⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{draft task}}
[[wp:Bell number|Bell or exponential numbers]] are enumerations of the number of different ways to partition a set that has exactly '''n''' elements. Each element of the sequence '''Bn''' is the number of partitions of a set of size '''n''' where order of the elements and order of the partitions are non-significant. E.G.: '''{a b}''' is the same as '''{b a}''' and '''{a} {b}''' is the same as '''{b} {a}'''.
;So:
:'''B0 = 1''' trivially. There is only one way to partition a set with zero elements. '''{ }'''
:'''B1 = 1''' There is only one way to partition a set with one element. '''{a}'''
:'''B2 = 2''' Two elements may be partitioned in two ways. '''{a} {b}, {a b}'''
:'''B3 = 5''' Three elements may be partitioned in five ways '''{a} {b} {c}, {a b} {c}, {a} {b c}, {a c} {b}, {a b c}'''
: and so on.
A simple way to find the Bell numbers is construct a '''[[wp:Bell_triangle|Bell triangle]]''', also known as an '''Aitken's array''' or '''Peirce triangle''', and read off the numbers in the first column of each row. There are other generating algorithms though, and you are free to choose the best / most appropriate for your case.
;Task:
Write a routine (function, generator, whatever) to generate the Bell number sequence and call the routine to show here, on this page at least the '''first 15''' and (if your language supports big Integers) '''50th''' elements of the sequence.
If you ''do'' use the Bell triangle method to generate the numbers, also show the '''first ten rows''' of the Bell triangle.
;See also:
:* '''[[oeis:A000110|OEIS:A000110 Bell or exponential numbers]]''' :* '''[[oeis:A011971|OEIS:A011971 Aitken's array]]'''
C
{{trans|D}}
#include <stdio.h>
#include <stdlib.h>
// row starts with 1; col < row
size_t bellIndex(int row, int col) {
return row * (row - 1) / 2 + col;
}
int getBell(int *bellTri, int row, int col) {
size_t index = bellIndex(row, col);
return bellTri[index];
}
void setBell(int *bellTri, int row, int col, int value) {
size_t index = bellIndex(row, col);
bellTri[index] = value;
}
int *bellTriangle(int n) {
size_t length = n * (n + 1) / 2;
int *tri = calloc(length, sizeof(int));
int i, j;
setBell(tri, 1, 0, 1);
for (i = 2; i <= n; ++i) {
setBell(tri, i, 0, getBell(tri, i - 1, i - 2));
for (j = 1; j < i; ++j) {
int value = getBell(tri, i, j - 1) + getBell(tri, i - 1, j - 1);
setBell(tri, i, j, value);
}
}
return tri;
}
int main() {
const int rows = 15;
int *bt = bellTriangle(rows);
int i, j;
printf("First fifteen Bell numbers:\n");
for (i = 1; i <= rows; ++i) {
printf("%2d: %d\n", i, getBell(bt, i, 0));
}
printf("\nThe first ten rows of Bell's triangle:\n");
for (i = 1; i <= 10; ++i) {
printf("%d", getBell(bt, i, 0));
for (j = 1; j < i; ++j) {
printf(", %d", getBell(bt, i, j));
}
printf("\n");
}
free(bt);
return 0;
}
{{out}}
First fifteen Bell numbers:
1: 1
2: 1
3: 2
4: 5
5: 15
6: 52
7: 203
8: 877
9: 4140
10: 21147
11: 115975
12: 678570
13: 4213597
14: 27644437
15: 190899322
The first ten rows of Bell's triangle:
1
1, 2
2, 3, 5
5, 7, 10, 15
15, 20, 27, 37, 52
52, 67, 87, 114, 151, 203
203, 255, 322, 409, 523, 674, 877
877, 1080, 1335, 1657, 2066, 2589, 3263, 4140
4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147
21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975
=={{header|C#|C_sharp}}== {{trans|D}}
using System;
using System.Numerics;
namespace BellNumbers {
public static class Utility {
public static void Init<T>(this T[] array, T value) {
if (null == array) return;
