lo) + lo
Next
EndProcedure
Procedure arrayConcat(Array a(1), Array b(1), Array c(1))
Protected i, newSize = ArraySize(a()) + ArraySize(b()) + 1
Dim c(newSize)
For i = 0 To ArraySize(a())
c(i) = a(i)
Next
For i = 0 To ArraySize(b())
c(i + ArraySize(a()) + 1) = b(i)
Next
EndProcedure
If OpenConsole()
Dim a(random(3) + 1)
Dim b(random(3) + 1)
Dim c(0) ;array will be resized by arrayConcat()
randomElements(a(), -5, 5)
randomElements(b(), -5, 5)
displayArray(a(), "a:")
displayArray(b(), "b:")
arrayConcat(a(), b(), c())
displayArray(c(), "concat of a[] + b[]:")
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
Input()
CloseConsole()
EndIf
{{out}}
a: [5, 2, -4, -1, -2]
b: [0, -4, -1]
concat of a[] + b[]: [5, 2, -4, -1, -2, 0, -4, -1]
Python
The [http://docs.python.org/library/stdtypes.html#sequence-types-str-unicode-list-tuple-buffer-xrange +]
operator concatenates two lists and returns a new list.
The [http://docs.python.org/library/stdtypes.html#mutable-sequence-types list.extend]
method appends elements of another list to the receiver.
arr1 = [1, 2, 3]
arr2 = [4, 5, 6]
arr3 = [7, 8, 9]
arr4 = arr1 + arr2
assert arr4 == [1, 2, 3, 4, 5, 6]
arr4.extend(arr3)
assert arr4 == [1, 2, 3, 4, 5, 6, 7, 8, 9]
Note: list.extend is normally accomplished using the += operator like this:
arr5 = [4, 5, 6]
arr6 = [7, 8, 9]
arr6 += arr5
assert arr6 == [7, 8, 9, 4, 5, 6]
Q
list1:1 2 3
list2:4 5 6
list1,list2
R
a1 <- c(1, 2, 3)
a2 <- c(3, 4, 5)
a3 <- c(a1, a2)
Racket
(vector-append #(1 2 3 4) #(5 6 7) #(8 9 10))
{{out}}
'#(1 2 3 4 5 6 7 8 9 10)
RapidQ
DEFINT A(1 to 4) = {1, 2, 3, 4}
DEFINT B(1 to 4) = {10, 20, 30, 40}
'Append array B to array A
Redim A(1 to 8) as integer
MEMCPY(varptr(A(5)), varptr(B(1)), Sizeof(integer)*4)
REBOL
a1: [1 2 3]
a2: [4 5 6]
a3: [7 8 9]
append a1 a2 ; -> [1 2 3 4 5 6]
append/only a1 a3 ; -> [1 2 3 4 5 6 [7 8 9]]
Red
arr1: ["a" "b" "c"]
>> arr2: ["d" "e" "f"]
>> append arr1 arr2
== ["a" "b" "c" "d" "e" "f"]
>> arr3: [1 2 3]
>> insert arr1 arr3
>> arr1
== [1 2 3 "a" "b" "c" "d" "e" "f"]
>> arr4: [22 33 44]
== [22 33 44]
>> append/only arr1 arr4
== [1 2 3 "a" "b" "c" "d" "e" "f" [22 33 44]]
Retro
needs array'
^array'new{ 1 2 3 } ^array'new{ 4 5 6 } ^array'append
REXX
REXX doesn't have arrays as such, but it has something that looks, feels, and tastes like arrays: ::::* stemmed variables
Simply, a stemmed array is a variable with an appended dot ('''.''') followed by a symbol (it's normally an integer or an alphanumeric name).
There is no way to preallocate a stemmed variable, REXX just assigns them as they are created (assigned a value).
As such, there isn't an easy way to keep track of the number of "elements" in a REXX "array" (unless the programmer maintains a list).
Consider:
a.1 = 10
a.2 = 22.7
a.7 = -12
where now we have three "elements", and they are disjointed (another word for ''sparse'').
There are ways to handle this in REXX however.
When assigning stemmed arrays, it is common to assign "element" zero to the number of values,
assuming that the stemmed variables are sequential.
