⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Raster graphics operations}}
Using the data storage type defined [[Basic_bitmap_storage|on this page]] for raster images, and the draw_line function defined in [[Bresenham's_line_algorithm|this one]], draw a ''quadratic bezier curve'' ([[wp:Bezier_curves#Quadratic_B.C3.A9zier_curves|definition on Wikipedia]]).
Ada
procedure Quadratic_Bezier
( Picture : in out Image;
P1, P2, P3 : Point;
Color : Pixel;
N : Positive := 20
) is
Points : array (0..N) of Point;
begin
for I in Points'Range loop
declare
T : constant Float := Float (I) / Float (N);
A : constant Float := (1.0 - T)**2;
B : constant Float := 2.0 * T * (1.0 - T);
C : constant Float := T**2;
begin
Points (I).X := Positive (A * Float (P1.X) + B * Float (P2.X) + C * Float (P3.X));
Points (I).Y := Positive (A * Float (P1.Y) + B * Float (P2.Y) + C * Float (P3.Y));
end;
end loop;
for I in Points'First..Points'Last - 1 loop
Line (Picture, Points (I), Points (I + 1), Color);
end loop;
end Quadratic_Bezier;
The following test
X : Image (1..16, 1..16);
begin
Fill (X, White);
Quadratic_Bezier (X, (8, 2), (13, 8), (2, 15), Black);
Print (X);
should produce;
H
H
H
H
H
HH
HH H
HH HHH
HH
BBC BASIC
{{works with|BBC BASIC for Windows}} [[Image:bezierquad_bbc.gif|right]]
Width% = 200
Height% = 200
REM Set window size:
VDU 23,22,Width%;Height%;8,16,16,128
REM Draw quadratic Bézier curve:
PROCbezierquad(10,100, 250,270, 150,20, 20, 0,0,0)
END
DEF PROCbezierquad(x1,y1,x2,y2,x3,y3,n%,r%,g%,b%)
LOCAL i%, t, t1, a, b, c, p{()}
DIM p{(n%) x%,y%}
FOR i% = 0 TO n%
t = i% / n%
t1 = 1 - t
a = t1^2
b = 2 * t * t1
c = t^2
p{(i%)}.x% = INT(a * x1 + b * x2 + c * x3 + 0.5)
p{(i%)}.y% = INT(a * y1 + b * y2 + c * y3 + 0.5)
NEXT
FOR i% = 0 TO n%-1
PROCbresenham(p{(i%)}.x%,p{(i%)}.y%,p{(i%+1)}.x%,p{(i%+1)}.y%, \
\ r%,g%,b%)
NEXT
ENDPROC
DEF PROCbresenham(x1%,y1%,x2%,y2%,r%,g%,b%)
LOCAL dx%, dy%, sx%, sy%, e
dx% = ABS(x2% - x1%) : sx% = SGN(x2% - x1%)
dy% = ABS(y2% - y1%) : sy% = SGN(y2% - y1%)
IF dx% < dy% e = dx% / 2 ELSE e = dy% / 2
REPEAT
PROCsetpixel(x1%,y1%,r%,g%,b%)
IF x1% = x2% IF y1% = y2% EXIT REPEAT
IF dx% > dy% THEN
x1% += sx% : e -= dy% : IF e < 0 e += dx% : y1% += sy%
ELSE
y1% += sy% : e -= dx% : IF e < 0 e += dy% : x1% += sx%
ENDIF
UNTIL FALSE
ENDPROC
DEF PROCsetpixel(x%,y%,r%,g%,b%)
COLOUR 1,r%,g%,b%
GCOL 1
LINE x%*2,y%*2,x%*2,y%*2
ENDPROC
C
Interface (to be added to all other to make the final imglib.h):
void quad_bezier(
image img,
unsigned int x1, unsigned int y1,
unsigned int x2, unsigned int y2,
unsigned int x3, unsigned int y3,
color_component r,
color_component g,
color_component b );
Implementation:
#include <math.h>
/* number of segments for the curve */
#define N_SEG 20
#define plot(x, y) put_pixel_clip(img, x, y, r, g, b)
#define line(x0,y0,x1,y1) draw_line(img, x0,y0,x1,y1, r,g,b)
void quad_bezier(
image img,
unsigned int x1, unsigned int y1,
unsigned int x2, unsigned int y2,
unsigned int x3, unsigned int y3,
color_component r,
color_component g,
color_component b )
{
unsigned int i;
double pts[N_SEG+1][2];
for (i=0; i <= N_SEG; ++i)
{
double t = (double)i / (double)N_SEG;
double a = pow((1.0 - t), 2.0);
double b = 2.0 * t * (1.0 - t);
double c = pow(t, 2.0);
double x = a * x1 + b * x2 + c * x3;
double y = a * y1 + b * y2 + c * y3;
pts[i][0] = x;
pts[i][1] = y;
}
#if 0
/* draw only points */
for (i=0; i <= N_SEG; ++i)
{
plot( pts[i][0],
pts[i][1] );
}
#else
/* draw segments */
for (i=0; i < N_SEG; ++i)
{
int j = i + 1;
line( pts[i][0], pts[i][1],
pts[j][0], pts[j][1] );
}
#endif
}
#undef plot
#undef line
D
This solution uses two modules, from the Grayscale image and the Bresenham's line algorithm Tasks.
