⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Text processing}} [[Category:Basic language learning]] [[Category:String manipulation]] [[Category:Simple]]
;Task: Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
;Example: The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
11l
print(‘a’.code) // prints "97"
print(Char(code' 97)) // prints "a"
360 Assembly
S/360 architecture and EBCDIC was born together. In EBCDIC, the character 'a' (lowercase letter A) has a code of 129 in decimal and '81'x in hexadecimal. To perform conversion, we use IC (insert character) and STC (store character) opcodes.
* Character codes EBCDIC 15/02/2017
CHARCODE CSECT
USING CHARCODE,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) prolog
ST R13,4(R15) " <-
ST R15,8(R13) " ->
LR R13,R15 " addressability
* Character to Decimal
SR R1,R1 r1=0
IC R1,=C'a' insert character 'a'
XDECO R1,PG
XPRNT PG,L'PG print -> 129
* Hexadecimal to character
SR R1,R1 r1=0
IC R1,=X'81' insert character X'81'
STC R1,CHAR store character r1
XPRNT CHAR,L'CHAR print -> 'a'
* Decimal to character
LH R1,=H'129' r1=129
STC R1,CHAR store character r1
XPRNT CHAR,L'CHAR print -> 'a'
*
XDUMP CHAR,L'CHAR dump -> X'81'
*
RETURN L R13,4(0,R13) epilog
LM R14,R12,12(R13) " restore
XR R15,R15 " rc=0
BR R14 exit
PG DS CL12
CHAR DS CL1
YREGS
END CHARCODE
{{out}}
129
a
a
ABAP
In ABAP you must first cast the character to a byte field and back to a number in order to get its ASCII value.
report zcharcode
data: c value 'A', n type i.
field-symbols <n> type x.
assign c to <n> casting.
move <n> to n.
write: c, '=', n left-justified.
{{Out}}
A = 65
ACL2
Similar to Common Lisp:
(cw "~x0" (char-code #\a))
(cw "~x0" (code-char 97))
ActionScript
In ActionScript, you cannot take the character code of a character directly. Instead you must create a string and call charCodeAt with the character's position in the string as a parameter.
trace(String.fromCharCode(97)); //prints 'a'
trace("a".charCodeAt(0));//prints '97'
Ada
with Ada.Text_IO; use Ada.Text_IO;
procedure Char_Code is
begin
Put_Line (Character'Val (97) & " =" & Integer'Image (Character'Pos ('a')));
end Char_Code;
The predefined language attributes S'Pos and S'Val for every discrete subtype, and Character is such a type, yield the position of a value and value by its position correspondingly. {{out}}
a = 97
Aime
# prints "97"
o_integer('a');
o_byte('\n');
# prints "a"
o_byte(97);
o_byte('\n');
ALGOL 68
In ALGOL 68 the '''format''' $g$ is type aware, hence the type conversion operators '''abs''' & '''repr''' are used to set the type.
main:(
printf(($gl$, ABS "a")); # for ASCII this prints "+97" EBCDIC prints "+129" #
printf(($gl$, REPR 97)) # for ASCII this prints "a"; EBCDIC prints "/" #
)
''Character conversions'' may be available in the ''standard prelude'' so that when a foreign tape is mounted, the characters will be converted transparently as the tape's records are read.
FILE tape;
INT errno = open(tape, "/dev/tape1", stand out channel)
make conv(tape, ebcdic conv);
FOR record DO getf(tape, ( ~ )) OD; ~ # etc ... #
Every '''channel''' has an associated standard character conversion that can be determined using the ''stand conv'' query routine and then the conversion applied to a particular file/tape. eg.
make conv(tape, stand conv(stand out channel))
ALGOL W
begin
% display the character code of "a" (97 in ASCII) %
write( decode( "a" ) );
% display the character corresponding to 97 ("a" in ASCII) %
write( code( 97 ) );
end.
APL
{{works with|Dyalog APL}} In Dyalog, ⎕UCS with an integer returns the corresponding Unicode character:
⎕UCS 97
a
and ⎕UCS with a character returns the corresponding code:
⎕UCS 'a'
97
Like most things in APL, ⎕UCS can also be used with an array or with a string (which is an array of characters):
⎕UCS 65 80 76
APL
⎕UCS 'Hello, world!'
72 101 108 108 111 44 32 119 111 114 108 100 33
AppleScript
log(id of "a")
log(id of "aA")
{{out}}
(*97*)
(*97, 65*)
ARM Assembly
{{works with|as|Raspberry Pi}}
/* ARM assembly Raspberry PI */
/* program character.s */
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
/* Initialized data */
.data
szMessCodeChar: .ascii "The code of character is :"
sZoneconv: .fill 12,1,' '
szCarriageReturn: .asciz "\n"
/* UnInitialized data */
.bss
/* code section */
.text
.global main
main: /* entry of program */
push {fp,lr} /* saves 2 registers */
mov r0,#'A'
ldr r1,iAdrsZoneconv
bl conversion10S
ldr r0,iAdrszMessCodeChar
bl affichageMess
mov r0,#'a'
ldr r1,iAdrsZoneconv
bl conversion10S
ldr r0,iAdrszMessCodeChar
bl affichageMess
mov r0,#'1'
ldr r1,iAdrsZoneconv
bl conversion10S
ldr r0,iAdrszMessCodeChar
bl affichageMess
100: /* standard end of the program */
mov r0, #0 @ return code
pop {fp,lr} @restaur 2 registers
mov r7, #EXIT @ request to exit program
swi 0 @ perform the system call
iAdrsZoneconv: .int sZoneconv
iAdrszMessCodeChar: .int szMessCodeChar
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {fp,lr} /* save registres */
push {r0,r1,r2,r7} /* save others registers */
mov r2,#0 /* counter length */
1: /* loop length calculation */
ldrb r1,[r0,r2] /* read octet start position + index */
cmp r1,#0 /* if 0 its over */
addne r2,r2,#1 /* else add 1 in the length */
bne 1b /* and loop */
/* so here r2 contains the length of the message */
mov r1,r0 /* address message in r1 */
mov r0,#STDOUT /* code to write to the standard output Linux */
mov r7, #WRITE /* code call system "write" */
swi #0 /* call systeme */
pop {r0,r1,r2,r7} /* restaur others registers */
pop {fp,lr} /* restaur des 2 registres */
bx lr /* return */
/***************************************************/
/* conversion register signed décimal */
/***************************************************/
/* r0 contient le registre */
/* r1 contient l adresse de la zone de conversion */
conversion10S:
push {r0-r5,lr} /* save des registres */
mov r2,r1 /* debut zone stockage */
mov r5,#'+' /* par defaut le signe est + */
cmp r0,#0 /* nombre négatif ? */
movlt r5,#'-' /* oui le signe est - */
mvnlt r0,r0 /* et inversion en valeur positive */
addlt r0,#1
mov r4,#10 /* longueur de la zone */
1: /* debut de boucle de conversion */
bl divisionpar10 /* division */
add r1,#48 /* ajout de 48 au reste pour conversion ascii */
strb r1,[r2,r4] /* stockage du byte en début de zone r5 + la position r4 */
sub r4,r4,#1 /* position précedente */
cmp r0,#0
bne 1b /* boucle si quotient different de zéro */
strb r5,[r2,r4] /* stockage du signe à la position courante */
subs r4,r4,#1 /* position précedente */
blt 100f /* si r4 < 0 fin */
/* sinon il faut completer le debut de la zone avec des blancs */
mov r3,#' ' /* caractere espace */
2:
strb r3,[r2,r4] /* stockage du byte */
subs r4,r4,#1 /* position précedente */
bge 2b /* boucle si r4 plus grand ou egal a zero */
100: /* fin standard de la fonction */
pop {r0-r5,lr} /*restaur desregistres */
bx lr
/***************************************************/
/* division par 10 signé */
/* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/*
/* and http://www.hackersdelight.org/ */
/***************************************************/
/* r0 contient le dividende */
/* r0 retourne le quotient */
/* r1 retourne le reste */
divisionpar10:
/* r0 contains the argument to be divided by 10 */
push {r2-r4} /* save registers */
mov r4,r0
ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */
smull r1, r2, r3, r0 /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */
mov r2, r2, ASR #2 /* r2 <- r2 >> 2 */
mov r1, r0, LSR #31 /* r1 <- r0 >> 31 */
add r0, r2, r1 /* r0 <- r2 + r1 */
add r2,r0,r0, lsl #2 /* r2 <- r0 * 5 */
sub r1,r4,r2, lsl #1 /* r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) */
pop {r2-r4}
bx lr /* leave function */
bx lr /* leave function */
.Ls_magic_number_10: .word 0x66666667
AutoHotkey
MsgBox % Chr(97)
MsgBox % Asc("a")
AWK
AWK has no built-in way to convert a character into ASCII (or whatever) code; but a function that does so can be easily built using an associative array (where the keys are the characters). The opposite can be done using printf (or sprintf) with %c
function ord(c)
{
return chmap[c]
}
BEGIN {
for(i=0; i < 256; i++) {
chmap[sprintf("%c", i)] = i
}
print ord("a"), ord("b")
printf "%c %c\n", 97, 98
s = sprintf("%c%c", 97, 98)
print s
}
Axe
Disp 'a'▶Dec,i
Disp 97▶Char,i
Babel
'abcdefg' str2ar
{%d nl <<} eachar
{{Out}}
97
98
99
100
101
102
103
(98 97 98 101 108) ls2lf ar2str nl <<
{{out}} babel
BASIC
{{works with|QuickBasic|4.5}}
charCode = 97
char = "a"
PRINT CHR$(charCode) 'prints a
PRINT ASC(char) 'prints 97
On the ZX Spectrum string variable names must be a single letter but numeric variables can be multiple characters: {{works with|ZX Spectrum Basic}}
10 LET c = 97: REM c is a character code
20 LET d$ = "b": REM d$ holds the character
30 PRINT CHR$(c): REM this prints a
40 PRINT CODE(d$): REM this prints 98
=
Applesoft BASIC
= CHR$(97) is used in place of "a" because on the older model Apple II, lower case is difficult to input.