'''example:'''
fact.0=8
fact.1= 1
fact.2= 2
fact.3= 6
fact.4= 24
fact.5= 120
fact.6= 720
fact.7= 5040
fact.8=40320
To concat two "arrays" in REXX, the following assumes that the stemmed variables are in order, with no gaps, and none have a "null" value.
/*REXX program to demonstrates how to perform array concatenation.*/
p.= /*(below) a short list of primes.*/
p.1=2; p.2=3; p.3=5; p.4=7; p.5=11; p.6=13
p.7=17; p.8=19; p.9=23; p.10=27; p.11=31; p.12=37
f.= /*(below) a list of Fibonacci #s.*/
f.0=0;f.1=1;f.2=1;f.3=2;f.4=3;f.5=5;f.6=8;f.7=13;f.8=21;f.9=34;f.10=55
do j=1 while p.j\==''
c.j=p.j /*assign C array with some primes*/
end /*j*/
n=j-1
do k=0 while f.k\==''; n=n+1
c.n=f.k /*assign C array with fib numbers*/
end /*k*/
say 'elements=' n
say
do m=1 for n
say 'c.'m"="c.m /*show a "merged" C array nums.*/
end /*m*/
/*stick a fork in it, we're done.*/
{{out}}
elements= 23
c.1=2
c.2=3
c.3=5
c.4=7
c.5=11
c.6=13
c.7=17
c.8=19
c.9=23
c.10=27
c.11=31
c.12=37
c.13=0
c.14=1
c.15=1
c.16=2
c.17=3
c.18=5
c.19=8
c.20=13
c.21=21
c.22=34
c.23=55
Ring
arr1 = [1, 2, 3]
arr2 = [4, 5, 6]
arr3 = [7, 8, 9]
arr4 = arr1 + arr2
see arr4
see nl
arr5 = arr4 + arr3
see arr5
RLaB
In RLaB the matrices can be appended (column-wise) or stacked (row-wise). Consider few examples:
>> x = [1, 2, 3]
>> y = [4, 5, 6]
// appending matrix 'y' on the right from matrix 'x' is possible if the two matrices have
// the same number of rows:
>> z1 = [x, y]
matrix columns 1 thru 6
1 2 3 4 5 6
// stacking matrix 'y' below the matrix 'x' is possible if the two matrices have
// the same number of columns:
>> z2 = [x; y]
1 2 3
4 5 6
>>
Ruby
The [http://www.ruby-doc.org/core/classes/Array.html#M002209 Array#+]
method concatenates two arrays and returns a new array. The [http://www.ruby-doc.org/core/classes/Array.html#M002166 Array#concat]
method appends elements of another array to the receiver.
arr1 = [1, 2, 3]
arr2 = [4, 5, 6]
arr3 = [7, 8, 9]
arr4 = arr1 + arr2 # => [1, 2, 3, 4, 5, 6]
arr4.concat(arr3) # => [1, 2, 3, 4, 5, 6, 7, 8, 9]
Or use flatten(1):
# concat multiple arrays:
[arr1,arr2,arr3].flatten(1)
# ignore nil:
[arr1,arr2,arr3].compact.flatten(1)
Rust
fn main() {
let a_vec = vec![1, 2, 3, 4, 5];
let b_vec = vec![6; 5];
let c_vec = concatenate_arrays(&a_vec, &b_vec);
println!("{:?} ~ {:?} => {:?}", a_vec, b_vec, c_vec);
}
fn concatenate_arrays<T: Clone>(x: &[T], y: &[T]) -> Vec<T> {
let mut concat = x.to_vec();
concat.extend_from_slice(y);
concat
}
Or, with iterators:
fn concatenate_arrays<T: Clone>(x: &[T], y: &[T]) -> Vec<T> {
x.iter().chain(y).cloned().collect()
}
=={{header|S-lang}}==
a+b is perfectly valid in S-Lang, but instead of the problem's desired effect,
it gives you a new array with each coorresponding element from a and b added.
But because arrays automatically 'flatten' when defined, concatenation is as
simple as:
<lang S-lang>c = [a, b];
Use of lists is more traditional; lists don't 'flatten', so we use either
list_concat() to create a new concatenated array:
or list_join():
<lang S-lang>list_join(a, b);
which adds the elements of b onto a.
