⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Basic language learning}}[[Category:Iteration]][[Category:Data Structures]] Show how to iterate over the key-value pairs of an associative array, and print each pair out.
Also show how to iterate just over the keys, or the values, if there is a separate way to do that in your language.
{{Template:See also lists}}
11l
V d = [‘key1’ = ‘value1’, ‘key2’ = ‘value2’]
L(key, value) d
print(key‘ = ’value)
L(key) d.keys()
print(key)
L(value) d.values()
print(value)
{{out}}
key1 = value1
key2 = value2
key1
key2
value1
value2
8th
Iterating key,value pairs uses "m:each":
{"one": 1, "two": "bad"}
( swap . space . cr )
m:each
{{out}}
one 1
two bad
Iterating the keys uses "m:keys":
{"one": 1, "two": "bad"} m:keys
( . cr )
a:each
{{out}}
one
two
Ada
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Containers.Indefinite_Ordered_Maps;
procedure Test_Iteration is
package String_Maps is
new Ada.Containers.Indefinite_Ordered_Maps (String, Integer);
use String_Maps;
A : Map;
Index : Cursor;
begin
A.Insert ("hello", 1);
A.Insert ("world", 2);
A.Insert ("!", 3);
Index := A.First;
while Index /= No_Element loop
Put_Line (Key (Index) & Integer'Image (Element (Index)));
Index := Next (Index);
end loop;
end Test_Iteration;
{{out}}
! 3
hello 1
world 2
ALGOL 68
Algol 68 does not have associative arrays as standard.
This sample defines a simple hash-based implementation with operators to iterate over the array.
# associative array handling using hashing #
# the modes allowed as associative array element values - change to suit #
MODE AAVALUE = STRING;
# the modes allowed as associative array element keys - change to suit #
MODE AAKEY = STRING;
# nil element value #
REF AAVALUE nil value = NIL;
# an element of an associative array #
MODE AAELEMENT = STRUCT( AAKEY key, REF AAVALUE value );
# a list of associative array elements - the element values with a #
# particular hash value are stored in an AAELEMENTLIST #
MODE AAELEMENTLIST = STRUCT( AAELEMENT element, REF AAELEMENTLIST next );
# nil element list reference #
REF AAELEMENTLIST nil element list = NIL;
# nil element reference #
REF AAELEMENT nil element = NIL;
# the hash modulus for the associative arrays #
INT hash modulus = 256;
# generates a hash value from an AAKEY - change to suit #
OP HASH = ( STRING key )INT:
BEGIN
INT result := ABS ( UPB key - LWB key ) MOD hash modulus;
FOR char pos FROM LWB key TO UPB key DO
result PLUSAB ( ABS key[ char pos ] - ABS " " );
result MODAB hash modulus
OD;
result
END; # HASH #
# a mode representing an associative array #
MODE AARRAY = STRUCT( [ 0 : hash modulus - 1 ]REF AAELEMENTLIST elements
, INT curr hash
, REF AAELEMENTLIST curr position
);
# initialises an associative array so all the hash chains are empty #
OP INIT = ( REF AARRAY array )REF AARRAY:
BEGIN
FOR hash value FROM 0 TO hash modulus - 1 DO ( elements OF array )[ hash value ] := nil element list OD;
array
END; # INIT #
# gets a reference to the value corresponding to a particular key in an #
# associative array - the element is created if it doesn't exist #
PRIO // = 1;
OP // = ( REF AARRAY array, AAKEY key )REF AAVALUE:
BEGIN
REF AAVALUE result;
INT hash value = HASH key;
# get the hash chain for the key #
REF AAELEMENTLIST element := ( elements OF array )[ hash value ];
# find the element in the list, if it is there #
BOOL found element := FALSE;
WHILE ( element ISNT nil element list )
AND NOT found element
DO
found element := ( key OF element OF element = key );
IF found element
THEN
result := value OF element OF element
ELSE
element := next OF element
FI
OD;
IF NOT found element
THEN
# the element is not in the list #
# - add it to the front of the hash chain #
( elements OF array )[ hash value ]
:= HEAP AAELEMENTLIST
:= ( HEAP AAELEMENT := ( key
, HEAP AAVALUE := ""
)
, ( elements OF array )[ hash value ]
);
result := value OF element OF ( elements OF array )[ hash value ]
FI;
result
END; # // #
# returns TRUE if array contains key, FALSE otherwise #
PRIO CONTAINSKEY = 1;
OP CONTAINSKEY = ( REF AARRAY array, AAKEY key )BOOL:
BEGIN
# get the hash chain for the key #
REF AAELEMENTLIST element := ( elements OF array )[ HASH key ];
# find the element in the list, if it is there #
BOOL found element := FALSE;
WHILE ( element ISNT nil element list )
AND NOT found element
DO
found element := ( key OF element OF element = key );
IF NOT found element
THEN
element := next OF element
FI
OD;
found element
END; # CONTAINSKEY #
# gets the first element (key, value) from the array #
OP FIRST = ( REF AARRAY array )REF AAELEMENT:
BEGIN
curr hash OF array := LWB ( elements OF array ) - 1;
curr position OF array := nil element list;
NEXT array
END; # FIRST #
# gets the next element (key, value) from the array #
OP NEXT = ( REF AARRAY array )REF AAELEMENT:
BEGIN
WHILE ( curr position OF array IS nil element list )
AND curr hash OF array < UPB ( elements OF array )
DO
# reached the end of the current element list - try the next #
curr hash OF array +:= 1;
curr position OF array := ( elements OF array )[ curr hash OF array ]
OD;
IF curr hash OF array > UPB ( elements OF array )
THEN
# no more elements #
nil element
ELIF curr position OF array IS nil element list
THEN
# reached the end of the table #
nil element
ELSE
# have another element #
REF AAELEMENTLIST found element = curr position OF array;
curr position OF array := next OF curr position OF array;
element OF found element
FI
END; # NEXT #
# test the associative array #
BEGIN
# create an array and add some values #
REF AARRAY a1 := INIT LOC AARRAY;
a1 // "k1" := "k1 value";
a1 // "z2" := "z2 value";
a1 // "k1" := "new k1 value";
a1 // "k2" := "k2 value";
a1 // "2j" := "2j value";
# iterate over the values #
REF AAELEMENT e := FIRST a1;
WHILE e ISNT nil element
DO
print( ( " (" + key OF e + ")[" + value OF e + "]", newline ) );
e := NEXT a1
OD
END
{{out}}
(2j)[2j value]
(k1)[new k1 value]
(k2)[k2 value]
(z2)[z2 value]
Aime
record r;
text s;
r_put(r, "A", 33); # an integer value
r_put(r, "C", 2.5); # a real value
r_put(r, "B", "associative"); # a string value
if (r_first(r, s)) {
do {
o_form("key ~, value ~ (~)\n", s, r[s], r_type(r, s));
} while (rsk_greater(r, s, s));
}
{{out}}
key A, value 33 (integer)
key B, value associative (text)
key C, value 2.5 (real)
App Inventor
Associative arrays in App Inventor are lists of ''key:value'' 'pairs'.
When a list is organized as pairs, the '''lookup in pairs''' block can be used to retrieve an associated value from a key name.
[https://lh3.googleusercontent.com/-Cxw_-XGMRyM/UutOX1bEH9I/AAAAAAAAJ9g/MZotfuSEziY/s1600/CreateIterateLookup.PNG '''
Arturo
// create a dictionary
dict #{
name "john"
surname "doe"
age 33
}
// Iterate over key/value pairs
loop dict {
print "key = " + &0 + ", value = " + &1
}
"----"
// Iterate over keys
loop $(keys dict) {
print "key = " + &
}
"----"
// Iterate over values
loop $(values dict) {
print "value = " + &
}
{{out}}
key = surname, value = doe
key = age, value = 33
key = name, value = john
----
key = surname
key = age
key = name
----
value = doe
value = 33
value = john
AutoHotkey
{{works with|AutoHotkey_L}} From the [http://www.autohotkey.net/~Lexikos/AutoHotkey_L/docs/objects/Enumerator.htm documentation]
; Create an associative array
obj := Object("red", 0xFF0000, "blue", 0x0000FF, "green", 0x00FF00)
enum := obj._NewEnum()
While enum[key, value]
t .= key "=" value "`n"
MsgBox % t
AWK
In AWK "arrays" are always associative arrays, and the only way to iterate over them is by keys (''indexes'' in the AWK terminology)
BEGIN {
a["hello"] = 1
a["world"] = 2
a["!"] = 3
# iterate over keys
for(key in a) {
print key, a[key]
}
}
Babel
In Babel, associative arrays are referred to as maps. To create a map from a list-of-lists:
births (('Washington' 1732) ('Lincoln' 1809) ('Roosevelt' 1882) ('Kennedy' 1917)) ls2map ! <
To iterate over a map, in the primary sense, use the overmap utility. We will copy the map (cp operator) so as not to modify the original:
births cp dup {1 +} overmap !
To see the results, use the valmap operator:
valmap ! lsnum !
{{out}}
( 1918 1733 1883 1810 )
There are many ways to interact with a map in Babel. Most of these begin by converting the map to a list or list-of-lists. To look up a list of specific values from the map, by key, use the lumapls utility:
births ('Roosevelt' 'Kennedy') lumapls ! lsnum !
{{out}}
( 1882 1917 )
To convert the entire map back to a list of key-value pairs:
births map2ls !
To view the list:
{give swap << " " << itod << "\n" <<} each
{{out}}
Kennedy 1917
Washington 1732
Roosevelt 1882
Lincoln 1809
To merge two maps together, use the mapmerge utility:
foo (("bar" 17) ("baz" 42)) ls2map ! <
births foo mergemap !
To view the results:
births map2ls ! {give swap << " " << itod << "\n" <<} each
{{out}}
baz 42
Kennedy 1917
bar 17
Washington 1732
Roosevelt 1882
Lincoln 1809
For more information on maps in Babel, view [https://github.com/claytonkb/clean_babel/blob/master/std.sp std.sp] (see the section titled "map utilities").
BaCon
DECLARE associative ASSOC STRING
associative("abc") = "first three"
associative("mn") = "middle two"
associative("xyz") = "last three"
LOOKUP associative TO keys$ SIZE amount
FOR i = 0 TO amount - 1
PRINT keys$[i], ":", associative(keys$[i])
NEXT
{{out}}
prompt$ ./assoc
abc:first three
mn:middle two
xyz:last three
LOOKUP creates a numerically indexed array of the keys of the associative array, with the number of elements stored in the field following the SIZE keyword.
BASIC256
''Solution is at [[Associative_array/Creation#BASIC256]]''.
