⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}}
The [[wp:Chaos_game|Chaos Game]] is a method of generating the attractor of an iterated function system (IFS). One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
;Task Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
;See also
- [http://www.geoastro.de/ChaosSpiel/ChaosEnglish.html The Game of Chaos]
BASIC
This should require minimal adaptation to work with any of the older Microsoft-style BASICs. Users of other dialects will need to replace lines 10 and 150 with the appropriate statements to select a graphics output mode (if necessary) and to plot a pixel at x,y in colour v; they should also add LET throughout and 170 END if their dialects require those things.
10 SCREEN 1
20 X = INT(RND(0) * 200)
30 Y = INT(RND(0) * 173)
40 FOR I=1 TO 20000
50 V = INT(RND(0) * 3) + 1
60 ON V GOTO 70,100,130
70 X = X/2
80 Y = Y/2
90 GOTO 150
100 X = 100 + (100-X)/2
110 Y = 173 - (173-Y)/2
120 GOTO 150
130 X = 200 - (200-X)/2
140 Y = Y/2
150 PSET X,Y,V
160 NEXT I
=
Applesoft BASIC
= Adapted from the code given above.
10 HGR2
20 X = INT(RND(1) * 200)
30 Y = INT(RND(1) * 173)
40 FOR I=1 TO 20000
50 V = INT(RND(1) * 3) + 1
60 ON V GOTO 70,100,130
70 X = X/2
80 Y = Y/2
90 GOTO 150
100 X = 100 + (100-X)/2
110 Y = 173 - (173-Y)/2
120 GOTO 150
130 X = 200 - (200-X)/2
140 Y = Y/2
150 HCOLOR=V+4
160 HPLOT X,Y
170 NEXT I
=
BASIC256
=
#Chaos game
ancho = 500 : alto = 300
x = Int(Rand * ancho)
y = Int(Rand * alto)
Clg
FastGraphics
Graphsize ancho , alto
For iteracion = 1 To 30000
vertice = Int(Rand * 3) + 1
Begin Case
Case vertice = 1
x = x / 2
y = y / 2
Color red
Case vertice = 2
x = (ancho/2) + ((ancho/2)-x) / 2
y = alto - (alto-y) / 2
Color green
Case vertice = 3
x = ancho - (ancho-x) / 2
y = y / 2
Color blue
End Case
#Pset (x,y),vertice
Plot (x,y)
Next iteracion
Refresh
ImgSave "chaos_game.jpg", "jpg"
End
=
Sinclair ZX81 BASIC
=
Adapted from the other BASIC versions. Monochrome and low-resolution, of course. Works with only 1k of RAM. If you like, you can try changing line 30
to go round the loop a different number of times.
Note that ZX81 BASIC does not have an explicit computed GOTO
; we can, however, actually compute the value of an expression and then GOTO
it as a line number.
10 LET X=RND*46
20 LET Y=RND*40
30 FOR I=1 TO 5000
40 LET VERTEX=INT (RND*3)
50 GOTO 60+VERTEX*30
60 LET X=X/2
70 LET Y=Y/2
80 GOTO 140
90 LET X=23+(23-X)/2
100 LET Y=40-(40-Y)/2
110 GOTO 140
120 LET X=46-(46-X)/2
130 LET Y=Y/2
140 PLOT X,42-Y
150 NEXT I
{{out}} Screenshot [http://www.edmundgriffiths.com/zx81chaosgame.jpg here]. As with most ZX81 graphics, you can obtain the very best results by making it quite small and looking at it from a long way away.
=
ZX Spectrum Basic
=
The final INK
statement sets the foreground colour back to black.
10 LET x=RND*200
20 LET y=RND*173
30 FOR i=1 TO 20000
40 LET vertex=INT (RND*3)
50 IF vertex=1 THEN GO TO 100
60 IF vertex=2 THEN GO TO 130
70 LET x=x/2
80 LET y=y/2
90 GO TO 150
100 LET x=100+(100-x)/2
110 LET y=173-(173-y)/2
120 GO TO 150
130 LET x=200-(200-x)/2
140 LET y=y/2
150 INK vertex+1
160 PLOT x,y
170 NEXT i
180 INK 0
C
Interactive code which asks the side length of the starting triangle and number of iterations as inputs, a larger number of iterations produces a more accurate approximation of the Sierpinski fractal. Requires the [http://www.cs.colorado.edu/~main/bgi/cs1300/ WinBGIm] library.
#include<graphics.h>
#include<stdlib.h>
#include<stdio.h>
#include<math.h>
#include<time.h>
#define pi M_PI
int main(){
time_t t;
double side, vertices[3][3],seedX,seedY,windowSide;
int i,iter,choice;
printf("Enter triangle side length : ");
scanf("%lf",&side);
printf("Enter number of iterations : ");
scanf("%d",&iter);
windowSide = 10 + 2*side;
initwindow(windowSide,windowSide,"Sierpinski Chaos");
for(i=0;i<3;i++){
vertices[i][0] = windowSide/2 + side*cos(i*2*pi/3);
vertices[i][1] = windowSide/2 + side*sin(i*2*pi/3);
putpixel(vertices[i][0],vertices[i][1],15);
}
srand((unsigned)time(&t));
seedX = rand()%(int)(vertices[0][0]/2 + (vertices[1][0] + vertices[2][0])/4);
seedY = rand()%(int)(vertices[0][1]/2 + (vertices[1][1] + vertices[2][1])/4);
putpixel(seedX,seedY,15);
for(i=0;i<iter;i++){
choice = rand()%3;
seedX = (seedX + vertices[choice][0])/2;
seedY = (seedY + vertices[choice][1])/2;
putpixel(seedX,seedY,15);
}
getch();
closegraph();
return 0;
}
C++
This program will generate the Sierpinski Triangle and save it to your hard drive.
#include <windows.h>
#include <ctime>
#include <string>
#include <iostream>
const int BMP_SIZE = 600;
class myBitmap {
public:
myBitmap() : pen( NULL ), brush( NULL ), clr( 0 ), wid( 1 ) {}
~myBitmap() {
DeleteObject( pen ); DeleteObject( brush );
DeleteDC( hdc ); DeleteObject( bmp );
}
bool create( int w, int h ) {
BITMAPINFO bi;
ZeroMemory( &bi, sizeof( bi ) );
bi.bmiHeader.biSize = sizeof( bi.bmiHeader );
bi.bmiHeader.biBitCount = sizeof( DWORD ) * 8;
bi.bmiHeader.biCompression = BI_RGB;
bi.bmiHeader.biPlanes = 1;
bi.bmiHeader.biWidth = w;
bi.bmiHeader.biHeight = -h;
HDC dc = GetDC( GetConsoleWindow() );
bmp = CreateDIBSection( dc, &bi, DIB_RGB_COLORS, &pBits, NULL, 0 );
if( !bmp ) return false;
hdc = CreateCompatibleDC( dc );
SelectObject( hdc, bmp );
ReleaseDC( GetConsoleWindow(), dc );
width = w; height = h;
return true;
}
void clear( BYTE clr = 0 ) {
memset( pBits, clr, width * height * sizeof( DWORD ) );
}
void setBrushColor( DWORD bClr ) {
if( brush ) DeleteObject( brush );
brush = CreateSolidBrush( bClr );
SelectObject( hdc, brush );
}
void setPenColor( DWORD c ) {
clr = c; createPen();
}
void setPenWidth( int w ) {
wid = w; createPen();
}
void saveBitmap( std::string path ) {
BITMAPFILEHEADER fileheader;
BITMAPINFO infoheader;
BITMAP bitmap;
DWORD wb;
GetObject( bmp, sizeof( bitmap ), &bitmap );
DWORD* dwpBits = new DWORD[bitmap.bmWidth * bitmap.bmHeight];
ZeroMemory( dwpBits, bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD ) );
ZeroMemory( &infoheader, sizeof( BITMAPINFO ) );
ZeroMemory( &fileheader, sizeof( BITMAPFILEHEADER ) );
infoheader.bmiHeader.biBitCount = sizeof( DWORD ) * 8;
infoheader.bmiHeader.biCompression = BI_RGB;
infoheader.bmiHeader.biPlanes = 1;
infoheader.bmiHeader.biSize = sizeof( infoheader.bmiHeader );
infoheader.bmiHeader.biHeight = bitmap.bmHeight;
infoheader.bmiHeader.biWidth = bitmap.bmWidth;
infoheader.bmiHeader.biSizeImage = bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD );
fileheader.bfType = 0x4D42;
fileheader.bfOffBits = sizeof( infoheader.bmiHeader ) + sizeof( BITMAPFILEHEADER );
fileheader.bfSize = fileheader.bfOffBits + infoheader.bmiHeader.biSizeImage;
GetDIBits( hdc, bmp, 0, height, ( LPVOID )dwpBits, &infoheader, DIB_RGB_COLORS );
HANDLE file = CreateFile( path.c_str(), GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL );
WriteFile( file, &fileheader, sizeof( BITMAPFILEHEADER ), &wb, NULL );