import grayscale_image, bitmap_bresenhams_line_algorithm;
struct Pt { int x, y; } // Signed.
void quadraticBezier(size_t nSegments=20, Color)
(Image!Color im, in Pt p1, in Pt p2, in Pt p3,
in Color color)
pure nothrow @nogc if (nSegments > 0) {
Pt[nSegments + 1] points = void;
foreach (immutable i, ref p; points) {
immutable double t = i / double(nSegments),
a = (1.0 - t) ^^ 2,
b = 2.0 * t * (1.0 - t),
c = t ^^ 2;
p = Pt(cast(typeof(Pt.x))(a * p1.x + b * p2.x + c * p3.x),
cast(typeof(Pt.y))(a * p1.y + b * p2.y + c * p3.y));
}
foreach (immutable i, immutable p; points[0 .. $ - 1])
im.drawLine(p.x, p.y, points[i + 1].x, points[i + 1].y, color);
}
void main() {
auto im = new Image!Gray(20, 20);
im.clear(Gray.white);
im.quadraticBezier(Pt(1,10), Pt(25,27), Pt(15,2), Gray.black);
im.textualShow();
}
{{out}}
....................
....................
...............#....
...............#....
...............#....
................#...
................#...
.................#..
.................#..
.................#..
.#...............#..
..##.............#..
....##...........#..
......#..........#..
.......#.........#..
........###......#..
...........######...
....................
....................
....................
FBSL
Windows' graphics origin is located at the bottom-left corner of device bitmap.
'''Translation of BBC BASIC using pure FBSL's built-in graphics functions:'''
#DEFINE WM_LBUTTONDOWN 513
#DEFINE WM_CLOSE 16
FBSLSETTEXT(ME, "Bezier Quadratic")
FBSLSETFORMCOLOR(ME, RGB(0, 255, 255)) ' Cyan: persistent background color
DRAWWIDTH(5) ' Adjust point size
FBSL.GETDC(ME) ' Use volatile FBSL.GETDC below to avoid extra assignments
RESIZE(ME, 0, 0, 235, 235)
CENTER(ME)
SHOW(ME)
DIM Height AS INTEGER
FBSL.GETCLIENTRECT(ME, 0, 0, 0, Height)
BEGIN EVENTS
SELECT CASE CBMSG
CASE WM_LBUTTONDOWN: BezierQuad(10, 100, 250, 270, 150, 20, 20) ' Draw
CASE WM_CLOSE: FBSL.RELEASEDC(ME, FBSL.GETDC) ' Clean up
END SELECT
END EVENTS
SUB BezierQuad(x1, y1, x2, y2, x3, y3, n)
TYPE POINTAPI
x AS INTEGER
y AS INTEGER
END TYPE
DIM t, t1, a, b, c, p[n] AS POINTAPI
FOR DIM i = 0 TO n
t = i / n: t1 = 1 - t
a = t1 ^ 2
b = 2 * t * t1
c = t ^ 2
p[i].x = a * x1 + b * x2 + c * x3 + 0.5
p[i].y = Height - (a * y1 + b * y2 + c * y3 + 0.5)
NEXT
FOR i = 0 TO n - 1
Bresenham(p[i].x, p[i].y, p[i + 1].x, p[i + 1].y)
NEXT
SUB Bresenham(x0, y0, x1, y1)
DIM dx = ABS(x0 - x1), sx = SGN(x0 - x1)
DIM dy = ABS(y0 - y1), sy = SGN(y0 - y1)
DIM tmp, er = IIF(dx > dy, dx, -dy) / 2
WHILE NOT (x0 = x1 ANDALSO y0 = y1)
PSET(FBSL.GETDC, x0, y0, &HFF) ' Red: Windows stores colors in BGR order
tmp = er
IF tmp > -dx THEN: er = er - dy: x0 = x0 + sx: END IF