BBC BASIC
REM Store some values with their keys:
PROCputdict(mydict$, "FF0000", "red")
PROCputdict(mydict$, "00FF00", "green")
PROCputdict(mydict$, "0000FF", "blue")
REM Iterate through the dictionary:
i% = 1
REPEAT
i% = FNdict(mydict$, i%, v$, k$)
PRINT v$, k$
UNTIL i% = 0
END
DEF PROCputdict(RETURN dict$, value$, key$)
IF dict$ = "" dict$ = CHR$(0)
dict$ += key$ + CHR$(1) + value$ + CHR$(0)
ENDPROC
DEF FNdict(dict$, I%, RETURN value$, RETURN key$)
LOCAL J%, K%
J% = INSTR(dict$, CHR$(1), I%)
K% = INSTR(dict$, CHR$(0), J%)
value$ = MID$(dict$, I%+1, J%-I%-1)
key$ = MID$(dict$, J%+1, K%-J%-1)
IF K% >= LEN(dict$) THEN K% = 0
= K%
Bracmat
( new$hash:?myhash
& (myhash..insert)$(title."Some title")
& (myhash..insert)$(formula.a+b+x^7)
& (myhash..insert)$(fruit.apples oranges kiwis)
& (myhash..insert)$(meat.)
& (myhash..insert)$(fruit.melons bananas)
& (myhash..remove)$formula
& (myhash..insert)$(formula.x^2+y^2)
& (myhash..forall)
$ (
= key value
. whl
' ( !arg:(?key.?value) ?arg
& put$("key:" !key "\nvalue:" !value \n)
)
& put$\n
)
);
{{out}}
key: meat
value:
key: title
value: Some title
key: formula
value: x^2+y^2
key: fruit
value: melons bananas
key: fruit
value: apples oranges kiwis
Brat
h = [ hello: 1 world: 2 :! : 3]
#Iterate over key, value pairs
h.each { k, v |
p "Key: #{k} Value: #{v}"
}
#Iterate over keys
h.each_key { k |
p "Key: #{k}"
}
#Iterate over values
h.each_value { v |
p "Value: #{v}"
}
C
''Solution is at [[Associative arrays/Creation/C]]''.
C++
{{works with|C++11}}
#include <iostream>
#include <map>
#include <string>
int main() {
std::map<std::string, int> dict {
{"One", 1},
{"Two", 2},
{"Three", 7}
};
dict["Three"] = 3;
std::cout << "One: " << dict["One"] << std::endl;
std::cout << "Key/Value pairs: " << std::endl;
for(auto& kv: dict) {
std::cout << " " << kv.first << ": " << kv.second << std::endl;
}
return 0;
}
Pre C++11:
std::map<std::string, int> myDict;
myDict["hello"] = 1;
myDict["world"] = 2;
myDict["!"] = 3;
// iterating over key-value pairs:
for (std::map<std::string, int>::iterator it = myDict.begin(); it != myDict.end(); ++it) {
// the thing pointed to by the iterator is an std::pair<const std::string, int>&
const std::string& key = it->first;
int& value = it->second;
std::cout << "key = " << key << ", value = " << value << std::endl;
}
C#
using System;
using System.Collections.Generic;
namespace AssocArrays
{
class Program
{
static void Main(string[] args)
{
Dictionary<string,int> assocArray = new Dictionary<string,int>();
assocArray["Hello"] = 1;
assocArray.Add("World", 2);
assocArray["!"] = 3;
foreach (KeyValuePair<string, int> kvp in assocArray)
{
Console.WriteLine(kvp.Key + " : " + kvp.Value);
}
foreach (string key in assocArray.Keys)
{
Console.WriteLine(key);
}
foreach (int val in assocArray.Values)
{
Console.WriteLine(val.ToString());
}
}
}
}
Ceylon
shared void run() {
value myMap = map {
"foo" -> 5,
"bar" -> 10,
"baz" -> 15
};
for(key in myMap.keys) {
print(key);
}
for(item in myMap.items) {
print(item);
}
for(key->item in myMap) {
print("``key`` maps to ``item``");
}
}
Chapel
var A = [ "H2O" => "water", "NaCl" => "salt", "O2" => "oxygen" ];
for k in A.domain do
writeln("have key: ", k);
for v in A do
writeln("have value: ", v);
for (k,v) in zip(A.domain, A) do
writeln("have element: ", k, " -> ", v);
{{out}} have key: O2 have key: NaCl have key: H2O have value: oxygen have value: salt have value: water have element: O2 -> oxygen have element: NaCl -> salt have element: H2O -> water
Clojure
(doseq [[k v] {:a 1, :b 2, :c 3}]
(println k "=" v))
(doseq [k (keys {:a 1, :b 2, :c 3})]
(println k))
(doseq [v (vals {:a 1, :b 2, :c 3})]
(println v))
CoffeeScript
hash =
a: 'one'
b: 'two'
for key, value of hash
console.log key, value
for key of hash
console.log key
Common Lisp
Common Lisp has three common idioms for associating keys with values: association lists (alists), property lists (plists), and hash tables.
===With association lists (alists)===
The association list is a list of conses, each of whose car
is a key and whose cdr
is a value. The standard mapping and print functions can be used to print key/value pairs, keys, and values.
;; iterate using dolist, destructure manually
(dolist (pair alist)
(destructuring-bind (key . value) pair
(format t "~&Key: ~a, Value: ~a." key value)))
;; iterate and destructure with loop
(loop for (key . value) in alist
do (format t "~&Key: ~a, Value: ~a." key value))
===With property lists (plists)===
Property lists are lists of alternating keys and values, where each value's key is the element of the list immediately following it. Printing could be done with standard mapping functions, but loop
's destructuring makes things a bit easier.
(loop for (key value) on plist :by 'cddr
do (format t "~&Key: ~a, Value: ~a." key value))
With hash tables
Lisp also has built-in hash tables, and there are several ways to map over these. The first is maphash
which takes a function of two arguments (the key and value) and the hash table.
(maphash (lambda (key value)
(format t "~&Key: ~a, Value: ~a." key value))
hash-table)
The loop
construct also supports extracting key/value pairs from hash tables.
(loop for key being each hash-key of hash-table using (hash-value value)
do (format t "~&Key: ~a, Value: ~a." key value))
There is also a macro with-hash-table-iterator
which locally binds a name to produce associated keys and values of the hash table; while rarely used, it is the most powerful operation.
(with-hash-table-iterator (next-entry hash-table)
(loop
(multiple-value-bind (nextp key value) (next-entry)
(if (not nextp)
(return)
(format t "~&Key: ~a, Value: ~a." key value)))))
Alternate solution
I use [https://franz.com/downloads/clp/survey Allegro CL 10.1]
;; Project : Associative array/Iteration
(setf x (make-array '(3 2)
:initial-contents '(("hello" 13 ) ("world" 31) ("!" 71))))
(setf xlen (array-dimensions x))
(setf len (car xlen))
(dotimes (n len)
(terpri)
(format t "~a" (aref x n 0))
(format t "~a" " : ")
(format t "~a" (aref x n 1)))
Output:
hello : 13
world : 31
! : 71
D
{{works with|D|2}}
import std.stdio: writeln;
void main() {
// the associative array
auto aa = ["alice":2, "bob":97, "charlie":45];
// how to iterate key/value pairs:
foreach (key, value; aa)
writeln("1) Got key ", key, " with value ", value);
writeln();
// how to iterate the keys:
foreach (key, _; aa)
writeln("2) Got key ", key);
writeln();
// how to iterate the values:
foreach (value; aa)
writeln("3) Got value ", value);
writeln();
// how to extract the values, lazy:
foreach (value; aa.byValue())
writeln("4) Got value ", value);
writeln();
// how to extract the keys, lazy:
foreach (key; aa.byKey())
writeln("5) Got key ", key);
writeln();
// how to extract all the keys:
foreach (key; aa.keys)
writeln("6) Got key ", key);
writeln();
// how to extract all the values:
foreach (value; aa.values)
writeln("7) Got value ", value);
}
Dao
dict = { 'def' => 1, 'abc' => 2 }
for( keyvalue in dict ) io.writeln( keyvalue );
for( key in dict.keys(); value in dict.values() ) io.writeln( key, value )
dict.iterate { [key, value]
io.writeln( key, value )
}
Delphi
program AssociativeArrayIteration;
{$APPTYPE CONSOLE}
uses SysUtils, Generics.Collections;
var
i: Integer;
s: string;
lDictionary: TDictionary<string, Integer>;
lPair: TPair<string, Integer>;
begin
lDictionary := TDictionary<string, Integer>.Create;
try
lDictionary.Add('foo', 5);
lDictionary.Add('bar', 10);
lDictionary.Add('baz', 15);
lDictionary.AddOrSetValue('foo', 6);
for lPair in lDictionary do
Writeln(Format('Pair: %s = %d', [lPair.Key, lPair.Value]));
for s in lDictionary.Keys do
Writeln('Key: ' + s);
for i in lDictionary.Values do
Writeln('Value: ', i);
finally
lDictionary.Free;
end;
end.
Dyalect
var t = (x: 1, y: 2, z: 3)
for x in t.keys() {
print("\(x)=\(t[x])")
}
{{out}}
x=1
y=2
z=3
E
In E, the basic iteration protocol and syntax work over key-value pairs. Therefore, any iteration over a ''map'' or other collection is always key-value, though the user may choose to ignore the keys or the values.
The for
loop takes either one pattern, for the value, or two, for the key and value; for iterating over keys alone the value may be given an ignore-pattern (_
).
def map := [
"a" => 1,
"b" => 2,
"c" => 3,
]
for key => value in map {
println(`$key $value`)
}
for value in map { # ignore keys
println(`. $value`)
}
for key => _ in map { # ignore values
println(`$key .`)
}
for key in map.domain() { # iterate over the set whose values are the keys
println(`$key .`)
}
EchoLisp
(lib 'hash) ;; load hash.lib
(define H (make-hash))
;; fill hash table
(hash-set H 'Simon 42)
(hash-set H 'Albert 666)
(hash-set H 'Antoinette 33)
;; iterate over (key . value ) pairs
(for ([kv H]) (writeln kv))
(Simon . 42)
(Albert . 666)
(Antoinette . 33)
;; iterate over keys
(for ([k (hash-keys H)]) (writeln 'key-> k))
key-> Simon
key-> Albert
key-> Antoinette
;; iterate over values
(for ([v (hash-values H)]) (writeln 'value-> v))
value-> 42
value-> 666
value-> 33
Elena
ELENA 4.x :
import system'collections;
import system'routines;
import extensions;
public program()
{
// 1. Create
var map := new Dictionary();
map["key"] := "foox";
map["key"] := "foo";
map["key2"]:= "foo2";
map["key3"]:= "foo3";
map["key4"]:= "foo4";
// Enumerate
map.forEach:
(keyValue){ console.printLine(keyValue.Key," : ",keyValue.Value) }
}
Strong typed dictionary
import system'collections;
import system'routines;
import extensions;
public program()
{
// 1. Create
auto map := new Map<string,string>();
map["key"] := "foox";
map["key"] := "foo";
map["key2"]:= "foo2";
map["key3"]:= "foo3";
map["key4"]:= "foo4";
// Enumerate
map.forEach:
(tuple){ console.printLine(tuple.Item1," : ",tuple.Item2) }
}
Elixir
IO.inspect d = Map.new([foo: 1, bar: 2, baz: 3])
Enum.each(d, fn kv -> IO.inspect kv end)
Enum.each(d, fn {k,v} -> IO.puts "#{inspect k} => #{v}" end)
Enum.each(Map.keys(d), fn key -> IO.inspect key end)
Enum.each(Map.values(d), fn value -> IO.inspect value end)
{{out}}
%{bar: 2, baz: 3, foo: 1}
{:bar, 2}
{:baz, 3}
{:foo, 1}
:bar => 2
:baz => 3
:foo => 1
:bar
:baz
:foo
2
3
1
Erlang
-module(assoc).