for (int i = 0; i < array.Length; ++i) {
array[i] = value;
}
}
}
class Program {
static BigInteger[][] BellTriangle(int n) {
BigInteger[][] tri = new BigInteger[n][];
for (int i = 0; i < n; ++i) {
tri[i] = new BigInteger[i];
tri[i].Init(BigInteger.Zero);
}
tri[1][0] = 1;
for (int i = 2; i < n; ++i) {
tri[i][0] = tri[i - 1][i - 2];
for (int j = 1; j < i; ++j) {
tri[i][j] = tri[i][j - 1] + tri[i - 1][j - 1];
}
}
return tri;
}
static void Main(string[] args) {
var bt = BellTriangle(51);
Console.WriteLine("First fifteen and fiftieth Bell numbers:");
for (int i = 1; i < 16; ++i) {
Console.WriteLine("{0,2}: {1}", i, bt[i][0]);
}
Console.WriteLine("50: {0}", bt[50][0]);
Console.WriteLine();
Console.WriteLine("The first ten rows of Bell's triangle:");
for (int i = 1; i < 11; ++i) {
//Console.WriteLine(bt[i]);
var it = bt[i].GetEnumerator();
Console.Write("[");
if (it.MoveNext()) {
Console.Write(it.Current);
}
while (it.MoveNext()) {
Console.Write(", ");
Console.Write(it.Current);
}
Console.WriteLine("]");
}
}
}
}
{{out}}
First fifteen and fiftieth Bell numbers:
1: 1
2: 1
3: 2
4: 5
5: 15
6: 52
7: 203
8: 877
9: 4140
10: 21147
11: 115975
12: 678570
13: 4213597
14: 27644437
15: 190899322
50: 10726137154573358400342215518590002633917247281
The first ten rows of Bell's triangle:
[1]
[1, 2]
[2, 3, 5]
[5, 7, 10, 15]
[15, 20, 27, 37, 52]
[52, 67, 87, 114, 151, 203]
[203, 255, 322, 409, 523, 674, 877]
[877, 1080, 1335, 1657, 2066, 2589, 3263, 4140]
[4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147]
[21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975]
D
{{trans|Go}}
import std.array : uninitializedArray;
import std.bigint;
import std.stdio : writeln, writefln;
auto bellTriangle(int n) {
auto tri = uninitializedArray!(BigInt[][])(n);
foreach (i; 0..n) {
tri[i] = uninitializedArray!(BigInt[])(i);
tri[i][] = BigInt(0);
}
tri[1][0] = 1;
foreach (i; 2..n) {
tri[i][0] = tri[i - 1][i - 2];
foreach (j; 1..i) {
tri[i][j] = tri[i][j - 1] + tri[i - 1][j - 1];
}
}
return tri;
}
void main() {
auto bt = bellTriangle(51);
writeln("First fifteen and fiftieth Bell numbers:");
foreach (i; 1..16) {
writefln("%2d: %d", i, bt[i][0]);
}
writeln("50: ", bt[50][0]);
writeln;
writeln("The first ten rows of Bell's triangle:");
foreach (i; 1..11) {
writeln(bt[i]);
}
}
{{out}}
First fifteen and fiftieth Bell numbers:
1: 1
2: 1
3: 2
4: 5
5: 15
6: 52
7: 203
8: 877
9: 4140
10: 21147
11: 115975
12: 678570
13: 4213597
14: 27644437
15: 190899322
50: 10726137154573358400342215518590002633917247281
The first ten rows of Bell's triangle:
[1]
[1, 2]
[2, 3, 5]
[5, 7, 10, 15]
[15, 20, 27, 37, 52]
[52, 67, 87, 114, 151, 203]
[203, 255, 322, 409, 523, 674, 877]
[877, 1080, 1335, 1657, 2066, 2589, 3263, 4140]
[4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147]
[21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975]
=={{header|F_Sharp|F#}}==
The function
// Generate bell triangle. Nigel Galloway: July 6th., 2019
let bell=Seq.unfold(fun g->Some(g,List.scan(+) (List.last g) g))[1I]
The Task
bell|>Seq.take 10|>Seq.iter(printfn "%A")
{{out}}
[1]
[1; 2]
[2; 3; 5]
[5; 7; 10; 15]
[15; 20; 27; 37; 52]
[52; 67; 87; 114; 151; 203]
[203; 255; 322; 409; 523; 674; 877]
[877; 1080; 1335; 1657; 2066; 2589; 3263; 4140]
[4140; 5017; 6097; 7432; 9089; 11155; 13744; 17007; 21147]
[21147; 25287; 30304; 36401; 43833; 52922; 64077; 77821; 94828; 115975]
bell|>Seq.take 15|>Seq.iter(fun n->printf "%A " (List.head n));printfn ""
{{out}}
1 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322
printfn "%A" (Seq.head (Seq.item 49 bell))