?CHR$(97)"="ASC(CHR$(97))
{{Out}}
a=97
Output as it appears on the text display on the Apple II and Apple II plus, with the original text character ROM:
!=97
=
BaCon
=
' ASCII
c$ = "$"
PRINT c$, ": ", ASC(c$)
' UTF-8
uc$ = "€"
PRINT uc$, ": ", UCS(uc$), ", ", UCS(c$)
{{out}}
$: 36
€: 8364, 36
=
Sinclair ZX81 BASIC
=
10 REM THE ZX81 USES ITS OWN NON-ASCII CHARACTER SET
20 REM WHICH DOES NOT INCLUDE LOWER-CASE LETTERS
30 PRINT CODE "A"
40 PRINT CHR$ 38
{{out}}
38
A
=
Commodore BASIC
= Commodore BASIC uses PETSCII code for its character set.
10 CH = 65: REM IN PETSCII CODE FOR 'A' IS 65
20 D$ = "B": REM D$ HOLDS THE CHARACTER 'B'
30 PRINT CHR$(CH): REM THIS PRINTS 'A'
40 PRINT ASC(D$): REM THIS PRINTS 66
{{Out}}
A
66
==={{header|IS-BASIC}}===
## Batch File
```dos
@echo off
:: Supports all ASCII characters and codes from 34-126 with the exceptions of:
:: 38 &
:: 60 <
:: 62 >
:: 94 ^
:: 124 |
:_main
call:_toCode a
call:_toChar 97
pause>nul
exit /b
:_toCode
setlocal enabledelayedexpansion
set codecount=32
for /l %%i in (33,1,126) do (
set /a codecount+=1
cmd /c exit %%i
if %1==!=exitcodeAscii! (
echo !codecount!
exit /b
)
)
:_toChar
setlocal
cmd /c exit %1
echo %=exitcodeAscii%
exit /b
{{in}}
toCode a
toChar 97
{{out}}
97
a
BBC BASIC
charCode = 97
char$ = "a"
PRINT CHR$(charCode) : REM prints a
PRINT ASC(char$) : REM prints 97
Befunge
The instruction . will output as an integer. , will output as ASCII character.
"a". 99*44*+, @
Bracmat
( put
$ ( str
$ ( "\nLatin a
ISO-9959-1: "
asc$a
" = "
chr$97
"
UTF-8: "
utf$a
" = "
chu$97
\n
"Cyrillic а (UTF-8): "
utf$а
" = "
chu$1072
\n
)
)
)
{{Out}}
Latin a
ISO-9959-1: 97 = a
UTF-8: 97 = a
Cyrillic а (UTF-8): 1072 = а
C
char is already an integer type in C, and it gets automatically promoted to int. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as char is smaller.
#include <stdio.h>
int main() {
printf("%d\n", 'a'); /* prints "97" */
printf("%c\n", 97); /* prints "a"; we don't have to cast because printf is type agnostic */
return 0;
}
C++
char is already an integer type in C++, and it gets automatically promoted to int. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as char is smaller.
In this case, the output operator << is overloaded to handle integer (outputs the decimal representation) and character (outputs just the character) types differently, so we need to cast it in both cases.
#include <iostream>
int main() {
std::cout << (int)'a' << std::endl; // prints "97"
std::cout << (char)97 << std::endl; // prints "a"
return 0;
}
C#
C# represents strings and characters internally as Unicode, so casting a char to an int returns its Unicode character encoding.
using System;
namespace RosettaCode.CharacterCode
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine((int) 'a'); //Prints "97"
Console.WriteLine((char) 97); //Prints "a"
}
}
}
Clojure
(print (int \a)) ; prints "97"
(print (char 97)) ; prints \a
; Unicode is also available, as Clojure uses the underlying java Strings & chars
(print (int \π)) ; prints 960
(print (char 960)) ; prints \π
; use String because char in Java can't represent characters outside Basic Multilingual Plane
(print (.codePointAt "𝅘𝅥𝅮" 0)) ; prints 119136
(print (String. (int-array 1 119136) 0 1)) ; prints 𝅘𝅥𝅮
COBOL
Tested with GnuCOBOL on an ASCII based GNU/Linux system. Running this code on EBCDIC native hardware would display a control code and 000000093.
identification division.
program-id. character-codes.
remarks. COBOL is an ordinal language, first is 1.
remarks. 42nd ASCII code is ")" not, "*".
procedure division.
display function char(42)
display function ord('*')
goback.
end program character-codes.
{{out}}
prompt$ cobc -xj character-codes.cob
)
000000043
CoffeeScript
CoffeeScript transcompiles to JavaScript, so it uses the JS standard library.
console.log 'a'.charCodeAt 0 # 97
console.log String.fromCharCode 97 # a
Common Lisp
(princ (char-code #\a)) ; prints "97"
(princ (code-char 97)) ; prints "a"
Component Pascal
BlackBox Component Builder
PROCEDURE CharCodes*;
VAR
c : CHAR;
BEGIN
c := 'A';
StdLog.Char(c);StdLog.String(":> ");StdLog.Int(ORD(c));StdLog.Ln;
c := CHR(3A9H);
StdLog.Char(c);StdLog.String(":> ");StdLog.Int(ORD(c));StdLog.Ln
END CharCodes;
{{Out}}
A:> 65
Ω:> 937
D
void main() {
import std.stdio, std.utf;
string test = "a";
size_t index = 0;
// Get four-byte utf32 value for index 0.
writefln("%d", test.decode(index));
// 'index' has moved to next character input position.
assert(index == 1);
}
{{out}}
97
Delphi
Example from Studio 2006.
program Project1;
{$APPTYPE CONSOLE}
uses
SysUtils;
var
aChar:Char;
aCode:Byte;
uChar:WideChar;
uCode:Word;
begin
aChar := Chr(97); Writeln(aChar);
aCode := Ord(aChar); Writeln(aCode);
uChar := WideChar(97); Writeln(uChar);
uCode := Ord(uChar); Writeln(uCode);
Readln;
end.