-compile([export_all]).
test_create() ->
D = dict:new(),
D1 = dict:store(foo,1,D),
D2 = dict:store(bar,2,D1),
print_vals(D2).
print_vals(D) ->
lists:foreach(fun (K) ->
io:format("~p: ~b~n",[K,dict:fetch(K,D)])
end, dict:fetch_keys(D)).
{{out}} 32> assoc:test_create(). bar: 2 foo: 1 ok
=={{header|F_Sharp|F#}}== Iterating over both.
let myMap = [ ("Hello", 1); ("World", 2); ("!", 3) ]
for k, v in myMap do
printfn "%s -> %d" k v
Iterating over either keys or values only can be achieved through use of the _ wildcard token.
// Only prints the keys.
for k, _ in myMap do
printfn "%s" k
// Only prints the values.
for _, v in myMap do
printfn "%d" v
Factor
H{ { "hi" "there" } { "a" "b" } } [ ": " glue print ] assoc-each
There's also assoc-map
, assoc-find
, assoc-filter
and many more.
Fantom
Given a map, each
iterates over pairs of values-keys. keys
and vals
retrieve a list of keys or values, respectively.
class Main
{
public static Void main ()
{
Int:Str map := [1:"alpha", 2:"beta", 3:"gamma"]
map.keys.each |Int key|
{
echo ("Key is: $key")
}
map.vals.each |Str value|
{
echo ("Value is: $value")
}
map.each |Str value, Int key|
{
echo ("Key $key maps to $value")
}
}
}
Forth
{{libheader|Forth Foundation Library}}
include ffl/hct.fs
include ffl/hci.fs
\ Create hashtable and iterator in dictionary
10 hct-create htable
htable hci-create hiter
\ Insert entries
1 s" hello" htable hct-insert
2 s" world" htable hct-insert
3 s" !" htable hct-insert
: iterate
hiter hci-first
BEGIN
WHILE
." key = " hiter hci-key type ." , value = " . cr
hiter hci-next
REPEAT
;
iterate
\ Written in ANS-Forth; tested under VFX.
\ Requires the novice package: http://www.forth.org/novice.html
\ The following should already be done:
\ include novice.4th
\ include association.4th
\ I would define high-level languages as those that allow programs to be written without explicit iteration. Iteration is a major source of bugs.
\ The example from the FFL library doesn't hide iteration, whereas this example from the novice-package does.
marker AssociationIteration.4th
\ ******
\ ****** The following defines a node in an association (each node is derived from ELEMENT).
\ ******
element
w field .inventor
constant language \ describes a programming language
: init-language ( inventor name node -- node )
init-element >r
hstr r@ .inventor !
r> ;
: new-language ( inventor name -- node )
language alloc
init-language ;
: show-language ( count node -- )
>r
1+ \ -- count+1
cr r@ .key @ count colorless type ." invented by: " r@ .inventor @ count type
rdrop ;
: show-languages-forward ( handle -- )
0 \ -- handle count
swap .root @ ['] show-language walk>
cr ." count: " .
cr ;
: show-languages-backward ( handle -- )
0 \ -- handle count
swap .root @ ['] show-language <walk
cr ." count: " .
cr ;
: kill-language-attachments ( node -- )
dup .inventor @ dealloc
kill-key ;
: copy-language-attachments ( src dst -- )
over .inventor @ hstr
over .inventor !
copy-key ;
\ ******
\ ****** The following defines the association itself (the handle).
\ ******
association
constant languages \ describes a set of programming languages
: init-languages ( record -- record )
>r
['] compare ['] kill-language-attachments ['] copy-language-attachments
r> init-association ;
: new-languages ( -- record )
languages alloc
init-languages ;
\ ******
\ ****** The following filters one association into another, including everything that matches a particular inventor.
\ ******
: <filter-inventor> { inventor handle new-handle node -- inventor handle new-handle }
inventor count node .inventor @ count compare A=B = if
node handle dup-element new-handle insert then
inventor handle new-handle ;
: filter-inventor ( inventor handle -- new-handle )
dup similar-association \ -- inventor handle new-handle
over .root @ ['] <filter-inventor> walk> \ -- inventor handle new-handle
nip nip ;
\ ******
\ ****** The following is a demonstration with some sample data.
\ ******
new-languages
c" Moore, Chuck" c" Forth " new-language over insert
c" Ichiah, Jean" c" Ada " new-language over insert
c" Wirth, Niklaus" c" Pascal " new-language over insert
c" Wirth, Niklaus" c" Oberon " new-language over insert
c" McCarthy, John" c" Lisp " new-language over insert
c" van Rossum, Guido" c" Python " new-language over insert
c" Gosling, Jim" c" Java " new-language over insert
c" Ierusalimschy, Roberto" c" Lua " new-language over insert
c" Matsumoto, Yukihiro" c" Ruby " new-language over insert
c" Pestov, Slava" c" Factor " new-language over insert
c" Gosling, James" c" Java " new-language over insert
c" Wirth, Niklaus" c" Modula-2 " new-language over insert
c" Ritchie, Dennis" c" C " new-language over insert
c" Stroustrup, Bjarne" c" C++ " new-language over insert
constant some-languages
cr .( everything in SOME-LANGUAGES ordered forward: )
some-languages show-languages-forward
cr .( everything in SOME-LANGUAGES ordered backward: )
some-languages show-languages-backward
cr .( everything in SOME-LANGUAGES invented by Wirth: )
c" Wirth, Niklaus" some-languages filter-inventor dup show-languages-forward kill-association
cr .( everything in SOME-LANGUAGES within 'F' and 'L': )
c" F" c" L" some-languages filter within dup show-languages-forward kill-association
cr .( everything in SOME-LANGUAGES not within 'F' and 'L': )
c" F" c" L" some-languages filter without dup show-languages-forward kill-association
some-languages kill-association
{{out}}
everything in SOME-LANGUAGES ordered forward: Ada invented by: Ichiah, Jean C invented by: Ritchie, Dennis C++ invented by: Stroustrup, Bjarne Factor invented by: Pestov, Slava Forth invented by: Moore, Chuck Java invented by: Gosling, James Lisp invented by: McCarthy, John Lua invented by: Ierusalimschy, Roberto Modula-2 invented by: Wirth, Niklaus Oberon invented by: Wirth, Niklaus Pascal invented by: Wirth, Niklaus Python invented by: van Rossum, Guido Ruby invented by: Matsumoto, Yukihiro count: 13 everything in SOME-LANGUAGES ordered backward: Ruby invented by: Matsumoto, Yukihiro Python invented by: van Rossum, Guido Pascal invented by: Wirth, Niklaus Oberon invented by: Wirth, Niklaus Modula-2 invented by: Wirth, Niklaus Lua invented by: Ierusalimschy, Roberto Lisp invented by: McCarthy, John Java invented by: Gosling, James Forth invented by: Moore, Chuck Factor invented by: Pestov, Slava C++ invented by: Stroustrup, Bjarne C invented by: Ritchie, Dennis Ada invented by: Ichiah, Jean count: 13 everything in SOME-LANGUAGES invented by Wirth: Modula-2 invented by: Wirth, Niklaus Oberon invented by: Wirth, Niklaus Pascal invented by: Wirth, Niklaus count: 3 everything in SOME-LANGUAGES within 'F' and 'L': Factor invented by: Pestov, Slava Forth invented by: Moore, Chuck Java invented by: Gosling, James count: 3 everything in SOME-LANGUAGES not within 'F' and 'L': Ada invented by: Ichiah, Jean C invented by: Ritchie, Dennis C++ invented by: Stroustrup, Bjarne Lisp invented by: McCarthy, John Lua invented by: Ierusalimschy, Roberto Modula-2 invented by: Wirth, Niklaus Oberon invented by: Wirth, Niklaus Pascal invented by: Wirth, Niklaus Python invented by: van Rossum, Guido Ruby invented by: Matsumoto, Yukihiro count: 10 ``` ## Free Pascal FPC 3.2.0+. Similar to Delphi: ```pascal program AssociativeArrayIteration; {$mode delphi}{$ifdef windows}{$apptype console}{$endif} uses Generics.Collections; type TlDictionary = TDictionary; TlPair = TPair ; var i: Integer; s: string; lDictionary: TlDictionary; lPair: TlPair; begin lDictionary := TlDictionary.Create; try lDictionary.Add('foo', 5); lDictionary.Add('bar', 10); lDictionary.Add('baz', 15); lDictionary.AddOrSetValue('foo',6); for lPair in lDictionary do Writeln('Pair: ',Lpair.Key,' = ',lPair.Value); for s in lDictionary.Keys do Writeln('Key: ' + s); for i in lDictionary.Values do Writeln('Value: ', i); finally lDictionary.Free; end; end. ``` ```txt Pair: foo = 6 Pair: bar = 10 Pair: baz = 15 Key: foo Key: bar Key: baz Value: 6 Value: 10 Value: 15 ``` ## Gambas '''[https://gambas-playground.proko.eu/?gist=e48bd6ed7e6b583106b8178bca536eea Click this link to run this code]''' ```gambas Public Sub Main() Dim cList As Collection = ["2": "quick", "4": "fox", "1": "The", "9": "dog", "7": "the", "5": "jumped", "3": "brown", "6": "over", "8": "lazy"] Dim siCount As Short Dim sTemp As String For Each sTemp In cList Print cList.key & "=" & sTemp;; Next Print For siCount = 1 To cList.Count Print cList[Str(siCount)];; Next End ``` Output: ```txt 2=quick 4=fox 1=The 9=dog 7=the 5=jumped 3=brown 6=over 8=lazy The quick brown fox jumped over the lazy dog ``` ## Go '''Language:''' ```go myMap := map[string]int { "hello": 13, "world": 31, "!" : 71 } // iterating over key-value pairs: for key, value := range myMap { fmt.Printf("key = %s, value = %d\n", key, value) } // iterating over keys: for key := range myMap { fmt.Printf("key = %s\n", key) } // iterating over values: for _, value := range myMap { fmt.Printf("value = %d\n", value) } ``` '''Standard library templates:''' In addition to the for/range features of the language, the text/template and html/template packages of the standard library have map iteration features. Some differences worth noting: * A single assigned value in a template is the map value. With the language for/range it is the key. * Templates have no equivalent of _; a dummy variable must be used. * In a template, if map keys are a comparable basic type, then iteration proceeds in key order. With the language for/range, iteration is in non-deterministic order. ```go package main import ( "os" "text/template" ) func main() { m := map[string]int{ "hello": 13, "world": 31, "!": 71, } // iterating over key-value pairs: template.Must(template.New("").Parse(` {{- range $k, $v := . -}} key = {{$k}}, value = {{$v}} {{end -}} `)).Execute(os.Stdout, m) // iterating over keys: template.Must(template.New("").Parse(` {{- range $k, $v := . -}} key = {{$k}} {{end -}} `)).Execute(os.Stdout, m) // iterating over values: template.Must(template.New("").Parse(` {{- range . -}} value = {{.