IF tmp < +dy THEN: er = er + dx: y0 = y0 + sy: END IF
WEND
END SUB
END SUB
'''Output:''' [[File:FBSLBezierQuad.PNG]]
Factor
Some code is shared with the cubic bezier task, but I put it here again to make it simple (hoping the two version don't diverge) Same remark as with cubic bezier, the points could go into a sequence to simplify stack shuffling
USING: arrays kernel locals math math.functions
rosettacode.raster.storage sequences ;
IN: rosettacode.raster.line
! This gives a function
:: (quadratic-bezier) ( P0 P1 P2 -- bezier )
[ :> x
1 x - sq P0 n*v
2 1 x - x * * P1 n*v
x sq P2 n*v
v+ v+ ] ; inline
! Same code from the cubic bezier task
: t-interval ( x -- interval )
[ iota ] keep 1 - [ / ] curry map ;
: points-to-lines ( seq -- seq )
dup rest [ 2array ] 2map ;
: draw-lines ( {R,G,B} points image -- )
[ [ first2 ] dip draw-line ] curry with each ;
:: bezier-lines ( {R,G,B} P0 P1 P2 image -- )
100 t-interval P0 P1 P2 (quadratic-bezier) map
points-to-lines
{R,G,B} swap image draw-lines ;
Fortran
{{works with|Fortran|90 and later}}
(This subroutine must be inside the RCImagePrimitive
module, see [[Bresenham's line algorithm#Fortran|here]])
subroutine quad_bezier(img, p1, p2, p3, color)
type(rgbimage), intent(inout) :: img
type(point), intent(in) :: p1, p2, p3
type(rgb), intent(in) :: color
integer :: i, j
real :: pts(0:N_SEG,0:1), t, a, b, c, x, y
do i = 0, N_SEG
t = real(i) / real(N_SEG)
a = (1.0 - t)**2.0
b = 2.0 * t * (1.0 - t)
c = t**2.0
x = a * p1%x + b * p2%x + c * p3%x
y = a * p1%y + b * p2%y + c * p3%y
pts(i,0) = x
pts(i,1) = y
end do
do i = 0, N_SEG-1
j = i + 1
call draw_line(img, point(pts(i,0), pts(i,1)), &
point(pts(j,0), pts(j,1)), color)
end do
end subroutine quad_bezier
FreeBASIC
{{trans|BBC BASIC}}
' version 01-11-2016
' compile with: fbc -s console
' translation from Bitmap/Bresenham's line algorithm C entry
Sub Br_line(x0 As Integer, y0 As Integer, x1 As Integer, y1 As Integer, _
Col As UInteger = &HFFFFFF)
Dim As Integer dx = Abs(x1 - x0), dy = Abs(y1 - y0)
Dim As Integer sx = IIf(x0 < x1, 1, -1)
Dim As Integer sy = IIf(y0 < y1, 1, -1)
Dim As Integer er = IIf(dx > dy, dx, -dy) \ 2, e2
Do
PSet(x0, y0), col
If (x0 = x1) And (y0 = y1) Then Exit Do
e2 = er
If e2 > -dx Then Er -= dy : x0 += sx
If e2 < dy Then Er += dx : y0 += sy
Loop
End Sub
' Bitmap/Bézier curves/Quadratic BBC BASIC entry
Sub bezierquad(x1 As Double, y1 As Double, x2 As Double, y2 As Double, _
x3 As Double, y3 As Double, n As ULong, col As UInteger = &HFFFFFF)
Type point_
x As Integer
y As Integer
End Type
Dim As ULong i
Dim As Double t, t1, a, b, c, d
Dim As point_ p(n)
For i = 0 To n
t = i / n
t1 = 1 - t
a = t1 ^ 2
b = t * t1 * 2
c = t ^ 2