DWScript
PrintLn(Ord('a'));
PrintLn(Chr(97));
E
? 'a'.asInteger()
# value: 97
? <import:java.lang.makeCharacter>.asChar(97)
# value: 'a'
Eiffel
All characters are of the type CHARACTER_8 (ASCII encoding) or CHARACTER_32 (Unicode encoding). CHARACTER is a synonym for either of these two (depending on the compiler option). Characters can be assigned using character literals (a single character enclosed in single quotes) or code value notation (of the form '%/value/' where value is an integer literal of any of the recognized forms).
class
APPLICATION
inherit
ARGUMENTS
create
make
feature {NONE} -- Initialization
make
-- Run application.
local
c8: CHARACTER_8
c32: CHARACTER_32
do
c8 := '%/97/' -- using code value notation
c8 := '%/0x61/' -- same as above, but using hexadecimal literal
print(c8.natural_32_code) -- prints "97"
print(c8) -- prints the character "a"
c32 := 'a' -- using character literal
print(c32.natural_32_code) -- prints "97"
print(c32) -- prints "U+00000061"
--c8 := 'π' -- compile-time error (c8 does not have enough range)
c32 := 'π' -- assigns Unicode value 960
end
end
Limitations: There is no "put_character_32" feature for standard io (FILE class), so there appears to be no way to print Unicode characters.
Elena
ELENA 4.x :
import extensions;
public program()
{
var ch := $97;
console.printLine:ch;
console.printLine(ch.toInt())
}
{{out}}
a
97
Elixir
A String in Elixir is a UTF-8 encoded binary.
iex(1)> code = ?a
97
iex(2)> to_string([code])
"a"
Emacs Lisp
(string-to-char "a")
(message "%c" 97)
Erlang
In Erlang, lists and strings are the same, only the representation changes. Thus:
F = fun([X]) -> X end.
#Fun<erl_eval.6.13229925>
2> F("a").
97
If entered manually, one can also get ASCII codes by prefixing characters with $:
$a.
97
Unicode is fully supported since release R13A only.
Euphoria
printf(1,"%d\n", 'a') -- prints "97"
printf(1,"%s\n", 97) -- prints "a"
=={{header|F Sharp|F#}}==
let c = 'A'
let n = 65
printfn "%d" (int c)
printfn "%c" (char n)
{{Out}}
65
A
Factor
CHAR: katakana-letter-a .
"ア" first .
12450 1string print
FALSE
'A."
"65,
Fantom
A character is represented in single quotes: the 'toInt' method returns the code for the character. The 'toChar' method converts an integer into its respective character.
97.toChar
a
fansh> 'a'.toInt
97
Forth
As with C, characters are just integers on the stack which are treated as ASCII.
char a
dup . \ 97
emit \ a
Fortran
Functions ACHAR and IACHAR specifically work with the ASCII character set, while the results of CHAR and ICHAR will depend on the default character set being used.
WRITE(*,*) ACHAR(97), IACHAR("a")
WRITE(*,*) CHAR(97), ICHAR("a")
FreeBASIC
' FreeBASIC v1.05.0 win64
Print "a - > "; Asc("a")
Print "98 -> "; Chr(98)
Print
Print "Press any key to exit the program"
Sleep
End
{{out}}
a - > 97
98 -> b
Free Pascal
''See [[#Pascal|Pascal]]''
Frink
The function char[x]
in Frink returns the numerical Unicode codepoints for a string or character, or returns the Unicode string for an integer value or array of integer values. The chars[x]
returns an array even if the string is a single character. These functions also correctly handle upper-plane Unicode characters as a single codepoint.
println[char["a"]] // prints 97
println[chars["a"]] // prints [97] (an array)
println[char[97]] // prints a
println[char["Frink rules!"]] // prints [70, 114, 105, 110, 107, 32, 114, 117, 108, 101, 115, 33]
println[[70, 114, 105, 110, 107, 32, 114, 117, 108, 101, 115, 33]] // prints "Frink rules!"
Gambas
Public Sub Form_Open()
Dim sChar As String
sChar = InputBox("Enter a character")
Print "Character " & sChar & " = ASCII " & Str(Asc(sChar))
sChar = InputBox("Enter a ASCII code")
Print "ASCII code " & sChar & " represents " & Chr(Val(sChar))
End
Output:
Character W = ASCII 87
ASCII code 35 represents #
GAP
# Code must be in 0 .. 255.
CharInt(65);
# 'A'
IntChar('Z');
# 90
Go
In Go, a character literal ''is'' simply an integer constant of the character code:
fmt.Println('a') // prints "97"
fmt.Println('π') // prints "960"
Literal constants in Go are not typed (named constants can be).
The variable and constant types most commonly used for character data are byte
, rune
, and string
.
This example program shows character codes (as literals) stored in typed variables, and printed out with default formatting. Note that since byte and rune are integer types, the default formatting is a printable base 10 number. String is not numeric, and a little extra work must be done to print the character codes.
package main
import "fmt"
func main() {
// yes, there is more concise syntax, but this makes
// the data types very clear.
var b byte = 'a'
var r rune = 'π'
var s string = "aπ"
fmt.Println(b, r, s)
fmt.Println("string cast to []rune:", []rune(s))
// A range loop over a string gives runes, not bytes
fmt.Print(" string range loop: ")
for _, c := range s {
fmt.Print(c, " ") // c is type rune
}
// We can also print the bytes of a string without an explicit loop
fmt.Printf("\n string bytes: % #x\n", s)
}
{{out}}
97 960 aπ
string cast to []rune: [97 960]
string range loop: 97 960
string bytes: 0x61 0xcf 0x80
For the second part of the task, printing the character of a given code, the %c
verb of fmt.Printf
will do this directly from integer values, emitting the UTF-8 encoding of the code, (which will typically print the character depending on your hardware and operating system configuration).
b := byte(97)
r := rune(960)
fmt.Printf("%c %c\n%c %c\n", 97, 960, b, r)
{{out}}
a π
a π
You can think of the default formatting of strings as being the printable characters of the string. In fact however, it is even simpler. Since we expect our output device to interpret UTF-8, and we expect our string to contain UTF-8, the default formatting simply dumps the bytes of the string to the output.
Examples showing strings constructed from integer constants and then printed:
fmt.Println(string(97)) // prints "a"
fmt.Println(string(960)) // prints "π"
fmt.Println(string([]rune{97, 960})) // prints "aπ"
Golfscript
To convert a number to a string, we use the array to string coercion.
97[]+''+p
To convert a string to a number, we have a many options, of which the simplest and shortest are:
'a')\;p
'a'(\;p
'a'0=p
'a'{}/p
Groovy
Groovy does not have a character literal at all, so one-character strings have to be ''coerced'' to '''char'''. Groovy '''printf''' (like Java, but unlike C) is ''not type-agnostic'', so the cast or coercion from '''char''' to '''int''' is also required. The reverse direction is considerably simpler.
printf ("%d\n", ('a' as char) as int)
printf ("%c\n", 97)
{{Out}}
97
a
Haskell
import Data.Char
main = do
print (ord 'a') -- prints "97"
print (chr 97) -- prints "'a'"
print (ord 'π') -- prints "960"
print (chr 960) -- prints "'\960'"
HicEst
WRITE(Messagebox) ICHAR('a'), CHAR(97)
i
software {
print(number('a'))
print(text([97]))
}
=={{header|Icon}} and {{header|Unicon}}==
procedure main(arglist)
if *arglist > 0 then L := arglist else L := [97, "a"]
every x := !L do
write(x, " ==> ", char(integer(x)) | ord(x) ) # char produces a character, ord produces a number
end
Icon and Unicon do not currently support double byte character sets. {{Out}}
97 ==> a
a ==> 97
HolyC
Print("%d\n", 'a'); /* prints "97" */
Print("%c\n", 97); /* prints "a" */
Io
Here character is a sequence (string) of length one.