}} {{end -}} `)).Execute(os.Stdout, m) } ``` {{out}} Note order by key. ```txt key = !, value = 71 key = hello, value = 13 key = world, value = 31 key = ! key = hello key = world value = 71 value = 13 value = 31 ``` ## Groovy Solution: ```groovy def map = [lastName: "Anderson", firstName: "Thomas", nickname: "Neo", age: 24, address: "everywhere"] println "Entries:" map.each { println it } println() println "Keys:" map.keySet().each { println it } println() println "Values:" map.values().each { println it } ``` {{out}} ```txt Entries: lastName=Anderson firstName=Thomas nickname=Neo age=24 address=everywhere Keys: lastName firstName nickname age address Values: Anderson Thomas Neo 24 everywhere ``` ## Harbour ```visualfoxpro LOCAL arr := { 6 => 16, "eight" => 8, "eleven" => 11 } LOCAL x FOR EACH x IN arr // key, value ? x:__enumKey(), x // or key only ? x:__enumKey() // or value only ? x NEXT ``` ## Haskell with Data.Map: ```haskell import qualified Data.Map as M myMap :: M.Map String Int myMap = M.fromList [("hello", 13), ("world", 31), ("!", 71)] main :: IO () main = (putStrLn . unlines) $ [ show . M.toList -- Pairs , show . M.keys -- Keys , show . M.elems -- Values ] <*> pure myMap ``` {{Out}} ```txt [("!",71),("hello",13),("world",31)] ["!","hello","world"] [71,13,31] ``` =={{header|Icon}} and {{header|Unicon}}== ```icon procedure main() t := table() every t[a := !"ABCDE"] := map(a) every pair := !sort(t) do write("\t",pair[1]," -> ",pair[2]) writes("Keys:") every writes(" ",key(t)) write() writes("Values:") every writes(" ",!t) write() end ``` {{out}} ```txt ->aai A -> a B -> b C -> c D -> d E -> e Keys: C E B D A Values: c e b d a ``` ## Io ```Io myDict := Map with( "hello", 13, "world", 31, "!" , 71 ) // iterating over key-value pairs: myDict foreach( key, value, writeln("key = ", key, ", value = ", value) ) // iterating over keys: myDict keys foreach( key, writeln("key = ", key) ) // iterating over values: myDict foreach( value, writeln("value = ", value) ) // or alternatively: myDict values foreach( value, writeln("value = ", value) ) ``` ## J Note that all J operations either iterate over the items of an array or can be made to do so. So to iterate over some sequence you need to refer to that sequence. Using the J example from [[Creating an Associative Array]]... Keys ```J nl__example 0 ``` Values ```J get__example each nl__example 0 ``` Both keys and values ```J (,&< get__example) each nl__example 0 ``` Note that this last is not likely to be useful in any practical context outside of learning the language. ## Java ```java Map map = new HashMap (); map.put("hello", 1); map.put("world", 2); map.put("!", 3); // iterating over key-value pairs: for (Map.Entry e : map.entrySet()) { String key = e.getKey(); Integer value = e.getValue(); System.out.println("key = " + key + ", value = " + value); } // iterating over keys: for (String key : map.keySet()) { System.out.println("key = " + key); } // iterating over values: for (Integer value : map.values()) { System.out.println("value = " + value); } ``` Java 8 version ```java Map map = new HashMap<>(); map.put("hello", 1); map.put("world", 2); map.put("!", 3); // iterating over key-value pairs: map.forEach((k, v) -> { System.out.printf("key = %s, value = %s%n", k, v); }); // iterating over keys: map.keySet().forEach(k -> System.out.printf("key = %s%n", k)); // iterating over values: map.values().forEach(v -> System.out.printf("value = %s%n", v)); ``` {{out}} ```txt key = !, value = 3 key = world, value = 2 key = hello, value = 1 key = ! key = world key = hello value = 3 value = 2 value = 1 ``` ## JavaScript JavaScript does not have associative arrays until ECMAScript 6 brings Maps. In versions up to ES5.1, you may add properties to an empty object to achieve the same effect. ```javascript var myhash = {}; //a new, empty object myhash["hello"] = 3; myhash.world = 6; //obj.name is equivalent to obj["name"] for certain values of name myhash["!"] = 9; //iterate using for..in loop for (var key in myhash) { //ensure key is in object and not in prototype if (myhash.hasOwnProperty(key)) { console.log("Key is: " + key + '. Value is: ' + myhash[key]); } } //iterate using ES5.1 Object.keys() and Array.prototype.Map() var keys = Object.keys(); //get Array of object keys (doesn't get prototype keys) keys.map(function (key) { console.log("Key is: " + key + '. Value is: ' + myhash[key]); }); ``` ## Jq In jq, there are several ways to iterate over compound structures: - functionally, e.g. using map on an array - by enumeration, i.e. by generating a stream - by performing a reduction For the sake of brevity, therefore, in the following we will only illustrate the enumerative approach. With respect to associative arrays (i.e. JSON objects), the fundamental functions are: - keys -- for producing an array of the keys (sorted) - .[] -- for producing a stream of the values In jq > 1.4, keys_unsorted, for producing an array of the keys (in the order of creation), is also available. ```jq def mydict: {"hello":13, "world": 31, "!": 71}; # Iterating over the keys mydict | keys[] # "!" # "hello" # "world" # Iterating over the values: mydict[] # 13 # 31 # 71 # Generating a stream of {"key": key, "value": value} objects: mydict | to_entries[] # {"key":"hello","value":13} # {"key":"world","value":31} # {"key":"!","value":71} # Generating a stream of [key,value] arrays: mydict | . as $o | keys[] | [., $o[.]] #["!",71] #["hello",13] #["world",31] # Generating a stream of [key,value] arrays, without sorting (jq > 1.4 required) mydict | . as $o | keys_unsorted[] | [., $o[.]] # ["hello",13] # ["world",31] # ["!",71] ``` ## Julia {{works with|Julia|0.6}} ```julia dict = Dict("hello" => 13, "world" => 31, "!" => 71) # applying a function to key-value pairs: foreach(println, dict) # iterating over key-value pairs: for (key, value) in dict println("dict[$key] = $value") end # iterating over keys: for key in keys(dict) @show key end # iterating over values: for value in values(dict) @show value end ``` {{out}} ```txt key = !, value = 71 key = hello, value = 13 key = world, value = 31 key = ! key = hello key = world value = 71 value = 13 value = 31 ``` ## K Creating a dictionary. ```K d: .((`"hello";1); (`"world";2);(`"!";3)) ``` The keys are available via "!". ```K !d `hello `world `"!" $!d / convert keys (symbols) as strings ("hello" "world" ,"!") ``` Print the key value pairs. ```K `0:{,/$x,": ",d[x]}'!d hello: 1 world: 2 !: 3 ``` The values are available via "[]". ```K d[] 1 2 3 {x+1}'d[] 2 3 4 ``` ## Kotlin ```scala fun main(a: Array ) { val map = mapOf("hello" to 1, "world" to 2, "!" to 3) with(map) { entries.forEach { println("key = ${it.key}, value = ${it.value}") } keys.forEach { println("key = $it") } values.forEach { println("value = $it") } } } ``` {{Out}} ```txt key = hello, value = 1 key = world, value = 2 key = !, value = 3 key = hello key = world key = ! value = 1 value = 2 value = 3 ``` ## Lang5 ```lang5 : first 0 extract nip ; : second 1 extract nip ; : nip swap drop ; : say(*) dup first " => " 2 compress "" join . second . ; [['foo 5] ['bar 10] ['baz 20]] 'say apply drop ``` ## Lasso ```Lasso //iterate over associative array //Lasso maps local('aMap' = map('weight' = 112, 'height' = 45, 'name' = 'jason')) ' Map output: \n ' #aMap->forEachPair => {^ //display pair, then show accessing key and value individually #1+'\n ' #1->first+': '+#1->second+'\n ' ^} //display keys and values separately '\n' ' Map Keys: '+#aMap->keys->join(',')+'\n' ' Map values: '+#aMap->values->join(',')+'\n' //display using forEach '\n' ' Use ForEach to iterate Map keys: \n' #aMap->keys->forEach => {^ #1+'\n' ^} '\n' ' Use ForEach to iterate Map values: \n' #aMap->values->forEach => {^ #1+'\n' ^} //the {^ ^} indicates that output should be printed (AutoCollect) , // if output is not desired, just { } is used ``` ## LFE ### Keys and Values ```lisp (let ((data '(#(key1 "foo") #(key2 "bar"))) (hash (: dict from_list data))) (: dict fold (lambda (key val accum) (: io format '"~s: ~s~n" (list key val))) 0 hash)) ``` ### Just Keys ```lisp (let ((data '(#(key1 "foo") #(key2 "bar"))) (hash (: dict from_list data))) (: lists map (lambda (key) (: io format '"~s~n" (list key))) (: dict fetch_keys hash))) ``` ## Liberty BASIC Needs the sublist library from http://basic.wikispaces.com/SubList+Library since LB does not have built-in associative arrays. ```lb data "red", "255 50 50", "green", "50 255 50", "blue", "50 50 255" data "my fave", "220 120 120", "black", "0 0 0" myAssocList$ ="" for i =1 to 5 read k$ read dat$ call sl.Set myAssocList$, k$, dat$ next i keys$ = "" ' List to hold the keys in myList$. keys = 0 keys = sl.Keys( myAssocList$, keys$) print " Number of key-data pairs ="; keys For i = 1 To keys keyName$ = sl.Get$( keys$, Str$( i)) Print " Key "; i; ":", keyName$, "Data: ", sl.Get$( myAssocList$, keyName$) Next i end ``` Number of key-data pairs =5 Key 1: red Data: 255 50 50 Key 2: green Data: 50 255 50 Key 3: blue Data: 50 50 255 Key 4: my fave Data: 220 120 120 Key 5: black Data: 0 0 0 ## Lingo ```lingo hash = [#key1:"value1", #key2:"value2", #key3:"value3"] -- iterate over key-value pairs repeat with i = 1 to hash.count put hash.getPropAt(i) & "=" & hash[i] end repeat -- iterating over values only can be written shorter repeat with val in hash put val end repeat ``` ## LiveCode ```LiveCode put 3 into fruit["apples"] put 5 into fruit["pears"] put 6 into fruit["oranges"] put "none" into fruit["bananas"] put "Keys:" & cr & the keys of fruit & cr into tTmp put "Values 1:" & tab after tTmp repeat for each line tKey in the keys of fruit put fruit[tkey] & comma after tTmp end repeat -- need to copy array as combine will change variable put fruit into fruit2 combine fruit2 using comma put cr & "Values2:" & tab after tTmp repeat for each item f2val in fruit2 put f2val & comma after tTmp end repeat combine fruit using return and ":" put cr & "Key:Values" & cr & fruit after tTmp -- alternatively, use same loop as for values 1 with tkey && fruit[tKey] put tTmp ``` Output ```LiveCode Keys: apples pears oranges bananas Values 1: 3,5,6,none, Values2: 3,none,6,5, Key:Values apples:3 bananas:none oranges:6 pears:5 ``` ## Lua ```lua local t = { ["foo"] = "bar", ["baz"] = 6, fortytwo = 7 } for key,val in pairs(t) do print(string.format("%s: %s", key, val)) end ``` {{out}} ```txt fortytwo: 7 foo: bar baz: 6 ``` ''Note:'' the order in which pairs
iterates over non-integer keys is not defined, so the order of lines in the output of the above code may differ from one run to another. ## M2000 Interpreter ```M2000 Interpreter Module checkit { \\ Inventories are objects with keys and values, or keys (used as read only values) \\ They use hash function. \\ Function TwoKeys return Inventory object (as a pointer to object) Function TwoKeys { Inventory Alfa="key1":=100, "key2":=200 =Alfa } M=TwoKeys() Print Type$(M)="Inventory" \\ Normal Use: \\ Inventories Keys are case sensitive \\ M2000 identifiers are not case sensitive Print M("key1"), m("key2") \\ numeric values can convert to strings Print M$("key1"), m$("key2") \\ Iteration N=Each(M) While N { Print Eval(N) ' prints 100, 200 as number Print M(N^!) ' The same using index N^ } N=Each(M) While N { Print Eval$(N) ' prints 100, 200 as strings Print M$(N^!) ' The same using index N^ } N=Each(M) While N { Print Eval$(N, N^) ' Prints Keys } \\ double iteration Append M, "key3":=500 N=Each(M, 1, -1) ' start to end N1=Each(M, -1, 1) ' end to start \\ 3x3 prints While N { While N1 { Print format$("{0}*{1}={2}", Eval(N1), Eval(N), Eval(N1)*Eval(N)) } } \\ sort results from lower product to greater product (3+2+1, 6 prints only) N=Each(M, 1, -1) While N { N1=Each(M, N^+1, -1) While N1 { Print format$("{0}*{1}={2}", Eval(N1), Eval(N), Eval(N1)*Eval(N)) } } N=Each(M) N1=Each(M,-2, 1) ' from second from end to start \\ print only 2 values. While block ends when one iterator finish While N, N1 { Print Eval(N1)*Eval(N) } } Checkit ``` ## M4 ```M4 divert(-1) define(`for', `ifelse($#,0,``$0'', `ifelse(eval($2<=$3),1, `pushdef(`$1',$2)$4`'popdef(`$1')$0(`$1',incr($2),$3,`$4')')')') define(`new',`define(`$1[size]key',0)') define(`asize',`defn(`$1[size]key')') define(`aget',`defn(`$1[$2]')') define(`akget',`defn(`$1[$2]key')') define(`avget',`aget($1,akget($1,$2))') define(`aset', `ifdef($1[$2], `', `define(`$1[size]key',incr(asize(`$1')))`'define($1[asize(`$1')]key,$2)')`'define($1[$2],$3)') define(`dquote', ``$@'') define(`akeyvalue',`dquote(akget($1,$2),aget($1,akget($1,$2)))') define(`akey',`dquote(akget($1,$2))') define(`avalue',`dquote(aget($1,akget($1,$2)))') divert new(`a') aset(`a',`wow',5) aset(`a',`wow',flame) aset(`a',`bow',7) key-value pairs for(`x',1,asize(`a'), `akeyvalue(`a',x) ') keys for(`x',1,asize(`a'), `akey(`a',x) ') values for(`x',1,asize(`a'), `avalue(`a',x) ') ``` {{out}} ```txt key-value pairs `wow',`flame' `bow',`7' keys `wow' `bow' values `flame' `7' ``` ## Maple Iterate through indices when indices are all simple expressions: ```Maple > T := table( [ "A" = 1, "B" = 2, "C" = 3, "D" = 4 ] ); > for i in indices( T, nolist ) do print(i ) end: "A" "B" "C" "D" ``` Iterate through indices when indices may be expression sequences: ```Maple > T := table( [ "a" = 1, "b" = 2, ("c","d") = 3 ] ): > for i in indices( T ) do print( i, T[ op( i ) ] ) end: ["a"], 1 ["b"], 2 ["c", "d"], 3 ``` Return all index / entry pairs as equations: ```Maple > for i in indices( T, pairs ) do print( i) end: "a" = 1 "b" = 2 ("c", "d") = 3 ``` ```Maple > for i in entries( T ) do print( i) end: [1] [3] [2] ``` =={{header|Mathematica}} / {{header|Wolfram Language}}== ```Mathematica keys=DownValues[#,Sort->False][[All,1,1,1]]&; hashes=#/@keys[#]&; a[2]="string";a["sometext"]=23; keys[a] ->{2,sometext} hashes[a] ->{string,23} ``` =={{header|MATLAB}} / {{header|Octave}}== Associative arrays can be defined as structs in Matlab and Octave. ```Matlab keys = fieldnames(hash); for k=1:length(keys), key = keys{k}; value = getfield(hash,key); % get value of key hash = setfield(hash,key,-value); % set value of key end; ``` or ```Matlab keys = fieldnames(hash); for k=1:length(keys), key = keys{k}; value = hash.(key); % get value of key hash.(key) = -value; % set value of key end; ``` ## Maxima ```Maxima h[1]: 6$ h[9]: 2$ /* iterate over values */ for val in listarray(h) do ( print(val))$ /* iterate over the keys */ for key in rest(arrayinfo(h), 2) do ( val: arrayapply(h, key), print(key, val))$ ``` ## MiniScript ```MiniScript d = { 3: "test", "foo": 3 } for keyVal in d print keyVal // produces results like: { "key": 3, "value": "test" } end for for key in d.indexes print key end for for val in d.values print val end for ``` ## NetRexx ```NetRexx /* NetRexx */ options replace format comments java crossref symbols surname = 'Unknown' -- default value surname['Fred'] = 'Bloggs' surname['Davy'] = 'Jones' try = 'Fred' say surname[try] surname['Bert'] -- extract the keys loop fn over surname say fn.right(10) ':' surname[fn] end fn ``` ## NewLISP ```NewLISP ;; using an association list: (setq alist '(("A" "a") ("B" "b") ("C" "c"))) ;; list keys (map first alist) ;; list values (map last alist) ;; loop over the assocation list: (dolist (elem alist) (println (format "%s -> %s" (first elem) (last elem)))) ``` ## Nim ```nim import tables var t: Table[int,string] = initTable[int,string]() t[1] = "one" t[2] = "two" t[3] = "three" t.add(4,"four") echo "t has " & $t.len & " elements" echo "has t key 4? " & $t.hasKey(4) echo "has t key 5? " & $t.hasKey(5) #iterate keys echo "key iteration:" for k in t.keys: echo "at[" & $k & "]=" & t[k] #itetate pairs echo "pair iteration:" for k,v in t.pairs: echo "at[" & $k & "]=" & v ``` {{out}} ```txt t has 4 elements has t key 4? true has t key 5? false key iteration: at[1]=one at[2]=two at[3]=three at[4]=four pair iteration: at[1]=one at[2]=two at[3]=three at[4]=four ``` =={{header|Oberon-2}}== {{works with|oo2c Version 2}} ```oberon2 MODULE AssociativeArray; IMPORT ADT:Dictionary, Object:Boxed, Out; TYPE Key = STRING; Value = Boxed.LongInt; VAR assocArray: Dictionary.Dictionary(Key,Value); iterK: Dictionary.IterKeys(Key,Value); iterV: Dictionary.IterValues(Key,Value); aux: Value; k: Key; BEGIN assocArray := NEW(Dictionary.Dictionary(Key,Value)); assocArray.Set("ten",NEW(Value,10)); assocArray.Set("eleven",NEW(Value,11)); aux := assocArray.Get("ten"); Out.LongInt(aux.value,0);Out.Ln; aux := assocArray.Get("eleven"); Out.LongInt(aux.value,0);Out.Ln;Out.Ln; (* Iterate keys *) iterK := assocArray.IterKeys(); WHILE (iterK.Next(k)) DO Out.Object(k);Out.Ln END; Out.Ln; (* Iterate values *) iterV := assocArray.IterValues(); WHILE (iterV.Next(aux)) DO Out.LongInt(aux.value,0);Out.Ln END END AssociativeArray. ``` ## Objeck ```objeck class Iteration { function : Main(args : String[]) ~ Nil { assoc_array := Collection.StringMap->New(); assoc_array->Insert("Hello", IntHolder->New(1)); assoc_array->Insert("World", IntHolder->New(2)); assoc_array->Insert("!", IntHolder->New(3)); keys := assoc_array->GetKeys(); values := assoc_array->GetValues(); each(i : keys) { key := keys->Get(i)->As(String); value := assoc_array->Find(key)->As(IntHolder)->Get(); "key={$key}, value={$value}"->PrintLine(); }; "-------------"->PrintLine(); each(i : keys) { key := keys->Get(i)->As(String); value := values->Get(i)->As(IntHolder)->Get(); "key={$key}, value={$value}"->PrintLine(); }; } } ``` =={{header|Objective-C}}== {{works with|Objective-C|2.0+}} ```objc NSDictionary *myDict = [NSDictionary dictionaryWithObjectsAndKeys: [NSNumber numberWithInt:13], @"hello", [NSNumber numberWithInt:31], @"world", [NSNumber numberWithInt:71], @"!", nil]; // iterating over keys: for (id key in myDict) { NSLog(@"key = %@", key); } // iterating over values: for (id value in [myDict objectEnumerator]) { NSLog(@"value = %@", value); } ``` {{works with|Objective-C|<2.0}} ```objc NSDictionary *myDict = [NSDictionary dictionaryWithObjectsAndKeys: [NSNumber numberWithInt:13], @"hello", [NSNumber numberWithInt:31], @"world", [NSNumber numberWithInt:71], @"!", nil]; // iterating over keys: NSEnumerator *enm = [myDict keyEnumerator]; id key; while ((key = [enm nextObject])) { NSLog(@"key = %@", key); } // iterating over values: enm = [myDict objectEnumerator]; id value; while ((value = [enm nextObject])) { NSLog(@"value = %@", value); } ``` {{works with|Cocoa|Mac OS X 10.6+}} ```objc NSDictionary *myDict = [NSDictionary dictionaryWithObjectsAndKeys: [NSNumber numberWithInt:13], @"hello", [NSNumber numberWithInt:31], @"world", [NSNumber numberWithInt:71], @"!", nil]; // iterating over keys and values: [myDict enumerateKeysAndObjectsUsingBlock: ^(id key, id value, BOOL *stop) { NSLog(@"key = %@, value = %@", key, value); }]; ``` ## OCaml Association array: ```ocaml #!