WriteFile( file, &infoheader.bmiHeader, sizeof( infoheader.bmiHeader ), &wb, NULL );
WriteFile( file, dwpBits, bitmap.bmWidth * bitmap.bmHeight * 4, &wb, NULL );
CloseHandle( file );
delete [] dwpBits;
}
HDC getDC() const { return hdc; }
int getWidth() const { return width; }
int getHeight() const { return height; }
private:
void createPen() {
if( pen ) DeleteObject( pen );
pen = CreatePen( PS_SOLID, wid, clr );
SelectObject( hdc, pen );
}
HBITMAP bmp; HDC hdc;
HPEN pen; HBRUSH brush;
void *pBits; int width, height, wid;
DWORD clr;
};
class chaos {
public:
void start() {
POINT org;
fillPts(); initialPoint( org ); initColors();
int cnt = 0, i;
bmp.create( BMP_SIZE, BMP_SIZE );
bmp.clear( 255 );
while( cnt++ < 1000000 ) {
switch( rand() % 6 ) {
case 0: case 3: i = 0; break;
case 1: case 5: i = 1; break;
case 2: case 4: i = 2;
}
setPoint( org, myPoints[i], i );
}
// --- edit this path --- //
bmp.saveBitmap( "F:/st.bmp" );
}
private:
void setPoint( POINT &o, POINT v, int i ) {
POINT z;
o.x = ( o.x + v.x ) >> 1; o.y = ( o.y + v.y ) >> 1;
SetPixel( bmp.getDC(), o.x, o.y, colors[i] );
}
void fillPts() {
int a = BMP_SIZE - 1;
myPoints[0].x = BMP_SIZE >> 1; myPoints[0].y = 0;
myPoints[1].x = 0; myPoints[1].y = myPoints[2].x = myPoints[2].y = a;
}
void initialPoint( POINT& p ) {
p.x = ( BMP_SIZE >> 1 ) + rand() % 2 ? rand() % 30 + 10 : -( rand() % 30 + 10 );
p.y = ( BMP_SIZE >> 1 ) + rand() % 2 ? rand() % 30 + 10 : -( rand() % 30 + 10 );
}
void initColors() {
colors[0] = RGB( 255, 0, 0 );
colors[1] = RGB( 0, 255, 0 );
colors[2] = RGB( 0, 0, 255 );
}
myBitmap bmp;
POINT myPoints[3];
COLORREF colors[3];
};
int main( int argc, char* argv[] ) {
srand( ( unsigned )time( 0 ) );
chaos c; c.start();
return 0;
}
C#
using System.Diagnostics;
using System.Drawing;
namespace RosettaChaosGame
{
class Program
{
static void Main(string[] args)
{
var bm = new Bitmap(600, 600);
var referencePoints = new Point[] {
new Point(0, 600),
new Point(600, 600),
new Point(300, 81)
};
var r = new System.Random();
var p = new Point(r.Next(600), r.Next(600));
for (int count = 0; count < 10000; count++)
{
bm.SetPixel(p.X, p.Y, Color.Magenta);
int i = r.Next(3);
p.X = (p.X + referencePoints[i].X) / 2;
p.Y = (p.Y + referencePoints[i].Y) / 2;
}
const string filename = "Chaos Game.png";
bm.Save(filename);
Process.Start(filename);
}
}
}
Common Lisp
{{libheader|opticl}}
(defpackage #:chaos
(:use #:cl
#:opticl))
(in-package #:chaos)
(defparameter *image-size* 600)
(defparameter *margin* 50)
(defparameter *edge-size* (- *image-size* *margin* *margin*))
(defparameter *iterations* 1000000)
(defun chaos ()
(let ((image (make-8-bit-rgb-image *image-size* *image-size* :initial-element 255))
(a (list (- *image-size* *margin*) *margin*))
(b (list (- *image-size* *margin*) (- *image-size* *margin*)))
(c (list (- *image-size* *margin* (round (* (tan (/ pi 3)) *edge-size*) 2))
(round *image-size* 2)))
(point (list (+ (random *edge-size*) *margin*)
(+ (random *edge-size*) *margin*))))
(dotimes (i *iterations*)
(let ((ref (ecase (random 3)
(0 a)
(1 b)
(2 c))))
(setf point (list (round (+ (first point) (first ref)) 2)
(round (+ (second point) (second ref)) 2))))
(setf (pixel image (first point) (second point))
(values 255 0 0)))
(write-png-file "chaos.png" image)))
EasyLang
[https://easylang.online/apps/run.html?code=x%5B%5D%20%3D%20%5B%200%20100%2050%20%5D%0Ay%5B%5D%20%3D%20%5B%2093%2093%207%20%5D%0Ac%5B%5D%20%3D%20%5B%20900%20090%20009%20%5D%0Afor%20i%20range%20100000%0Ah%20%3D%20random%203%0Ax%23%20%3D%20%28x%23%20%2B%20x%5Bh%5D%29%20/%202%0Ay%23%20%3D%20%28y%23%20%2B%20y%5Bh%5D%29%20/%202%0Acolor%20c%5Bh%5D%0Amove%20x%23%20y%23%0Arect%200.3%200.3%0A. Run it]
## Fortran
This FORTRAN code creates an output file which can be drawn with gnuplot.
```Fortran
PROGRAM CHAOS
IMPLICIT NONE
REAL, DIMENSION(3):: KA, KN ! Koordinates old/new
REAL, DIMENSION(3):: DA, DB, DC ! Triangle
INTEGER:: I, Z
INTEGER, PARAMETER:: UT = 17
! Define corners of triangle
DA = (/ 0., 0., 0. /)
DB = (/ 600., 0., 0. /)
DC = (/ 500., 0., 400. /)
! Define starting point
KA = (/ 500., 0., 100. /)
OPEN (UNIT = UT, FILE = 'aus.csv')
DO I=1, 1000000
Z = ZAHL()
WRITE (UT, '(3(F12.6, ";"))') KA
SELECT CASE (Z)
CASE (1)
CALL MITTELP(KA, DA, KN)
CASE (2)
CALL MITTELP(KA, DB, KN)
CASE (3)
CALL MITTELP(KA, DC, KN)
END SELECT
KA = KN
END DO
CLOSE (UT)
CONTAINS
! Calculates center of two points
SUBROUTINE MITTELP(P1, P2, MP)
REAL, INTENT(IN), DIMENSION(3):: P1, P2
REAL, INTENT(OUT), DIMENSION(3):: MP
MP = (P1 + P2) / 2.
END SUBROUTINE MITTELP
! Returns random number
INTEGER FUNCTION ZAHL()
REAL:: ZZ
CALL RANDOM_NUMBER(ZZ)
ZZ = ZZ * 3.
ZAHL = FLOOR(ZZ) + 1
IF (ZAHL .GT. 3) ZAHL = 3
END FUNCTION ZAHL
END PROGRAM CHAOS
Gnuplot Code to draw file:
set terminal jpeg enhanced size 1600,960
set output 'chaos.jpg'
set nokey
set style line 1 lc rgb '#0060ad' lt 1 lw 3 pt 7 ps 0.3
plot 'aus.csv' using 1:3 with points ls 1 notitle
FreeBASIC
{{trans|BASIC256}}
' Chaos game
Const ancho = 320, alto = 240
Dim As Integer x, y, iteracion, vertice
x = Int(Rnd * ancho)
y = Int(Rnd * alto)
Screenres ancho, alto, 8
Cls
For iteracion = 1 To 30000
vertice = Int(Rnd * 3) + 1
Select Case vertice
Case 1
x = x / 2
y = y / 2
vertice = 4 'red
Case 2
x = (ancho/2) + ((ancho/2)-x) / 2
y = alto - (alto-y) / 2
vertice = 2 'green
Case 3
x = ancho - (ancho-x) / 2
y = y / 2
vertice = 1 'blue
End Select
Pset (x,y),vertice
Next iteracion
Sleep
End
Go
This writes a simple GIF animation of the method.
package main
import (
"fmt"
"image"
"image/color"
"image/draw"
"image/gif"
"log"
"math"
"math/rand"
"os"
"time"
)
var bwPalette = color.Palette{
color.Transparent,
color.White,
color.RGBA{R: 0xff, A: 0xff},
color.RGBA{G: 0xff, A: 0xff},
color.RGBA{B: 0xff, A: 0xff},
}
func main() {
const (
width = 160
frames = 100
pointsPerFrame = 50
delay = 100 * time.Millisecond
filename = "chaos_anim.gif"
)
var tan60 = math.Sin(math.Pi / 3)
height := int(math.Round(float64(width) * tan60))
b := image.Rect(0, 0, width, height)
vertices := [...]image.Point{
{0, height}, {width, height}, {width / 2, 0},
}
// Make a filled triangle.
m := image.NewPaletted(b, bwPalette)
for y := b.Min.Y; y < b.Max.Y; y++ {
bg := int(math.Round(float64(b.Max.Y-y) / 2 / tan60))
for x := b.Min.X + bg; x < b.Max.X-bg; x++ {
m.SetColorIndex(x, y, 1)
}
}
// Pick starting point
var p image.Point
rand.Seed(time.Now().UnixNano())
p.Y = rand.Intn(height) + b.Min.Y
p.X = rand.Intn(width) + b.Min.X // TODO: make within triangle
anim := newAnim(frames, delay)
addFrame(anim, m)
for i := 1; i < frames; i++ {
for j := 0; j < pointsPerFrame; j++ {
// Pick a random vertex
vi := rand.Intn(len(vertices))
v := vertices[vi]
// Move p halfway there
p.X = (p.X + v.X) / 2
p.Y = (p.Y + v.Y) / 2
m.SetColorIndex(p.X, p.Y, uint8(2+vi))
}
addFrame(anim, m)
}
if err := writeAnim(anim, filename); err != nil {
log.Fatal(err)
}
fmt.Printf("wrote to %q\n", filename)
}
// Stuff for making a simple GIF animation.