SASL
In SASL, the concat operator ++ is built-in
(1 2 3) ++ (4 5 6)
Scala
val arr1 = Array( 1, 2, 3 )
val arr2 = Array( 4, 5, 6 )
val arr3 = Array( 7, 8, 9 )
arr1 ++ arr2 ++ arr3
//or:
Array concat ( arr1, arr2, arr3 )
// res0: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)
Scheme
; in r5rs, there is append for lists, but we'll need to define vector-append
(define (vector-append . arg) (list->vector (apply append (map vector->list arg))))
(vector-append #(1 2 3 4) #(5 6 7) #(8 9 10))
; #(1 2 3 4 5 6 7 8 9 10)
''Note : vector-append is also defined in [http://srfi.schemers.org/srfi-43/srfi-43.html SRFI-43].''
=== Concatening two-dimensional arrays === {{works with|Gauche Scheme}}
(use gauche.array)
(define (print-matrix m)
(define row-num #f)
(array-for-each-index m
(lambda (row col)
(when (and row-num (not (= row-num row))) (newline))
(format #t "~a " (array-ref m row col))
(set! row-num row)))
(newline))
(define a
#,(<array> (0 3 0 2)
a b
c d
e f))
(define b
#,(<array> (0 3 0 2)
1 2
3 4
5 6))
(print-matrix (array-concatenate a b))
(print-matrix (array-concatenate a b 1))
{{out}}
a b
c d
e f
1 2
3 4
5 6
a b 1 2
c d 3 4
e f 5 6
Seed7
$ include "seed7_05.s7i";
var array integer: a is [] (1, 2, 3, 4);
var array integer: b is [] (5, 6, 7, 8);
var array integer: c is [] (9, 10);
const proc: main is func
local
var integer: number is 0;
begin
c := a & b;
for number range c do
write(number <& " ");
end for;
writeln;
end func;
{{out}}
1 2 3 4 5 6 7 8
SETL
A := [1, 2, 3];
B := [3, 4, 5];
print(A + B); -- [1 2 3 3 4 5]
Sidef
var arr1 = [1, 2, 3];
var arr2 = [4, 5, 6];
var arr3 = (arr1 + arr2); # => [1, 2, 3, 4, 5, 6]
Simula
BEGIN ! Concatenate arrays - of REAL, here;
CLASS REAL_ARRAY(N); INTEGER N;
BEGIN
REAL ARRAY DATA(1:N);
! Return a new REAL_ARRAY containing
! the values from this REAL_ARRAY
! followed by the values from other;
REF(REAL_ARRAY) PROCEDURE CONCAT(other);
REF(REAL_ARRAY) other;
BEGIN
REF(REAL_ARRAY) C;
INTEGER I;
C :- NEW REAL_ARRAY(N + other.N);
FOR I := 1 STEP 1 UNTIL N DO
C.DATA(I) := DATA(I);
FOR I := 1 STEP 1 UNTIL other.N DO
C.DATA(N + I) := other.DATA(I);
CONCAT :- C;
END;
! Fill DATA;
REF(REAL_ARRAY) PROCEDURE linearFill(start, stride);
REAL start, stride;
BEGIN
linearFillFrom(DATA, 1, N, start, stride);
linearFill :- this REAL_ARRAY
END;
PROCEDURE out(sink); REF(printfile) sink;
BEGIN
INTEGER i;
FOR i := 1 STEP 1 UNTIL N DO
sink.OUTFIX(DATA(i), 2, 7);
sink.OUTIMAGE;
END;
END REAL_ARRAY;
! "The problem" is not array as an input parameter:
! I don't know how to
! "pass a new ARRAY out of a PROCEDURE";
REF(REAL_ARRAY) PROCEDURE concatenate(a, b);
REAL ARRAY a, b;
BEGIN
INTEGER i, a_, N, b_, M;
REF(REAL_ARRAY) c;
a_ := LOWERBOUND(a, 1) - 1;
N := UPPERBOUND(a, 1) - a_;
b_ := LOWERBOUND(a, 1) - 1;
M := UPPERBOUND(b, 1) - b_;
c :- NEW REAL_ARRAY(N + M);
FOR i := 1 STEP 1 UNTIL N DO
c.DATA(i) := a(a_+i);
! for readability, don't
! reduce one index expression to a variable
FOR i := 1 STEP 1 UNTIL M DO
c.DATA(N + i) := b(b_+i);
concatenate :- c;
END concatenate REAL ARRAYs;
! two more convenience PROCEDUREs;
PROCEDURE linearFillFrom(a, from, inclusive, start, stride);
REAL ARRAY a; ! passed by reference;
INTEGER from, inclusive;
REAL start, stride;
BEGIN
INTEGER i;
FOR i := from STEP 1 UNTIL inclusive DO
a(i) := start + stride * (i - from)
END;
PROCEDURE linearFill(a, start, stride);
REAL ARRAY a;
REAL start, stride;
linearFillFrom(a, LOWERBOUND(a, 1), UPPERBOUND(a, 1),
start, stride);
REF(REAL_ARRAY) X;
REAL ARRAY u(1:3), v(1:4);
linearFill(u, 3, 7);
linearFill(v, 0, 5);
concatenate(u, v).out(SYSOUT);
X :- NEW REAL_ARRAY(3).linearFill(1, 2);
X.out(SYSOUT);
X.CONCAT(NEW REAL_ARRAY(4)
.linearFill(-1, -3)).out(SYSOUT);
END.