/usr/bin/env ocaml let map = [| ('A', 1); ('B', 2); ('C', 3) |] ;; (* iterate over pairs *) Array.iter (fun (k,v) -> Printf.printf "key: %c - value: %d\n" k v) map ;; (* iterate over keys *) Array.iter (fun (k,_) -> Printf.printf "key: %c\n" k) map ;; (* iterate over values *) Array.iter (fun (_,v) -> Printf.printf "value: %d\n" v) map ;; (* in functional programming it is often more useful to fold over the elements *) Array.fold_left (fun acc (k,v) -> acc ^ Printf.sprintf "key: %c - value: %d\n" k v) "Elements:\n" map ;; ``` Hash table: ```ocaml let map = Hashtbl.create 42;; Hashtbl.add map 'A' 1;; Hashtbl.add map 'B' 2;; Hashtbl.add map 'C' 3;; (* iterate over pairs *) Hashtbl.iter (fun k v -> Printf.printf "key: %c - value: %d\n" k v) map ;; (* in functional programming it is often more useful to fold over the elements *) Hashtbl.fold (fun k v acc -> acc ^ Printf.sprintf "key: %c - value: %d\n" k v) map "Elements:\n" ;; ``` Functional binary search tree: ```ocaml module CharMap = Map.Make (Char);; let map = CharMap.empty;; let map = CharMap.add 'A' 1 map;; let map = CharMap.add 'B' 2 map;; let map = CharMap.add 'C' 3 map;; (* iterate over pairs *) CharMap.iter (fun k v -> Printf.printf "key: %c - value: %d\n" k v) map ;; (* in functional programming it is often more useful to fold over the elements *) CharMap.fold (fun k v acc -> acc ^ Printf.sprintf "key: %c - value: %d\n" k v) map "Elements:\n" ;; ``` ## Ol ```ol ;;; create sample associative array (define aa (list->ff '( (hello . 1) (world . 2) (! . 3)))) (print aa) ; ==> #((! . 3) (hello . 1) (world . 2)) ;;; simplest iteration over all associative array (using ff-iter, lazy iterator) (let loop ((kv (ff-iter aa))) (cond ((null? kv) #true) ((pair? kv) (print (car kv)) (loop (cdr kv))) (else (loop (force kv))))) ; ==> (! . 3) ; ==> (hello . 1) ; ==> (world . 2) ;;; iteration with returning value (using ff-fold) (print "folding result: " (ff-fold (lambda (result key value) (print "key: " key ", value: " value) (+ result 1)) 0 aa)) ; ==> key: !, value: 3 ; ==> key: hello, value: 1 ; ==> key: world, value: 2 ; ==> folding result: 3 ;;; same but right fold (using ff-foldr) (print "rfolding result: " (ff-foldr (lambda (result key value) (print "key: " key ", value: " value) (+ result 1)) 0 aa)) ; ==> key: world, value: 2 ; ==> key: hello, value: 1 ; ==> key: !, value: 3 ; ==> rfolding result: 3 ;;; at least create new array from existing (let's multiply every value by value) (define bb (ff-map aa (lambda (key value) (* value value)))) (print bb) ; ==> #((! . 9) (hello . 1) (world . 4)) ``` ## ooRexx ```oorexx d = .directory~new d["hello"] = 1 d["world"] = 2 d["!"] = 3 -- iterating over keys: loop key over d say "key =" key end -- iterating over values: loop value over d~allitems say "value =" value end -- iterating over key-value pairs: s = d~supplier loop while s~available say "key =" s~index", value =" s~item s~next end ``` {{out}} ```txt key = ! key = world key = hello value = 3 value = 2 value = 1 key = !, value = 3 key = world, value = 2 key = hello, value = 1 ``` ## Oz ```oz declare MyMap = unit('hello':13 'world':31 '!':71) in {ForAll {Record.toListInd MyMap} Show} %% pairs {ForAll {Record.arity MyMap} Show} %% keys {ForAll {Record.toList MyMap} Show} %% values ``` ## PARI/GP {{works with|PARI/GP|2.8.1+}} The keys can be retried from a map with Vec: ```parigp keys = Vec(M); ``` You can iterate over the values as usual: ```parigp for(i=1,#keys, print(keys[i]," ",mapget(M,keys[i])) ) ``` ## Perl ```perl #! /usr/bin/perl use strict; my %pairs = ( "hello" => 13, "world" => 31, "!" => 71 ); # iterate over pairs # Be careful when using each(), however, because it uses a global iterator # associated with the hash. If you call keys() or values() on the hash in the # middle of the loop, the each() iterator will be reset to the beginning. If # you call each() on the hash somewhere in the middle of the loop, it will # skip over elements for the "outer" each(). Only use each() if you are sure # that the code inside the loop will not call keys(), values(), or each(). while ( my ($k, $v) = each %pairs) { print "(k,v) = ($k, $v)\n"; } # iterate over keys foreach my $key ( keys %pairs ) { print "key = $key, value = $pairs{$key}\n"; } # or (see note about each() above) while ( my $key = each %pairs) { print "key = $key, value = $pairs{$key}\n"; } # iterate over values foreach my $val ( values %pairs ) { print "value = $val\n"; } ``` ## Perl 6 {{works with|Rakudo|2015.12}} ```perl6 my %pairs = hello => 13, world => 31, '!' => 71; for %pairs.kv -> $k, $v { say "(k,v) = ($k, $v)"; } # Stable order for %pairs.sort(*.value)>>.kv -> ($k, $v) { say "(k,v) = ($k, $v)"; } { say "$^a => $^b" } for %pairs.kv; say "key = $_" for %pairs.keys; say "value = $_" for %pairs.values; ``` ## Phix The first three lines create a simple dictionary, with keys and values of several different types (string/integer/sequence): ```Phix setd("one",1) setd(2,"duo") setd({3,4},{5,"six"}) function visitor(object key, object data, object /*userdata*/) ?{key,data} return 1 -- (continue traversal) end function traverse_dict(routine_id("visitor")) ``` {{out}} ```txt {2,"duo"} {{3,4},{5,"six"}} {"one",1} ``` You could also use some of the map.e routines. With the same initial three setd() as above: ```Phix include builtins\map.e ?pairs() ?keys() ?values() ``` {{out}} ```txt {{2,"duo"},{{3,4},{5,"six"}},{"one",1}} {2,{3,4},"one"} {"duo",{5,"six"},1} ``` ## PHP ```php 1, "world" => 2, "!" => 3 ); // iterate over key-value pairs foreach($pairs as $k => $v) { echo "(k,v) = ($k, $v)\n"; } // iterate over keys foreach(array_keys($pairs) as $key) { echo "key = $key, value = $pairs[$key]\n"; } // iterate over values foreach($pairs as $value) { echo "values = $value\n"; } ?> ``` ## PicoLisp ### Using properties ```PicoLisp (put 'A 'foo 5) (put 'A 'bar 10) (put 'A 'baz 15) : (getl 'A) # Get the whole property list -> ((15 . baz) (10 . bar) (5 . foo)) : (mapcar cdr (getl 'A)) # Get all keys -> (baz bar foo) : (mapcar car (getl 'A)) # Get all values -> (15 10 5) ``` ### Using an index tree ```PicoLisp (idx 'A (def "foo" 5) T) (idx 'A (def "bar" 10) T) (idx 'A (def "baz" 15) T) : A # Get the whole tree -> ("foo" ("bar" NIL "baz")) : (idx 'A) # Get all keys -> ("bar" "baz" "foo") : (mapcar val (idx 'A)) # Get all values -> (10 15 5) ``` ## Pike note that the order is not alphabetic but depends on the hash value of the keys. the order is deterministic however. ```Pike mapping(string:string) m = ([ "A":"a", "B":"b", "C":"c" ]); foreach(m; string key; string value) { write(key+value); } Result: BbAaCc // only keys foreach(m; string key;) { write(key); } Result: BAC // only values foreach(m;; string value) { write(value); } Result: bac ``` ## PostScript ```postscript % over keys and values <> {= =} forall % just keys <> {= } forall % just values <> {pop =} forall ``` ## Potion We can traverse tables by key or by key and val. We cannot traverse tables only by val. ```potion mydictionary = (red=0xff0000, green=0x00ff00, blue=0x0000ff) mydictionary each (key, val): (key, ":", val, "\n") join print. mydictionary each (key): (key, "\n") join print. ``` ## PowerShell Using the following hash table: ```powershell $h = @{ 'a' = 1; 'b' = 2; 'c' = 3 } ``` Iterating over the key/value pairs is slightly cumbersome as it requires an explicit call toGetEnumerator
: ```powershell $h.GetEnumerator() | ForEach-Object { Write-Host Key: $_.Name, Value: $_.Value } ``` Aforeach
