⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}} Comma quibbling is a task originally set by Eric Lippert in his [http://blogs.msdn.com/b/ericlippert/archive/2009/04/15/comma-quibbling.aspx blog].
;Task:
Write a function to generate a string output which is the concatenation of input words from a list/sequence where:
An input of no words produces the output string of just the two brace characters "{}".
An input of just one word, e.g. ["ABC"], produces the output string of the word inside the two braces, e.g. "{ABC}".
An input of two words, e.g. ["ABC", "DEF"], produces the output string of the two words inside the two braces with the words separated by the string " and ", e.g. "{ABC and DEF}".
An input of three or more words, e.g. ["ABC", "DEF", "G", "H"], produces the output string of all but the last word separated by ", " with the last word separated by " and " and all within braces; e.g. "{ABC, DEF, G and H}".
Test your function with the following series of inputs showing your output here on this page:
- [] # (No input words).
- ["ABC"]
- ["ABC", "DEF"]
- ["ABC", "DEF", "G", "H"]
Note: Assume words are non-empty strings of uppercase characters for this task.
11l
F quibble(words)
R S words.len
0
‘{}’
1
‘{’words[0]‘}’
E
‘{’words[0.<(len)-1].join(‘, ’)‘ and ’words.last‘}’
print(quibble([‘’] * 0))
print(quibble([‘ABC’]))
print(quibble([‘ABC’, ‘DEF’]))
print(quibble([‘ABC’, ‘DEF’, ‘G’, ‘H’]))
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
360 Assembly
* Comma quibbling 13/03/2017
COMMAQUI CSECT
USING COMMAQUI,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) save previous context
ST R13,4(R15) link backward
ST R15,8(R13) link forward
LR R13,R15 set addressability
LA R6,1 i=1
DO WHILE=(C,R6,LE,=A(N)) do i=1 to hbound(t)
LR R1,R6 i
SLA R1,5 *32
LA R2,T-32 @t(0)
AR R1,R2 @t(i)
MVC S1,0(R1) s1=t(i)
MVC S2,=CL32'{' s2='{'
LA R8,S2+1 s2ins=1
MVC I2,=F'0' i2=0
LA R7,1 j=1
DO WHILE=(C,R7,LE,=A(L'T)) do j=1 to length(t)
LA R1,S1 @s1
BCTR R1,0 @s1-1
AR R1,R7 @s1-1+j
MVC CJ,0(R1) cj=mid(s1,j,1)
CLI CJ,C' ' if cj=' '
BE EXITJ then goto exitj
IF CLI,CJ,EQ,C',' THEN if cj="," then
MVC 0(2,R8),=C', ' s2=s2||", "
LA R8,2(R8) s2ins=s2ins+2
LR R0,R8 s2ins
LA R1,S2+1 @s2+1
SR R0,R1 len(s2)-1
ST R0,I2 i2=len(s2)-1
ELSE , else
MVC 0(1,R8),CJ s2=s2||cj
LA R8,1(R8) s2ins=s2ins+1
ENDIF , endif
LA R7,1(R7) j++
ENDDO , enddo j
EXITJ MVI 0(R8),C'}' s2=s2||"}"
LA R8,1(R8) s2ins=s2ins+1
L R0,I2 i2
IF LTR,R0,NZ,R0 THEN if i2<>0 then
MVC S2B,S2 s2b=mid(s2,1,i2-1)
LA R1,S2B-1 @s2b-1
A R1,I2 +i2
MVC 0(5,R1),=C' and ' s2b||" and "
LA R1,5(R1) +5
LA R2,S2+1 @s2+1
A R2,I2 +i2
LR R3,R8 s2ins
LA R0,S2+1 @s2+1
SR R3,R0 s2ins-(@s2+1)
S R3,I2 -i2
BCTR R3,0 -1
EX R3,XMVC s2b||=mid(s2,i2+2)
MVC S2,S2B s2=mid(s2,1,i2-1)||" and "||mid(s2,i2+2)
ENDIF , endif
XPRNT S2,L'S2 print s2
LA R6,1(R6) i++
ENDDO , enddo i
L R13,4(0,R13) restore previous savearea pointer
LM R14,R12,12(R13) restore previous context
XR R15,R15 rc=0
BR R14 exit
XMVC MVC 0(0,R1),0(R2) mvc @r1,@r2
N EQU (TEND-T)/L'T items of t
T DC CL32' ',CL32'ABC',CL32'ABC,DEF',CL32'ABC,DEF,G,H'
TEND DS 0C
I2 DS F
S1 DS CL(L'T)
S2 DS CL(L'T)
S2B DS CL(L'T)
CJ DS CL1
YREGS
END COMMAQUI
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Ada
with Ada.Text_IO, Ada.Command_Line; use Ada.Command_Line;
procedure Comma_Quibble is
begin
case Argument_Count is
when 0 => Ada.Text_IO.Put_Line("{}");
when 1 => Ada.Text_IO.Put_Line("{" & Argument(1) & "}");
when others =>
Ada.Text_IO.Put("{");
for I in 1 .. Argument_Count-2 loop
Ada.Text_IO.Put(Argument(I) & ", ");
end loop;
Ada.Text_IO.Put(Argument(Argument_Count-1) & " and " &
Argument(Argument_Count) & "}");
end case;
end Comma_Quibble;
{{out}}
./comma_quibble
{}
./comma_quibble abc
{abc}
./comma_quibble abc def
{abc and def}
./comma_quibble abc def g h
{abc, def, g and h}
ALGOL 68
{{works with|ALGOL 68G|Any - tested with release 2.8.win32}}
# returns a string ( assumed to be of space-separated words ) with the words #
# separated by ", ", except for the last which is separated from the rest by #
# " and ". The list is enclosed by braces #
PROC to list = ( STRING words ) STRING:
BEGIN
# count the number of words #
INT word count := 0;
BOOL in word := FALSE;
FOR char pos FROM LWB words TO UPB words
DO
IF NOT is upper( words[ char pos ] )
THEN
# not an upper-case letter, possibly a word has been ended #
in word := FALSE
ELSE
# not a delimitor, possibly the start of a word #
IF NOT in word
THEN
# we are starting a new word #
word count +:= 1;
in word := TRUE
FI
FI
OD;
# format the result #
STRING result := "{";
in word := FALSE;
INT word number := 0;
FOR char pos FROM LWB words TO UPB words
DO
IF NOT is upper( words[ char pos ] )
THEN
# not an upper-case letter, possibly a word has been ended #
in word := FALSE
ELSE
# not a delimitor, possibly the start of a word #
IF NOT in word
THEN
# we are starting a new word #
word number +:= 1;
in word := TRUE;
IF word number > 1
THEN
# second or subsequent word - need a separator #
result +:= IF word number = word count
THEN # final word #
" and "
ELSE # non-final word #
", "
FI
FI
FI;
# add the character to the result #
result +:= words[ char pos ]
FI
OD;
result + "}"
END # to list # ;
# procedure to test the to list PROC #
PROC test to list = ( STRING words ) VOID:
print( ( ( words
+ ": "
+ to list( words )
)
, newline
)
);
# test the to list PROC #
test to list( "" );
test to list( "ABC" );
test to list( "ABC DEF" );
test to list( "ABC DEF G H" )
{{out}}
: {}
ABC: {ABC}
ABC DEF: {ABC and DEF}
ABC DEF G H: {ABC, DEF, G and H}
ALGOL W
begin
% returns a list of the words contained in wordString, separated by ", ", %
% except for the last which is separated from the rest by " and ". %
% The words are enclosed by braces %
string(256) procedure toList ( string(256) value words ) ;
begin
string(256) list;
integer wordCount, wordNumber, listPos;
logical inWord;
% returns true if ch is an upper-case letter, false otherwise %
% assumes the letters are consecutive in the character set %
% (as in ascii) would not be correct if the character set was %
% ebcdic (as in the original implementations of Algol W) %
logical procedure isUpper ( string(1) value ch ) ; ch >= "A" and ch <= "Z" ;
% adds a character to the result %
procedure addChar( string(1) value ch ) ;
begin
list( listPos // 1 ) := ch;
listPos := listPos + 1;
end addChar ;
% adds a string to the result %
procedure addString( string(256) value str
; integer value len
) ;
for strPos := 0 until len - 1 do addChar( str( strPos // 1 ) );
% count the number of words %
wordCount := 0;
inWord := false;
for charPos := 0 until 255
do begin
if isUpper( words( charPos // 1 ) ) then begin
% not an upper-case letter, possibly a word has been ended %
inWord := false
end
else begin
% not a delimitor, possibly the start of a word %
if not inWord then begin
% we are starting a new word %
wordCount := wordCount + 1;
inWord := true
end if_not_inWord
end
end for_charPos;
% format the result %
list := "";
listPos := 0;
inWord := false;
wordNumber := 0;
addChar( "{" );
for charPos := 0 until 255
do begin
if not isUpper( words( charPos // 1 ) ) then begin
% not an upper-case letter, possibly a word has been ended %
inWord := false
end
else begin
% not a delimitor, possibly the start of a word %
if not inWord then begin
% we are starting a new word %
wordNumber := wordNumber + 1;
inWord := true;
if wordNumber > 1 then begin
% second or subsequent word - need a separator %
if wordNumber = wordCount then addString( " and ", 5 ) % final word %
else addString( ", ", 2 ) % non-final word %
end
end;
% add the character to the result %
addChar( words( charPos // 1 ) )
end
end for_charPos ;
addChar( "}" );
list
end toList ;
% procedure to test the toList procedure %
procedure testToList ( string(256) value words ) ;
begin
string(256) list;
list := toList( words );
write( s_w := 0
, words( 0 // 32 )
, ": "
, list( 0 // 32 )
)
end testToList ;
% test the toList procedure %
testToList( "" );
testToList( "ABC" );
testToList( "ABC DEF" );
testToList( "ABC DEF G H" );
end.