"a" at(0) println // --> 97
97 asCharacter println // --> a
"π" at(0) println // --> 960
960 asCharacter println // --> π
J
4 u: 97 98 99 9786
abc☺
3 u: 7 u: 'abc☺'
97 98 99 9786
7 u:
converts from utf-8, 3 u:
by itself would give us:
3 u: 'abc☺'
97 98 99 226 152 186
Also, if we limit ourselves to ascii, we have other ways of accomplishing the same thing. a.
is a list of the 8 bit character codes and we can index from it, or search it (though that's mostly a notational convenience, since the underlying type already gives us all we need to know).
97 98 99{a.
abc
a.i.'abc'
97 98 99
Java
char is already an integer type in Java, and it gets automatically promoted to int. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as char is smaller.
In this case, the println method is overloaded to handle integer (outputs the decimal representation) and character (outputs just the character) types differently, so we need to cast it in both cases.
public class Foo {
public static void main(String[] args) {
System.out.println((int)'a'); // prints "97"
System.out.println((char)97); // prints "a"
}
}
Java characters support Unicode:
public class Bar {
public static void main(String[] args) {
System.out.println((int)'π'); // prints "960"
System.out.println((char)960); // prints "π"
}
}
JavaScript
Here character is just a string of length 1
console.log('a'.charCodeAt(0)); // prints "97"
console.log(String.fromCharCode(97)); // prints "a"
ES6 brings '''String.codePointAt()''' and '''String.fromCodePoint()''', which provide access to 4-byte unicode characters, in addition to the usual 2-byte unicode characters.
['字'.codePointAt(0), '🐘'.codePointAt(0)]
{{Out}}
[23383, 128024]
and
[23383, 128024].map(function (x) {
return String.fromCodePoint(x);
})
{{Out}}
["字", "🐘"]
Joy
'a ord.
97 chr.
jq
jq data strings are JSON strings, which can be "explode"d into an array of integers, each representing a Unicode codepoint. The inverse of the explode filter is implode. explode can of course be used for single-character strings, and so for example:
"a" | explode # => [ 97 ]
[97] | implode # => "a"
Here is a filter which can be used to convert an integer to the corresponding character:
def chr: [.] | implode;
Example: 1024 | chr # => "Ѐ"
Julia
Julia character constants (of type Char
) are treated as an integer type representing the Unicode codepoint of the character, and can easily be converted to and from other integer types.
println(Int('a'))
println(Char(97))
{{out}}
97
a
K
_ic "abcABC"
97 98 99 65 66 67
_ci 97 98 99 65 66 67
"abcABC"
Kotlin
fun main(args: Array<String>) {
var c = 'a'
var i = c.toInt()
println("$c <-> $i")
i += 2
c = i.toChar()
println("$i <-> $c")
}
{{out}}
a <-> 97
99 <-> c
LabVIEW
{{VI snippet}}
[[File:LabVIEW_Character_codes.png]]
Lang5
: CHAR "!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[" comb
'\\ comb -1 remove append "]^_`abcdefghijklmnopqrstuvwxyz{|}~" comb append ;
: CODE 95 iota 33 + ; : comb "" split ;
: extract' rot 1 compress index subscript expand drop ;
: chr CHAR CODE extract' ;
: ord CODE CHAR extract' ;
'a ord . # 97
97 chr . # a
Lasso
'a'->integer
'A'->integer
97->bytes
65->bytes
{{out}}
97
65
a
A
LFE
In LFE/Erlang, lists and strings are the same, only the representation changes. For example:
(list 68 111 110 39 116 32 80 97 110 105 99 46)
"Don't Panic."
As for this exercise, here's how you could print out the ASCII code for a letter, and a letter from the ASCII code:
(: io format '"~w~n" '"a")
97
ok
> (: io format '"~p~n" (list '(97)))
"a"
ok
Liberty BASIC
charCode = 97
char$ = "a"
print chr$(charCode) 'prints a
print asc(char$) 'prints 97
LIL
LIL does not handle NUL bytes in character strings, char 0 returns an empty string.
print [char 97]
print [codeat "a" 0]
{{out}}
a
97
Lingo
-- returns Unicode code point (=ASCII code for ASCII characters) for character
put chartonum("a")
-- 97
-- returns character for Unicode code point (=ASCII code for ASCII characters)
put numtochar(934)
-- Φ
Little
puts("Unicode value of ñ is ${scan("ñ", "%c")}");
printf("The code 241 in Unicode is the letter: %c.\n", 241);
LiveCode
Since 7.0.x works with unicode
put charToNum("") && numToChar(240)
Logo
Logo characters are words of length 1.
print ascii "a ; 97
print char 97 ; a
Logtalk
|?- char_code(Char, 97), write(Char).
a
Char = a
yes
|?- char_code(a, Code), write(Code).
97
Code = 97
yes
Lua
print(string.byte("a")) -- prints "97"
print(string.char(97)) -- prints "a"
M2000 Interpreter
\\ ANSI
Print Asc("a")
Print Chr$(Asc("a"))
\\ Utf16-Le
Print ChrCode("a")
Print ChrCode$(ChrCode("a"))
\\ (,) is an empty array.
Function Codes(a$) {
If Len(A$)=0 then =(,) : Exit
Buffer Mem as byte*Len(a$)
\\ Str$(string) return one byte character
Return Mem, 0:=Str$(a$)
Inventory Codes
For i=0 to len(Mem)-1
Append Codes, i:=Eval(Mem, i)
Next i
=Codes
}
Print Codes("abcd")
\\ 97 98 99 100
Maple
There are two ways to do this in Maple. First, there are procedures in StringTools for this purpose.
use StringTools in Ord( "A" ); Char( 65 ) end;
65
"A"
Second, the procedure convert handles conversions to and from byte values.
convert( "A", bytes );
[65]
> convert( [65], bytes );
"A"
=={{header|Mathematica}} / {{header|Wolfram Language}}== Use the FromCharacterCode and ToCharacterCode functions:
ToCharacterCode["abcd"]
FromCharacterCode[{97}]
{{Out}}
{97, 98, 99, 100}
"a"
=={{header|MATLAB}} / {{header|Octave}}== There are two built-in function that perform these tasks. To convert from a number to a character use:
character = char(asciiNumber)
To convert from a character to its corresponding ascii character use:
asciiNumber = double(character)
or if you need this number as an integer not a double use:
asciiNumber = uint16(character)
asciiNumber = uint32(character)
asciiNumber = uint64(character)
Sample Usage:
char(87)
ans =
W
>> double('W')
ans =
87
>> uint16('W')
ans =
87
Maxima
ascii(65);
"A"
cint("A");
65
Metafont
Metafont handles only ''ASCII'' (even though codes beyond 127 can be given and used as real ASCII codes)
message "enter a letter: ";
string a;
a := readstring;
message decimal (ASCII a); % writes the decimal number of the first character
% of the string a
message "enter a number: ";
num := scantokens readstring;
message char num; % num can be anything between 0 and 255; what will be seen
% on output depends on the encoding used by the "terminal"; e.g.
% any code beyond 127 when UTF-8 encoding is in use will give
% a bad encoding; e.g. to see correctly an "è", we should write
message char10; % (this add a newline...)
message char hex"c3" & char hex"a8"; % since C3 A8 is the UTF-8 encoding for "è"
end
Microsoft Small Basic
TextWindow.WriteLine("The ascii code for 'A' is: " + Text.GetCharacterCode("A") + ".")
TextWindow.WriteLine("The character for '65' is: " + Text.GetCharacter(65) + ".")
{{out}}
The ascii code for 'A' is: 65.
The character for '65' is: A.
Press any key to continue...
=={{header|Modula-2}}==
MODULE asc;
IMPORT InOut;
VAR letter : CHAR;
ascii : CARDINAL;
BEGIN
letter := 'a';
InOut.Write (letter);
ascii := ORD (letter);
InOut.Write (11C); (* ASCII TAB *)
InOut.WriteCard (ascii, 8);
ascii := ascii - ORD ('0');
InOut.Write (11C); (* ASCII TAB *)
InOut.Write (CHR (ascii));
InOut.WriteLn
END asc.