{{out}}
10726137154573358400342215518590002633917247281
Factor
===via Aitken's array=== {{works with|Factor|0.98}}
USING: formatting io kernel math math.matrices sequences vectors ;
: next-row ( prev -- next )
[ 1 1vector ]
[ dup last [ + ] accumulate swap suffix! ] if-empty ;
: aitken ( n -- seq )
V{ } clone swap [ next-row dup ] replicate nip ;
0 50 aitken col [ 15 head ] [ last ] bi
"First 15 Bell numbers:\n%[%d, %]\n\n50th: %d\n\n" printf
"First 10 rows of the Bell triangle:" print
10 aitken [ "%[%d, %]\n" printf ] each
{{out}}
First 15 Bell numbers:
{ 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322 }
50th: 10726137154573358400342215518590002633917247281
First 10 rows of the Bell triangle:
{ 1 }
{ 1, 2 }
{ 2, 3, 5 }
{ 5, 7, 10, 15 }
{ 15, 20, 27, 37, 52 }
{ 52, 67, 87, 114, 151, 203 }
{ 203, 255, 322, 409, 523, 674, 877 }
{ 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140 }
{ 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147 }
{ 21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975 }
via recurrence relation
This solution makes use of a [https://en.wikipedia.org/wiki/Bell_number#Summation_formulas recurrence relation] involving binomial coefficients. {{works with|Factor|0.98}}
USING: formatting kernel math math.combinatorics sequences ;
: next-bell ( seq -- n )
dup length 1 - [ swap nCk * ] curry map-index sum ;
: bells ( n -- seq )
V{ 1 } clone swap 1 - [ dup next-bell suffix! ] times ;
50 bells [ 15 head ] [ last ] bi
"First 15 Bell numbers:\n%[%d, %]\n\n50th: %d\n" printf
{{out}}
First 15 Bell numbers:
{ 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322 }
50th: 10726137154573358400342215518590002633917247281
via Stirling sums
This solution defines Bell numbers in terms of [https://en.wikipedia.org/wiki/Bell_number#Summation_formulas sums of Stirling numbers of the second kind]. {{works with|Factor|0.99 development release 2019-07-10}}
USING: formatting kernel math math.extras math.ranges sequences ;
: bell ( m -- n )
[ 1 ] [ dup [1,b] [ stirling ] with map-sum ] if-zero ;
50 [ bell ] { } map-integers [ 15 head ] [ last ] bi
"First 15 Bell numbers:\n%[%d, %]\n\n50th: %d\n" printf
{{out}} As above.
Go
package main
import (
"fmt"
"math/big"
)
func bellTriangle(n int) [][]*big.Int {
tri := make([][]*big.Int, n)
for i := 0; i < n; i++ {
tri[i] = make([]*big.Int, i)
for j := 0; j < i; j++ {
tri[i][j] = new(big.Int)
}
}
tri[1][0].SetUint64(1)
for i := 2; i < n; i++ {
tri[i][0].Set(tri[i-1][i-2])
for j := 1; j < i; j++ {
tri[i][j].Add(tri[i][j-1], tri[i-1][j-1])
}
}
return tri
}
func main() {
bt := bellTriangle(51)
fmt.Println("First fifteen and fiftieth Bell numbers:")
for i := 1; i <= 15; i++ {
fmt.Printf("%2d: %d\n", i, bt[i][0])
}
fmt.Println("50:", bt[50][0])
fmt.Println("\nThe first ten rows of Bell's triangle:")
for i := 1; i <= 10; i++ {
fmt.Println(bt[i])
}
}
{{out}}
First fifteen and fiftieth Bell numbers:
1: 1
2: 1
3: 2
4: 5
5: 15
6: 52
7: 203
8: 877
9: 4140
10: 21147
11: 115975
12: 678570
13: 4213597
14: 27644437
15: 190899322
50: 10726137154573358400342215518590002633917247281
First ten rows of Bell's triangle:
[1]
[1 2]
[2 3 5]
[5 7 10 15]
[15 20 27 37 52]
[52 67 87 114 151 203]
[203 255 322 409 523 674 877]
[877 1080 1335 1657 2066 2589 3263 4140]
[4140 5017 6097 7432 9089 11155 13744 17007 21147]
[21147 25287 30304 36401 43833 52922 64077 77821 94828 115975]
Julia
Source: Combinatorics at https://github.com/JuliaMath/Combinatorics.jl/blob/master/src/numbers.jl
"""
bellnum(n)
Compute the ``n``th Bell number.