{{out}}
: {}
ABC : {ABC}
ABC DEF : {ABC and DEF}
ABC DEF G H : {ABC, DEF, G and H}
AppleScript
{{Trans|JavaScript}}
-- quibble :: [String] -> String
on quibble(xs)
if length of xs > 1 then
set applyCommas to ¬
compose([curry(my intercalate)'s |λ|(", "), my |reverse|, my tail])
intercalate(" and ", ap({applyCommas, my head}, {|reverse|(xs)}))
else
concat(xs)
end if
end quibble
-- TEST -----------------------------------------------------------------------
on run
script braces
on |λ|(x)
"{" & x & "}"
end |λ|
end script
unlines(map(compose({braces, quibble}), ¬
append({{}, {"ABC"}, {"ABC", "DEF"}, {"ABC", "DEF", "G", "H"}}, ¬
map(|words|, ¬
{"One two three four", "Me myself I", "Jack Jill", "Loner"}))))
end run
-- GENERIC FUNCTIONS ----------------------------------------------------------
-- A list of functions applied to a list of arguments
-- (<*> | ap) :: [(a -> b)] -> [a] -> [b]
on ap(fs, xs)
set {intFs, intXs} to {length of fs, length of xs}
set lst to {}
repeat with i from 1 to intFs
tell mReturn(item i of fs)
repeat with j from 1 to intXs
set end of lst to |λ|(contents of (item j of xs))
end repeat
end tell
end repeat
return lst
end ap
-- (++) :: [a] -> [a] -> [a]
on append(xs, ys)
xs & ys
end append
-- compose :: [(a -> a)] -> (a -> a)
on compose(fs)
script
on |λ|(x)
script
on |λ|(a, f)
mReturn(f)'s |λ|(a)
end |λ|
end script
foldr(result, x, fs)
end |λ|
end script
end compose
-- concat :: [[a]] -> [a] | [String] -> String
on concat(xs)
script append
on |λ|(a, b)
a & b
end |λ|
end script
if length of xs > 0 and class of (item 1 of xs) is string then
set unit to ""
else
set unit to {}
end if
foldl(append, unit, xs)
end concat
-- curry :: (Script|Handler) -> Script
on curry(f)
script
on |λ|(a)
script
on |λ|(b)
|λ|(a, b) of mReturn(f)
end |λ|
end script
end |λ|
end script
end curry
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
-- foldr :: (a -> b -> a) -> a -> [b] -> a
on foldr(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from lng to 1 by -1
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldr
-- head :: [a] -> a
on head(xs)
if length of xs > 0 then
item 1 of xs
else
missing value
end if
end head
-- intercalate :: Text -> [Text] -> Text
on intercalate(strText, lstText)
set {dlm, my text item delimiters} to {my text item delimiters, strText}
set strJoined to lstText as text
set my text item delimiters to dlm
return strJoined
end intercalate
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- |reverse| :: [a] -> [a]
on |reverse|(xs)
if class of xs is text then
(reverse of characters of xs) as text
else
reverse of xs
end if
end |reverse|
-- tail :: [a] -> [a]
on tail(xs)
if length of xs > 1 then
items 2 thru -1 of xs
else
{}
end if
end tail
-- unlines :: [String] -> String
on unlines(xs)
intercalate(linefeed, xs)
end unlines
-- words :: String -> [String]
on |words|(s)
words of s
end |words|
{{Out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
{One, two, three and four}
{Me, myself and I}
{Jack and Jill}
{Loner}
Arturo
quibble [seq]{
if $(size seq)=0 { return "{}" } {
if $(size seq)=1 { return "{`seq.0`}" } {
return "{" + $(join $(slice seq 0 $(size seq)-1) ", ") + " and " + $(last seq) + "}"
}
}
}
loop #(#() #("ABC") #("ABC" "DEF") #("ABC" "DEF" "G" "H")) {
print $(quibble &)
}
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Astro
fun quibble(s):
let result = s.join(' and ').replace(|| and ||, ", ", length(s) - 1)
return "{ $result }"
let s = [
[]
["ABC"]
["ABC", "DEF"]
["ABC", "DEF", "G", "H"]
]
for i in s:
print(quibble i)
AutoHotkey
MsgBox % quibble([])
MsgBox % quibble(["ABC"])
MsgBox % quibble(["ABC", "DEF"])
MsgBox % quibble(["ABC", "DEF", "G", "H"])
quibble(d) {
s:=""
for i, e in d
{
if (i<d.MaxIndex()-1)
s:= s . e . ", "
else if (i=d.MaxIndex()-1)
s:= s . e . " and "
else
s:= s . e
}
return "{" . s . "}"
}
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
AWK
function quibble(a, n, i, s) {
for (i = 1; i < n - 1; i++) s = s a[i] ", "
i = n - 1; if (i > 0) s = s a[i] " and "
if (n > 0) s = s a[n]
return "{" s "}"
}
BEGIN {
print quibble(a, 0)
n = split("ABC", b); print quibble(b, n)
n = split("ABC DEF", c); print quibble(c, n)
n = split("ABC DEF G H", d); print quibble(d, n)
}
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Batch File
@echo off
setlocal enabledelayedexpansion
::THE MAIN THING...
echo.
set inp=[]
call :quibble
set inp=["ABC"]
call :quibble
set inp=["ABC","DEF"]
call :quibble
set inp=["ABC","DEF","G","H"]
call :quibble
echo.
pause
exit /b
::/THE MAIN THING...
::THE FUNCTION
:quibble
set cont=0
set proc=%inp:[=%
set proc=%proc:]=%
for %%x in (%proc%) do (
set /a cont+=1
set x=%%x
set str!cont!=!x:"=!
)
set /a bef=%cont%-1
set output=%str1%
if %cont%==2 (set output=%str1% and %str2%)
if %cont% gtr 2 (
for /l %%y in (2,1,%bef%) do (
set output=!output!^, !str%%y!
)
set output=!output! and !str%cont%!
)
echo {!output!}
goto :EOF
::/THE FUNCTION
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Press any key to continue . . .