{{out}}
=={{header|Modula-3}}==
The built in functions <code>ORD</code> and <code>VAL</code> work on characters, among other things.
```modula3
ORD('a') (* Returns 97 *)
VAL(97, CHAR); (* Returns 'a' *)
MUMPS
WRITE $ASCII("M")
WRITE $CHAR(77)
Neko
Neko treats strings as an array of bytes
// An 'a' and a 'b'
var s = "a";
var c = 98;
var h = " ";
$print("Character code for 'a': ", $sget(s, 0), "\n");
$sset(h, 0, c);
$print("Character code ", c, ": ", h, "\n");
{{out}}
Character code for 'a': 97
Character code 98: b
Neko also has standard primitives for handling the byte array as UTF-8
// While Neko also includes some UTF-8 operations,
// native strings are just arrays of bytes
var us = "¥·£·€·$·¢·₡·₢·₣·₤·₥·₦·₧·₨·₩·₪·₫·₭·₮·₯·₹";
// load some Std lib primitives
utfGet = $loader.loadprim("std@utf8_get", 2);
utfSub = $loader.loadprim("std@utf8_sub", 3);
utfAlloc = $loader.loadprim("std@utf8_buf_alloc", 1);
utfAdd = $loader.loadprim("std@utf8_buf_add", 2);
utfContent = $loader.loadprim("std@utf8_buf_content", 1);
// Pull out the Euro currency symbol from the UTF-8 currency sampler
var uc = utfGet(us, 4);
$print("UFT-8 code for '", utfSub(us, 4, 1), "': ", uc, "\n");
// Build a UTF-8 buffer
var buf = utfAlloc(4);
// Add a Pound Sterling symbol
uc = 8356;
utfAdd(buf, uc);
$print("UTF-8 code ", uc, ": ", utfContent(buf), "\n");
{{out}}
UFT-8 code for '€': 8364
UTF-8 code 8356: ₤
NESL
In NESL, character literals are prefixed with a backtick. The functions char_code and code_char convert between characters and integer character codes.
char_code(`a);
it = 97 : int
code_char(97);
it = `a : char
NetRexx
NetRexx provides built-in functions to convert between character and decimal/hexadecimal.
/* NetRexx */
options replace format comments java crossref symbols nobinary
runSample(arg)
return
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method runSample(arg) private static
-- create some sample data: character, hex and unicode
samp = ' ' || 'a'.sequence('e') || '$' || '\xa2'.sequence('\xa5') || '\u20a0'.sequence('\u20b5')
-- use the C2D C2X D2C and X2C built-in functions
say "'"samp"'"
say ' | Chr C2D C2X D2C X2C'
say '---+ --- ------ ---- --- ---'
loop ci = 1 to samp.length
cc = samp.substr(ci, 1)
cd = cc.c2d -- char to decimal
cx = cc.c2x -- char to hexadecimal
dc = cd.d2c -- decimal to char
xc = cx.x2c -- hexadecimal to char
say ci.right(3)"| '"cc"'" cd.right(6) cx.right(4, 0) "'"dc"' '"xc"'"
end ci
return
{{Out}}
' abcde$¢£¤¥₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵' | Chr C2D C2X D2C X2C ---+ --- ------ ---- --- --- 1| ' ' 32 0020 ' ' ' ' 2| 'a' 97 0061 'a' 'a' 3| 'b' 98 0062 'b' 'b' 4| 'c' 99 0063 'c' 'c' 5| 'd' 100 0064 'd' 'd' 6| 'e' 101 0065 'e' 'e' 7| '$' 36 0024 '$' '$' 8| '¢' 162 00A2 '¢' '¢' 9| '£' 163 00A3 '£' '£' 10| '¤' 164 00A4 '¤' '¤' 11| '¥' 165 00A5 '¥' '¥' 12| '₠' 8352 20A0 '₠' '₠' 13| '₡' 8353 20A1 '₡' '₡' 14| '₢' 8354 20A2 '₢' '₢' 15| '₣' 8355 20A3 '₣' '₣' 16| '₤' 8356 20A4 '₤' '₤' 17| '₥' 8357 20A5 '₥' '₥' 18| '₦' 8358 20A6 '₦' '₦' 19| '₧' 8359 20A7 '₧' '₧' 20| '₨' 8360 20A8 '₨' '₨' 21| '₩' 8361 20A9 '₩' '₩' 22| '₪' 8362 20AA '₪' '₪' 23| '₫' 8363 20AB '₫' '₫' 24| '€' 8364 20AC '€' '€' 25| '₭' 8365 20AD '₭' '₭' 26| '₮' 8366 20AE '₮' '₮' 27| '₯' 8367 20AF '₯' '₯' 28| '₰' 8368 20B0 '₰' '₰' 29| '₱' 8369 20B1 '₱' '₱' 30| '₲' 8370 20B2 '₲' '₲' 31| '₳' 8371 20B3 '₳' '₳' 32| '₴' 8372 20B4 '₴' '₴' 33| '₵' 8373 20B5 '₵' '₵' ``` ## Nim ```nim echo ord('a') # echoes 97 echo chr(97) # echoes a import unicode echo int("π".runeAt(0)) # echoes 960 echo Rune(960) # echoes π ``` =={{header|NS-HUBASIC}}== NS-HUBASIC uses a non-ASCII character set that doesn't include letters in lowercase.10 PRINT CODE "A" 20 PRINT CHR$(38) ``` {{Out}} ```txt 0A & ``` =={{header|Oberon-2}}== ```oberon2 MODULE Ascii; IMPORT Out; VAR c: CHAR; d: INTEGER; BEGIN c := CHR(97); d := ORD("a"); Out.Int(d,3);Out.Ln; Out.Char(c);Out.Ln END Ascii. ``` {{Out}} ```txt 97 a ``` ## Objeck ```objeck 'a'->As(Int)->PrintLine(); 97->As(Char)->PrintLine(); ``` ## Object Pascal ''See [[#Pascal|Pascal]]'' ## OCaml ```ocaml Printf.printf "%d\n" (int_of_char 'a'); (* prints "97" *) Printf.printf "%c\n" (char_of_int 97); (* prints "a" *) ``` The following are aliases for the above functions: ```ocaml # Char.code ;; - : char -> int = # Char.chr;; - : int -> char = ``` ## Oforth Oforth has not type or class for characters. A character is an integer which value is its unicode code. ```Oforth 'a' println ``` {{out}} ```txt 97 ``` ## OpenEdge/Progress MESSAGE CHR(97) SKIP ASC("a") VIEW-AS ALERT-BOX. ``` ## Oz Characters in Oz are the same as integers in the range 0-255 (ISO 8859-1 encoding). To print a number as a character, we need to use it as a string (i.e. a list of integers from 0 to 255): ```oz {System.show &a} %% prints "97" {System.showInfo [97]} %% prints "a" ``` ## PARI/GP ```parigp print(Vecsmall("a")[1]); print(Strchr([72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33])) ``` ## Pascal ```pascal writeln(ord('a')); writeln(chr(97)); ``` ## Perl Here character is just a string of length 1 ```perl print ord('a'), "\n"; # prints "97" print chr(97), "\n"; # prints "a" ``` ## Perl 6 Both Perl 5 and Perl 6 have good Unicode support. Note that even characters outside the BMP are considered single characters, not a surrogate pair. Here we use the character "four dragons" (with 64 strokes!) to demonstrate that. ```perl6 say ord('𪚥').fmt('0x%04x'); say chr(0x2a6a5); ``` {{out}} ```txt 0x2a6a5 𪚥 ``` ## Phix Characters and their ascii codes are one and the same. (See also printf, %d / %s / %c.) ```Phix ?'A' puts(1,65) ``` {{out}} ```txt 65 A ``` ## PHP Here character is just a string of length 1 ```php echo ord('a'), "\n"; // prints "97" echo chr(97), "\n"; // prints "a" ``` ## PicoLisp ```PicoLisp : (char "a") -> 97 : (char "字") -> 23383 : (char 23383) -> "字" : (chop "文字") -> ("文" "字") : (mapcar char @) -> (25991 23383) ``` ## PL/I ```PL/I declare 1 u union, 2 c character (1), 2 i fixed binary (8) unsigned; c = 'a'; put skip list (i); /* prints 97 */ i = 97; put skip list (c); /* prints 'a' */ ``` ## PowerShell PowerShell does not allow for character literals directly, so to get a character one first needs to convert a single-character string to a char: ```powershell $char = [char] 'a' ``` Then a simple cast to int yields the character code: ```powershell $charcode = [int] $char # => 97 ``` This also works with Unicode: ```powershell [int] [char] '☺' # => 9786 ``` For converting an integral character code into the actual character, a cast to char suffices: ```powershell [char] 97 # a [char] 9786 # ☺ ``` ## Prolog SWI-Prolog has predefined predicate char_code/2. ```txt ?