p(i).x = Int(a * x1 + b * x2 + c * x3 + .5)
p(i).y = Int(a * y1 + b * y2 + c * y3 + .5)
Next
For i = 0 To n -1
Br_line(p(i).x, p(i).y, p(i +1).x, p(i +1).y, col)
Next
End Sub
' ------=< MAIN >=------
ScreenRes 250, 250, 32 ' 0,0 in top left corner
bezierquad(10, 100, 250, 270, 150, 20, 20)
' empty keyboard buffer
While InKey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
Go
{{trans|C}}
package raster
const b2Seg = 20
func (b *Bitmap) Bézier2(x1, y1, x2, y2, x3, y3 int, p Pixel) {
var px, py [b2Seg + 1]int
fx1, fy1 := float64(x1), float64(y1)
fx2, fy2 := float64(x2), float64(y2)
fx3, fy3 := float64(x3), float64(y3)
for i := range px {
c := float64(i) / b2Seg
a := 1 - c
a, b, c := a*a, 2 * c * a, c*c
px[i] = int(a*fx1 + b*fx2 + c*fx3)
py[i] = int(a*fy1 + b*fy2 + c*fy3)
}
x0, y0 := px[0], py[0]
for i := 1; i <= b2Seg; i++ {
x1, y1 := px[i], py[i]
b.Line(x0, y0, x1, y1, p)
x0, y0 = x1, y1
}
}
func (b *Bitmap) Bézier2Rgb(x1, y1, x2, y2, x3, y3 int, c Rgb) {
b.Bézier2(x1, y1, x2, y2, x3, y3, c.Pixel())
}
Demonstration program: [[File:GoBez2.png|thumb|right]]
package main
import (
"fmt"
"raster"
)
func main() {
b := raster.NewBitmap(400, 300)
b.FillRgb(0xdfffef)
b.Bézier2Rgb(20, 150, 500, -100, 300, 280, raster.Rgb(0x3f8fef))
if err := b.WritePpmFile("bez2.ppm"); err != nil {
fmt.Println(err)
}
}
Haskell
{-# LANGUAGE
FlexibleInstances, TypeSynonymInstances,
ViewPatterns #-}
import Bitmap
import Bitmap.Line
import Control.Monad
import Control.Monad.ST
type Point = (Double, Double)
fromPixel (Pixel (x, y)) = (toEnum x, toEnum y)
toPixel (x, y) = Pixel (round x, round y)
pmap :: (Double -> Double) -> Point -> Point
pmap f (x, y) = (f x, f y)
onCoordinates :: (Double -> Double -> Double) -> Point -> Point -> Point
onCoordinates f (xa, ya) (xb, yb) = (f xa xb, f ya yb)
instance Num Point where
(+) = onCoordinates (+)
(-) = onCoordinates (-)
(*) = onCoordinates (*)
negate = pmap negate
abs = pmap abs
signum = pmap signum
fromInteger i = (i', i')
where i' = fromInteger i
bézier :: Color c =>
Image s c -> Pixel -> Pixel -> Pixel -> c -> Int ->
ST s ()
bézier
i
(fromPixel -> p1) (fromPixel -> p2) (fromPixel -> p3)
c samples =
zipWithM_ f ts (tail ts)
where ts = map (/ top) [0 .. top]
where top = toEnum $ samples - 1
curvePoint t =
pt (t' ^^ 2) p1 +
pt (2 * t * t') p2 +
pt (t ^^ 2) p3
where t' = 1 - t
pt n p = pmap (*n) p
f (curvePoint -> p1) (curvePoint -> p2) =
line i (toPixel p1) (toPixel p2) c
J
See [[Cubic bezier curves#J|Cubic bezier curves]] for a generalized solution.
Julia
See [[Cubic bezier curves#Julia]] for a generalized solution.
Kotlin
This incorporates code from other relevant tasks in order to provide a runnable example.