Bracmat
( :?L1
& ABC:?L2
& ABC DEF:?L3
& ABC DEF G H:?L4
& L1 L2 L3 L4:?names
& ( quibble
= w
. !arg:%?w (% %:?arg)
& !w ", " quibble$!arg
| !arg:%?w %?arg&!w " and " quibble$!arg
| !arg
)
& (concat=.str$("{" quibble$!arg "}"))
& whl
' (!names:%?name ?names&out$(!name concat$!!name))
);
{{out}}
L1 {}
L2 {ABC}
L3 {ABC and DEF}
L4 {ABC, DEF, G and H}
C
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
char *quib(const char **strs, size_t size)
{
size_t len = 3 + ((size > 1) ? (2 * size + 1) : 0);
size_t i;
for (i = 0; i < size; i++)
len += strlen(strs[i]);
char *s = malloc(len * sizeof(*s));
if (!s)
{
perror("Can't allocate memory!\n");
exit(EXIT_FAILURE);
}
strcpy(s, "{");
switch (size) {
case 0: break;
case 1: strcat(s, strs[0]);
break;
default: for (i = 0; i < size - 1; i++)
{
strcat(s, strs[i]);
if (i < size - 2)
strcat(s, ", ");
else
strcat(s, " and ");
}
strcat(s, strs[i]);
break;
}
strcat(s, "}");
return s;
}
int main(void)
{
const char *test[] = {"ABC", "DEF", "G", "H"};
char *s;
for (size_t i = 0; i < 5; i++)
{
s = quib(test, i);
printf("%s\n", s);
free(s);
}
return EXIT_SUCCESS;
}
{{Out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF and G}
{ABC, DEF, G and H}
C#
using System;
using System.Linq;
namespace CommaQuibbling
{
internal static class Program
{
#region Static Members
private static string Quibble(string[] input)
{
return
String.Format("{{{0}}}",
String.Join("",
input.Reverse().Zip(
new [] { "", " and " }.Concat(Enumerable.Repeat(", ", int.MaxValue)),
(x, y) => x + y).Reverse()));
}
private static void Main()
{
Console.WriteLine( Quibble( new string[] {} ) );
Console.WriteLine( Quibble( new[] {"ABC"} ) );
Console.WriteLine( Quibble( new[] {"ABC", "DEF"} ) );
Console.WriteLine( Quibble( new[] {"ABC", "DEF", "G", "H"} ) );
Console.WriteLine( "< Press Any Key >" );
Console.ReadKey();
}
#endregion
}
}
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
< Press Any Key >
C++
#include <iostream>
template<class T>
void quibble(std::ostream& o, T i, T e) {
o << "{";
if (e != i) {
T n = i++;
const char* more = "";
while (e != i) {
o << more << *n;
more = ", ";
n = i++;
}
o << (*more?" and ":"") << *n;
}
o << "}";
}
int main(int argc, char** argv) {
char const* a[] = {"ABC","DEF","G","H"};
for (int i=0; i<5; i++) {
quibble(std::cout, a, a+i);
std::cout << std::endl;
}
return 0;
}
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF and G}
{ABC, DEF, G and H}
Clojure
(defn quibble [sq]
(let [sep (if (pos? (count sq)) " and " "")]
(apply str
(concat "{" (interpose ", " (butlast sq)) [sep (last sq)] "}"))))
; Or, using clojure.pprint's cl-format, which implements common lisp's format:
(defn quibble-f [& args]
(clojure.pprint/cl-format nil "{~{~a~#[~; and ~:;, ~]~}}" args))
(def test
#(doseq [sq [[]
["ABC"]
["ABC", "DEF"]
["ABC", "DEF", "G", "H"]]]
((comp println %) sq)))
(test quibble)
(test quibble-f)
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
COBOL
{{works with|OpenCOBOL|2.0}}
SOURCE FORMAT IS FREE
IDENTIFICATION DIVISION.
PROGRAM-ID. comma-quibbling-test.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
FUNCTION comma-quibbling
.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 strs-area.
03 strs-len PIC 9.
03 strs PIC X(5)
OCCURS 0 TO 9 TIMES
DEPENDING ON strs-len.
PROCEDURE DIVISION.
MOVE "ABC" TO strs (1)
MOVE "DEF" TO strs (2)
MOVE "G" TO strs (3)
MOVE "H" TO strs (4)
PERFORM VARYING strs-len FROM 0 BY 1 UNTIL strs-len > 4
DISPLAY FUNCTION comma-quibbling(strs-area)
END-PERFORM
.
END PROGRAM comma-quibbling-test.
IDENTIFICATION DIVISION.
FUNCTION-ID. comma-quibbling.
DATA DIVISION.
LOCAL-STORAGE SECTION.
01 i PIC 9.
01 num-extra-words PIC 9.
LINKAGE SECTION.
01 strs-area.
03 strs-len PIC 9.
03 strs PIC X(5)
OCCURS 0 TO 9 TIMES
DEPENDING ON strs-len.
01 str PIC X(50).
PROCEDURE DIVISION USING strs-area RETURNING str.
EVALUATE strs-len
WHEN ZERO
MOVE "{}" TO str
GOBACK
WHEN 1
MOVE FUNCTION CONCATENATE("{", FUNCTION TRIM(strs (1)), "}")
TO str
GOBACK
END-EVALUATE
MOVE FUNCTION CONCATENATE(FUNCTION TRIM(strs (strs-len - 1)),
" and ", FUNCTION TRIM(strs (strs-len)), "}")
TO str
IF strs-len > 2
SUBTRACT 2 FROM strs-len GIVING num-extra-words
PERFORM VARYING i FROM num-extra-words BY -1 UNTIL i = 0
MOVE FUNCTION CONCATENATE(FUNCTION TRIM(strs (i)), ", ", str)
TO str
END-PERFORM
END-IF
MOVE FUNCTION CONCATENATE("{", str) TO str
.
END FUNCTION comma-quibbling.
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF and G}
{ABC, DEF, G and H}
CoffeeScript
quibble = ([most..., last]) ->
'{' +
(most.join ', ') +
(if most.length then ' and ' else '') +
(last or '') +
'}'
console.log quibble(s) for s in [ [], ["ABC"], ["ABC", "DEF"],
["ABC", "DEF", "G", "H" ] ]
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Common Lisp
(defun quibble (&rest args)
(format t "{~{~a~#[~; and ~:;, ~]~}}" args))
(quibble)
(quibble "ABC")
(quibble "ABC" "DEF")
(quibble "ABC" "DEF" "G" "H")
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
D
import std.stdio, std.string;
string quibbler(in string[] seq) pure /*nothrow*/ {
if (seq.length <= 1)
return format("{%-(%s, %)}", seq);
else
return format("{%-(%s, %) and %s}", seq[0 .. $-1], seq[$-1]);
}
void main() {
//foreach (immutable test; [[],
foreach (const test; [[],
["ABC"],
["ABC", "DEF"],
["ABC", "DEF", "G", "H"]])
test.quibbler.writeln;
}
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Alternative Version
import std.stdio, std.string, std.algorithm, std.conv, std.array;
enum quibbler = (in string[] a) pure =>
"{%-(%s and %)}".format(a.length < 2 ? a :
[a[0 .. $-1].join(", "), a.back]);
void main() {
[[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]]
.map!quibbler.writeln;
}
{{out}}
["{}", "{ABC}", "{ABC and DEF}", "{ABC, DEF, G and H}"]
DCL
$ list = "[]"
$ gosub comma_quibbling
$ write sys$output return_string
$
$ list = "[""ABC""]"
$ gosub comma_quibbling
$ write sys$output return_string
$
$ list = "[""ABC"", ""DEF""]"
$ gosub comma_quibbling
$ write sys$output return_string
$
$ list = "[""ABC"", ""DEF"", ""G"", ""H""]"
$ gosub comma_quibbling
$ write sys$output return_string
$
$ exit
$
$ comma_quibbling:
$ list = list - "[" - "]"
$ return_string = "{}"
$ if list .eqs. "" then $ return
$ return_string = "{" + f$element( 0, ",", list ) - """" - """"
$ if f$locate( ",", list ) .eq. f$length( list ) then $ goto done2
$ i = 1
$ loop:
$ word = f$element( i, ",", list ) - """" - """"
$ if word .eqs. "," then $ goto done1
$ return_string = return_string - "^" + "^," + word
$ i = i + 1
$ goto loop
$ done1:
$ return_string = f$element( 0, "^", return_string ) + " and" + ( f$element( 1, "^", return_string ) - "," )
$ done2:
$ return_string = return_string + "}"
$ return
{}out}}
$ @comma_quibbling
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
=={{header|Déjà Vu}}==
comma-quibble lst:
"}" )
if lst:
pop-from lst
if lst:
" and "
pop-from lst
for item in lst:
item ", "
concat( "{"
!. comma-quibble []
!. comma-quibble [ "ABC" ]
!. comma-quibble [ "ABC" "DEF" ]
!. comma-quibble [ "ABC" "DEF" "G" "H" ]
{{out}}
"{}"
"{ABC}"
"{ABC and DEF}"
"{ABC, DEF, G and H}"
EchoLisp
(lib 'match)
(define (quibble words)
(match words
[ null "{}"]
[ (a) (format "{ %a }" a)]
[ (a b) (format "{ %a and %a }" a b)]
[( a ... b c) (format "{ %a %a and %a }" (for/string ([w a]) (string-append w ", ")) b c)]
[else 'bad-input]))
;; output
(for ([t '(() ("ABC") ("ABC" "DEF") ("ABC" "DEF" "G" "H"))])
(writeln t '----> (quibble t)))
null ----> "{}"
("ABC") ----> "{ ABC }"
("ABC" "DEF") ----> "{ ABC and DEF }"
("ABC" "DEF" "G" "H") ----> "{ ABC, DEF, G and H }"
Eiffel
class
APPLICATION
create
make
feature
make
-- Test of the feature comma_quibbling.