- char_code(a, X). X = 97. ?- char_code(X, 97). X = a. ``` ## PureBasic PureBasic allows compiling code so that it will use either Ascii or a Unicode (UCS-2) encoding for representing its string content. It also allows for the source code that is being compiled to be in either Ascii or UTF-8 encoding. A one-character string is used here to hold the character and a numerical character type is used to hold the character code. The character type is either one or two bytes in size, depending on whether compiling for Ascii or Unicode respectively. ```PureBasic If OpenConsole() ;Results are the same when compiled for Ascii or Unicode charCode.c = 97 Char.s = "a" PrintN(Chr(charCode)) ;prints a PrintN(Str(Asc(Char))) ;prints 97 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit") Input() CloseConsole() EndIf ``` This version should be compiled with Unicode setting and the source code to be encoded using UTF-8. ```PureBasic If OpenConsole() ;UTF-8 encoding compiled for Unicode (UCS-2) charCode.c = 960 Char.s = "π" PrintN(Chr(charCode)) ;prints π PrintN(Str(Asc(Char))) ;prints 960 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit") Input() CloseConsole() EndIf ``` ## Python {{works with|Python|2.x}} Here character is just a string of length 1 8-bit characters: ```python print ord('a') # prints "97" print chr(97) # prints "a" ``` Unicode characters: ```python print ord(u'π') # prints "960" print unichr(960) # prints "π" ``` {{works with|Python|3.x}} Here character is just a string of length 1 ```python print(ord('a')) # prints "97" (will also work in 2.x) print(ord('π')) # prints "960" print(chr(97)) # prints "a" (will also work in 2.x) print(chr(960)) # prints "π" ``` ## R ```R ascii <- as.integer(charToRaw("hello world")); ascii text <- rawToChar(as.raw(ascii)); text ``` ## Racket ```Racket #lang racket (define (code ch) (printf "The unicode number for ~s is ~a\n" ch (char->integer ch))) (code #\a) (code #\λ) (define (char n) (printf "The unicode number ~a is the character ~s\n" n (integer->char n))) (char 97) (char 955) ``` ## RapidQ ```vb Print Chr$(97) Print Asc("a") ``` ## Red ```Red Red [] print to-integer first "a" ;; -> 97 print to-integer #"a" ;; -> 97 print to-binary "a" ;; -> #{61} print to-char 97 ;; -> a ``` ## Retro ```Retro 'c putc ``` ## REXX REXX supports handling of characters with built-in functions (BIFs), whether it be hexadecimal, binary (bits), or decimal code(s). ### ASCII ```rexx /*REXX program displays a char's ASCII code/value (or EBCDIC if run on an EBCDIC system)*/ yyy= 'c' /*assign a lowercase c to YYY. */ yyy= "c" /* (same as above) */ say 'from char, yyy code=' yyy yyy= '63'x /*assign hexadecimal 63 to YYY. */ yyy= '63'X /* (same as above) */ say 'from hex, yyy code=' yyy yyy= x2c(63) /*assign hexadecimal 63 to YYY. */ say 'from hex, yyy code=' yyy yyy= '01100011'b /*assign a binary 0011 0100 to YYY. */ yyy= '0110 0011'b /* (same as above) */ yyy= '0110 0011'B /* " " " */ say 'from bin, yyy code=' yyy yyy= d2c(99) /*assign decimal code 99 to YYY. */ say 'from dec, yyy code=' yyy say /* [↓] displays the value of YYY in ··· */ say 'char code: ' yyy /* character code (as an 8-bit ASCII character).*/ say ' hex code: ' c2x(yyy) /* hexadecimal */ say ' dec code: ' c2d(yyy) /* decimal */ say ' bin code: ' x2b( c2x(yyy) ) /* binary (as a bit string) */ /*stick a fork in it, we're all done with display*/ ``` '''output''' ```txt from char, yyy code= c from hex, yyy code= c from hex, yyy code= c from bin, yyy code= c from dec, yyy code= c char code: c hex code: 63 dec code: 99 bin code: 01100011 ``` ### EBCDIC ```rexx /* REXX */ yyy='c' /*assign a lowercase c to YYY */ yyy='83'x /*assign hexadecimal 83 to YYY */ /*the X can be upper/lowercase.*/ yyy=x2c(83) /* (same as above) */ yyy='10000011'b /* (same as above) */ yyy='1000 0011'b /* (same as above) */ /*the B can be upper/lowercase.*/ yyy=d2c(129) /*assign decimal code 129 to YYY */ say yyy /*displays the value of YYY */ say c2x(yyy) /*displays the value of YYY in hexadecimal. */ say c2d(yyy) /*displays the value of YYY in decimal. */ say x2b(c2x(yyy))/*displays the value of YYY in binary (bit string). */ ``` {{out}} ```txt a 81 129 10000001 ``` ## Ring ```ring see ascii("a") + nl see char(97) + nl ``` ## Ruby ### 1.8 In Ruby 1.8 characters are usually represented directly as their integer character code. Ruby has a syntax for "character literal" which evaluates directly to the integer code: ?a evaluates to the integer 97. Subscripting a string also gives just the integer code for the character. ```ruby> ?a => 97 > "a"[0] => 97 > 97.chr => "a" ``` ### 1.9 In Ruby 1.9 characters are represented as length-1 strings; same as in Python. The previous "character literal" syntax ?a is now the same as "a". Subscripting a string also gives a length-1 string. There is now an "ord" method of strings to convert a character into its integer code. ```ruby> "a".ord => 97 > 97.chr => "a" ``` ## Run BASIC ```runbasic print chr$(97) 'prints a print asc("a") 'prints 97 ``` ## Rust ```rust use std::char::from_u32; fn main() { //ascii char println!("{}", 'a' as u8); println!("{}", 97 as char); //unicode char println!("{}", 'π' as u32); println!