{{out}}
3.00 10.00 17.00 0.00 5.00 10.00 15.00
1.00 3.00 5.00
1.00 3.00 5.00 -1.00 -4.00 -7.00 -10.00
Slate
The binary operation of concatenation is made with the ; (semi-colon) from the type Sequence. It is also available for appending Sequences to WriteStreams.
{1. 2. 3. 4. 5} ; {6. 7. 8. 9. 10}
Smalltalk
Concatenation (appending) is made with the method , (comma), present in classes SequenceableCollection, ArrayedCollection and their subclasses (e.g. Array, String, OrderedCollection ...)
|a b c|
a := #(1 2 3 4 5).
b := #(6 7 8 9 10).
c := a,b.
c displayNl.
SNOBOL4
{{works with|Macro Spitbol}} {{works with|Snobol4+}} {{works with|CSnobol}}
* # Concatenate 2 arrays (vectors)
define('cat(a1,a2)i,j') :(cat_end)
cat cat = array(prototype(a1) + prototype(a2))
cat1 i = i + 1; cat<i> = a1<i> :s(cat1)
cat2 j = j + 1; cat<i - 1 + j> = a2<j> :s(cat2)f(return)
cat_end
* # Fill arrays
str1 = '1 2 3 4 5'; arr1 = array(5)
loop i = i + 1; str1 len(p) span('0123456789') . arr1<i> @p :s(loop)
str2 = '6 7 8 9 10'; arr2 = array(5)
loop2 j = j + 1; str2 len(q) span('0123456789') . arr2<j> @q :s(loop2)
* # Test and display
arr3 = cat(arr1,arr2)
loop3 k = k + 1; str3 = str3 arr3<k> ' ' :s(loop3)
output = str1
output = str2
output = str3
end
{{out}}
1 2 3 4 5
6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
Standard ML
val l1 = [1,2,3,4];;
val l2 = [5,6,7,8];;
val l3 = l1 @ l2 (* [1,2,3,4,5,6,7,8] *)
Stata
Macro language
. matrix a=2,9,4\7,5,3\6,1,8
. matrix list a
a[3,3]
c1 c2 c3
r1 2 9 4
r2 7 5 3
r3 6 1 8
. matrix b=I(3)
. matrix list b
symmetric b[3,3]
c1 c2 c3
r1 1
r2 0 1
r3 0 0 1
. matrix c=a,b
. matrix list c
c[3,6]
c1 c2 c3 c1 c2 c3
r1 2 9 4 1 0 0
r2 7 5 3 0 1 0
r3 6 1 8 0 0 1
. matrix c=a\b
. matrix list c
c[6,3]
c1 c2 c3
r1 2 9 4
r2 7 5 3
r3 6 1 8
r1 1 0 0
r2 0 1 0
r3 0 0 1
Mata
. mata
: a=2,9,4\7,5,3\6,1,8
: b=I(3)
: a,b
1 2 3 4 5 6
+-------------------------+
1 | 2 9 4 1 0 0 |
2 | 7 5 3 0 1 0 |
3 | 6 1 8 0 0 1 |
+-------------------------+
: a\b
1 2 3
+-------------+
1 | 2 9 4 |
2 | 7 5 3 |
3 | 6 1 8 |
4 | 1 0 0 |
5 | 0 1 0 |
6 | 0 0 1 |
+-------------+
: end
Swift
let array1 = [1,2,3]
let array2 = [4,5,6]
let array3 = array1 + array2
Tcl
set a {1 2 3}
set b {4 5 6}
set ab [concat $a $b]; # 1 2 3 4 5 6
Note that in the Tcl language, “arrays” are hash maps of strings to variables, so the notion of concatenation doesn't really apply. What other languages (usually) call arrays are “lists” in Tcl.