"""
function bellnum(n::Integer)
if n < 0
throw(DomainError(n))
elseif n < 2
return 1
end
list = Vector{BigInt}(undef, n)
list[1] = 1
for i = 2:n
for j = 1:i - 2
list[i - j - 1] += list[i - j]
end
list[i] = list[1] + list[i - 1]
end
return list[n]
end
for i in 1:50
println(bellnum(i))
end
{{out}}
1
2
5
15
52
203
877
4140
21147
115975
678570
4213597
27644437
190899322
1382958545
10480142147
82864869804
682076806159
5832742205057
51724158235372
474869816156751
4506715738447323
44152005855084346
445958869294805289
4638590332229999353
49631246523618756274
545717047936059989389
6160539404599934652455
71339801938860275191172
846749014511809332450147
10293358946226376485095653
128064670049908713818925644
1629595892846007606764728147
21195039388640360462388656799
281600203019560266563340426570
3819714729894818339975525681317
52868366208550447901945575624941
746289892095625330523099540639146
10738823330774692832768857986425209
157450588391204931289324344702531067
2351152507740617628200694077243788988
35742549198872617291353508656626642567
552950118797165484321714693280737767385
8701963427387055089023600531855797148876
139258505266263669602347053993654079693415
2265418219334494002928484444705392276158355
37450059502461511196505342096431510120174682
628919796303118415420210454071849537746015761
10726137154573358400342215518590002633917247281
185724268771078270438257767181908917499221852770
Kotlin
{{trans|C}}
class BellTriangle(n: Int) {
private val arr: Array<Int>
init {
val length = n * (n + 1) / 2
arr = Array(length) { 0 }
set(1, 0, 1)
for (i in 2..n) {
set(i, 0, get(i - 1, i - 2))
for (j in 1 until i) {
val value = get(i, j - 1) + get(i - 1, j - 1)
set(i, j, value)
}
}
}
private fun index(row: Int, col: Int): Int {
require(row > 0)
require(col >= 0)
require(col < row)
return row * (row - 1) / 2 + col
}
operator fun get(row: Int, col: Int): Int {
val i = index(row, col)
return arr[i]
}
private operator fun set(row: Int, col: Int, value: Int) {
val i = index(row, col)
arr[i] = value
}
}
fun main() {
val rows = 15
val bt = BellTriangle(rows)
println("First fifteen Bell numbers:")
for (i in 1..rows) {
println("%2d: %d".format(i, bt[i, 0]))
}
for (i in 1..10) {
print("${bt[i, 0]}")
for (j in 1 until i) {
print(", ${bt[i, j]}")
}
println()
}
}
{{out}}
First fifteen Bell numbers:
1: 1
2: 1
3: 2
4: 5
5: 15
6: 52
7: 203
8: 877
9: 4140
10: 21147
11: 115975
12: 678570
13: 4213597
14: 27644437
15: 190899322
1
1, 2
2, 3, 5
5, 7, 10, 15
15, 20, 27, 37, 52
52, 67, 87, 114, 151, 203
203, 255, 322, 409, 523, 674, 877
877, 1080, 1335, 1657, 2066, 2589, 3263, 4140
4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147
21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975
Perl
{{trans|Perl 6}}
use strict 'vars';
use warnings;
use feature 'say';
use bigint;
my @b = 1;
my @Aitkens = [1];
push @Aitkens, do {
my @c = $b[-1];
push @c, $b[$_] + $c[$_] for 0..$#b;
@b = @c;
[@c]
} until (@Aitkens == 50);
my @Bell_numbers = map { @$_[0] } @Aitkens;
say 'First fifteen and fiftieth Bell numbers:';
printf "%2d: %s\n", 1+$_, $Bell_numbers[$_] for 0..14, 49;
say "\nFirst ten rows of Aitken's array:";
printf '%-7d'x@{$Aitkens[$_]}."\n", @{$Aitkens[$_]} for 0..9;
{{out}}
First fifteen and fiftieth Bell numbers:
1: 1
2: 1
3: 2
4: 5
5: 15
6: 52
7: 203
8: 877
9: 4140
10: 21147
11: 115975
12: 678570
13: 4213597
14: 27644437
15: 190899322
50: 10726137154573358400342215518590002633917247281
First ten rows of Aitken's array:
1
1 2
2 3 5
5 7 10 15
15 20 27 37 52
52 67 87 114 151 203
203 255 322 409 523 674 877
877 1080 1335 1657 2066 2589 3263 4140
4140 5017 6097 7432 9089 11155 13744 17007 21147
21147 25287 30304 36401 43833 52922 64077 77821 94828 115975
Perl 6
===via Aitken's array=== {{works with|Rakudo|2019.03}}
my @Aitkens-array = lazy [1], -> @b {
my @c = @b.tail;
@c.push: @b[$_] + @c[$_] for ^@b;
@c
} ... *;