// Version 1.2.40
import java.awt.Color
import java.awt.Graphics
import java.awt.image.BufferedImage
import kotlin.math.abs
import java.io.File
import javax.imageio.ImageIO
class Point(var x: Int, var y: Int)
class BasicBitmapStorage(width: Int, height: Int) {
val image = BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR)
fun fill(c: Color) {
val g = image.graphics
g.color = c
g.fillRect(0, 0, image.width, image.height)
}
fun setPixel(x: Int, y: Int, c: Color) = image.setRGB(x, y, c.getRGB())
fun getPixel(x: Int, y: Int) = Color(image.getRGB(x, y))
fun drawLine(x0: Int, y0: Int, x1: Int, y1: Int, c: Color) {
val dx = abs(x1 - x0)
val dy = abs(y1 - y0)
val sx = if (x0 < x1) 1 else -1
val sy = if (y0 < y1) 1 else -1
var xx = x0
var yy = y0
var e1 = (if (dx > dy) dx else -dy) / 2
var e2: Int
while (true) {
setPixel(xx, yy, c)
if (xx == x1 && yy == y1) break
e2 = e1
if (e2 > -dx) { e1 -= dy; xx += sx }
if (e2 < dy) { e1 += dx; yy += sy }
}
}
fun quadraticBezier(p1: Point, p2: Point, p3: Point, clr: Color, n: Int) {
val pts = List(n + 1) { Point(0, 0) }
for (i in 0..n) {
val t = i.toDouble() / n
val u = 1.0 - t
val a = u * u
val b = 2.0 * t * u
val c = t * t
pts[i].x = (a * p1.x + b * p2.x + c * p3.x).toInt()
pts[i].y = (a * p1.y + b * p2.y + c * p3.y).toInt()
setPixel(pts[i].x, pts[i].y, clr)
}
for (i in 0 until n) {
val j = i + 1
drawLine(pts[i].x, pts[i].y, pts[j].x, pts[j].y, clr)
}
}
}
fun main(args: Array<String>) {
val width = 320
val height = 320
val bbs = BasicBitmapStorage(width, height)
with (bbs) {
fill(Color.cyan)
val p1 = Point(10, 100)
val p2 = Point(250, 270)
val p3 = Point(150, 20)
quadraticBezier(p1, p2, p3, Color.black, 20)
val qbFile = File("quadratic_bezier.jpg")
ImageIO.write(image, "jpg", qbFile)
}
}
=={{header|Mathematica}} / {{header|Wolfram Language}}==
pts = {{0, 0}, {1, -1}, {2, 1}};
Graphics[{BSplineCurve[pts], Green, Line[pts], Red, Point[pts]}]
Second solution using built-in function BezierCurve.
pts = {{0, 0}, {1, -1}, {2, 1}};
Graphics[{BezierCurve[pts], Green, Line[pts], Red, Point[pts]}]
[[File:MmaQuadraticBezier.png]]
MATLAB
Note: Store this function in a file named "bezierQuad.mat" in the @Bitmap folder for the Bitmap class defined [[Bitmap#MATLAB|here]].
function bezierQuad(obj,pixel_0,pixel_1,pixel_2,color,varargin)
if( isempty(varargin) )
resolution = 20;
else
resolution = varargin{1};
end
%Calculate time axis
time = (0:1/resolution:1)';
timeMinus = 1-time;
%The formula for the curve is expanded for clarity, the lack of
%loops is because its calculation has been vectorized
curve = (timeMinus.^2)*pixel_0; %First term of polynomial
curve = curve + (2.*time.*timeMinus)*pixel_1; %second term of polynomial
curve = curve + (time.^2)*pixel_2; %third term of polynomial
curve = round(curve); %round each of the points to the nearest integer
%connect each of the points in the curve with a line using the
%Bresenham Line algorithm
for i = (1:length(curve)-1)
obj.bresenhamLine(curve(i,:),curve(i+1,:),color);
end
assignin('caller',inputname(1),obj); %saves the changes to the object
end
Sample usage: This will generate the image example for the Go solution.
>> img = Bitmap(400,300);
>> img.fill([223 255 239]);
>> img.bezierQuad([20 150],[500 -100],[300 280],[63 143 239],21);
>> disp(img)
OCaml
let quad_bezier ~img ~color
~p1:(_x1, _y1)
~p2:(_x2, _y2)
~p3:(_x3, _y3) =
let (x1, y1, x2, y2, x3, y3) =
(float _x1, float _y1, float _x2, float _y2, float _x3, float _y3)
in
let bz t =
let a = (1.0 -. t) ** 2.0
and b = 2.0 *. t *. (1.0 -. t)
and c = t ** 2.0
in
let x = a *. x1 +. b *. x2 +. c *. x3
and y = a *. y1 +. b *. y2 +. c *. y3
in
(int_of_float x, int_of_float y)
in
let rec loop _t acc =
if _t > 20 then acc else
begin
let t = (float _t) /. 20.0 in
let x, y = bz t in
loop (succ _t) ((x,y)::acc)
end
in
let pts = loop 0 [] in
(*
(* draw only points *)
List.iter (fun (x, y) -> put_pixel img color x y) pts;
*)
(* draw segments *)
let line = draw_line ~img ~color in
let by_pair li f =
ignore (List.fold_left (fun prev x -> f prev x; x) (List.hd li) (List.tl li))
in
by_pair pts (fun p0 p1 -> line ~p0 ~p1);
;;
Perl 6
{{works with|Rakudo|2017.09}} Uses pieces from [[Bitmap#Perl_6| Bitmap]], and [[Bitmap/Bresenham's_line_algorithm#Perl_6| Bresenham's line algorithm]] tasks. They are included here to make a complete, runnable program.