("{}", from_u32(960).unwrap()); } ``` {{out}} ```txt 97 a 960 π ``` ## Sather ```sather class MAIN is main is #OUT + 'a'.int + "\n"; -- or #OUT + 'a'.ascii_int + "\n"; #OUT + CHAR::from_ascii_int(97) + "\n"; end; end; ``` ## Scala {{libheader|Scala}} Scala supports unicode characters, but each character is UTF-16, so there is not a 1-to-1 relationship for supplementary character sets. ### In a REPL session ```scala>scala 'a' toInt res2: Int = 97 scala> 97 toChar res3: Char = a scala> '\u0061' res4: Char = a scala> "\uD869\uDEA5" res5: String = 𪚥 ``` ### Full swing workout Taken the supplemental character sets in account. ```scala import java.lang.Character._; import scala.annotation.tailrec object CharacterCode extends App { def intToChars(n: Int): Array[Char] = java.lang.Character.toChars(n) def UnicodeToList(UTFstring: String) = { @tailrec def inner(str: List[Char], acc: List[String], surrogateHalf: Option[Char]): List[String] = { (str, surrogateHalf) match { case (Nil, _) => acc case (ch :: rest, None) => if (ch.isSurrogate) inner(rest, acc, Some(ch)) else inner(rest, acc :+ ch.toString, None) case (ch :: rest, Some(f)) => inner(rest, (acc :+ (f.toString + ch)), None) } } inner(UTFstring.toList, Nil, None) } def UnicodeToInt(utf: String) = { def charToInt(high: Char, low: Char) = { if (isSurrogatePair(high, low)) toCodePoint(high, low) else high.toInt } charToInt(utf(0), if (utf.size > 1) utf(1) else 0) } def UTFtoHexString(utf: String) = { utf.map(ch => f"${ch.toInt}%04X").mkString("\"\\u", "\\u", "\"") } def flags(ch: String) = { // Testing Unicode character properties (if (ch matches "\\p{M}") "Y" else "N") + (if (ch matches "\\p{Mn}") "Y" else "N") } val str = '\uFEFF' /*big-endian BOM*/ + "\u0301a" + "$áabcde¢£¤¥©ÇßIJijŁłʒλπक्तु•₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵℃←→⇒∙⌘☃☹☺☻ア字文𠀀" + intToChars(173733).mkString println(s"Example string: $str") println(""" | Chr C/C++/Java source Code Point Hex Dec Mn Name !----+ --- ------------------------- ------- -------- -- """.stripMargin('!') + "-" * 27) (UnicodeToList(str)).zipWithIndex.map { case (coll, nr) => f"$nr%4d: $coll\t${UTFtoHexString(coll)}%27s U+${UnicodeToInt(coll)}%05X" + f"${"(" + UnicodeToInt(coll).toString}%8s) ${flags(coll)} ${getName(coll(0).toInt)} " }.foreach(println) } ``` {{Out}} Example string: ́a$áabcde¢£¤¥©ÇßIJijŁłʒλπक्तु•₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵℃←→⇒∙⌘☃☹☺☻ア字文𠀀𪚥 | Chr C/C++/Java source Code Point Hex Dec Mn Name ----+ --- ------------------------- ------- -------- -- --------------------------- 0: "\uFEFF" U+0FEFF (65279) NN ZERO WIDTH NO-BREAK SPACE 1: ́ "\u0301" U+00301 (769) YY COMBINING ACUTE ACCENT 2: a "\u0061" U+00061 (97) NN LATIN SMALL LETTER A 3: $ "\u0024" U+00024 (36) NN DOLLAR SIGN 4: á "\u00E1" U+000E1 (225) NN LATIN SMALL LETTER A WITH ACUTE 5: a "\u0061" U+00061 (97) NN LATIN SMALL LETTER A 6: b "\u0062" U+00062 (98) NN LATIN SMALL LETTER B 7: c "\u0063" U+00063 (99) NN LATIN SMALL LETTER C 8: d "\u0064" U+00064 (100) NN LATIN SMALL LETTER D 9: e "\u0065" U+00065 (101) NN LATIN SMALL LETTER E 10: ¢ "\u00A2" U+000A2 (162) NN CENT SIGN 11: £ "\u00A3" U+000A3 (163) NN POUND SIGN 12: ¤ "\u00A4" U+000A4 (164) NN CURRENCY SIGN 13: ¥ "\u00A5" U+000A5 (165) NN YEN SIGN 14: © "\u00A9" U+000A9 (169) NN COPYRIGHT SIGN 15: Ç "\u00C7" U+000C7 (199) NN LATIN CAPITAL LETTER C WITH CEDILLA 16: ß "\u00DF" U+000DF (223) NN LATIN SMALL LETTER SHARP S 17: IJ "\u0132" U+00132 (306) NN LATIN CAPITAL LIGATURE IJ 18: ij "\u0133" U+00133 (307) NN LATIN SMALL LIGATURE IJ 19: Ł "\u0141" U+00141 (321) NN LATIN CAPITAL LETTER L WITH STROKE 20: ł "\u0142" U+00142 (322) NN LATIN SMALL LETTER L WITH STROKE 21: ʒ "\u0292" U+00292 (658) NN LATIN SMALL LETTER EZH 22: λ "\u03BB" U+003BB (955) NN GREEK SMALL LETTER LAMDA 23: π "\u03C0" U+003C0 (960) NN GREEK SMALL LETTER PI 24: क "\u0915" U+00915 (2325) NN DEVANAGARI LETTER KA 25: ् "\u094D" U+0094D (2381) YY DEVANAGARI SIGN VIRAMA 26: त "\u0924" U+00924 (2340) NN DEVANAGARI LETTER TA 27: ु "\u0941" U+00941 (2369) YY DEVANAGARI VOWEL SIGN U 28: • "\u2022" U+02022 (8226) NN BULLET 29: ₠ "\u20A0" U+020A0 (8352) NN EURO-CURRENCY SIGN 30: ₡ "\u20A1" U+020A1 (8353) NN COLON SIGN 31: ₢ "\u20A2" U+020A2 (8354) NN CRUZEIRO SIGN 32: ₣ "\u20A3" U+020A3 (8355) NN FRENCH FRANC SIGN 33: ₤ "\u20A4" U+020A4 (8356) NN LIRA SIGN 34: ₥ "\u20A5" U+020A5 (8357) NN MILL SIGN 35: ₦ "\u20A6" U+020A6 (8358) NN NAIRA SIGN 36: ₧ "\u20A7" U+020A7 (8359) NN PESETA SIGN 37: ₨ "\u20A8" U+020A8 (8360) NN RUPEE SIGN 38: ₩ "\u20A9" U+020A9 (8361) NN WON SIGN 39: ₪ "\u20AA" U+020AA (8362) NN NEW SHEQEL SIGN 40: ₫ "\u20AB" U+020AB (8363) NN DONG SIGN 41: € "\u20AC" U+020AC (8364) NN EURO SIGN 42: ₭ "\u20AD" U+020AD (8365) NN KIP SIGN 43: ₮ "\u20AE" U+020AE (8366) NN TUGRIK SIGN 44: ₯ "\u20AF" U+020AF (8367) NN DRACHMA SIGN 45: ₰ "\u20B0" U+020B0 (8368) NN GERMAN PENNY SIGN 46: ₱ "\u20B1" U+020B1 (8369) NN PESO SIGN 47: ₲ "\u20B2" U+020B2 (8370) NN GUARANI SIGN 48: ₳ "\u20B3" U+020B3 (8371) NN AUSTRAL SIGN 49: ₴ "\u20B4" U+020B4 (8372) NN HRYVNIA SIGN 50: ₵ "\u20B5" U+020B5 (8373) NN CEDI SIGN 51: ℃ "\u2103" U+02103 (8451) NN DEGREE CELSIUS 52: ← "\u2190" U+02190 (8592) NN LEFTWARDS ARROW 53: → "\u2192" U+02192 (8594) NN RIGHTWARDS ARROW 54: ⇒ "\u21D2" U+021D2 (8658) NN RIGHTWARDS DOUBLE ARROW 55: ∙ "\u2219" U+02219 (8729) NN BULLET OPERATOR 56: ⌘ "\u2318" U+02318 (8984) NN PLACE OF INTEREST SIGN 57: ☃ "\u2603" U+02603 (9731) NN SNOWMAN 58: ☹ "\u2639" U+02639 (9785) NN WHITE FROWNING FACE 59: ☺ "\u263A" U+0263A (9786) NN WHITE SMILING FACE 60: ☻ "\u263B" U+0263B (9787) NN BLACK SMILING FACE 61: ア "\u30A2" U+030A2 (12450) NN KATAKANA LETTER A 62: 字 "\u5B57" U+05B57 (23383) NN CJK UNIFIED IDEOGRAPHS 5B57 63: 文 "\u6587" U+06587 (25991) NN CJK UNIFIED IDEOGRAPHS 6587 64: "\uF8FF" U+0F8FF (63743) NN PRIVATE USE AREA F8FF 65: 𠀀 "\uD840\uDC00" U+20000 (131072) NN HIGH SURROGATES D840 66: 𪚥 "\uD869\uDEA5" U+2A6A5 (173733) NN HIGH SURROGATES D869 ``` [http://illegalargumentexception.blogspot.nl/2009/05/java-rough-guide-to-character-encoding.html More background info: "Java: a rough guide to character encoding"] ## Scheme ```scheme (display (char->integer #\a)) (newline) ; prints "97" (display (integer->char 97)) (newline) ; prints "a" ``` ## Seed7 ```seed7 writeln(ord('a')); writeln(chr(97)); ``` ## Sidef ```ruby say 'a'.ord; # => 97 say 97.chr; # => 'a' ``` ## SequenceL SequenceL natively supports ASCII characters. '''SequenceL Interpreter Session:''' ```sequencel>cmd: asciiToInt('a') 97 cmd:>intToAscii(97) 'a' ``` ## Slate ```slate $a code. 97 as: String Character. ``` ## Smalltalk ```smalltalk ($a asInteger) displayNl. "output 97" (Character value: 97) displayNl. "output