my @Bell-numbers = @Aitkens-array.map: { .head };
say "First fifteen and fiftieth Bell numbers:";
printf "%2d: %s\n", 1+$_, @Bell-numbers[$_] for flat ^15, 49;
say "\nFirst ten rows of Aitken's array:";
.say for @Aitkens-array[^10];
{{out}}
First fifteen and fiftieth Bell numbers:
1: 1
2: 1
3: 2
4: 5
5: 15
6: 52
7: 203
8: 877
9: 4140
10: 21147
11: 115975
12: 678570
13: 4213597
14: 27644437
15: 190899322
50: 10726137154573358400342215518590002633917247281
First ten rows of Aitken's array:
[1]
[1 2]
[2 3 5]
[5 7 10 15]
[15 20 27 37 52]
[52 67 87 114 151 203]
[203 255 322 409 523 674 877]
[877 1080 1335 1657 2066 2589 3263 4140]
[4140 5017 6097 7432 9089 11155 13744 17007 21147]
[21147 25287 30304 36401 43833 52922 64077 77821 94828 115975]
via Recurrence relation
{{works with|Rakudo|2019.03}}
sub binomial { [*] ($^n … 0) Z/ 1 .. $^p }
my @bell = 1, -> *@s { [+] @s »*« @s.keys.map: { binomial(@s-1, $_) } } … *;
.say for @bell[^15], @bell[50 - 1];
{{out}}
(1 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322)
10726137154573358400342215518590002633917247281
via Stirling sums
{{works with|Rakudo|2019.03}}
my @Stirling_numbers_of_the_second_kind =
(1,),
{ (0, |@^last) »+« (|(@^last »*« @^last.keys), 0) } … *
;
my @bell = @Stirling_numbers_of_the_second_kind.map: *.sum;
.say for @bell.head(15), @bell[50 - 1];
{{out}}
(1 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322)
10726137154573358400342215518590002633917247281
Phix
{{libheader|mpfr}} Started out as a translation of Go, but the main routine has now been completely replaced.
function bellTriangle(integer n)
-- nb: returns strings to simplify output
mpz z = mpz_init(1)
string sz = "1"
sequence tri = {}, line = {}
for i=1 to n do
line = prepend(line,mpz_init_set(z))
tri = append(tri,{sz})
for j=2 to length(line) do
mpz_add(z,z,line[j])
mpz_set(line[j],z)
sz = mpz_get_str(z)
tri[$] = append(tri[$],sz)
end for
end for
line = mpz_free(line)
z = mpz_free(z)
return tri
end function
sequence bt = bellTriangle(50)
printf(1,"First fifteen and fiftieth Bell numbers:\n%s\n50:%s\n\n",
{join(vslice(bt[1..15],1)),bt[50][1]})
printf(1,"The first ten rows of Bell's triangle:\n")
for i=1 to 10 do
printf(1,"%s\n",{join(bt[i])})
end for
{{out}}
First fifteen and fiftieth Bell numbers:
1 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322
50:10726137154573358400342215518590002633917247281
The first ten rows of Bell's triangle:
1
1 2
2 3 5
5 7 10 15
15 20 27 37 52
52 67 87 114 151 203
203 255 322 409 523 674 877
877 1080 1335 1657 2066 2589 3263 4140
4140 5017 6097 7432 9089 11155 13744 17007 21147
21147 25287 30304 36401 43833 52922 64077 77821 94828 115975
Python
{{trans|D}}
def bellTriangle(n):
tri = [None] * n
for i in xrange(n):
tri[i] = [0] * i
tri[1][0] = 1
for i in xrange(2, n):
tri[i][0] = tri[i - 1][i - 2]
for j in xrange(1, i):
tri[i][j] = tri[i][j - 1] + tri[i - 1][j - 1]
return tri
def main():
bt = bellTriangle(51)
print "First fifteen and fiftieth Bell numbers:"
for i in xrange(1, 16):
print "%2d: %d" % (i, bt[i][0])
print "50:", bt[50][0]
print
print "The first ten rows of Bell's triangle:"
for i in xrange(1, 11):
print bt[i]
main()
{{out}}
First fifteen and fiftieth Bell numbers:
1: 1
2: 1
3: 2
4: 5
5: 15
6: 52
7: 203
8: 877
9: 4140
10: 21147
11: 115975
12: 678570
13: 4213597
14: 27644437
15: 190899322
50: 10726137154573358400342215518590002633917247281
The first ten rows of Bell's triangle:
[1]
[1, 2]
[2, 3, 5]
[5, 7, 10, 15]
[15, 20, 27, 37, 52]
[52, 67, 87, 114, 151, 203]
[203, 255, 322, 409, 523, 674, 877]
[877, 1080, 1335, 1657, 2066, 2589, 3263, 4140]
[4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147]
[21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975]
REXX
Bell numbers are the number of ways of placing '''n''' labeled balls into '''n''' indistinguishable boxes. Bell(0) is defined as '''1'''.