class Pixel { has UInt ($.R, $.G, $.B) }
class Bitmap {
has UInt ($.width, $.height);
has Pixel @!data;
method fill(Pixel $p) {
@!data = $p.clone xx ($!width*$!height)
}
method pixel(
$i where ^$!width,
$j where ^$!height
--> Pixel
) is rw { @!data[$i + $j * $!width] }
method set-pixel ($i, $j, Pixel $p) {
return if $j >= $!height;
self.pixel($i, $j) = $p.clone;
}
method get-pixel ($i, $j) returns Pixel {
self.pixel($i, $j);
}
method line(($x0 is copy, $y0 is copy), ($x1 is copy, $y1 is copy), $pix) {
my $steep = abs($y1 - $y0) > abs($x1 - $x0);
if $steep {
($x0, $y0) = ($y0, $x0);
($x1, $y1) = ($y1, $x1);
}
if $x0 > $x1 {
($x0, $x1) = ($x1, $x0);
($y0, $y1) = ($y1, $y0);
}
my $Δx = $x1 - $x0;
my $Δy = abs($y1 - $y0);
my $error = 0;
my $Δerror = $Δy / $Δx;
my $y-step = $y0 < $y1 ?? 1 !! -1;
my $y = $y0;
for $x0 .. $x1 -> $x {
if $steep {
self.set-pixel($y, $x, $pix);
} else {
self.set-pixel($x, $y, $pix);
}
$error += $Δerror;
if $error >= 0.5 {
$y += $y-step;
$error -= 1.0;
}
}
}
method dot (($px, $py), $pix, $radius = 2) {
for $px - $radius .. $px + $radius -> $x {
for $py - $radius .. $py + $radius -> $y {
self.set-pixel($x, $y, $pix) if ( $px - $x + ($py - $y) * i ).abs <= $radius;
}
}
}
method quadratic ( ($x1, $y1), ($x2, $y2), ($x3, $y3), $pix, $segments = 30 ) {
my @line-segments = map -> $t {
my \a = (1-$t)²;
my \b = $t * (1-$t) * 2;
my \c = $t²;
(a*$x1 + b*$x2 + c*$x3).round(1),(a*$y1 + b*$y2 + c*$y3).round(1)
}, (0, 1/$segments, 2/$segments ... 1);
for @line-segments.rotor(2=>-1) -> ($p1, $p2) { self.line( $p1, $p2, $pix) };
}
method data { @!data }
}
role PPM {
method P6 returns Blob {
"P6\n{self.width} {self.height}\n255\n".encode('ascii')
~ Blob.new: flat map { .R, .G, .B }, self.data
}
}
sub color( $r, $g, $b) { Pixel.new(R => $r, G => $g, B => $b) }
my Bitmap $b = Bitmap.new( width => 600, height => 400) but PPM;
$b.fill( color(2,2,2) );
my @points = (65,25), (85,380), (570,15);
my %seen;
my $c = 0;
for @points.permutations -> @this {
%seen{@this.reverse.join.Str}++;
next if %seen{@this.join.Str};
$b.quadratic( |@this, color(255-$c,127,$c+=80) );
}
@points.map: { $b.dot( $_, color(255,0,0), 3 )}
$*OUT.write: $b.P6;
See [https://github.com/thundergnat/rc/blob/master/img/Bezier-quadratic-perl6.png example image here], (converted to a .png as .ppm format is not widely supported).
Phix
Output similar to [[Bitmap/Bézier_curves/Quadratic#Mathematica|Mathematica]] Requires new_image() from [[Bitmap#Phix|Bitmap]], bresLine() from [[Bitmap/Bresenham's_line_algorithm#Phix|Bresenham's_line_algorithm]], write_ppm() from [[Bitmap/Write_a_PPM_file#Phix|Write_a_PPM_file]]. Included as demo\rosetta\Bitmap_BezierQuadratic.exw, results may be verified with demo\rosetta\viewppm.exw
function quadratic_bezier(sequence img, atom x1, atom y1, atom x2, atom y2, atom x3, atom y3, integer colour, integer segments)
atom t, t1, a, b, c
sequence pts = repeat(0,segments*2)
for i=0 to segments*2-1 by 2 do
t = i/segments
t1 = 1-t
a = power(t1,2)
b = 2*t*t1
c = power(t,2)
pts[i+1] = floor(a*x1+b*x2+c*x3)
pts[i+2] = floor(a*y1+b*y2+c*y3)
end for
for i=1 to segments*2-2 by 2 do
img = bresLine(img, pts[i], pts[i+1], pts[i+2], pts[i+3], colour)
end for
return img
end function
sequence img = new_image(200,200,black)
img = quadratic_bezier(img, 0,100, 100,200, 200,0, white, 40)
img = bresLine(img,0,100,100,200,green)
img = bresLine(img,100,200,200,0,green)
img[1][100] = red
img[100][200] = red
img[200][1] = red
write_ppm("BézierQ.ppm",img)
PicoLisp
This uses the 'brez' line drawing function from [[Bitmap/Bresenham's line algorithm#PicoLisp]].