func newAnim(frames int, delay time.Duration) *gif.GIF {
const gifDelayScale = 10 * time.Millisecond
g := &gif.GIF{
Image: make([]*image.Paletted, 0, frames),
Delay: make([]int, 1, frames),
}
g.Delay[0] = int(delay / gifDelayScale)
return g
}
func addFrame(anim *gif.GIF, m *image.Paletted) {
b := m.Bounds()
dst := image.NewPaletted(b, m.Palette)
draw.Draw(dst, b, m, image.ZP, draw.Src)
anim.Image = append(anim.Image, dst)
if len(anim.Delay) < len(anim.Image) {
anim.Delay = append(anim.Delay, anim.Delay[0])
}
}
func writeAnim(anim *gif.GIF, filename string) error {
f, err := os.Create(filename)
if err != nil {
return err
}
err = gif.EncodeAll(f, anim)
if cerr := f.Close(); err == nil {
err = cerr
}
return err
}
Gnuplot
{{trans|PARI/GP}} {{Works with|gnuplot|5.0 (patchlevel 3) and above}} [[File:ChGS3Gnu1.png|right|thumb|Output ChGS3Gnu1.png]]
## Chaos Game (Sierpinski triangle) 2/16/17 aev
reset
fn="ChGS3Gnu1"; clr='"red"';
ttl="Chaos Game (Sierpinski triangle)"
sz=600; sz1=sz/2; sz2=sz1*sqrt(3);
x=y=xf=yf=v=0;
dfn=fn.".dat"; ofn=fn.".png";
set terminal png font arial 12 size 640,640
set print dfn append
set output ofn
unset border; unset xtics; unset ytics; unset key;
set size square
set title ttl font "Arial:Bold,12"
lim=30000; max=100; x=y=xw=yw=p=0;
randgp(top) = floor(rand(0)*top)
x=randgp(sz); y=randgp(sz2);
do for [i=1:lim] {
v=randgp(3);
if (v==0) {x=x/2; y=y/2}
if (v==1) {x=sz1+(sz1-x)/2; y=sz2-(sz2-y)/2}
if (v==2) {x=sz-(sz-x)/2; y=y/2}
xf=floor(x); yf=floor(y);
if(!(xf<1||xf>sz||yf<1||yf>sz)) {print xf," ",yf};
}
plot dfn using 1:2 with points pt 7 ps 0.5 lc @clr
set output
unset print
{{Output}}
File: ChGS3Gnu1.png
Haskell
import Control.Monad (replicateM)
import Control.Monad.Random (fromList)
type Point = (Float,Float)
type Transformations = [(Point -> Point, Float)] -- weighted transformations
-- realization of the game for given transformations
gameOfChaos :: MonadRandom m => Int -> Transformations -> Point -> m [Point]
gameOfChaos n transformations x = iterateA (fromList transformations) x
where iterateA f x = scanr ($) x <$> replicateM n f
Some transformations:
-- the Sierpinsky`s triangle
triangle = [ (mid (0, 0), 1)
, (mid (1, 0), 1)
, (mid (0.5, 0.86), 1) ]
where mid (a,b) (x,y) = ((a+x)/2, (b+y)/2)
-- the Barnsley's fern
fern = [(f1, 1), (f2, 85), (f3, 7), (f4, 7)]
where f1 (x,y) = (0, 0.16*y)
f2 (x,y) = (0.85*x + 0.04*y, -0.04*x + 0.85*y + 1.6)
f3 (x,y) = (0.2*x - 0.26*y, 0.23*x + 0.22*y + 1.6)
f4 (x,y) = (-0.15*x + 0.28*y, 0.26*x + 0.24*y + 0.44)
-- A dragon curve
dragon = [(f1, 1), (f2, 1)]
where f1 (x,y) = (0.5*x - 0.5*y, 0.5*x + 0.5*y)
f2 (x,y) = (-0.5*x + 0.5*y+1, -0.5*x - 0.5*y)
Drawing the result:
import Control.Monad.Random (getRandomR)
import Graphics.Gloss
main = do x <- getRandomR (0,1)
y <- getRandomR (0,1)
pts <- gameOfChaos 500000 triangle (x,y)
display window white $ foldMap point pts
where window = InWindow "Game of Chaos" (400,400) (0,0)
point (x,y) = translate (100*x) (100*y) $ circle 0.02
J
[[File:j_chaos_game.png|300px|thumb|right]]
Note 'plan, Working in complex plane'
Make an equilateral triangle.
Make a list of N targets
Starting with a random point near the triangle,
iteratively generate new points.
plot the new points.
j has a particularly rich notation for numbers.
1ad_90 specifies a complex number with radius 1
at an angle of negative 90 degrees.
2p1 is 2 times (pi raised to the first power).
)
N=: 3000
require'plot'
TAU=: 2p1 NB. tauday.com
mean=: +/ % #
NB. equilateral triangle with vertices on unit circle
NB. rotated for fun.
TRIANGLE=: *(j./2 1 o.(TAU%6)*?0)*1ad_90 1ad150 1ad30
TARGETS=: (N ?@:# 3) { TRIANGLE
NB. start on unit circle
START=: j./2 1 o.TAU*?0
NEW_POINTS=: (mean@:(, {.) , ])/ TARGETS , START
'marker'plot NEW_POINTS
Java
[[File:chaos_game.png|300px|thumb|right]] {{works with|Java|8}}
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;
import javax.swing.Timer;
public class ChaosGame extends JPanel {
class ColoredPoint extends Point {
int colorIndex;
ColoredPoint(int x, int y, int idx) {
super(x, y);
colorIndex = idx;
}
}
Stack<ColoredPoint> stack = new Stack<>();
Point[] points = new Point[3];
Color[] colors = {Color.red, Color.green, Color.blue};
Random r = new Random();
public ChaosGame() {
Dimension dim = new Dimension(640, 640);
setPreferredSize(dim);
setBackground(Color.white);
int margin = 60;
int size = dim.width - 2 * margin;
points[0] = new Point(dim.width / 2, margin);
points[1] = new Point(margin, size);
points[2] = new Point(margin + size, size);
stack.push(new ColoredPoint(-1, -1, 0));
new Timer(10, (ActionEvent e) -> {
if (stack.size() < 50_000) {
for (int i = 0; i < 1000; i++)
addPoint();
repaint();
}
}).start();
}
private void addPoint() {
try {
int colorIndex = r.nextInt(3);
Point p1 = stack.peek();
Point p2 = points[colorIndex];
stack.add(halfwayPoint(p1, p2, colorIndex));
} catch (EmptyStackException e) {
System.out.println(e);
}
}
void drawPoints(Graphics2D g) {
for (ColoredPoint p : stack) {
g.setColor(colors[p.colorIndex]);
g.fillOval(p.x, p.y, 1, 1);
}
}
ColoredPoint halfwayPoint(Point a, Point b, int idx) {
return new ColoredPoint((a.x + b.x) / 2, (a.y + b.y) / 2, idx);
}
@Override
public void paintComponent(Graphics gg) {
super.paintComponent(gg);
Graphics2D g = (Graphics2D) gg;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
drawPoints(g);
}
public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("Chaos Game");
f.setResizable(false);
f.add(new ChaosGame(), BorderLayout.CENTER);
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
});
}
}
JavaScript
Plots the fractal on an HTML canvas element.
<head>
<meta charset="UTF-8">
<title>Chaos Game</title>
</head>
<body>
<p>
<canvas id="sierpinski" width=400 height=346></canvas>
</p>
<p>
<button onclick="chaosGame()">Click here to see a Sierpiński triangle</button>
</p>
<script>
function chaosGame() {
var canv = document.getElementById('sierpinski').getContext('2d');
var x = Math.random() * 400;
var y = Math.random() * 346;
for (var i=0; i<30000; i++) {
var vertex = Math.floor(Math.random() * 3);
switch(vertex) {
case 0:
x = x / 2;
y = y / 2;
canv.fillStyle = 'green';
break;
case 1:
x = 200 + (200 - x) / 2
y = 346 - (346 - y) / 2
canv.fillStyle = 'red';
break;
case 2:
x = 400 - (400 - x) / 2
y = y / 2;
canv.fillStyle = 'blue';
}
canv.fillRect(x,y, 1,1);
}
}
</script>
</body>
</html>
Julia
{{works with|Julia|0.6}}
using Luxor
width = 1000;
height = 1000;
Drawing(width, height, "./chaos.png");
t = Turtle(0, 0, true, 0, (0., 0., 0.));
x = rand(1:width);
y = rand(1:height);
for l in 1:30_000
v = rand(1:3);
if v == 1
x /= 2;
y /= 2;
elseif v == 2
x = width/2 + (width/2 - x)/2;
y = height - (height - y)/2;
else
x = width - (width - x)/2;
y = y / 2;
end
Reposition(t, x, height-y);
Circle(t, 3);
end
finish();
preview();
Kotlin
{{trans|Java}}
//Version 1.1.51
import java.awt.*
import java.util.Stack
import java.util.Random
import javax.swing.JPanel
import javax.swing.JFrame
import javax.swing.Timer
import javax.swing.SwingUtilities
class ChaosGame : JPanel() {
class ColoredPoint(x: Int, y: Int, val colorIndex: Int) : Point(x, y)
val stack = Stack<ColoredPoint>()
val points: List<Point>
val colors = listOf(Color.red, Color.green, Color.blue)
val r = Random()
init {
val dim = Dimension(640, 640)