statement can also be used: ```powershell foreach ($e in $h.GetEnumerator()) { Write-Host Key: $e.Name, Value: $e.Value } ``` Iterating over the keys: ```powershell $h.Keys | ForEach-Object { Write-Host Key: $_ } foreach ($k in $h.Keys) { Write-Host Key: $k } ``` Iterating over the values: ```powershell $h.Values | ForEach-Object { Write-Host Value: $_ } foreach ($v in $h.Values) { Write-Host Value: $v } ``` ## Prolog Following the example at [[Associative_array/Creation#Prolog|Associative Array Creation]] (with the understanding that using a predicate to store a hash does not prevent a "key" from having more than one value): ```prolog assert( mymap(key1,value1) ). assert( mymap(key2,value1) ). ``` To perform the specific task at hand: ```prolog ?- forall( mymap(Key,Value), writeln( [Key,Value]) ). [key1,value1] [key2,value1] ``` In Prolog, however, iteration is "built-in". For example: ```prolog ?- mymap(key1, Y). Y = value1. ?- mymap(X, value1). X = key1 ; X = key2. ``` To construct the list of keys: ```prolog ?- findall( X, mymap(X,value1), Xs). Xs = [key1, key2]. ``` To construct the list of distinct values: ```prolog ?- findall( Y, mymap(key1,Y), Ys). Ys = [value1]. ``` ## PureBasic Hashes are a built-in type called Map in Purebasic. ```purebasic NewMap dict.s() dict("de") = "German" dict("en") = "English" dict("fr") = "French" ForEach dict() Debug MapKey(dict()) + ":" + dict() Next ``` ## Python ```python myDict = { "hello": 13, "world": 31, "!" : 71 } # iterating over key-value pairs: for key, value in myDict.items(): print ("key = %s, value = %s" % (key, value)) # iterating over keys: for key in myDict: print ("key = %s" % key) # (is a shortcut for:) for key in myDict.keys(): print ("key = %s" % key) # iterating over values: for value in myDict.values(): print ("value = %s" % value) ``` ## R R lacks a native representation of key-value pairs, but different structures allow named elements, which provide similar functionality. ### environment example ```r> env <- new.env() > env[["x"]] <- 123 > env[["x"]] ``` ```txt [1] 123 ``` ```r> index <- "1" > env[[index]] <- "rainfed hay" > for (name in ls(env)) { + cat(sprintf('index=%s, value=%s\n', name, env[[name]])) + } ``` ```txt index=1, value=rainfed hay index=x, value=123 ``` ### vector example ```r> x <- c(hello=1, world=2, "!"=3) > print(x["!"]) ``` ```txt ! 3 ``` ```r> print(unname(x["!"])) ``` ```txt [1] 3 ``` ### list example ```R> a <- list(a=1, b=2, c=3.14, d="xyz") > print(a$a) ``` ```txt [1] 1 ``` ```R> print(a$d) ``` ```txt [1] "xyz" ``` ## Racket Using the dictionary interface, different data structures can be treated as an associative array in Racket. ```racket #lang racket (define dict1 #hash((apple . 5) (orange . 10))) ; hash table (define dict2 '((apple . 5) (orange . 10))) ; a-list (define dict3 (vector "a" "b" "c")) ; vector (integer keys) (dict-keys dict1) ; => '(orange apple) (dict-values dict2) ; => '(5 10) (for/list ([(k v) (in-dict dict3)]) ; => '("0 -> a" "1 -> b" "2 -> c") (format "~a -> ~a" k v)) ``` ## REXX ```rexx /*REXX program demonstrates how to set and display values for an associative array. */ /*╔════════════════════════════════════════════════════════════════════════════════════╗ ║ The (below) two REXX statements aren't really necessary, but it shows how to ║ ║ define any and all entries in a associative array so that if a "key" is used that ║ ║ isn't defined, it can be displayed to indicate such, or its value can be checked ║ ║ to determine if a particular associative array element has been set (defined). ║ ╚════════════════════════════════════════════════════════════════════════════════════╝*/ stateF.= ' [not defined yet] ' /*sets any/all state former capitals.*/ stateN.= ' [not defined yet] ' /*sets any/all state names. */ w = 0 /*the maximum length of a state name.*/ stateL = /*╔════════════════════════════════════════════════════════════════════════════════════╗ ║ The list of states (empty as of now). It's convenient to have them in alphabetic ║ ║ order; they'll be listed in the order as they are in the REXX program below). ║ ║ In REXX, when a key is used (for a stemmed array, as they are called in REXX), ║ ║ and the key isn't assigned a value, the key's name is stored (internally) as ║ ║ uppercase (Latin) characters (as in the examples below. If the key has a ║ ║ a value, the key's value is used as is (i.e.: no upper translation is performed).║ ║ Actually, any characters can be used, including blank(s) and non─displayable ║ ║ characters (including '00'x, 'ff'x, commas, periods, quotes, ···). ║ ╚════════════════════════════════════════════════════════════════════════════════════╝*/ call setSC 'al', "Alabama" , 'Tuscaloosa' call setSC 'ca', "California" , 'Benicia' call setSC 'co', "Colorado" , 'Denver City' call setSC 'ct', "Connecticut" , 'Hartford and New Haven (jointly)' call setSC 'de', "Delaware" , 'New-Castle' call setSC 'ga', "Georgia" , 'Milledgeville' call setSC 'il', "Illinois" , 'Vandalia' call setSC 'in', "Indiana" , 'Corydon' call setSC 'ia', "Iowa" , 'Iowa City' call setSC 'la', "Louisiana" , 'New Orleans' call setSC 'me', "Maine" , 'Portland' call setSC 'mi', "Michigan" , 'Detroit' call setSC 'ms', "Mississippi" , 'Natchez' call setSC 'mo', "Missouri" , 'Saint Charles' call setSC 'mt', "Montana" , 'Virginia City' call setSC 'ne', "Nebraska" , 'Lancaster' call setSC 'nh', "New Hampshire" , 'Exeter' call setSC 'ny', "New York" , 'New York' call setSC 'nc', "North Carolina" , 'Fayetteville' call setSC 'oh', "Ohio" , 'Chillicothe' call setSC 'ok', "Oklahoma" , 'Guthrie' call setSC 'pa', "Pennsylvania" , 'Lancaster' call setSC 'sc', "South Carolina" , 'Charlestown' call setSC 'tn', "Tennessee" , 'Murfreesboro' call setSC 'vt', "Vermont" , 'Windsor' do j=1 for words(stateL) /*show all capitals that were defined. */ $= word(stateL, j) /*get the next (USA) state in the list.*/ say 'the former capital of ('$") " left(stateN.$, w) " was " stateC.$ end /*j*/ /* [↑] show states that were defined.*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ setSC: parse arg code,name,cap; upper code /*get code, name & cap.; uppercase code*/ stateL= stateL code /*keep a list of all the US state codes*/ stateN.code= name; w= max(w,length(name)) /*define the state's name; max width. */ stateC.code= cap /* " " " code to the capital*/ return /*return to invoker, SETSC is finished.*/ ``` {{out|output|text= when using the internal default input:}} ```txt the former capital of (AL) Alabama was Tuscaloosa the former capital of (CA) California was Benicia the former capital of (CO) Colorado was Denver City the former capital of (CT) Connecticut was Hartford and New Haven (jointly) the former capital of (DE) Delaware was New-Castle the former capital of (GA) Georgia was Milledgeville the former capital of (IL) Illinois was Vandalia the former capital of (IN) Indiana was Corydon the former capital of (IA) Iowa was Iowa City the former capital of (LA) Louisiana was New Orleans the former capital of (ME) Maine was Portland the former capital of (MI) Michigan was Detroit the former capital of (MS) Mississippi was Natchez the former capital of (MO) Missouri was Saint Charles the former capital of (MT) Montana was Virginia City the former capital of (NE) Nebraska was Lancaster the former capital of (NH) New Hampshire was Exeter the former capital of (NY) New York was New York the former capital of (NC) North Carolina was Fayetteville the former capital of (OH) Ohio was Chillicothe the former capital of (OK) Oklahoma was Guthrie the former capital of (PA) Pennsylvania was Lancaster the former capital of (SC) South Carolina was Charlestown the former capital of (TN) Tennessee was Murfreesboro the former capital of (VT) Vermont was Windsor ``` When this example was started, the intention was to list the former capitals by key. Unfortunately, there's a duplicate capital (Lancaster). ## Ring ```ring # Project : Associative array/Iteration lst = [["hello", 13], ["world", 31], ["!", 71]] for n = 1 to len(lst) see lst[n][1] + " : " + lst[n][2] + nl next ``` Output: ```txt hello : 13 world : 31 ! : 71 ``` ## RLaB Associative arrays are called ''lists'' in RLaB. ```RLaB x = <<>>; // create an empty list x.hello = 1; x.world = 2; x.["!"] = 3; // to iterate over identifiers of a list one needs to use the function ''members'' // the identifiers are returned as a lexicographically ordered string row-vector // here ["!", "hello", "world"] for(i in members(x)) { printf("%s %g\n", i, x.[i]); } // occasionally one needs to check if there exists member of a list y = members(x); // y contains ["!", "hello", "world"] clear(x.["!"]); // remove member with identifier "!" from the list "x" for(i in y) { printf("%s %g\n", i, x.[i]); } // this produces error because x.["!"] does not exist for(i in y) { if (exist(x.[i])) { printf("%s %g\n", i, x.[i]); } // we print a member of the list "x" only if it exists } ``` ## Ruby ```ruby my_dict = { "hello" => 13, "world" => 31, "!" => 71 } # iterating over key-value pairs: my_dict.each {|key, value| puts "key = #{key}, value = #{value}"} # or my_dict.each_pair {|key, value| puts "key = #{key}, value = #{value}"} # iterating over keys: my_dict.each_key {|key| puts "key = #{key}"} # iterating over values: my_dict.each_value {|value| puts "value =#{value}"} ``` another way: ```ruby for key, value in my_dict puts "key = #{key}, value = #{value}" end for key in my_dict.keys puts "key = #{key}" end for value in my_dict.values puts "value = #{value}" end ``` {{out}} ```txt key = hello, value = 13 key = world, value = 31 key = !, value = 71 key = hello key = world key = ! value = 13 value = 31 value = 71 ``` ## Rust ```rust use std::collections::HashMap; fn main() { let mut olympic_medals = HashMap::new(); olympic_medals.insert("United States", (1072, 859, 749)); olympic_medals.insert("Soviet Union", (473, 376, 355)); olympic_medals.insert("Great Britain", (246, 276, 284)); olympic_medals.insert("Germany", (252, 260, 270)); for (country, medals) in olympic_medals { println!("{} has had {} gold medals, {} silver medals, and {} bronze medals", country, medals.0, medals.1, medals.2); } } ``` {{out}} Note thatHashMap
does not preserve order (if this is important,std::collections::BTreeMap