=={{header|TI-89 BASIC}}==
If a and b are lists, augment(a, b)
concatenates them in the usual fashion. If a and b are matrices, then augment(a, b)
produces a matrix whose columns are the columns of a followed by the columns of b, i.e. an [[wp:augmented matrix|augmented matrix]].
■ augment({1,2}, {3,4}) {1,2,3,4} ■ augment([[1][2]], [[3][4]]) [[1,3][2,4]]
That last example as displayed in pretty-printing mode: <math>\operatorname{augment} \left(\begin{bmatrix}1 \\ 2\end{bmatrix}, \begin{bmatrix}3 \\ 4\end{bmatrix}\right)</math> :<math>\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}</math> Concatenation in the other direction may of course be done by transposition: <!--lang ti89b--><pre style="font-family: 'TI Uni';"> ■ augment([[x][y]], [[z][w]]) [[x][y][z][w]]
:
Trith
[1 2 3] [4 5 6] concat
UNIX Shell
Using proper built-in Bash arrays:
{{works with|bash}}
array1=( 1 2 3 4 5 ) array2=( 6 7 8 9 10 ) botharrays=( ${array1[@]} ${array2[@]} )
Whitespace-delimited strings work in much the same way:
{{works with|bash}}
array1='1 2 3 4 5' array2='6 7 8 9 10' # Concatenated to a Bash array ... botharrays_a=( $array1 $array2 ) # Concatenated to a string ... botharrays_s="$array1 $array2"
Ursa
# create two streams (the ursa equivalent of arrays) # a contains the numbers 1-10, b contains 11-20 decl int<> a b decl int i for (set i 1) (< i 11) (inc i) append i a end for for (set i 11) (< i 21) (inc i) append i b end for # append the values in b to a append b a # output a to the console out a endl console
Vala
int[] array_concat(int[]a,int[]b){ int[] c = new int[a.length + b.length]; Memory.copy(c, a, a.length * sizeof(int)); Memory.copy(&c[a.length], b, b.length * sizeof(int)); return c; } void main(){ int[] a = {1,2,3,4,5}; int[] b = {6,7,8}; int[] c = array_concat(a,b); foreach(int i in c){ stdout.printf("%d\n",i); } }
VBA
Option Explicit Sub MainConcat_Array() Dim Aray_1() As Variant, Aray_2() As Variant Dim Result() As Variant Aray_1 = Array(1, 2, 3, 4, 5, #11/24/2017#, "azerty") Aray_2 = Array("A", "B", "C", 18, "End") Result = Concat_Array(Aray_1, Aray_2) Debug.Print "With Array 1 : " & Join(Aray_1, ", ") Debug.Print "And Array 2 : " & Join(Aray_2, ", ") Debug.Print "The result is Array 3 : " & Join(Result, ", ") End Sub Function Concat_Array(A1() As Variant, A2() As Variant) As Variant() Dim TmpA1() As Variant, N As Long, i As Long N = UBound(A1) + 1 TmpA1 = A1 ReDim Preserve TmpA1(N + UBound(A2)) For i = N To UBound(TmpA1) TmpA1(i) = A2(i - N) Next Concat_Array = TmpA1 End Function
{{out}}
With Array 1 : 1, 2, 3, 4, 5, 24/11/2017, azerty And Array 2 : A, B, C, 18, End The result is Array 3 : 1, 2, 3, 4, 5, 24/11/2017, azerty, A, B, C, 18, End
VBScript
Function ArrayConcat(arr1, arr2) ReDim ret(UBound(arr1) + UBound(arr2) + 1) For i = 0 To UBound(arr1) ret(i) = arr1(i) Next offset = Ubound(arr1) + 1 For i = 0 To UBound(arr2) ret(i + offset) = arr2(i) Next ArrayConcat = ret End Function arr1 = array(10,20,30) arr2 = array(40,50,60) WScript.Echo "arr1 = array(" & Join(arr1,", ") & ")" WScript.Echo "arr2 = array(" & Join(arr2,", ") & ")" arr3 = ArrayConcat(arr1, arr2) WScript.Echo "arr1 + arr2 = array(" & Join(arr3,", ") & ")"
{{out}}
arr1 = array(10, 20, 30) arr2 = array(40, 50, 60) arr1 + arr2 = array(10, 20, 30, 40, 50, 60)
Visual Basic .NET
Dim iArray1() As Integer = {1, 2, 3} Dim iArray2() As Integer = {4, 5, 6} Dim iArray3() As Integer = Nothing iArray3 = iArray1.Concat(iArray2).ToArray
Wart
Wart doesn't have arrays yet, just lists.