preferredSize = dim
background = Color.white
val margin = 60
val size = dim.width - 2 * margin
points = listOf(
Point(dim.width / 2, margin),
Point(margin, size),
Point(margin + size, size)
)
stack.push(ColoredPoint(-1, -1, 0))
Timer(10) {
if (stack.size < 50_000) {
for (i in 0 until 1000) addPoint()
repaint()
}
}.start()
}
private fun addPoint() {
val colorIndex = r.nextInt(3)
val p1 = stack.peek()
val p2 = points[colorIndex]
stack.add(halfwayPoint(p1, p2, colorIndex))
}
fun drawPoints(g: Graphics2D) {
for (cp in stack) {
g.color = colors[cp.colorIndex]
g.fillOval(cp.x, cp.y, 1, 1)
}
}
fun halfwayPoint(a: Point, b: Point, idx: Int) =
ColoredPoint((a.x + b.x) / 2, (a.y + b.y) / 2, idx)
override fun paintComponent(gg: Graphics) {
super.paintComponent(gg)
val g = gg as Graphics2D
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON)
drawPoints(g)
}
}
fun main(args: Array<String>) {
SwingUtilities.invokeLater {
val f = JFrame()
with (f) {
defaultCloseOperation = JFrame.EXIT_ON_CLOSE
title = "Chaos Game"
isResizable = false
add(ChaosGame(), BorderLayout.CENTER)
pack()
setLocationRelativeTo(null)
isVisible = true
}
}
}
{{output}}
Same as Java entry
Logo
to chaosgame :sidelength :iterations
make "width :sidelength
make "height (:sidelength/2 * sqrt 3)
make "x (random :width)
make "y (random :height)
repeat :iterations [
make "vertex (random 3)
if :vertex = 0 [
make "x (:x / 2)
make "y (:y / 2)
setpencolor "green
]
if :vertex = 1 [
make "x (:width / 2 + ((:width / 2 - :x) / 2))
make "y (:height - ((:height - :y) / 2))
setpencolor "red
]
if :vertex = 2 [
make "x (:width - ((:width - :x) / 2))
make "y (:y / 2)
setpencolor "blue
]
penup
setxy (:x - :width / 2) (:y - :height / 2)
pendown
forward 1
]
hideturtle
end
Lua
Needs LÖVE 2d Engine
math.randomseed( os.time() )
colors, orig = { { 255, 0, 0 }, { 0, 255, 0 }, { 0, 0, 255 } }, {}
function love.load()
wid, hei = love.graphics.getWidth(), love.graphics.getHeight()
orig[1] = { wid / 2, 3 }
orig[2] = { 3, hei - 3 }
orig[3] = { wid - 3, hei - 3 }
local w, h = math.random( 10, 40 ), math.random( 10, 40 )
if math.random() < .5 then w = -w end
if math.random() < .5 then h = -h end
orig[4] = { wid / 2 + w, hei / 2 + h }
canvas = love.graphics.newCanvas( wid, hei )
love.graphics.setCanvas( canvas ); love.graphics.clear()
love.graphics.setColor( 255, 255, 255 )
love.graphics.points( orig )
love.graphics.setCanvas()
end
function love.draw()
local iter = 100 --> make this number bigger to speed up rendering
for rp = 1, iter do
local r, pts = math.random( 6 ), {}
if r == 1 or r == 4 then
pt = 1
elseif r == 2 or r == 5 then
pt = 2
else
pt = 3
end
local x, y = ( orig[4][1] + orig[pt][1] ) / 2, ( orig[4][2] + orig[pt][2] ) / 2
orig[4][1] = x; orig[4][2] = y
pts[1] = { x, y, colors[pt][1], colors[pt][2], colors[pt][3], 255 }
love.graphics.setCanvas( canvas )
love.graphics.points( pts )
end
love.graphics.setCanvas()
love.graphics.draw( canvas )
end
Mathematica
points = 5000;
a = {0, 0};
b = {1, 0};
c = {0.5, 1};
d = {.7, .3};
S = {};
For[i = 1, i < points, i++, t = RandomInteger[2];
If[t == 0, d = Mean[{a, d}],
If[t == 1, d = Mean[{b, d}], d = Mean[{c, d}]]]; AppendTo[S, d]]
Graphics[Point[S]]
Maple
chaosGame := proc(numPoints)
local points, i;
randomize();
use geometry in
RegularPolygon(triSideways, 3, point(cent, [0, 0]), 1);
rotation(tri, triSideways, Pi/2, counterclockwise);
randpoint(currentP, -1/2*sqrt(3)..1/2*sqrt(3), -1/2..1/2);
points := [coordinates(currentP)];
for i to numPoints do
midpoint(mid, currentP, parse(cat("rotate_triSideways_", rand(1..3)(), "_tri")));
points := [op(points), coordinates(mid)];
point(currentP, coordinates(mid));
end do:
end use;
use plottools in
plots:-display( seq([plots:-display([seq(point(points[i]), i = 1..j)])], j = 1..numelems(points) ), insequence=true);
end use;
end proc:
Nim
{{libheader|rapid}}
import random
import rapid/gfx
var
window = initRWindow()
.title("Rosetta Code - Chaos Game")
.open()
surface = window.openGfx()
sierpinski = window.newRCanvas()
points: array[3, Vec2[float]]
for i in 0..<3:
points[i] = vec2(cos(PI * 2 / 3 * i.float), sin(PI * 2 / 3 * i.float)) * 300
var point = vec2(rand(0.0..surface.width), rand(0.0..surface.height))
surface.vsync = false
surface.loop:
draw ctx, step:
let vertex = sample(points)
point = (point + vertex) / 2
ctx.renderTo(sierpinski):
ctx.transform():
ctx.translate(surface.width / 2, surface.height / 2)
ctx.rotate(-PI / 2)
ctx.begin()
ctx.point((point.x, point.y))
ctx.draw(prPoints)
ctx.clear(gray(0))
ctx.begin()
ctx.texture = sierpinski
ctx.rect(0, 0, surface.width, surface.height)
ctx.draw()
ctx.noTexture()
update step:
discard
PARI/GP
Note: Find plotmat() here on RosettaCode Wiki. {{Works with|PARI/GP|2.9.1 and above}} [[File:SierpTri1.png|right|thumb|Output SierpTri1.png]]
\\ Chaos Game (Sierpinski triangle) 2/15/17 aev
pChaosGameS3(size,lim)={
my(sz1=size\2,sz2=sz1*sqrt(3),M=matrix(size,size),x,y,xf,yf,v);
x=random(size); y=random(sz2);
for(i=1,lim, v=random(3);
if(v==0, x/=2; y/=2;);
if(v==1, x=sz1+(sz1-x)/2; y=sz2-(sz2-y)/2;);
if(v==2, x=size-(size-x)/2; y/=2;);
xf=floor(x); yf=floor(y); if(xf<1||xf>size||yf<1||yf>size, next);
M[xf,yf]=1;
);\\fend
plotmat(M);
}
\\ Test:
pChaosGameS3(600,30000); \\ SierpTri1.png
{{Output}}
> pChaosGameS3(600,30000); \\ SierpTri1.png
*** matrix(600x600) 18696 DOTS
time = 751 ms.
Pascal
program ChaosGame;
// FPC 3.0.2
uses
Graph, windows, math;
// Return a point on a circle defined by angle and the circles radius
// Angle 0 = Radius points to the left
// Angle 90 = Radius points upwards
Function PointOfCircle(Angle: SmallInt; Radius: integer): TPoint;
var Ia: Double;
begin
Ia:=DegToRad(-Angle);
result.x:=round(cos(Ia)*Radius);
result.y:=round(sin(Ia)*Radius);
end;
{ Main }
var
GraphDev,GraphMode: smallint;
Triangle: array[0..2] of Tpoint; // Corners of the triangle
TriPnt: Byte; // Point in ^^^^
Origin: TPoint; // Defines center of triangle
Itterations: integer; // Number of Itterations
Radius: Integer;
View: viewPorttype;
CurPnt: TPoint;
Rect: TRect;
Counter: integer;
begin
Repeat {forever}
// Get the Itteration count 0=exit
Write('Itterations: ');
ReadLn(Itterations);
if Itterations=0 then halt;
// Set Up Graphics screen (everythings Auto detect)
GraphDev:=Detect;
GraphMode:=0;
InitGraph(GraphDev,GraphMode,'');
if GraphResult<>grok then
begin
Writeln('Graphics doesn''t work');
Halt;
end;
// set Origin to center of the _Triangle_ (Not the creen)
GetViewSettings(View);
Rect.Create(View.x1,View.y1+10,View.x2,View.y2-10);
Origin:=Rect.CenterPoint;
Origin.Offset(0,Rect.Height div 6); // Center Triangle on screen
// Define Equilateral triangle,
Radius:=Origin.y; // Radius of Circumscribed circle
for Counter:=0 to 2 do
Triangle[Counter]:=PointOfCircle((Counter*120)+90,Radius)+Origin;
// Choose random starting point, in the incsribed circle of the triangle
Radius:=Radius div 2; // Radius of inscribed circle
CurPnt:=PointOfCircle(random(360),random(Radius div 2))+Origin;
// Play the Chaos Game
for Counter:=0 to Itterations do
begin
TriPnt:=Random(3); // Select Triangle Point
Rect.Create(Triangle[TriPnt],CurPnt);; // Def. rect. between TriPnt and CurPnt
CurPnt:=Rect.CenterPoint; // New CurPnt is center of rectangle
putPixel(CurPnt.x,CurPnt.y,cyan); // Plot the new CurPnt
end;
until False;
end.