(scl 6)
(de quadBezier (Img N X1 Y1 X2 Y2 X3 Y3)
(let (R (* N N) X X1 Y Y1 DX 0 DY 0)
(for I N
(let (J (- N I) A (*/ 1.0 J J R) B (*/ 2.0 I J R) C (*/ 1.0 I I R))
(brez Img X Y
(setq DX (- (+ (*/ A X1 1.0) (*/ B X2 1.0) (*/ C X3 1.0)) X))
(setq DY (- (+ (*/ A Y1 1.0) (*/ B Y2 1.0) (*/ C Y3 1.0)) Y)) )
(inc 'X DX)
(inc 'Y DY) ) ) ) )
Test:
(let Img (make (do 200 (link (need 300 0)))) # Create image 300 x 200
(quadBezier Img 12 20 100 300 -80 260 180)
(out "img.pbm" # Write to bitmap file
(prinl "P1")
(prinl 300 " " 200)
(mapc prinl Img) ) )
(call 'display "img.pbm")
PureBasic
Procedure quad_bezier(img, p1x, p1y, p2x, p2y, p3x, p3y, Color, n_seg)
Protected i
Protected.f T, t1, a, b, c, d
Dim pts.POINT(n_seg)
For i = 0 To n_seg
T = i / n_seg
t1 = 1.0 - T
a = Pow(t1, 2)
b = 2.0 * T * t1
c = Pow(T, 2)
pts(i)\x = a * p1x + b * p2x + c * p3x
pts(i)\y = a * p1y + b * p2y + c * p3y
Next
StartDrawing(ImageOutput(img))
FrontColor(Color)
For i = 0 To n_seg - 1
BresenhamLine(pts(i)\x, pts(i)\y, pts(i + 1)\x, pts(i + 1)\y)
Next
StopDrawing()
EndProcedure
Define w, h, img
w = 200: h = 200: img = 1
CreateImage(img, w, h) ;img is internal id of the image
OpenWindow(0, 0, 0, w, h,"Bezier curve, quadratic", #PB_Window_SystemMenu)
quad_bezier(1, 80,20, 130,80, 20,150, RGB(255, 255, 255), 20)
ImageGadget(0, 0, 0, w, h, ImageID(1))
Define event
Repeat
event = WaitWindowEvent()
Until event = #PB_Event_CloseWindow
Python
See [[Cubic bezier curves#Python]] for a generalized solution.
R
See [[Cubic bezier curves#R]] for a generalized solution.
Racket
#lang racket
(require racket/draw)
(define (draw-line dc p q)
(match* (p q) [((list x y) (list s t)) (send dc draw-line x y s t)]))
(define (draw-lines dc ps)
(void
(for/fold ([p0 (first ps)]) ([p (rest ps)])
(draw-line dc p0 p)
p)))
(define (int t p q)
(define ((int1 t) x0 x1) (+ (* (- 1 t) x0) (* t x1)))
(map (int1 t) p q))
(define (bezier-points p0 p1 p2)
(for/list ([t (in-range 0.0 1.0 (/ 1.0 20))])
(int t (int t p0 p1) (int t p1 p2))))
(define bm (make-object bitmap% 17 17))
(define dc (new bitmap-dc% [bitmap bm]))
(send dc set-smoothing 'unsmoothed)
(send dc set-pen "red" 1 'solid)
(draw-lines dc (bezier-points '(16 1) '(1 4) '(3 16)))
bm
Ruby
See [[Cubic bezier curves#Ruby]] for a generalized solution.
Tcl
See [[Cubic bezier curves#Tcl]] for a generalized solution.