local
l: LINKED_LIST [STRING]
do
create l.make
io.put_string (comma_quibbling (l) + "%N")
l.extend ("ABC")
io.put_string (comma_quibbling (l) + "%N")
l.extend ("DEF")
io.put_string (comma_quibbling (l) + "%N")
l.extend ("G")
l.extend ("H")
io.put_string (comma_quibbling (l) + "%N")
end
comma_quibbling (l: LINKED_LIST [STRING]): STRING
-- Elements of 'l' seperated by a comma or an and where appropriate.
require
l_not_void: l /= Void
do
create Result.make_empty
Result.extend ('{')
if l.is_empty then
Result.append ("}")
elseif l.count = 1 then
Result.append (l [1] + "}")
else
Result.append (l [1])
across
2 |..| (l.count - 1) as c
loop
Result.append (", " + l [c.item])
end
Result.append (" and " + l [l.count] + "}")
end
end
end
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Elixir
{{trans|Erlang}}
defmodule RC do
def generate( list ), do: "{#{ generate_content(list) }}"
defp generate_content( [] ), do: ""
defp generate_content( [x] ), do: x
defp generate_content( [x1, x2] ), do: "#{x1} and #{x2}"
defp generate_content( xs ) do
[last, second_to_last | t] = Enum.reverse( xs )
with_commas = for x <- t, do: x <> ","
Enum.join(Enum.reverse([last, "and", second_to_last | with_commas]), " ")
end
end
Enum.each([[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]], fn list ->
IO.inspect RC.generate(list)
end)
{{out}}
"{}"
"{ABC}"
"{ABC and DEF}"
"{ABC, DEF, G and H}"
Erlang
-export( [task/0] ).
task() -> [generate(X) || X <- [[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]]].
generate( List ) -> "{" ++ generate_content(List) ++ "}".
generate_content( [] ) -> ""; generate_content( [X] ) -> X; generate_content( [X1, X2] ) -> string:join( [X1, "and", X2], " " ); generate_content( Xs ) -> [Last, Second_to_last | T] = lists:reverse( Xs ), With_commas = [X ++ "," || X <- T], string:join(lists:reverse([Last, "and", Second_to_last | With_commas]), " ").
{{out}}
```txt
36> comma_quibbling:task().
["{}","{ABC}","{ABC and DEF}","{ABC, DEF, G and H}"]
F#
One Way
let quibble list =
let rec inner = function
| [] -> ""
| [x] -> x
| [x;y] -> sprintf "%s and %s" x y
| h::t -> sprintf "%s, %s" h (inner t)
sprintf "{%s}" (inner list)
// test interactively
quibble []
quibble ["ABC"]
quibble ["ABC"; "DEF"]
quibble ["ABC"; "DEF"; "G"]
quibble ["ABC"; "DEF"; "G"; "H"]
Output from testing (in F# Interactive 3.0, Open Source version):
quibble [];; val it : string = "{}" quibble ["ABC"];; val it : string = "{ABC}" quibble ["ABC"; "DEF"];; val it : string = "{ABC and DEF}" quibble ["ABC"; "DEF"; "G"];; val it : string = "{ABC, DEF and G}" quibble ["ABC"; "DEF"; "G"; "H"];; val it : string = "{ABC, DEF, G and H}"
### or Another
### =The Function=
```fsharp
let quibble quibbler quibblee = Seq.zip quibblee quibbler //Sorry, just too good a line to miss, back in my Latin classes
=The Task=
let fN n = quibble (List.mapi(fun n _->match n with 0->"" |1-> " and " |_->", ") n |> List.rev) n
printf "{"; fN ["ABC"; "DEF"; "G"; "H"] |> Seq.iter(fun(n,g)->printf "%s%s" n g); printfn"}"
printf "{"; fN ["ABC"; "DEF"; "G"] |> Seq.iter(fun(n,g)->printf "%s%s" n g); printfn"}"
printf "{"; fN ["ABC"; "DEF"] |> Seq.iter(fun(n,g)->printf "%s%s" n g); printfn"}"
printf "{"; fN ["ABC"] |> Seq.iter(fun(n,g)->printf "%s%s" n g); printfn"}"
printf "{"; fN [] |> Seq.iter(fun(n,g)->printf "%s%s" n g); printfn"}"
{{out}}
{ABC, DEF, G and H}
{ABC, DEF and G}
{ABC and DEF}
{ABC}
{}
Factor
This example uses the inverse
vocabulary, which builds on the concept of invertible quotations as the basis for pattern matching. It is discussed at length in this approachable [http://micsymposium.org/mics_2009_proceedings/mics2009_submission_72.pdf paper].
USING: inverse qw sequences ;
: (quibble) ( seq -- seq' )
{
{ [ { } ] [ "" ] }
{ [ 1array ] [ ] }
{ [ 2array ] [ " and " glue ] }
[ unclip swap (quibble) ", " glue ]
} switch ;
: quibble ( seq -- str ) (quibble) "{%s}" sprintf ;
{ } qw{ ABC } qw{ ABC DEF } qw{ ABC DEF G H }
[ quibble print ] 4 napply
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Forth
Forth is a set of very low level routines (WORDs) that are concatenated to make higher level WORDs. Programming Forth is like making a custom language for the problem. Arguments are passed explicitly on the hardware stack. As the program is written the language level goes higher. This demonstration uses the Forth parser to break the input stream into separate strings and a string stack to collect the input strings. The string stack can also be read as an indexed array.