a" ``` ## SmileBASIC ```smilebasic PRINT CHR$(97) 'a PRINT ASC("a") '97 ``` ## SNOBOL4 Snobol implementations may or may not have built-in char( ) and ord ( ) or asc( ). These are based on examples in the Snobol4+ tutorial and work with the native (1-byte) charset. ```SNOBOL4 define('chr(n)') :(chr_end) chr &alphabet tab(n) len(1) . chr :s(return)f(freturn) chr_end define('asc(str)c') :(asc_end) asc str len(1) . c &alphabet break(c) @asc :s(return)f(freturn) asc_end * # Test and display output = char(65) ;* Built-in output = chr(65) output = asc('A') end ``` {{Out}} ```txt A A 65 ``` ## SPL In SPL all characters are used in UTF-16LE encoding. ```spl x = #.array("a") #.output("a -> ",x[1]," ",x[2]) x = [98,0] #.output("98 0 -> ",#.str(x)) ``` {{out}} ```txt a -> 97 0 98 0 -> b ``` ## Standard ML ```sml print (Int.toString (ord #"a") ^ "\n"); (* prints "97" *) print (Char.toString (chr 97) ^ "\n"); (* prints "a" *) ``` ## Stata The Mata '''ascii''' function transforms a string into a numeric vector of UTF-8 bytes. For instance: ```stata : ascii("α") 1 2 +-------------+ 1 | 206 177 | +-------------+ ``` Where 206, 177 is the UTF-8 encoding of Unicode character 945 (GREEK SMALL LETTER ALPHA). ASCII characters are mapped to single bytes: ```stata : ascii("We the People") 1 2 3 4 5 6 7 8 9 10 11 12 13 +-------------------------------------------------------------------------------+ 1 | 87 101 32 116 104 101 32 80 101 111 112 108 101 | +-------------------------------------------------------------------------------+ ``` Conversely, the '''char''' function transforms a byte vector into a string: ```stata : char((73,32,115,116,97,110,100,32,104,101,114,101)) I stand here ``` ## Swift The type that represent a Unicode code point isUnicodeScalar
. You can initialize it with a string literal: ```swift let c1: UnicodeScalar = "a" println(c1.value) // prints "97" let c2: UnicodeScalar = "π" println(c2.value) // prints "960" ``` Or, you can get it by iterating a string's unicode scalars view: ```swift let s1 = "a" for c in s1.unicodeScalars { println(c.value) // prints "97" } let s2 = "π" for c in s2.unicodeScalars { println(c.value) // prints "960" } ``` You can also initialize it from aUInt32
integer: ```swift let i1: UInt32 = 97 println(UnicodeScalar(i1)) // prints "a" let i2: UInt32 = 960 println(UnicodeScalar(i2)) // prints "π" ``` ## Tcl ```tcl # ASCII puts [scan "a" %c] ;# ==> 97 puts [format %c 97] ;# ==> a # Unicode is the same puts [scan "π" %c] ;# ==> 960 puts [format %c 960] ;# ==> π ``` =={{header|TI-83 BASIC}}== TI-83 BASIC provides no built in way to do this, so in all String<-->List routines and anything else which requires character codes, a workaround using inString( and sub( is used. In this example, the code of 'A' is displayed, and then the character matching a user-defined code is displayed. ```ti83b "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789→Str1 Disp inString(Str1,"A Input "CODE? ",A Disp sub(Str1,A,1 ``` =={{header|TI-89 BASIC}}== The TI-89 uses an 8-bit charset/encoding which is similar to ISO-8859-1, but with more mathematical symbols and Greek letters. At least codes 14-31, 128-160, 180 differ. The ASCII region is unmodified. (TODO: Give a complete list.) The TI Connect X desktop software converts between this unique character set and Unicode characters, though sometimes in a consistent but inappropriate fashion. The below program will display the character and code for any key pressed. Some keys do not correspond to characters and have codes greater than 255. The portion of the program actually implementing the task is marked with a line of “©”s. ```ti89b Prgm Local k, s ClrIO Loop Disp "Press a key, or ON to exit." getKey() © clear buffer 0 → k : While k = 0 : getKey() → k : EndWhile ClrIO If k ≥ 256 Then Disp "Not a character." Disp "Code: " & string(k) Else char(k) → s © © char() and ord() are inverses. © Disp "Character: " & s © Disp "Code: " & string(ord(s)) © EndIf EndLoop EndPrgm ``` ## Trith Characters are Unicode code points, so the solution is the same for Unicode characters as it is for ASCII characters: ```trith "a" ord print 97 chr print ``` ```trith "π" ord print 960 chr print ``` ## TUSCRIPT ```tuscript $$ MODE TUSCRIPT SET character ="a", code=DECODE (character,byte) PRINT character,"=",code ``` {{Out}} ```txt a=97 ``` ## uBasic/4tH uBasic/4tH is an integer BASIC, just like Tiny BASIC. However, the function ORD() is supported, just as CHR(). The latter is only allowed within a PRINT statement.z = ORD("a") : PRINT CHR(z) ' Prints "a" ``` ## Ursa ```ursa # outputs the character value for 'a' out (ord "a") endl console # outputs the character 'a' given its value out (chr 97) endl console ``` ## Ursala Character code functions are not built in but easily defined as reifications of the character table. ```Ursala #import std #import nat chr = -: num characters asc = -:@rlXS num characters #cast %cnX test = (chr97,asc`a) ``` {{Out}} ```txt (`a,97) ``` ## VBA ```vba Debug.Print Chr(97) 'Prints a Debug.Print [Code("a")] ' Prints 97 ``` ## VBScript ```vb 'prints a WScript.StdOut.WriteLine Chr(97) 'prints 97 WScript.StdOut.WriteLine Asc("a") ``` ## Vim Script The behavior of the two functions depends on the value of the option encoding
. ```vim "encoding is set to utf-8 echo char2nr("a") "Prints 97 echo nr2char(97) "Prints a ``` ## Visual Basic .NET ```vbnet Console.WriteLine(Chr(97)) 'Prints a Console.WriteLine(Asc("a")) 'Prints 97 ``` ## XLISP In a REPL: ```scheme [1] (INTEGER->CHAR 97) #\a [2] (CHAR->INTEGER #\a) 97 ``` ## XPL0 A character is represented by an integer value equal to its ASCII code. The up-arrow character is used to convert the immediately following character to an integer equal to its ASCII code. ```XPL0 IntOut(0, ^a); \(Integer Out) displays "97" on the console (device 0) ChOut(0, 97); \(Character Out) displays "a" on the console (device 0) ``` ## zkl The character set is 8 bit ASCII (but doesn't care if you use UTF-8 or unicode characters). ```zkl "a".toAsc() //-->97 (97).toChar() //-->"a" ``` ## ZX Spectrum Basic ```zxbasic 10 PRINT CHR$ 97: REM prints a 20 PRINT CODE "a": REM prints 97 ``` {{omit from|bc}} {{omit from|GUISS}}