Perl
use Imager;
my $width = 1000;
my $height = 1000;
my @points = (
[ $width/2, 0],
[ 0, $height-1],
[$height-1, $height-1],
);
my $img = Imager->new(
xsize => $width,
ysize => $height,
channels => 3,
);
my $color = Imager::Color->new('#ff0000');
my $r = [int(rand($width)), int(rand($height))];
foreach my $i (1 .. 100000) {
my $p = $points[rand @points];
my $h = [
int(($p->[0] + $r->[0]) / 2),
int(($p->[1] + $r->[1]) / 2),
];
$img->setpixel(
x => $h->[0],
y => $h->[1],
color => $color,
);
$r = $h;
}
$img->write(file => 'chaos_game_triangle.png');
Perl 6
{{works with|Rakudo|2018.10}}
use Image::PNG::Portable;
my ($w, $h) = (640, 640);
my $png = Image::PNG::Portable.new: :width($w), :height($h);
my @vertex = [0, 0], [$w, 0], [$w/2, $h];
my @xy = [0,0], [0,0], [0,0], [0,0];
# :degree must be equal to or less than @xy elements.
(^1e5).race(:4degree).map: {
my $p = ++$ % +@xy;
@xy[$p] = do given @vertex.pick -> @v { ((@xy[$p] »+« @v) »/» 2)».Int };
$png.set: |@xy[$p], 0, 255, 0;
}
$png.write: 'Chaos-game-perl6.png';
Phix
Implements five of the fractals on the wikipedia page. {{libheader|pGUI}}
--
-- demo\rosetta\Chaos_game.exw
--
include pGUI.e
Ihandle dlg, canvas
cdCanvas cddbuffer, cdcanvas
enum TRI,SQ1,SQ2,SQ3,PENT
sequence descs = {"Sierpinsky Triangle",
"Square 1",
"Square 2",
"Square 3",
"Pentagon"}
integer mode = TRI
function redraw_cb(Ihandle /*ih*/, integer /*posx*/, integer /*posy*/)
atom {w,h} = IupGetIntInt(canvas, "DRAWSIZE")
atom {x,y} = {w*0.05,h*0.05}
{w,h} = {w*0.9,h*0.9}
sequence points = iff(mode<SQ1?{{x,y},{x+w/2,y+h},{x+w,y}}:
iff(mode<PENT?{{x,y},{x,y+h},{x+w,y+h},{x+w,y}}
:{{x+w/6,y},{x,y+h*2/3},{x+w/2,y+h},{x+w,y+h*2/3},{x+w*5/6,y}}))
cdCanvasActivate(cddbuffer)
integer last = 0
for i=1 to 1000 do
integer r = rand(length(points))
if mode=TRI or r!=last then
atom {nx,ny} = points[r]
{x,y} = {(x+nx)/2,(y+ny)/2}
cdCanvasPixel(cddbuffer, x, y, CD_GREY)
if mode=SQ2
or mode=SQ3 then
r = mod(r,length(points))+1
if mode=SQ3 then
r = mod(r,length(points))+1
end if
end if
last = r
end if
end for
cdCanvasFlush(cddbuffer)
IupSetStrAttribute(dlg, "TITLE", "Chaos Game (%s)", {descs[mode]})
return IUP_DEFAULT
end function
function timer_cb(Ihandle /*ih*/)
IupUpdate(canvas)
return IUP_IGNORE
end function
function map_cb(Ihandle ih)
cdcanvas = cdCreateCanvas(CD_IUP, ih)
cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
cdCanvasSetBackground(cddbuffer, CD_WHITE)
cdCanvasSetForeground(cddbuffer, CD_GRAY)
return IUP_DEFAULT
end function
function esc_close(Ihandle /*ih*/, atom c)
if c=K_ESC then return IUP_CLOSE end if
if c=' ' then
mode += 1
if mode>PENT then
mode = TRI
end if
cdCanvasClear(cddbuffer)
IupRedraw(canvas)
end if
return IUP_CONTINUE
end function
procedure main()
IupOpen()
canvas = IupCanvas(NULL)
IupSetAttribute(canvas, "RASTERSIZE", "640x640")
IupSetCallback(canvas, "MAP_CB", Icallback("map_cb"))
IupSetCallback(canvas, "ACTION", Icallback("redraw_cb"))
dlg = IupDialog(canvas)
IupSetAttribute(dlg, "TITLE", "Chaos Game")
IupSetCallback(dlg, "K_ANY", Icallback("esc_close"))
IupShow(dlg)
IupSetAttribute(canvas, "RASTERSIZE", NULL)
Ihandle timer = IupTimer(Icallback("timer_cb"), 40)
IupMainLoop()
IupClose()
end procedure
main()
Processing
size(300, 260);
background(#ffffff); // white
int x = floor(random(width));
int y = floor(random(height));
int colour = #ffffff;
for (int i=0; i<30000; i++) {
int v = floor(random(3));
switch (v) {
case 0:
x = x / 2;
y = y / 2;
colour = #00ff00; // green
break;
case 1:
x = width/2 + (width/2 - x)/2;
y = height - (height - y)/2;
colour = #ff0000; // red
break;
case 2:
x = width - (width - x)/2;
y = y / 2;
colour = #0000ff; // blue
}
set(x, height-y, colour);
}
Python
import argparse
import random
import shapely.geometry as geometry
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
def main(args):
# Styles
plt.style.use("ggplot")
# Creating figure
fig = plt.figure()
line, = plt.plot([], [], ".")
# Limit axes
plt.xlim(0, 1)
plt.ylim(0, 1)
# Titles
title = "Chaos Game"
plt.title(title)
fig.canvas.set_window_title(title)
# Getting data
data = get_data(args.frames)
# Creating animation
line_ani = animation.FuncAnimation(
fig=fig,
func=update_line,
frames=args.frames,
fargs=(data, line),
interval=args.interval,
repeat=False
)
# To save the animation install ffmpeg and uncomment
# line_ani.save("chaos_game.gif")
plt.show()
def get_data(n):
"""
Get data to plot
"""
leg = 1
triangle = get_triangle(leg)
cur_point = gen_point_within_poly(triangle)
data = []
for _ in range(n):
data.append((cur_point.x, cur_point.y))
cur_point = next_point(triangle, cur_point)
return data
def get_triangle(n):
"""
Create right triangle
"""
ax = ay = 0.0
a = ax, ay
bx = 0.5 * n
by = 0.75 * (n ** 2)
b = bx, by
cx = n
cy = 0.0
c = cx, cy
triangle = geometry.Polygon([a, b, c])
return triangle
def gen_point_within_poly(poly):
"""
Generate random point inside given polygon
"""
minx, miny, maxx, maxy = poly.bounds
while True:
x = random.uniform(minx, maxx)
y = random.uniform(miny, maxy)
point = geometry.Point(x, y)
if point.within(poly):
return point
def next_point(poly, point):
"""
Generate next point according to chaos game rules
"""
vertices = poly.boundary.coords[:-1] # Last point is the same as the first one
random_vertex = geometry.Point(random.choice(vertices))
line = geometry.linestring.LineString([point, random_vertex])
return line.centroid
def update_line(num, data, line):
"""
Update line with new points
"""
new_data = zip(*data[:num]) or [(), ()]
line.set_data(new_data)
return line,
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser(description="Chaos Game by Suenweek (c) 2017")
arg_parser.add_argument("-f", dest="frames", type=int, default=1000)
arg_parser.add_argument("-i", dest="interval", type=int, default=10)
main(arg_parser.parse_args())
R
Note: Find plotmat() here on RosettaCode Wiki. {{trans|PARI/GP}} {{Works with|R|3.3.1 and above}} [[File:SierpTriR1.png|right|thumb|Output SierpTriR1.png]]
# Chaos Game (Sierpinski triangle) 2/15/17 aev
# pChaosGameS3(size, lim, clr, fn, ttl)
# Where: size - defines matrix and picture size; lim - limit of the dots;
# fn - file name (.ext will be added); ttl - plot title;
pChaosGameS3 <- function(size, lim, clr, fn, ttl)
{
cat(" *** START:", date(), "size=",size, "lim=",lim, "clr=",clr, "\n");
sz1=floor(size/2); sz2=floor(sz1*sqrt(3)); xf=yf=v=0;
M <- matrix(c(0), ncol=size, nrow=size, byrow=TRUE);
x <- sample(1:size, 1, replace=FALSE);
y <- sample(1:sz2, 1, replace=FALSE);
pf=paste0(fn, ".png");
for (i in 1:lim) { v <- sample(0:3, 1, replace=FALSE);
if(v==0) {x=x/2; y=y/2;}
if(v==1) {x=sz1+(sz1-x)/2; y=sz2-(sz2-y)/2;}
if(v==2) {x=size-(size-x)/2; y=y/2;}
xf=floor(x); yf=floor(y); if(xf<1||xf>size||yf<1||yf>size) {next};
M[xf,yf]=1;
}
plotmat(M, fn, clr, ttl, 0, size);
cat(" *** END:",date(),"\n");
}
pChaosGameS3(600, 30000, "red", "SierpTriR1", "Sierpinski triangle")
{{Output}}
> pChaosGameS3(600, 30000, "red", "SierpTriR1", "Sierpinski triangle")
*** START: Wed Feb 15 21:40:48 2017 size= 600 lim= 30000 clr= red
*** Matrix( 600 x 600 ) 15442 DOTS
*** END: Wed Feb 15 21:40:51 2017
Racket
{{trans|Haskell}}
#lang racket
(require 2htdp/image)
(define SIZE 300)
(define (game-of-chaos fns WIDTH HEIGHT SIZE
#:offset-x [offset-x 0] #:offset-y [offset-y 0]
#:iters [iters 10000]
#:bg [bg 'white] #:fg [fg 'black])
(define dot (square 1 'solid fg))
(define all-choices (apply + (map first fns)))
(for/fold ([image (empty-scene WIDTH HEIGHT bg)]
[x (random)] [y (random)]
#:result image)
([i (in-range iters)])
(define picked (random all-choices))
(define fn (for/fold ([acc 0] [result #f] #:result result) ([fn (in-list fns)])
#:break (> acc picked)
(values (+ (first fn) acc) (second fn))))
(match-define (list x* y*) (fn x y))
(values (place-image dot (+ offset-x (* SIZE x*)) (+ offset-y (* SIZE y*)) image)
x* y*)))
(define (draw-triangle)
(define ((mid a b) x y) (list (/ (+ a x) 2) (/ (+ b y) 2)))
(define (triangle-height x) (* (sqrt 3) 0.5 x))
(game-of-chaos (list (list 1 (mid 0 0))
(list 1 (mid 1 0))
(list 1 (mid 0.5 (triangle-height 1))))
SIZE (triangle-height SIZE) SIZE))
(define (draw-fern)
(define (f1 x y) (list 0 (* 0.16 y)))
(define (f2 x y) (list (+ (* 0.85 x) (* 0.04 y)) (+ (* -0.04 x) (* 0.85 y) 1.6)))
(define (f3 x y) (list (+ (* 0.2 x) (* -0.26 y)) (+ (* 0.23 x) (* 0.22 y) 1.6)))
(define (f4 x y) (list (+ (* -0.15 x) (* 0.28 y)) (+ (* 0.26 x) (* 0.24 y) 0.44)))
(game-of-chaos (list (list 1 f1) (list 85 f2) (list 7 f3) (list 7 f4))