Stack comments show in/out arguments after a word executes. Example: ( input -- output)
\ use ,' to create some counted string literals with mnemonic names create '"{}"' ( -- addr) ,' "{}"' \ counted strings return the address of the 1st byte create '"{' ( -- addr) ,' "{' create '}"' ( -- addr) ,' }"' create ',' ( -- addr) ,' , ' create 'and' ( -- addr) ,' and ' create "] ( -- addr) ,' "]'
create null$ ( -- addr) 0 ,
HEX \ build a string stack/array to hold input strings 100 constant ss-width \ string stack width variable $DEPTH \ the string stack pointer
create $stack ( -- addr) 20 ss-width * allot
DECIMAL : new: ( -- ) 1 $DEPTH +! ; \ incr. string stack pointer : ]stk$ ( ndx -- addr) ss-width * $stack + ; \ calc string stack element address from ndx : TOP$ ( -- addr) $DEPTH @ ]stk$ ; \ returns address of the top string on string stack : collapse ( -- ) $DEPTH off ; \ reset string stack pointer
\ used primitives to build counted string functions : move$ ( $1 $2 -- ) >r COUNT R> PLACE ; \ copy $1 to $2 : push$ ( $ -- ) new: top$ move$ ; \ push $ onto string stack : +$ ( $1 $2 -- top$ ) swap push$ count TOP$ APPEND top$ ; \ concatentate $2 to $1, Return result in TOP$ : LEN ( $1 -- length) c@ ; \ char fetch the first byte returns the string length : compare$ ( $1 $2 -- -n:0:n ) count rot count compare ; \ compare is an ANS Forth word. returns 0 if $1=$2 : =$ ( $1 $2 -- flag ) compare$ 0= ; : [""] ( -- ) null$ push$ ; \ put a null string on the string stack
: [" \ collects input strings onto string stack COLLAPSE begin bl word dup "] =$ not \ parse input stream and terminate at "] while push$ repeat drop $DEPTH @ 0= if [""] then ; \ minimally leave a null string on the string stack
: ]stk$+ ( dest$ n -- top$) ]stk$ +$ ; \ concatenate n ]stk$ to DEST$
: writeln ( $ -- ) cr count type collapse ; \ print string on new line and collapse string stack
\ write the solution with the new words : 1-input ( -- ) 1 ]stk$ LEN 0= \ check for empty string length if '"{}"' writeln \ return the null string output else '"{' push$ \ create a new string beginning with '{' TOP$ 1 ]stk$+ '}"' +$ writeln \ concatenate the pieces for 1 input
then ;
: 2-inputs ( -- ) '"{' push$ TOP$ 1 ]stk$+ 'and' +$ 2 ]stk$+ '}"' +$ writeln ;
: 3+inputs ( -- ) $DEPTH @ dup >R \ save copy of the number of inputs on the return stack '"{' push$ ( n) 1- 1 \ loop indices for 1 to 2nd last string DO TOP$ I ]stk$+ ',' +$ LOOP \ create all but the last 2 strings in a loop with comma ( -- top$) R@ 1- ]stk$+ 'and' +$ \ concatenate the 2nd last string to Top$ + 'and' R> ]stk$+ '}"' +$ writeln \ use the copy of $DEPTH to get the final string index 2drop ; \ clean the parameter stack
: quibble ( -- ) $DEPTH @ case 1 of 1-input endof 2 of 2-inputs endof 3+inputs \ default case endcase ;
\ interpret this test code after including the above code [""] QUIBBLE [" "] QUIBBLE [" ABC "] QUIBBLE [" ABC DEF "] QUIBBLE [" ABC DEF GHI BROWN FOX "] QUIBBLE
{{out}}
```txt
"{}"
"{}"
"{ABC}"
"{ABC and DEF}"
"{ABC, DEF, GHI, BROWN and FOX}" ok
Works with any ANS Forth
Needs the FMS-SI (single inheritance) library code located here: http://soton.mpeforth.com/flag/fms/index.html
include FMS-SI.f
include FMS-SILib.f
: foo { l | s -- }
cr ." {"
l size: dup 1- to s
0 ?do
i l at: p:
s i - 1 >
if ." , "
else s i <> if ." and " then
then
loop
." }" l <free ;
${ } foo
\ {}
${ ABC } foo
\ {ABC}
${ ABC DEF } foo
\ {ABC and DEF}
${ ABC DEF G } foo
\ {ABC, DEF and G}
${ ABC DEF G H } foo
\ {ABC, DEF, G and H}
${ ABC DEF G H I } foo
\ {ABC, DEF, G, H and I}
Fortran
The usual problem of "How long is a piece of string?" is answered in the usual way with a declaration that is "surely long enough", at least for anticipated problems. Thus, variable TEXT is declared as 666 characters long. The input statement reads up to that number of characters, or the length of the record if shorter, and supplies trailing spaces to pad the recipient variable to its full length. There is unfortunately no read feature that will create a recipient storage area that matches the size of the record being read. There is such a facility in pl/i, except that the recipient variable still has a pre-specified upper bound to its size.
Subroutine QUIBBLE doesn't have to worry about this because it works with TEXT as a parameter, whatever its size (various integer limits apply) however, it too has the same problem because it locates the start and end positions of each word, and, how many words are going to be found? So once again, the arrays are made "surely large enough" for the expected class of problem. The first stage is to locate the words separated by any amount of "white space", which, thanks to the inability to rely on the evaluation of compound boolean expressions (of the form IF (''in bounds'' & ''Array indexing'')
) in the "shortcut" manner, employs a battery of IF-statements. Fortran does not offer a data type "list of ..." so there is no prospect of placing the words into such an entity then inserting commas and "and" elements into the list to taste. Instead, the list of words is represented by a sequence of values in ordinary arrays.
The source style is Fortran 77, thus the use of COMMON to pass some I/O unit numbers. The plan initially was to engage in trickery with the variable FORMAT features, of the form <''expression''>(blah blah) to signify some number of repetitions of (blah blah), which number might be ''zero'', but alas, although <0>X works, it proved not to work for grouped items in place of a format code. So the <..> extension had to be abandoned, and plainer F77 results.
SUBROUTINE QUIBBLE(TEXT,OXFORDIAN) !Punctuates a list with commas and stuff.
CHARACTER*(*) TEXT !The text, delimited by spaces.
LOGICAL OXFORDIAN !Just so.
INTEGER IST(6),LST(6) !Start and stop positions.
INTEGER N,L,I !Counters.
INTEGER L1,L2 !Fingers for the scan.
INTEGER MSG !Output unit.
COMMON /IODEV/MSG !Share.
Chop the text into words.
N = 0 !No words found.
L = LEN(TEXT) !Multiple trailing spaces - no worries.
L2 = 0 !Syncopation: where the previous chomp ended.
10 L1 = L2 !Thus, where a fresh scan should follow.
11 L1 = L1 + 1 !Advance one.
IF (L1.GT.L) GO TO 20 !Finished yet?
IF (TEXT(L1:L1).LE." ") GO TO 11 !No. Skip leading spaces.
L2 = L1 !Righto, L1 is the first non-blank.
12 L2 = L2 + 1 !Scan through the non-blanks.
IF (L2.GT.L) GO TO 13 !Is it safe to look?
IF (TEXT(L2:L2).GT." ") GO TO 12 !Yes. Speed through non-blanks.
13 N = N + 1 !Righto, a word is found in TEXT(L1:L2 - 1)
IST(N) = L1 !So, recall its first character.
LST(N) = L2 - 1 !And its last.
IF (L2.LT.L) GO TO 10 !Perhaps more text follows.
Comma time...
20 WRITE (MSG,21) "{" !Start the output.
21 FORMAT (A,$) !The $, obviously, specifies that the line is not finished.
DO I = 1,N !Step through the texts, there possibly being none.
IF (I.GT.1) THEN !If there has been a predecessor, supply separators.
IF (I.LT.N) THEN !Up to the last two, it's easy.
WRITE (MSG,21) ", " !Always just a comma.
ELSE IF (OXFORDIAN) THEN !But after the penultimate item, what?
WRITE (MSG,21) ", and " !Supply the comma omitted above: a double-power separator.
ELSE !One fewer comma, with possible ambiguity arising.
WRITE (MSG,21) " and " !A single separator.
END IF !So much for the style.
END IF !Enough with the separation.
WRITE (MSG,21) TEXT(IST(I):LST(I)) !The text at last!
END DO !On to the next text.
WRITE (MSG,"('}')") !End the line, marking the end of the text.
END !That was fun.
PROGRAM ENCOMMA !Punctuate a list with commas.
CHARACTER*(666) TEXT !Holds the text. Easily long enough.
INTEGER KBD,MSG,INF !Now for some messing.
COMMON /IODEV/MSG,KBD !Pass the word.
KBD = 5 !Standard input.
MSG = 6 !Standard output.
INF = 10 !Suitable for a disc file.
OPEN (INF,FILE="List.txt",ACTION = "READ") !Attach one.
10 WRITE (MSG,11) "To insert commas into lists..." !Announce.
11 FORMAT (A) !Just the text.
12 READ (INF,11,END = 20) TEXT !Grab the text, with trailing spaces to fill out TEXT.
CALL QUIBBLE(TEXT,.FALSE.) !One way to quibble.
GO TO 12 !Try for another.
20 REWIND (INF) !Back to the start of the file.
WRITE (MSG,11) !Set off a bit.
WRITE (MSG,11) "Oxford style..." !Announce the proper style.
21 READ (INF,11,END = 30) TEXT !Grab the text.
CALL QUIBBLE(TEXT,.TRUE.) !The other way to quibble.
GO TO 21 !Have another try.
Closedown
30 END !All files are closed by exiting.
Output:
To insert commas into lists...
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Oxford style...