is what you want.) ```txt Germany has had 252 gold medals, 260 silver medals, and 270 bronze medals United States has had 1072 gold medals, 859 silver medals, and 749 bronze medals Soviet Union has had 473 gold medals, 376 silver medals, and 355 bronze medals Great Britain has had 246 gold medals, 276 silver medals, and 284 bronze medals ``` ## Scala ```Scala val m = Map("Amsterdam" -> "Netherlands", "New York" -> "USA", "Heemstede" -> "Netherlands") println(f"Key->Value: ${m.mkString(", ")}%s") println(f"Pairs: ${m.toList.mkString(", ")}%s") println(f"Keys: ${m.keys.mkString(", ")}%s") println(f"Values: ${m.values.mkString(", ")}%s") println(f"Unique values: ${m.values.toSet.mkString(", ")}%s") ``` {{out}} ```txt Key->Value: Amsterdam -> Netherlands, New York -> USA, Heemstede -> Netherlands Pairs: (Amsterdam,Netherlands), (New York,USA), (Heemstede,Netherlands) Keys: Amsterdam, New York, Heemstede Values: Netherlands, USA, Netherlands Unique values: Netherlands, USA ``` ## Scheme {{works with|Gauche Scheme}} ```Scheme ;; Create an associative array (hash-table) whose keys are strings: (define table (hash-table 'string=? '("hello" . 0) '("world" . 22) '("!" . 999))) ;; Iterate over the table, passing the key and the value of each entry ;; as arguments to a function: (hash-table-for-each table ;; Create by "partial application" a function that accepts 2 arguments, ;; the key and the value: (pa$ format #t "Key = ~a, Value = ~a\n")) ``` Output: ```txt Key = !, Value = 999 Key = world, Value = 22 Key = hello, Value = 0 ``` ```Scheme ;; Iterate over the table and create a list of the keys and the ;; altered values: (hash-table-map table (lambda (key val) (list key (+ val 5000)))) ;; Create a new table that has the same keys but altered values. (use gauche.collection) (map-to(lambda (k-v) (cons (car k-v) (+ (cdr k-v) 5000))) table) ``` To get a list of the keys or of the values of the table, use one of the following: ```txt (hash-table-keys table) (hash-table-values table) ``` ## Seed7 ```seed7 $ include "seed7_05.s7i"; const type: dictType is hash [string] integer; var dictType: myDict is dictType.value; const proc: main is func local var string: stri is ""; var integer: number is 0; begin myDict @:= ["hello"] 1; myDict @:= ["world"] 2; myDict @:= ["!"] 3; # iterating over key-value pairs: for number key stri range myDict do writeln("key = " <& number <& ", value = " <& stri); end for; # iterating over keys: for key stri range myDict do writeln("key = " <& stri); end for; # iterating over values: for number range myDict do writeln("value = " <& number); end for; end func; ``` {{out}} ```txt key = 3, value = ! key = 1, value = hello key = 2, value = world key = ! key = hello key = world value = 3 value = 1 value = 2 ``` ## Sidef ```ruby var hash = Hash.new( key1 => 'value1', key2 => 'value2', ) # Iterate over key-value pairs hash.each { |key, value| say "#{key}: #{value}"; } # Iterate only over keys hash.keys.each { |key| say key; } # Iterate only over values hash.values.each { |value| say value; } ``` {{out}} ```txt key1: value1 key2: value2 key1 key2 value1 value2 ``` ## Slate In Slate, all associative mappings inherit from Mapping, so they all have the same protocol. Even Sequences obey it, in addition to their own protocol for collections with ordered integer-range keys. ```slate define: #pairs -> ({'hello' -> 1. 'world' -> 2. '!' -> 3. 'another!' -> 3} as: Dictionary). pairs keysAndValuesDo: [| :key :value | inform: '(k, v) = (' ; key printString ; ', ' ; value printString ; ')' ]. pairs keysDo: [| :key | inform: '(k, v) = (' ; key printString ; ', ' ; (pairs at: key) printString ; ')' ]. pairs do: [| :value | inform: 'value = ' ; value printString ]. ``` ## Smalltalk {{works with|GNU Smalltalk}} ```smalltalk |pairs| pairs := Dictionary from: { 'hello' -> 1. 'world' -> 2. '!' -> 3. 'another!' -> 3 }. "iterate over keys and values" pairs keysAndValuesDo: [ :k :v | ('(k, v) = (%1, %2)' % { k. v }) displayNl ]. "iterate over keys" pairs keysDo: [ :key | ('key = %1, value = %2' % { key. pairs at: key }) displayNl ]. "iterate over values" pairs do: [ :value | ('value = %1' % { value }) displayNl ]. ``` We could also obtain a set of keys or a collection of values and iterate over them with "do:": ```smalltalk (pairs keys) do: [ :k | "..." ]. (pairs values) do: [ :v | "..." ]. ``` ## SNOBOL4 {{works with|Macro Spitbol}} {{works with|Snobol4+}} {{works with|CSnobol}} ```SNOBOL4 * # Create sample table t = table() t<'cat'> = 'meow' t<'dog'> = 'woof' t<'pig'> = 'oink' * # Convert table to key/value array a = convert(t,'array') * # Iterate pairs ploop i = i + 1; output = a ' -> ' a :s(ploop) * # Iterate keys kloop j = j + 1; output = a :s(kloop) * # Iterate vals vloop k = k + 1; output = a :s(vloop) end ``` ## Stata ```stata mata // Create an associative array a=asarray_create() asarray(a,"one",1) asarray(a,"two",2) // Loop over entries loc=asarray_first(a) do { printf("%s %f\n",asarray_key(a,loc),asarray_contents(a,loc)) loc=asarray_next(a,loc) } while(loc!=NULL) end ``` ## Swift ```swift let myMap = [ "hello": 13, "world": 31, "!" : 71 ] // iterating over key-value pairs: for (key, value) in myMap { println("key = \(key), value = \(value)") } ``` ## Tcl ### With Arrays ```tcl array set myAry { # list items here... } # Iterate over keys and values foreach {key value} [array get myAry] { puts "$key -> $value" } # Iterate over just keys foreach key [array names myAry] { puts "key = $key" } # There is nothing for directly iterating over just the values # Use the keys+values version and ignore the keys ``` ### With Dictionaries {{works with|Tcl|8.5}} ```tcl set myDict [dict create ...]; # Make the dictionary # Iterate over keys and values dict for {key value} $myDict { puts "$key -> $value" } # Iterate over keys foreach key [dict keys $myDict] { puts "key = $key" } # Iterate over values foreach value [dict values $myDict] { puts "value = $value" } ``` ## TXR ```txrlisp (defvarl h (hash)) (each ((k '(a b c)) (v '(1 2 3))) (set [h k] v)) (dohash (k v h) (put-line `@k -> @v`)) ``` {{out|Run}} ```txt $ txr hash.tl c -> 3 b -> 2 a -> 1 ``` ## UNIX Shell Two shells have associative arrays, but they use different syntax to access their keys. {{works with|ksh93}} ```bash typeset -A a=([key1]=value1 [key2]=value2) # just keys printf '%s\n' "${!a[@]}" # just values printf '%s\n' "${a[@]}" # keys and values for key in "${!a[@]}"; do printf '%s => %s\n' "$key" "${a[$key]}" done ``` {{works with|zsh}} ```bash typeset -A a a=(key1 value1 key2 value2) # just keys print -l -- ${(k)a} # just values print -l -- ${(v)a} # keys and values printf '%s => %s\n' ${(kv)a} ``` ## Vala {{libheader|Gee}} ```vala using Gee; void main(){ // declare HashMap var map = new HashMap (); // set 3 entries map["pi"] = 3.14; map["e"] = 2.72; map["golden"] = 1.62; // iterate over (key,value) pair foreach (var elem in map.entries){ string name = elem.key; double num = elem.value; stdout.printf("%s,%f\n", name, num); } // iterate over keys foreach (string key in map.keys){ stdout.printf("%s\n", key); } // iterate over values foreach (double num in map.values){ stdout.printf("%f\n", num); } } ``` Compile with flag: ```txt --pkg gee-1.0 ``` {{out}} ```txt e,2.720000 golden,1.620000 pi,3.140000 e golden pi 2.720000 1.620000 3.140000 ``` ## VBA Dictionaries are similar in VBA and VBScript. Here is how to iterate. ```vb Option Explicit Sub Test() Dim h As Object, i As Long, u, v, s Set h = CreateObject("Scripting.Dictionary") h.Add "A", 1 h.Add "B", 2 h.Add "C", 3 'Iterate on keys For Each s In h.Keys Debug.Print s Next 'Iterate on values For Each s In h.Items Debug.Print s Next 'Iterate on both keys and values by creating two arrays u = h.Keys v = h.Items For i = 0 To h.Count - 1 Debug.Print u(i), v(i) Next End Sub ``` ## VBScript ```vb 'instantiate the dictionary object Set dict = CreateObject("Scripting.Dictionary") 'populate the dictionary or hash table dict.Add 1,"larry" dict.Add 2,"curly" dict.Add 3,"moe" 'iterate key and value pairs For Each key In dict.Keys WScript.StdOut.WriteLine key & " - " & dict.Item(key) Next ``` {{Out}} ```txt 1 - larry 2 - curly 3 - moe ``` ## Vim Script ```vim let dict = {"apples": 11, "oranges": 25, "pears": 4} echo "Iterating over key-value pairs" for [key, value] in items(dict) echo key " => " value endfor echo "\n" echo "Iterating over keys" for key in keys(dict) echo key endfor echo "\n" echo "Iterating over values" for value in values(dict) echo value endfor ``` {{Out}} ```txt Iterating over key-value pairs oranges => 25 pears => 4 apples => 11 Iterating over keys oranges pears apples Iterating over values 25 4 11 ``` ## Wart ```wart h <- (table 'a 1 'b 2) each (key val) table prn key " " val ``` {{out}} ```txt a 1 b 2 ``` ## XPL0 ```XPL0 include c:\cxpl\stdlib; char Dict(10,10); int Entries; proc AddEntry(Letter, Greek); \Insert entry into associative array char Letter, Greek; [Dict(Entries,0):= Letter; StrCopy(Greek, @Dict(Entries,1)); Entries:= Entries+1; \(limit checks ignored for simplicity) ]; int I; [Entries:= 0; AddEntry(^A, "alpha"); AddEntry(^D, "delta"); AddEntry(^B, "beta"); AddEntry(^C, "gamma"); for I:= 0 to Entries-1 do [ChOut(0, Dict(I,0)); ChOut(0, ^ ); Text(0, @Dict(I,1)); CrLf(0)]; ] ``` {{out}} ```txt A alpha D delta B beta C gamma ``` ## zkl ```zkl var d=Dictionary("A","alpha","D","delta", "B","beta", "C", "gamma"); d.keys.pump(Console.print,fcn(k){String(k,",")}) d.values.apply("toUpper").println(); d.makeReadOnly(); // can only iterate over k,v pairs if read only foreach k,v in (d){print(k,":",v,"; ")} ``` {{out}} ```txt A,B,C,D, L("ALPHA","BETA","GAMMA","DELTA") A:alpha; B:beta; C:gamma; D:delta; ``` {{omit from|Applesoft BASIC}} {{omit from|Brainfuck}} {{omit from|Commodore BASIC}} {{omit from|Integer BASIC}} {{omit from|TI-89 BASIC}}