=={{header|TI-89 BASIC}}==
{{TI-image-task}}
Define cubic(p1,p2,p3,segs) = Prgm
Local i,t,u,prev,pt
0 → pt
For i,1,segs+1
(i-1.0)/segs → t © Decimal to avoid slow exact arithetic
(1-t) → u
pt → prev
u^2*p1 + 2*t*u*p2 + t^2*p3 → pt
If i>1 Then
PxlLine floor(prev[1,1]), floor(prev[1,2]), floor(pt[1,1]), floor(pt[1,2])
EndIf
EndFor
EndPrgm
Vedit macro language
This implementation uses de Casteljau's algorithm to recursively split the Bezier curve into two smaller segments until the segment is short enough to be approximated with a straight line. The advantage of this method is that only integer calculations are needed, and the most complex operations are addition and shift right. (I have used multiplication and division here for clarity.)
Constant recursion depth is used here. Recursion depth of 5 seems to give accurate enough result in most situations. In real world implementations, some adaptive method is often used to decide when to stop recursion.
// Daw a Cubic bezier curve
// #20, #30 = Start point
// #21, #31 = Control point 1
// #22, #32 = Control point 2
// #23, #33 = end point
// #40 = depth of recursion
:CUBIC_BEZIER:
if (#40 > 0) {
#24 = (#20+#21)/2; #34 = (#30+#31)/2
#26 = (#22+#23)/2; #36 = (#32+#33)/2
#27 = (#20+#21*2+#22)/4; #37 = (#30+#31*2+#32)/4
#28 = (#21+#22*2+#23)/4; #38 = (#31+#32*2+#33)/4
#29 = (#20+#21*3+#22*3+#23)/8; #39 = (#30+#31*3+#32*3+#33)/8
Num_Push(20,40)
#21 = #24; #31 = #34 // control 1
#22 = #27; #32 = #37 // control 2
#23 = #29; #33 = #39 // end point
#40--
Call("CUBIC_BEZIER") // Draw "left" part
Num_Pop(20,40)
Num_Push(20,40)
#20 = #29; #30 = #39 // start point
#21 = #28; #31 = #38 // control 1
#22 = #26; #32 = #36 // control 2
#40--
Call("CUBIC_BEZIER") // Draw "right" part
Num_Pop(20,40)
} else {
#1=#20; #2=#30; #3=#23; #4=#33
Call("DRAW_LINE")
}
return
XPL0
[[File:QuadXPL0.png|right]]
include c:\cxpl\codes; \intrinsic 'code' declarations
proc Bezier(P0, P1, P2); \Draw quadratic Bezier curve
real P0, P1, P2;
def Segments = 8;
int I;
real T, A, B, C, X, Y;
[Move(fix(P0(0)), fix(P0(1)));
for I:= 1 to Segments do
[T:= float(I)/float(Segments);
A:= sq(1.-T);
B:= 2.*T*(1.-T);
C:= sq(T);
X:= A*P0(0) + B*P1(0) + C*P2(0);
Y:= A*P0(1) + B*P1(1) + C*P2(1);
Line(fix(X), fix(Y), $00FFFF); \cyan line segments
];
Point(fix(P0(0)), fix(P0(1)), $FF0000); \red control points
Point(fix(P1(0)), fix(P1(1)), $FF0000);
Point(fix(P2(0)), fix(P2(1)), $FF0000);
];
[SetVid($112); \set 640x480x24 video graphics
Bezier([0., 0.], [80., 100.], [160., 20.]);
if ChIn(1) then []; \wait for keystroke
SetVid(3); \restore normal text display
]
zkl
Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl
Add this to the PPM class:
fcn qBezier(p0x,p0y, p1x,p1y, p2x,p2y, rgb, numPts=500){
numPts.pump(Void,'wrap(t){ // B(t)
t=t.toFloat()/numPts; t1:=(1.0 - t);
a:=t1*t1; b:=t*t1*2; c:=t*t;
x:=a*p0x + b*p1x + c*p2x + 0.5;
y:=a*p0y + b*p1y + c*p2y + 0.5;
__sSet(rgb,x,y);
});
}
Doesn't use line segments, they don't seem like an improvement.
bitmap:=PPM(200,200,0xff|ff|ff);
bitmap.qBezier(10,100, 250,270, 150,20, 0);
bitmap.write(File("foo.ppm","wb"));
{{out}} Same as the BBC BASIC image:[[Image:bezierquad_bbc.gif]]
{{omit from|AWK}} {{omit from|GUISS}} {{omit from|PARI/GP}}