{}
{ABC}
{ABC, and DEF}
{ABC, DEF, G, and H}
FreeBASIC
' FB 1.05.0 Win64
Sub Split(s As String, sep As String, result() As String)
Dim As Integer i, j, count = 0
Dim temp As String
Dim As Integer position(Len(s) + 1)
position(0) = 0
For i = 0 To Len(s) - 1
For j = 0 To Len(sep) - 1
If s[i] = sep[j] Then
count += 1
position(count) = i + 1
End If
Next j
Next i
position(count + 1) = Len(s) + 1
Redim result(count)
For i = 1 To count + 1
result(i - 1) = Mid(s, position(i - 1) + 1, position(i) - position(i - 1) - 1)
Next
End Sub
Function CommaQuibble(s As String) As String
Dim i As Integer
Dim As String result
Dim As String words()
s = Trim(s, Any "[]""")
' Now remove internal quotes
Split s, """", words()
s = ""
For i = 0 To UBound(words)
s &= words(i)
Next
' Now split 's' using the comma as separator
Erase words
Split s, ",", words()
' And re-assemble the string in the desired format
result = "{"
For i = 0 To UBound(words)
If i = 0 Then
result &= words(i)
ElseIf i = UBound(words) Then
result &= " and " & words(i)
Else
result &= ", " + words(i)
EndIf
Next
Return result & "}"
End Function
' As 3 of the strings contain embedded quotes these need to be doubled in FB
Print CommaQuibble("[]")
Print CommaQuibble("[""ABC""]")
Print CommaQuibble("[""ABC"",""DEF""]")
Print CommaQuibble("[""ABC"",""DEF"",""G"",""H""]")
Print
Print "Press any key to quit the program"
Sleep
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Gambas
'''[https://gambas-playground.proko.eu/?gist=8edc63b206a1de50dd104cd12486ac03 Click this link to run this code]'''
Public Sub Main()
Dim sInput As String[] = ["", "ABC", "ABC DEF", "ABC DEF G H"]
Dim sTemp As String
For Each sTemp In sInput
Print sTemp & " = ";
sTemp = Replace(sTemp, " ", ",")
If RInStr(sTemp, ",") > 0 Then
sTemp = Mid(sTemp, 1, RInStr(sTemp, ",") - 1) & " and " & Mid(sTemp, RInStr(sTemp, ",") + 1)
End If
sTemp = "{" & sTemp & "}"
Print sTemp
Next
End
Output:
= {}
ABC = {ABC}
ABC DEF = {ABC and DEF}
ABC DEF G H = {ABC,DEF,G and H}
Go
The blog mentioned code maintenence. The idea here is to make the code easy for maintainers to understand by making it correspond as directly as possible to the problem description.
package main
import (
"fmt"
"strings"
)
func q(s []string) string {
switch len(s) {
case 0:
return "{}"
case 1:
return "{" + s[0] + "}"
case 2:
return "{" + s[0] + " and " + s[1] + "}"
default:
return "{" +
strings.Join(s[:len(s)-1], ", ") +
" and " +
s[len(s)-1] +
"}"
}
}
func main() {
fmt.Println(q([]string{}))
fmt.Println(q([]string{"ABC"}))
fmt.Println(q([]string{"ABC", "DEF"}))
fmt.Println(q([]string{"ABC", "DEF", "G", "H"}))
}
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Groovy
def commaQuibbling = { it.size() < 2 ? "{${it.join(', ')}}" : "{${it[0..-2].join(', ')} and ${it[-1]}}" }
'''Testing:'''
['{}': [], '{ABC}': ['ABC'], '{ABC and DEF}': ['ABC', 'DEF'], '{ABC, DEF, G and H}': ['ABC', 'DEF', 'G', 'H']].each { expected, input ->
println "Verifying commaQuibbling($input) == $expected"
assert commaQuibbling(input) == expected
}
{{out}}
Verifying commaQuibbling([]) == {}
Verifying commaQuibbling([ABC]) == {ABC}
Verifying commaQuibbling([ABC, DEF]) == {ABC and DEF}
Verifying commaQuibbling([ABC, DEF, G, H]) == {ABC, DEF, G and H}
Haskell
quibble ws = "{" ++ quibbles ws ++ "}"
where quibbles [] = ""
quibbles [a] = a
quibbles [a,b] = a ++ " and " ++ b
quibbles (a:bs) = a ++ ", " ++ quibbles bs
main = mapM_ (putStrLn . quibble) $
[[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]] ++
(map words ["One two three four", "Me myself I", "Jack Jill", "Loner" ])
{{Out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
{One, two, three and four}
{Me, myself and I}
{Jack and Jill}
{Loner}
Or, defining just two cases, and drawing more on standard libraries than on hand-crafted pattern-matching and recursion:
import Data.List (intercalate)
quibble :: [String] -> String
quibble ws
| length ws > 1 =
intercalate
" and "
([intercalate ", " . reverse . tail, head] <*> [reverse ws])
| otherwise = concat ws
main :: IO ()
main =
mapM_ (putStrLn . (`intercalate` ["{", "}"]) . quibble) $
[[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]] ++
(words <$> ["One two three four", "Me myself I", "Jack Jill", "Loner"])
{{Out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
{One, two, three and four}
{Me, myself and I}
{Jack and Jill}
{Loner}
=={{header|Icon}} and {{header|Unicon}}==
The following works in both languages:
procedure main()
every write(quibble([] | ["ABC"] | ["ABC","DEF"] | ["ABC","DEF","G","H"]))
end
procedure quibble(A)
join := s := ""
while s := pull(A)||join||s do join := if *join = 0 then " and " else ", "
return "{"||s||"}"
end
Sample run:
->cq
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
->
J
quibLast2=: ' and ' joinstring (2 -@<. #) {. ]
withoutLast2=: ([: # _2&}.) {. ]
quibble=: '{', '}' ,~ ', ' joinstring withoutLast2 , <@quibLast2
'''Testing:'''
Tests=: (<'');(<'ABC');('ABC';'DEF');<('ABC';'DEF';'G';'H')
quibble every Tests
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Alternative implementation:
commaand=: 1 ;@}.&, ] ,.~ 1 |.!.(<' and ') (<', ')"0
quibble=: '{','}',~ commaand
(same results)
Java
public class Quibbler {
public static String quibble(String[] words) {
String qText = "{";
for(int wIndex = 0; wIndex < words.length; wIndex++) {
qText += words[wIndex] + (wIndex == words.length-1 ? "" :
wIndex == words.length-2 ? " and " :
", ";
}
qText += "}";
return qText;
}
public static void main(String[] args) {
System.out.println(quibble(new String[]{}));
System.out.println(quibble(new String[]{"ABC"}));
System.out.println(quibble(new String[]{"ABC", "DEF"}));
System.out.println(quibble(new String[]{"ABC", "DEF", "G"}));
System.out.println(quibble(new String[]{"ABC", "DEF", "G", "H"}));
}
}
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
JavaScript
ES5
function quibble(words) {
return "{" +
words.slice(0, words.length-1).join(",") +
(words.length > 1 ? " and " : "") +
(words[words.length-1] || '') +
"}";
}
[[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]].forEach(
function(s) {
console.log(quibble(s));
}
);
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC,DEF,G and H}
ES6
{{Trans|Haskell}} Composing from a set of generic functions:
(() => {
'use strict';
// COMMA QUIBBLING -------------------------------------------------------
// quibble :: [String] -> String
const quibble = xs =>
(xs.length > 1) ? (
intercalate(
" and ",
ap(
[compose([intercalate(", "), reverse, tail]), head], //
[reverse(xs)]
)
)
) : concat(xs);
// GENERIC FUNCTIONS -----------------------------------------------------
// A list of functions applied to a list of arguments
// <*> :: [(a -> b)] -> [a] -> [b]
const ap = (fs, xs) => //
[].concat.apply([], fs.map(f => //
[].concat.apply([], xs.map(x => [f(x)]))));