This REXX version uses an ''index'' of the Bell number (which starts a zero).
A little optimization was added in calculating the factorial of a number by using memoization.
Also, see this task's ''discussion'' to view how the sizes of Bell numbers increase in relation to its index.
/*REXX program calculates and displays a range of Bell numbers (index starts at zero).*/
parse arg LO HI . /*obtain optional arguments from the CL*/
if LO=='' & HI=="" then do; LO=0; HI=14; end /*Not specified? Then use the default.*/
if LO=='' | LO=="," then LO= 0 /* " " " " " " */
if HI=='' | HI=="," then HI= 15 /* " " " " " " */
numeric digits max(9, HI*2) /*crudely calculate the # decimal digs.*/
!.=; @.= 1 /*the FACT function uses memoization.*/
do j=0 for HI+1; $= (j==0); jm= j-1 /*JM is used for a shortcut (below). */
do k=0 for j; _= jm-k /* [↓] calculate a Bell # the easy way*/
$= $ + comb(jm,k) * @._ /*COMB≡combination or binomial function*/
end /*k*/
@.j= $ /*assign the Jth Bell number to @ array*/
if j>=LO & j<=HI then say ' bell('right(j, length(HI) )") = " $
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
comb: procedure expose !.; parse arg x,y; if x==y then return 1; if y>x then return 0
if x-y<y then y= x - y
_= 1; do j=x-y+1 to x; _=_*j; end; return _ / fact(y)
/*──────────────────────────────────────────────────────────────────────────────────────*/
fact: procedure expose !.; parse arg x; if !.x\=='' then return !.x
!=1; do f=2 to x; != !*f; end; !.x=!; return !
{{out|output|text= when using the internal default inputs of: 0 14 }}
Bell( 0) = 1
Bell( 1) = 1
Bell( 2) = 2
Bell( 3) = 5
Bell( 4) = 15
Bell( 5) = 52
Bell( 6) = 203
Bell( 7) = 877
Bell( 8) = 4140
Bell( 9) = 21147
Bell(10) = 115975
Bell(11) = 678570
Bell(12) = 4213597
Bell(13) = 27644437
Bell(14) = 190899322
{{out|output|text= when using the inputs of: 49 49 }}
Bell(49) = 10726137154573358400342215518590002633917247281
Sidef
Built-in:
say 15.of { .bell }
Formula as a sum of Stirling numbers of the second kind:
func bell(n) { sum(0..n, {|k| stirling2(n, k) }) }
Via Aitken's array (optimized for space):
func bell_numbers (n) {
var acc = []
var bell = [1]
(n-1).times {
acc.unshift(bell[-1])
acc.accumulate!