a <- '(1 2 3) b <- '(4 5 6) a+b # => (1 2 3 4 5 6)
Wren
var arr1 = [1,2,3] var arr2 = [4,5,6] for (e in arr2) { arr1.add(e) } System.print(arr1)
{{Out}}
[1, 2, 3, 4, 5, 6]
Yabasic
sub arrayConcatenation(a(), b()) local ta, tb, nt, i ta = arraysize(a(), 1) tb = arraysize(b(), 1) nt = ta + tb redim a(nt) for i = ta + 1 to nt a(i) = b(i - ta) next i return nt end sub // ### ========================= SIZE = 5 dim a(SIZE) dim b(SIZE) for i = 1 to SIZE a(i) = i b(i) = i + SIZE next i nt = arrayConcatenation(a(), b()) for i = 1 to nt print a(i); if i < nt print ", "; next i print
Yacas
Concat({1,2,3}, {4,5,6}) Out> {1, 2, 3, 4, 5, 6}
Yorick
a = [1,2,3]; b = [4,5,6]; ab = grow(a, b);
zkl
Lists (both mutable and read only), no built in support for numeric vectors/arrays/matrices
T(1,2).extend(T(4,5,6)) //-->L(1,2,4,5,6) T(1,2).extend(4,5,6) //-->L(1,2,4,5,6)
zonnon
module Main; import System.Collections.ArrayList as Array, System.Console as Console; type Vector = array {math} * of integer;
procedure Concat(x,y: Vector): Vector; var i,k: integer; res: Vector; begin res := new Vector(len(x) + len(y)); k := 0; for i := 0 to len(x) - 1 do res[k] := x[i];inc(k) end; for i := 0 to len(y) - 1 do res[k] := y[i];inc(k) end; return res end Concat;
procedure Concat2(x,y: Array): Array; var i: integer; res: Array; begin res := new Array(x.Count + y.Count); for i := 0 to x.Count - 1 do res.Add(x[i]); end; for i := 0 to y.Count - 1 do res.Add(y[i]); end; return res end Concat2;
procedure WriteVec(x: Vector); var i: integer; begin for i := 0 to len(x) - 1 do; write(x[i]:3) end; writeln; end WriteVec;
procedure WriteAry(x: Array); var i: integer; begin for i := 0 to x.Count - 1 do; Console.Write("{0,3}",x[i]) end; writeln; end WriteAry;
var a,b: Vector; x,y: Array; begin a := [1,2,3,4]; b := [6,7,8,9]; WriteVec(Concat(a,b));
x := new Array(4); y := new Array(4); x.Add(2);x.Add(4);x.Add(6);x.Add(8); y.Add(3);y.Add(5);y.Add(9);y.Add(11); WriteAry(Concat2(x,y));
end Main.
{{out}} ```txt 1 2 3 4 6 7 8 9 2 4 6 8 3 5 9 11
Zsh
Concatenating arrays.
a=(1 2 3) b=(a b c) c=($a $b)
Pushing a single element into an array.
Pushing another array into an array. ```zsh a+=($b)
ZX Spectrum Basic
{{trans|Liberty BASIC}}
10 LET x=10 20 LET y=20 30 DIM a(x) 40 DIM b(y) 50 DIM c(x+y) 60 FOR i=1 TO x 70 LET c(i)=a(i) 80 NEXT i 90 FOR i=1 TO y 100 LET c(x+i)=b(i) 110 NEXT i 120 FOR i=1 TO x+y 130 PRINT c(i);", "; 140 NEXT i