// curry :: Function -> Function
const curry = (f, ...args) => {
const go = xs => xs.length >= f.length ? (f.apply(null, xs)) :
function () {
return go(xs.concat([].slice.apply(arguments)));
};
return go([].slice.call(args, 1));
};
// intercalate :: String -> [a] -> String
const intercalate = curry((s, xs) => xs.join(s));
// concat :: [[a]] -> [a] | [String] -> String
const concat = xs => {
if (xs.length > 0) {
const unit = typeof xs[0] === 'string' ? '' : [];
return unit.concat.apply(unit, xs);
} else return [];
};
// compose :: [(a -> a)] -> (a -> a)
const compose = fs => x => fs.reduceRight((a, f) => f(a), x);
// map :: (a -> b) -> [a] -> [b]
const map = curry((f, xs) => xs.map(f));
// reverse :: [a] -> [a]
const reverse = xs =>
typeof xs === 'string' ? (
xs.split('')
.reverse()
.join('')
) : xs.slice(0)
.reverse();
// head :: [a] -> a
const head = xs => xs.length ? xs[0] : undefined;
// tail :: [a] -> [a]
const tail = xs => xs.length ? xs.slice(1) : undefined;
// (++) :: [a] -> [a] -> [a]
const append = (xs, ys) => xs.concat(ys);
// words :: String -> [String]
const words = s => s.split(/\s+/);
// unlines :: [String] -> String
const unlines = xs => xs.join('\n');
// TEST ------------------------------------------------------------------
return unlines(
map(
compose([x => '{' + x + '}', quibble]),
append([
[],
["ABC"],
["ABC", "DEF"],
["ABC", "DEF", "G", "H"]
], map(
words, [
"One two three four", "Me myself I", "Jack Jill", "Loner"
]
))
));
})();
{{Out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
{One, two, three and four}
{Me, myself and I}
{Jack and Jill}
{Loner}
jq
{{works with|jq|1.4}}
def quibble:
if length == 0 then ""
elif length == 1 then .[0]
else (.[0:length-1] | join(", ")) + " and " + .[length-1]
end
| "{" + . + "}";
'''Example''':
( [], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]) | quibble
{{Out}}
jq -n -r -f Comma_quibbling.jq
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Julia
{{works with|Julia|0.6}}
function quibble(arr::Array)
if isempty(arr) rst = "" else rst = "$(arr[end])" end
if length(arr) > 1 rst = join(arr[1:end-1], ", ") * " and " * rst end
return "{" * rst * "}"
end
@show quibble([])
@show quibble(["ABC"])
@show quibble(["ABC", "DEF"])
@show quibble(["ABC", "DEF", "G", "H"])
{{Out}}
quibble([]) = "{}"
quibble(["ABC"]) = "{ABC}"
quibble(["ABC", "DEF"]) = "{ABC and DEF}"
quibble(["ABC", "DEF", "G", "H"]) = "{ABC, DEF, G and H}"
Kotlin
// version 1.0.6
fun commaQuibble(s: String): String {
val t = s.trim('[', ']').replace(" ", "").replace("\"", "")
val words = t.split(',')
val sb = StringBuilder("{")
for (i in 0 until words.size) {
sb.append(when (i) {
0 -> ""
words.lastIndex -> " and "
else -> ", "
})
sb.append(words[i])
}
return sb.append("}").toString()
}
fun main(args: Array<String>) {
val inputs = arrayOf(
"""[]""",
"""["ABC"]""",
"""["ABC", "DEF"]""",
"""["ABC", "DEF", "G", "H"]"""
)
for (input in inputs) println("${input.padEnd(24)} -> ${commaQuibble(input)}")
}
{{out}}
[] -> {}
["ABC"] -> {ABC}
["ABC", "DEF"] -> {ABC and DEF}
["ABC", "DEF", "G", "H"] -> {ABC, DEF, G and H}
Lasso
#!/usr/bin/lasso9
local(collection =
array(
array,
array("ABC"),
array("ABC", "DEF"),
array("ABC", "DEF", "G", "H")
)
)
with words in #collection do {
if(#words -> size > 1) => {
local(last = #words -> last)
#words -> removelast
stdoutnl('{' + #words -> join(', ') + ' and ' + #last'}')
else(#words -> size == 1)
stdoutnl('{' + #words -> first + '}')
else
stdoutnl('{}')
}
}
Output:
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Liberty BASIC
do
read in$
if in$ ="END" then wait
w =wordCount( in$)
select case w
case 0
o$ ="{}"
case 1
o$ ="{" +in$ +"}"
case 2
o$ ="{" +word$( in$, 1) +" and " +word$( in$, 2) +"}"
case else
o$ ="{"
o$ =o$ +word$( in$, 1)
for k =2 to w -1
o$ =o$ +", " +word$( in$, k)
next k
o$ =o$ +" and " +word$( in$, w) +"}"
end select
if w =1 then
print "'"; in$; "'"; " held "; w; " word. "; tab( 30); o$
else
print "'"; in$; "'"; " held "; w; " words. "; tab( 30); o$
end if
loop until 0
wait
function wordCount( IN$)
wordCount =1
for i =1 to len( IN$)
if mid$( IN$, i, 1) =" " then wordCount =wordCount +1
next i
end function
end
data "" 'No input words.
data "ABC" 'One input word.
data "ABC DEF" 'Two words.
data "ABC DEF G" 'Three words.
data "ABC DEF G H" 'Four words.
data "END" 'Sentinel for EOD.
{{Out}}
'' held 1 word. {}
'ABC' held 1 word. {ABC}
'ABC DEF' held 2 words. {ABC and DEF}
'ABC DEF G' held 3 words. {ABC, DEF and G}
'ABC DEF G H' held 4 words. {ABC, DEF, G and H}
Logo
to join :delimiter :list [:result []]
output cond [
[ [empty? :list] :result ]
[ [empty? :result] (join :delimiter butfirst :list first :list) ]
[ else (join :delimiter butfirst :list
(word :result :delimiter first :list)) ]
]
end
to quibble :list
local "length
make "length count :list
make "text (
ifelse [:length <= 2] [
(join "\ and\ :list)
] [
(join "\ and\ (sentence join ",\ butlast :list last :list))
])
output ifelse [empty? :text] "\{\} [(word "\{ :text "\})]
end
foreach [ [] [ABC] [ABC DEF] [ABC DEF G H] ] [
print quibble ?
]
bye
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Lua
function quibble (strTab)
local outString, join = "{"
for strNum = 1, #strTab do
if strNum == #strTab then
join = ""
elseif strNum == #strTab - 1 then
join = " and "
else
join = ", "
end
outString = outString .. strTab[strNum] .. join
end
return outString .. '}'
end
local testCases = {
{},
{"ABC"},
{"ABC", "DEF"},
{"ABC", "DEF", "G", "H"}
}
for _, input in pairs(testCases) do print(quibble(input)) end
{{out}}
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
M2000 Interpreter
Using string as argument
Module Checkit {
function f$ {
what$=mid$(trim$(letter$),2)
what$=Left$(what$, len(what$)-1)
flush ' erase any argument from stack
Data param$(what$)
m=stack.size
document resp$="{"
if m>2 then {
shift m-1, 2 ' get last two as first two
push letter$+" and "+letter$
m-- ' one less
shiftback m ' move to last position
}
while not empty {
resp$=letter$+if$(not empty->", ", "")
}
=resp$+"}"
}
\\ we use ? for Print
? f$({[]})
? f$({["ABC"]})
? f$({["ABC", "DEF"]})
? f$({["ABC","DEF", "G", "H"]})
}
Checkit
Using String functions only
Module Checkit {
function f$ {
what$=filter$(trim$(letter$), chr$(34))
what$=Mid$(what$, 2, len(what$)-2)
count=Len(what$)-Len(filter$(what$,","))
if count>2 then m=rinstr(what$, ", ") : insert m, 2 what$=" and "
="{"+what$+"}"
}
? f$({[]})
? f$({["ABC"]})
? f$({["ABC", "DEF"]})
? f$({["ABC","DEF", "G", "H"]})
}
Checkit
Using array as argument
Module Checkit {
function f$(ar) {
flush
Data ! ar
m=stack.size
document resp$="{"
if m>2 then {
shift m-1, 2 ' get last two as first two
push letter$+" and "+letter$
m-- ' one less
shiftback m ' move to last position
}
while not empty {
resp$=letter$+if$(not empty->", ", "")
}
=resp$+"}"
}
? f$((,))