bell.push(acc[-1])
}
bell
}
var B = bell_numbers(50)
say "The first 15 Bell numbers: #{B.first(15).join(', ')}"
say "The fiftieth Bell number : #{B[50-1]}"
{{out}}
The first 15 Bell numbers: 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322
The fiftieth Bell number : 10726137154573358400342215518590002633917247281
Aitken's array:
func aitken_array (n) {
var A = [1]
[[1]] + (n-1).of {
A = [A[-1], A...].accumulate
}
}
aitken_array(10).each { .say }
{{out}}
[1]
[1, 2]
[2, 3, 5]
[5, 7, 10, 15]
[15, 20, 27, 37, 52]
[52, 67, 87, 114, 151, 203]
[203, 255, 322, 409, 523, 674, 877]
[877, 1080, 1335, 1657, 2066, 2589, 3263, 4140]
[4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147]
[21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975]
Aitken's array (recursive definition):
func A((0), (0)) { 1 }
func A(n, (0)) { A(n-1, n-1) }
func A(n, k) is cached { A(n, k-1) + A(n-1, k-1) }
for n in (^10) {
say (0..n -> map{|k| A(n, k) })
}
(same output as above)
Visual Basic .NET
{{trans|C#}}
Imports System.Numerics
Imports System.Runtime.CompilerServices
Module Module1
<Extension()>
Sub Init(Of T)(array As T(), value As T)
If IsNothing(array) Then Return
For i = 0 To array.Length - 1
array(i) = value
Next
End Sub
Function BellTriangle(n As Integer) As BigInteger()()
Dim tri(n - 1)() As BigInteger
For i = 0 To n - 1
Dim temp(i - 1) As BigInteger
tri(i) = temp
tri(i).Init(0)
Next
tri(1)(0) = 1
For i = 2 To n - 1
tri(i)(0) = tri(i - 1)(i - 2)
For j = 1 To i - 1
tri(i)(j) = tri(i)(j - 1) + tri(i - 1)(j - 1)
Next
Next
Return tri
End Function
Sub Main()
Dim bt = BellTriangle(51)
Console.WriteLine("First fifteen Bell numbers:")
For i = 1 To 15
Console.WriteLine("{0,2}: {1}", i, bt(i)(0))
Next
Console.WriteLine("50: {0}", bt(50)(0))
Console.WriteLine()
Console.WriteLine("The first ten rows of Bell's triangle:")
For i = 1 To 10
Dim it = bt(i).GetEnumerator()
Console.Write("[")
If it.MoveNext() Then
Console.Write(it.Current)
End If
While it.MoveNext()
Console.Write(", ")
Console.Write(it.Current)
End While
Console.WriteLine("]")
Next
End Sub
End Module
{{out}}
First fifteen Bell numbers:
1: 1
2: 1
3: 2
4: 5
5: 15
6: 52
7: 203
8: 877
9: 4140
10: 21147
11: 115975
12: 678570
13: 4213597
14: 27644437
15: 190899322
50: 10726137154573358400342215518590002633917247281
The first ten rows of Bell's triangle:
[1]
[1, 2]
[2, 3, 5]
[5, 7, 10, 15]
[15, 20, 27, 37, 52]
[52, 67, 87, 114, 151, 203]
[203, 255, 322, 409, 523, 674, 877]
[877, 1080, 1335, 1657, 2066, 2589, 3263, 4140]
[4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147]
[21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975]
zkl
fcn bellTriangleW(start=1,wantRow=False){ // --> iterator
Walker.zero().tweak('wrap(row){
row.insert(0,row[-1]);
foreach i in ([1..row.len()-1]){ row[i]+=row[i-1] }
wantRow and row or row[-1]
}.fp(List(start))).push(start,start);
}
println("First fifteen Bell numbers:");
bellTriangleW().walk(15).println();
{{out}}
First fifteen Bell numbers:
L(1,1,2,5,15,52,203,877,4140,21147,115975,678570,4213597,27644437,190899322)
println("Rows of the Bell Triangle:");
bt:=bellTriangleW(1,True); do(11){ println(bt.next()) }
{{out}}
Rows of the Bell Triangle:
1
1
L(1,2)
L(2,3,5)
L(5,7,10,15)
L(15,20,27,37,52)
L(52,67,87,114,151,203)
L(203,255,322,409,523,674,877)
L(877,1080,1335,1657,2066,2589,3263,4140)
L(4140,5017,6097,7432,9089,11155,13744,17007,21147)
L(21147,25287,30304,36401,43833,52922,64077,77821,94828,115975)
{{libheader|GMP}} GNU Multiple Precision Arithmetic Library
print("The fiftieth Bell number: ");
var [const] BI=Import("zklBigNum"); // libGMP
bellTriangleW(BI(1)).drop(50).value.println();
{{out}}
The fiftieth Bell number: 10726137154573358400342215518590002633917247281