(/ SIZE 2) SIZE (/ SIZE 11) #:offset-x 70 #:offset-y 10
#:bg 'black #:fg 'white))
(define (draw-dragon)
(game-of-chaos
(list (list 1 (λ (x y) (list (+ (* 0.5 x) (* -0.5 y)) (+ (* 0.5 x) (* 0.5 y)))))
(list 1 (λ (x y) (list (+ (* -0.5 x) (* 0.5 y) 1) (+ (* -0.5 x) (* -0.5 y))))))
SIZE (* 0.8 SIZE) (/ SIZE 1.8) #:offset-x 64 #:offset-y 120))
(draw-triangle)
(draw-fern)
(draw-dragon)
REXX
/*REXX pgm draws a Sierpinski triangle by running the chaos game with a million points*/
parse value scrsize() with sd sw . /*obtain the depth and width of screen.*/
sw= sw - 2 /*adjust the screen width down by two. */
sd= sd - 4 /* " " " depth " " four.*/
parse arg pts chr seed . /*obtain optional arguments from the CL*/
if pts=='' | pts=="," then pts= 1000000 /*Not specified? Then use the default.*/
if chr=='' | chr=="," then chr= '∙' /* " " " " " " */
if datatype(seed,'W') then call random ,,seed /*Is specified? " " RANDOM seed.*/
x= sw; hx= x % 2; y= sd /*define the initial starting position.*/
@.= ' ' /* " all screen points as a blank. */
do pts; ?= random(1, 3) /* [↓] draw a # of (million?) points.*/
select /*?: will be a random number: 1 ──► 3.*/
when ?==1 then parse value x%2 y%2 with x y
when ?==2 then parse value hx+(hx-x)%2 sd-(sd-y)%2 with x y
otherwise parse value sw-(sw-x)%2 y%2 with x y
end /*select*/
@.x.y= chr /*set the X, Y point to a bullet.*/
end /*pts*/ /* [↑] one million points ≡ overkill? */
/* [↓] display the points to the term.*/
do row=sd to 0 by -1; _= /*display the points, one row at a time*/
do col=0 for sw+2 /* " a row (one line) of image. */
_= _ || @.col.row /*construct a " " " " " */
end /*col*/ /*Note: display image from top──►bottom*/
/* [↑] strip trailing blanks (output).*/
say strip(_, 'T') /*display one row (line) of the image. */
end /*row*/ /*stick a fork in it, we're all done. */
This REXX program makes use of '''SCRSIZE''' REXX program (or BIF) which is used to determine the screen
width and depth of the terminal (console). Some REXXes don't have this BIF.
The '''SCRSIZE.REX''' REXX program is included here ───► [[SCRSIZE.REX]].
(Shown at '''1/10 size on a 426×201 screen.)
'''output''' when using the following input: , █
█ ███ █████ ███████ █████████ █████ █████ █████████████ ███████████████ █████ █████ ███████ ███████ █████████ █████████ ████ █████ █████ ████ █████████████████████████ ███████████████████████████ █████ ████ ██████ ███████ █████████ █████████ ████ ████ ████ ████ ██████ ██████ ██████ ██████ ███████████████ ███████████████ ████ ████ ████ ████ ██████ ██████ ██████ ██████ ████████ ████████ ████████ ████████ ███ ███ ████ ███ ███ ████ ███ ███ █████ ██████ ██████ ███████████ ██████ █████ ██████ █████████████████████████████████████████████████████ ███ ███ █████ █████ ███████ ████████ ███ ███ ███ ███ ██████ █████ █████ ██████ ██████████████ ██████████████ ████████████████ ████████████████ █████ █████ █████ █████ ███████ ███████ ███████ ███████ █████████ ██████████ █████████ █████████ █████ ████ █████ █████ █████ █████ ████ █████ ███████████████████████████ ███████████████████████████ █████████████████████████████ █████████████████████████████ ████ █████ █████ ████ ██████ ███████ ███████ ██████ ████████ █████████ █████████ ████████ ████ ████ ████ ████ ████ ████ ████ █████ ██████████████ █████████████ ██████ ██████ █████████ ███ ████████████████ ███████████████ ███████████████ ███████████████ ████ ████ ████ ████ ████ ████ ████ ████ ██████ ██████ ██████ ██████ ██████ ██████ ███████ ██████ █████████ ████████ ████████ █████████ ████████ ████████ █████████ ████████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ███ ████ ████ ███ ████ ██████ ████████████ ██████ ████████████ ██████ ██████████████████ ██████ ████████████ ████████████ ██████ ███████████████████████████████████████████████████████████████████████████████████████████████████████████ ███ ███ █████ █████ ███████ ███████ ███ ███ ███ ███ █████ █████ ██████ █████ ██████████████ ██████████████ ███ ███ ███ ███ █████ █████ █████ █████ ████████ ████████ ███████ ████████ ██████████ ██████████ ██████████ ██████████ █████ █████ █████ █████ █████ █████ █████ █████ ███████████████████████████ ███████████████████████████ █████████████████████████████ █████████████████████████████ ████ █████ █████ █████ ███████ ███████ ███████ ███████ █████████ █████████ █████████ █████████ ████ █████ █████ ████ ████ █████ █████ ████ ██████████████ █████████████ █████████████ █████████████ ████████████████ ███████████████ ████████████████ ███████████████ █████ ████ ████ ████ █████ ████ ████ ████ ███ ███ ██████ ██████ ███████ ███ ███ ██████ ██████ ███████ █████████ ████████ ████████ █████████ █████████ ████████ ████████ █████████ ████ ████ █████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ██████ ███████████████████ ████████████ ██████ ██████ ██████ ███████████████████ ███████████████████ ██████ ███████████████████████████████████████████████████████ ███████████████████████████████████████████████████████ ████ ████ ███ ████ ██████ ██████ ██████ ██████ ████████ ████████ ████████ ████████ ███ ████ ███ ████ ███ ████ ███ ████ █████ ██████ ████████████ ██████ ██████ █████ ██████ ███████████████ ██████████████ ███████████████ ██████████████ ████ ███ ███ ███ ████ ███ ███ ███ ██████ █████ █████ █████ ██████ █████ █████ █████ ████████ ███████ ███████ ███████ ████████ ███████ ███████ ███████ ███ ███ ████ ███ ████ ███ ███ ████ ███ ███ ████ ███ ████ ███ ███ ████ █████ █████ ██████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ ██████ █████ █████ ██████ ███████████████████████████ ████████████████████████████ ███████████████████████████ ████████████████████████████ █████████████████████████████ ██████████████████████████████ █████████████████████████████ ██████████████████████████████ █████ ████ █████ █████ █████ █████ █████ █████ ███████ ████████ ███████ ███████ ███████ ████████ ███████ ███████ █████████ ██████████ █████████ █████████ █████████ ██████████ █████████ █████████ ████ █████ █████ █████ █████ ████ ████ █████ ████ █████ █████ █████ █████ █████ ████ █████ █████████████ ██████████████ █████████████ ██████████████ █████████████ ██████████████ █████████████ ██████████████ ████████████████ ████████████████ ███████████████ ████████████████ ████████████████ ████████████████ ███████████████ ████████████████ █████ ████ █████ █████ ████ █████ █████ ████ █████ ████ █████ █████ ████ ████ █████ ████ ███████ ██████ ███████ ███████ ██████ ███████ ███████ ███████ ███████ ██████ ███████ ███████ ██████ ███████ ███████ ██████ █████████ ████████ █████████ █████████ █████████ █████████ █████████ █████████ █████████ ████████ █████████ █████████ █████████ █████████ █████████ █████████ ████ ████ █████ █████ ████ █████ ████ ████ █████ ████ ████ █████ ████ ████ █████ ████ ████ ████ █████ ████ ████ ████ ████ ████ █████ ████ ████ █████ ████ ████ █████ ████ ██████████████████████████████████████████████████████████████████ █████████ █████████ █████████ █████████████████████████ █████████ ███████████████████ █████████ █████████ █████████ █████████ █████████ █████████ ███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ ████ ████ ██████ ██████ ████████ ████████ ████ ████ ████ ████ ████████████ ████████████ ██████████████ ██████████████ ████ ███ ████ ████ ██████ ██████ ██████ ██████ ████████ ████████ ████████ ████████ ███ ████ ███ ████ ███ ████ ███ ████ █████ ██████ █████ ██████ █████ ██████ █████ ██████ ███████████████████████████ ███████████████████████████ ███ ███ ███ ███ █████ █████ █████ █████ ████████ ███████ ████████ ███████ ██████████ █████████ ██████████ █████████ █████ █████ █████ █████ █████ █████ █████ █████ ██████████████ ██████████████ ██████████████ ██████████████ ████████████████ ████████████████ ████████████████ ████████████████ █████ █████ █████ ████ █████ █████ █████ ████ ███████ ███████ ███████ ███████ ███████ ███████ ███████ ███████ █████████ █████████ █████████ █████████ █████████ █████████ █████████ █████████ ████ ████ █████ █████ █████ ████ █████ █████ █████ ████ █████ ████ █████ ████ ████ █████ █████████████████████████████████████████████████████ █████████████████████████████████████████████████████ ███████████████████████████████████████████████████████ ███████████████████████████████████████████████████████ ████ ████ ████ ████ ██████ ███████ ██████ ███████ █████████ █████████ █████████ █████████ ████ ████ ████ ████ █████ ████ ████ ████ █████████████ █████████████ ██████ ██████ █████████████ ███████████████ ███████████████ ███████████████ ███████████████ ████ ████ ████ ████ ████ ████ ████ ████ ██████ ██████ ██████ ██████ ██████ ██████ ██████ ██████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████ ███ ████ ████ ████ ███ ████ ███ ████ ███ ████ ███ ████ ███ ████ ████ ████████████ ██████ ██████ ██████ █████ ██████ ██████ ██████ █████ ██████ ██████ ████████████ ██████ ██████ ████████████████████████████ ████████████████████████████ ████████████████████████████ ████████████████████████████ ███ ████ ███ ████ ███ ████ ███ ████ █████ ██████ █████ ██████ █████ ██████ █████ ██████ ████████ ████████ ████████ ████████ ███████ ████████ ███████ ████████ ████ ███ ███ ███ ████ ███ ███ ███ ████ ███ ███ ███ ████ ███ ███ ███ ██████ █████ █████ █████ ██████ █████ █████ █████ ██████ █████ █████ █████ ██████ █████ █████ █████ ██████████████ ██████████████ ██████████████ ██████████████ ██████████████ ██████████████ ██████████████ ██████████████ ████████████████ ████████████████ ████████████████ ████████████████ ████████████████ ████████████████ ████████████████ ████████████████ █████ ██████ █████ █████ █████ ██████ █████ █████ █████ ██████ █████ █████ █████ █████ █████ █████ ███████ ████████ ███████ ███████ ███████ ████████ ███████ ███████ ███████ ████████ ███████ ███████ ███████ ████████ ███████ ███████ █████████ ██████████ █████████ █████████ █████████ ██████████ █████████ █████████ █████████ ██████████ █████████ █████████ █████████ ██████████ █████████ █████████ █████ ████ █████ █████ █████ █████ █████ ████ █████ ████ █████ █████ ████ █████ █████ █████ █████ ████ █████ █████ ████ █████ █████ ████ █████ ████ █████ █████ ████ █████ █████ █████ ██████████████████████████████████████████████████████████████████████████████████████████████████████████ ██████████████████████████████████████████████████████████████████████████████████████████████████████████ █████████████████████████████████████████████████████████████████████████████████████████████████████████████ █████████████████████████████████████████████████████████████████████████████████████████████████████████████ ████ █████ ████ █████ ██████ ███████ ██████ ███████ ████████ █████████ ████████ █████████ ████ █████ █████ ████ ████ █████ █████ ████ █████████████ █████████████ █████████████ ███ █████████ ███████████████ ███████████████ ███████████████ ███████████████ █████ ████ ████ ████ █████ ████ ████ ████ ██████ ██████ ██████ ██████ ███████ ██████ ██████ ██████ █████████ █████████ ████████ ████████ █████████ █████████ ████████ ████████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ███ ██████ ████████████ ██████ ████████████ ██████ ██████ ██████ ████████████ ██████ ████████████ ██████ ██████ ████████████████████████████ ████████████████████████████ ████████████████████████████ ████████████████████████████ ████ ███ ███ ████ ████ ████ ███ ████ ██████ ██████ █████ ██████ ██████ ██████ ██████ ██████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ███ ████ ████ ███ ████ ███ ███ ████ ███ ████ ████ ███ ████ ███ ███ ████ █████ ██████ ██████ █████ ██████ █████ █████ ██████ █████ ██████ ██████ █████ ██████ █████ █████ ██████ ██████████████ ███████████████ ███████████████ ██████████████ ██████████████ ███████████████ ███████████████ ██████████████ ███ ███ ███ ████ ███ ████ ███ ███ ███ ███ ███ ████ ███ ████ ███ ███ ██████ █████ █████ ██████ █████ ██████ ██████ █████ ██████ █████ █████ ██████ █████ ██████ █████ █████ ████████ ███████ ███████ ████████ ███████ ████████ ████████ ███████ ████████ ███████ ███████ ████████ ███████ ████████ ████████ ███████ ██████████ █████████ ██████████ ██████████ █████████ ██████████ ██████████ █████████ ██████████ █████████ ██████████ ██████████ ██████████ ██████████ ██████████ █████████ █████ █████ █████ █████ █████ ██████ █████ █████ █████ ██████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ ██████████████████████████████████████████████████████ █████████████████████████████████████████████████████ ██████████████████████████████████████████████████████ █████████████████████████████████████████████████████ ████████████████████████████████████████████████████████ ████████████████████████████████████████████████████████ ████████████████████████████████████████████████████████ ████████████████████████████████████████████████████████ █████ █████ ████ █████ █████ █████ ████ █████ ███████ ███████ ███████ ███████ ███████ ███████ ██████ ███████ █████████ █████████ █████████ █████████ █████████ █████████ ██████████ █████████ █████ █████ █████ ████ █████ █████ ████ █████ █████ ████ █████ ████ █████ █████ ████ █████ █████████████ ██████████████ ██████████████ █████████████ █████████████ █████████████ ██████████████ █████████████ ███████████████ ████████████████ ████████████████ ███████████████ ███████████████ ████████████████ ████████████████ ███████████████ ████ ████ ████ █████ █████ █████ █████ ████ ████ ████ ████ █████ █████ █████ █████ ████ ██████ ██████ ██████ ███████ ███████ ███████ ███████ ██████ ██████ ██████ ██████ ███ ███ ███ ███ ███████ ███████ ██████ ████████ ████████ █████████ █████████ █████████ █████████ █████████ ████████ ████████ ████████ █████████ █████████ █████████ █████████ █████████ ████████ █████ ████ ████ █████ ████ █████ ████ ████ ████ ████ ████ ████ ████ ████ █████ ████ █████ ████ ████ █████ ████ █████ ████ ████ ████ ████ ████ ████ ████ ████ █████ ████ █████████████ █████████████ ███████████████████ ██████ ██████ ████████████ ██████ ██████ ███████████████████ █████████████ █████████████ ███████████████████ ██████ ██████ ████████████ ██████ ██████ ███████████████████ █████████████████████████████ ████████████████████████████ ████████████████████████████ █████████████████████████████ █████████████████████████████ ████████████████████████████ ████████████████████████████ █████████████████████████████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ██████ ██████ ███████ ██████ ██████ ██████ ██████ ██████ ██████ ██████ ███████ ██████ ██████ █████ ██████ ██████ ████████ ████████ █████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ █████████ ████████ ████████ █████████ ████████ ████████ ████ ███ ███ ████ ████ ████ ████ ███ ███ ████ ████ ████ ████ ████ ████ ████ ████ ███ ███ ████ ████ ████ ████ ███ ███ ████ ████ ████ ████ ████ ████ ████ ██████ █████ █████ ██████ ██████ ██████ ████████████ ██████ ██████ ██████ ██████ ████████████ ██████ ██████ ██████ ██████ ████████████ ██████ ██████ ████████████ █████ ██████ ██████ ██████ ████████████ ██████ ██████ ███████████████ ██████████████ ███████████████ ███████████████ ██████████████ ███████████████ ██████████████ ███████████████ ███████████████ ██████████████ ███████████████ ███████████████ ███████████████ ███████████████ ██████████████ ███████████████ ███ ████ ███ ███ ████ ████ ███ ████ ████ ███ ████ ████ ███ ███ ████ ███ ███ ████ ████ ███ ████ ████ ███ ████ ████ ███ ████ ████ ███ ███ ████ ███ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ████████ ████████ ████████ ████████ ████████ ████████ ███████ ████████ ████████ ███████ ████████ ████████ ███████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ███████ ████████ ████████ ███████ ████████ ████████ ████████ ████████ ████████ ████████ ███ ███ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ███ ███ ████ ███ ███ ████ ███ ███ ███ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ ██████ ██████ █████ █████ ██████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ ``` ## Ring ```ring # Project : Chaos game load "guilib.ring" paint = null new qapp { win1 = new qwidget() { setwindowtitle("Archimedean spiral") setgeometry(100,100,500,600) label1 = new qlabel(win1) { setgeometry(10,10,400,400) settext("") } new qpushbutton(win1) { setgeometry(150,500,100,30) settext("draw") setclickevent("draw()") } show() } exec() } func draw p1 = new qpicture() color = new qcolor() { setrgb(0,0,255,255) } pen = new qpen() { setcolor(color) setwidth(1) } paint = new qpainter() { begin(p1) setpen(pen) x = floor(random(10)/10 * 200) y = floor(random(10/10) * 173) for i = 1 to 20000 v = floor(random(10)/10 * 3) + 1 if v = 1 x = x/2 y = y/2 ok if v = 2 x = 100 + (100-x)/2 y = 173 - (173-y)/2 ok if v = 3 x = 200 - (200-x)/2 y = y/2 ok drawpoint(x,y) next endpaint() } label1 {setpicture(p1) show()} ``` * [https://lh3.googleusercontent.com/-xqBO5MB8fpc/Wg05SvwaF9I/AAAAAAAABDA/UGI2goKdDoAR6nbbGZF0YcuwGG6tancvACLcBGAs/s1600/CalmoSoftChaos.jpg Chaos Game (image)] ## Run BASIC ```runbasic x = int(rnd(0) * 200) y = int(rnd(0) * 173) graphic #g, 200,200 #g color("green") for i =1 TO 20000 v = int(rnd(0) * 3) + 1 if v = 1 then x = x/2 y = y/2 end if if v = 2 then x = 100 + (100-x)/2 y = 173 - (173-y)/2 end if if v = 3 then x = 200 - (200-x)/2 y = y/2 end if #g set(x,y) next render #g ``` ## Rust Dependencies: image, rand ```rust extern crate image; extern crate rand; use std::fs::File; use rand::Rng; use std::f32; fn main() { let max_iterations = 50_000u32; let img_side = 800u32; let tri_size = 400f32; // Create a new ImgBuf let mut imgbuf = image::ImageBuffer::new(img_side, img_side); // Create triangle vertices let mut vertices: [[f32; 2]; 3] = [[0f32, 0f32]; 3]; for i in 0..vertices.len() { vertices[i][0] = (img_side as f32 / 2.) + (tri_size / 2.) * (f32::consts::PI * i as f32 * 2. / 3.).cos(); vertices[i][1] = (img_side as f32 / 2.) + (tri_size / 2.) * (f32::consts::PI * i as f32 * 2. / 3.).sin(); } for v in &vertices { imgbuf.put_pixel(v[0] as u32, v[1] as u32, image::Luma([255u8])); } // Iterate chaos game let mut rng = rand::weak_rng(); let mut x = img_side as f32 / 2.; let mut y = img_side as f32 / 2.; for _ in 0..max_iterations { let choice = rng.gen_range(0, vertices.len()); x = (x + vertices[choice][0]) / 2.; y = (y + vertices[choice][1]) / 2.; imgbuf.put_pixel(x as u32, y as u32, image::Luma([255u8])); } // Save image let fout = &mut File::create("fractal.png").unwrap(); image::ImageLuma8(imgbuf).save(fout, image::PNG).unwrap(); } ``` ## Scala ### Java Swing Interoperability ```Scala import javax.swing._ import java.awt._ import java.awt.event.ActionEvent import scala.collection.mutable import scala.util.Random object ChaosGame extends App { SwingUtilities.invokeLater(() => new JFrame("Chaos Game") { class ChaosGame extends JPanel { private val (dim, margin)= (new Dimension(640, 640), 60) private val sizez: Int = dim.width - 2 * margin private val (stack, r) = (new mutable.Stack[ColoredPoint], new Random) private val points = Seq(new Point(dim.width / 2, margin), new Point(margin, sizez), new Point(margin + sizez, sizez) ) private val colors = Seq(Color.red, Color.green, Color.blue) override def paintComponent(gg: Graphics): Unit = { val g = gg.asInstanceOf[Graphics2D] def drawPoints(g: Graphics2D): Unit = { for (p <- stack) { g.setColor(colors(p.colorIndex)) g.fillOval(p.x, p.y, 1, 1) } } super.paintComponent(gg) g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON) drawPoints(g) } private def addPoint(): Unit = { val colorIndex = r.nextInt(3) def halfwayPoint(a: Point, b: Point, idx: Int) = new ColoredPoint((a.x + b.x) / 2, (a.y + b.y) / 2, idx) stack.push(halfwayPoint(stack.top, points(colorIndex), colorIndex)) } class ColoredPoint(x: Int, y: Int, val colorIndex: Int) extends Point(x, y) stack.push(new ColoredPoint(-1, -1, 0)) new Timer(100, (_: ActionEvent) => { if (stack.size < 50000) { for (i <- 0 until 1000) addPoint() repaint() } }).start() setBackground(Color.white) setPreferredSize(dim) } add(new ChaosGame, BorderLayout.CENTER) pack() setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE) setLocationRelativeTo(null) setResizable(false) setVisible(true) } ) } ``` ## Scilab This script uses complex numbers to represent (x,y) coordinates: real part as x position, and imaginary part as y position.//Input n_sides = 3; side_length = 1; ratio = 0.5; n_steps = 1.0d5; first_step = 0; if n_sides<3 then error("n_sides should be at least 3."); end //Calculating vertices' positions theta = (2 * %pi) / n_sides; alpha = (180 - (360/n_sides)) / 2 * (%pi/180); radius = (sin(theta) / side_length) / sin(alpha); vertices = zeros(1,n_sides); for i=1:n_sides vertices(i) = radius * exp( %i * theta * (i-1) ); //equally spaced vertices over a circumference //centered on 0 + 0i, or (0,0) end clear theta alpha radius i //Iterations tic(); points = zeros(1,n_steps); points(1) = first_step; i = 2; while i <= n_steps random=grand(1,'prm',[1:n_sides]'); //sort vertices randomly random=random(1); //choose the first random vertices points(i) = ( vertices(random) - points(i-1) ) * (1-ratio) + points(i-1); i = i + 1; end time=toc(); disp('Time: '+string(time)+'s.'); //Ploting scf(0); clf(); xname('Chaos game: '+string(n_sides)+'-sides polygon'); plot2d(real(points),imag(points),0) plot2d(real(vertices),imag(vertices),-3); set(gca(),'isoview','on'); ``` {{out}} It outputs a graphic window and prints on the console the time elapsed during iterations. ```txt Time: 1.0424433s. ``` ## Sidef ```ruby require('Imager') var width = 600 var height = 600 var points = [ [width//2, 0], [ 0, height-1], [height-1, height-1], ] var img = %O|Imager|.new( xsize => width, ysize => height, ) var color = %O|Imager::Color|.new('#ff0000') var r = [(width-1).irand, (height-1).irand] 30000.times { var p = points.rand r[] = ( (p[0] + r[0]) // 2, (p[1] + r[1]) // 2, ) img.setpixel( x => r[0], y => r[1], color => color, ) } img.write(file => 'chaos_game.png') ``` Output image: [https://github.com/trizen/rc/blob/master/img/chaos-game-sidef.png Chaos game] ## Simula ```simula BEGIN INTEGER U, COLUMNS, LINES; COLUMNS := 40; LINES := 80; U := ININT; BEGIN CHARACTER ARRAY SCREEN(0:LINES, 0:COLUMNS); INTEGER X, Y, I, VERTEX; FOR X := 0 STEP 1 UNTIL LINES-1 DO FOR Y := 0 STEP 1 UNTIL COLUMNS-1 DO SCREEN(X, Y) := ' '; X := RANDINT(0, LINES - 1, U); Y := RANDINT(0, COLUMNS - 1, U); FOR I := 1 STEP 1 UNTIL 5000 DO BEGIN VERTEX := RANDINT(1, 3, U); IF VERTEX = 1 THEN BEGIN X := X // 2; Y := Y // 2; END ELSE IF VERTEX = 2 THEN BEGIN X := LINES // 2 + (LINES // 2 - X) // 2; Y := COLUMNS - (COLUMNS - Y) // 2; END ELSE IF VERTEX = 3 THEN BEGIN X := LINES - (LINES - X) // 2; Y := Y // 2; END ELSE ERROR("VERTEX OUT OF BOUNDS"); SCREEN(X, Y) := 'X'; END; FOR Y := 0 STEP 1 UNTIL COLUMNS-1 DO BEGIN FOR X := 0 STEP 1 UNTIL LINES-1 DO OUTCHAR(SCREEN(X, Y)); OUTIMAGE; END; END; END ``` {{in}} ```txt 678 ``` {{out}} ```txt XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXX XXXX XXXX XXX XXXX XXX XXXX XXX XXXX XXXX XXX XXX XXX XXXX XXXX XXXXXXX XXXXXX XXXXXXX XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXX XX XXX XX XXX XXX XXX XXX XX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXX XXXX XXX XXXX XXXX XXXX XXXX XXX XXXX XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXX XX XX XXXXX XXXXX XXX XXX XXX XX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXXXXX XXXXXXX XXXX XX XX XXXX XXXXX XXXXX XXXXX XXXXX XXX XXXX XXX XXX XXXXXXXXXXX XXXXXXXXXXX XXXX XXXX XXXXXXXXX XXXXX XX XXXXXXX XXXXX XXXX XXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XX XX XXX XXX XX XXX XXX XX XXXXX XXXXX XXXXX XXXXXX XXXX XXX XXX XXX XXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXX XXXX XXXX XXX XX XXX XX XXXXX XXXXXX XXX XXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXXXXX XXXXXX XXXX XXXX X XXXXXXXX XX XXXXXXXXX XXX XXX XXXXX XXX ``` ## Yabasic ```Yabasic width = 640 : height = 480 open window width, height window origin "lb" x = ran(width) y = ran(height) for i = 1 to 200000 vertex = int(ran(3)) if vertex = 1 then x = width / 2 + (width / 2 - x) / 2 y = height - (height - y) / 2 elseif vertex = 2 then x = width - (width - x) / 2 y = y / 2 else x = x / 2 y = y / 2 end if color 255 * (vertex = 0), 255 * (vertex = 1), 255 * (vertex = 2) dot x, y next ``` ## zkl This is a half assed animated process - a bunch of pixels are drawn every couple of seconds and the pixmap written [to the file system]. So, if you open the output file ("chaosGame.jpg") it will [auto] update and show the progression of the image. Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl {{trans|Java}} [[File:ChaosGame.zkl.jpg|240px|thumb|right]] ```zkl w,h:=640,640; bitmap:=PPM(w,h,0xFF|FF|FF); // White background colors:=T(0xFF|00|00,0x00|FF|00,0x00|00|FF); // red,green,blue margin,size:=60, w - 2*margin; points:=T(T(w/2, margin), T(margin,size), T(margin + size,size) ); N,done:=Atomic.Int(0),Atomic.Bool(False); Thread.HeartBeat('wrap(hb){ // a thread var a=List(-1,-1); if(N.inc()<50){ do(500){ colorIndex:=(0).random(3); // (0..2) b,p:=points[colorIndex], halfwayPoint(a,b); x,y:=p; bitmap[x,y]=colors[colorIndex]; a=p; } bitmap.writeJPGFile("chaosGame.jpg",True); } else{ hb.cancel(); done.set(); } // stop thread and signal done },2).go(); // run every 2 seconds, starting now fcn halfwayPoint([(ax,ay)], [(bx,by)]){ T((ax + bx)/2, (ay + by)/2) } done.wait(); // don't exit until thread is done println("Done"); ```