? f$(("ABC",))
? f$(("ABC", "DEF"))
? f$(("ABC","DEF", "G", "H"))
}
Checkit
{{out}}
{} {ABC} {ABC, DEF} {ABC, DEF, G and H}## Maple ```Maple Quibble := proc( los ) uses StringTools; Fence( proc() if los = [] then "" elif numelems( los ) = 1 then los[ 1 ] else cat( Join( los[ 1 .. -2 ], ", " ), " and ", los[ -1 ] ) end if end(), "{", "}" ) end proc: ``` Check it on the required inputs: ```Maple> Quibble([]); "{}" > Quibble( [ "ABC" ] ); "{ABC}" > Quibble( [ "ABC", "DEF" ] ); "{ABC and DEF}" > Quibble( ["ABC", "DEF", "G", "H"] ); "{ABC, DEF, G and H}" ``` =={{header|Mathematica}} / {{header|Wolfram Language}}== ```Mathematica quibble[words___] := ToString@{StringJoin@@ Replace[Riffle[{words}, ", "], {most__, ", ", last_} -> {most, " and ", last}]} ``` {{out}} ```txt In[2]:= quibble[] Out[2]= {} In[3]:= quibble["ABC"] Out[3]= {ABC} In[4]:= quibble["ABC","DEF"] Out[4]= {ABC and DEF} In[5]:= quibble["ABC","DEF","G","H"] Out[5]= {ABC, DEF, G and H} ``` ## MAXScript ```MAXScript fn separate words: = ( if words == unsupplied or words == undefined or classof words != array then return "{}" else ( local toReturn = "{" local pos = 1 while pos <= words.count do ( if pos == 1 then (append toReturn words[pos]; pos+=1) else ( if pos <= words.count-1 then (append toReturn (", "+words[pos]); pos+=1) else ( append toReturn (" and " + words[pos]) pos +=1 ) ) ) return (toReturn+"}") ) ) ``` Output: ```MAXScript separate words:#() "{}" separate words:#("ABC") "{ABC}" separate words:#("ABC","DEF") "{ABC and DEF}" separate words:#("ABC","DEF","G","H") "{ABC, DEF, G and H}" ``` ## NetRexx ```NetRexx /* NetRexx */ options replace format comments java crossref symbols nobinary runSample(arg) return -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method quibble(arg) public static parse arg '[' lst ']' lst = lst.changestr('"', '').space(1) lc = lst.lastpos(',') if lc > 0 then lst = lst.insert('and', lc).overlay(' ', lc) return '{'lst'}' -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method runSample(arg) private static lists = ['[]', - -- {} '["ABC"]', - -- {ABC} '["ABC", "DEF"]', - -- {ABC and DEF} '["ABC", "DEF", "G", "H"]'] -- {ABC, DEF, G and H} loop lst over lists say lst.right(30) ':' quibble(lst) end lst return ``` {{out}} ```txt [] : {} ["ABC"] : {ABC} ["ABC", "DEF"] : {ABC and DEF} ["ABC", "DEF", "G", "H"] : {ABC, DEF, G and H} ``` ## Nim ```nim proc commaQuibble(s: openArray[string]): string = result = "" for i, c in s: if i > 0: result.add (if i < s.high: ", " else: " and ") result.add c result = "{" & result & "}" var s = @[@[], @["ABC"], @["ABC", "DEF"], @["ABC", "DEF", "G", "H"]] for i in s: echo commaQuibble(i) ``` =={{header|Oberon-2}}== {{works with|oo2c}} ```oberon2 MODULE CommaQuibbling; IMPORT NPCT:Args, Strings, Out; VAR str: ARRAY 256 OF CHAR; PROCEDURE Do(VAR s: ARRAY OF CHAR); VAR aux: ARRAY 128 OF CHAR; i,params: LONGINT; BEGIN params := Args.Number() - 1; CASE params OF 0: COPY("{}",s) |1: Args.At(1,aux); Strings.Append("{",s); Strings.Append(aux,s); Strings.Append("}",s); ELSE Strings.Append("{",s); FOR i := 1 TO params - 1 DO Args.At(i,aux); Strings.Append(aux,s); IF i # params - 1 THEN Strings.Append(", ",s) ELSE Strings.Append(" and ", s) END END; Args.At(params,aux); Strings.Append(aux,s); Strings.Append("}",s) END; END Do; BEGIN Do(str); Out.String(":> ");Out.String(str);Out.Ln END CommaQuibbling. ``` {{out}} ```txt $ bin/CommaQuibbling :> {} $ bin/CommaQuibbling ABC :> {ABC} $ bin/CommaQuibbling ABC DEF :> {ABC and DEF} $ bin/CommaQuibbling ABC DEF G :> {ABC, DEF and G} $ bin/CommaQuibbling ABC DEF G H :> {ABC, DEF, G and H} ``` ## Objeck ```objeck class Quibbler { function : Quibble(words : String[]) ~ String { text := "{"; each(i : words) { text += words[i]; if(i < words->Size() - 2) { text += ", "; } else if(i = words->Size() - 2) { text += " and "; }; }; text += "}"; return text; } function : Main(args : String[]) ~ Nil { words := String->New[0]; Quibble(words)->PrintLine(); words := ["ABC"]; Quibble(words)->PrintLine(); words := ["ABC", "DEF"]; Quibble(words)->PrintLine(); words := ["ABC", "DEF", "G", "H"]; Quibble(words)->PrintLine(); } } ``` Output: ```txt {} {ABC} {ABC and DEF} {ABC, DEF, G and H} ``` ## OCaml ```ocaml open Printf let quibble list = let rec aux = function | a :: b :: c :: d :: rest -> a ^ ", " ^ aux (b :: c :: d :: rest) | [a; b; c] -> sprintf "%s, %s and %s}" a b c | [a; b] -> sprintf "%s and %s}" a b | [a] -> sprintf "%s}" a | [] -> "}" in "{" ^ aux list let test () = [[]; ["ABC"]; ["ABC"; "DEF"]; ["ABC"; "DEF"; "G"; "H"]] |> List.iter (fun list -> print_endline (quibble list)) ``` {{works with|Core|v0.9.116.03+91}} ```ocaml open Core let quibble = function | [| |] -> "{}" | [| a |] -> sprintf "{%s}" a | array -> let last, rest = Array.last array, Array.slice array 0 (-1) in sprintf "{%s and %s}" (String.concat_array ~sep:", " rest) last let test () = [[||]; [|"ABC"|]; [|"ABC"; "DEF"|]; [|"ABC"; "DEF"; "G"; "H"|]] |> List.iter ~f:(fun list -> print_endline (quibble list)) ``` {{out}} ```txt # test ();; {} {ABC} {ABC and DEF} {ABC, DEF, G and H} ``` ## Oforth ```Oforth : quibbing(l) -- string | i s | StringBuffer new "{" << l size dup 1- ->s loop: i [ l at(i) << i s < ifTrue: [ ", " << continue ] i s == ifTrue: [ " and " << ] ] "}" << dup freeze ; ``` {{out}} ```txt [ [], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"] ] map(#quibbing) . [{}, {ABC}, {ABC and DEF}, {ABC, DEF, G and H}] ``` ## Ol ```scheme (define (quibble . args) (display "{") (let loop ((args args)) (unless (null? args) (begin (display (car args)) (cond ((= 1 (length args)) #t) ((= 2 (length args)) (display " and ")) (else (display ", "))) (loop (cdr args))))) (print "}")) ; testing => (quibble) (quibble "ABC") (quibble "ABC" "DEF") (quibble "ABC" "DEF" "G" "H") ``` {{out}} ```txt {} {ABC} {ABC and DEF} {ABC, DEF, G and H} ``` ## PARI/GP ```parigp comma(v)={ if(#v==0, return("{}")); if(#v==1, return(Str("{"v[1]"}"))); my(s=Str("{",v[1])); for(i=2,#v-1,s=Str(s,", ",v[i])); Str(s," and ",v[#v],"}") }; comma([]) comma(["ABC"]) comma(["ABC", "DEF"]) comma(["ABC", "DEF", "G", "H"]) ``` Output: ```txt %1 = "{}" %2 = "{ABC}" %3 = "{ABC and DEF}" %4 = "{ABC, DEF, G and H}" ``` ## Pascal
{} {ABC} {ABC and DEF} {ABC, DEF, G and H} {} {ABC} {ABC and DEF} {ABC, DEF, G and H}## Perl {{trans|Perl 6}} ```perl sub comma_quibbling(@) { return "{$_}" for @_ < 2 ? "@_" : join(', ', @_[0..@_-2]) . ' and ' . $_[-1]; } print comma_quibbling(@$_), "\n" for [], [qw(ABC)], [qw(ABC DEF)], [qw(ABC DEF G H)]; ``` {{out}} ```txt {} {ABC} {ABC and DEF} {ABC, DEF, G and H} ``` '''Perl 5.01 version and other approach:''' ```perl use 5.01; sub comma_quibbling{ my $last = pop // ''; return '{'. (@_ ? (join ', ', @_).' and '.$last : $last).'}'; } say for map {comma_quibbling(@$_)} [], [qw(ABC)], [qw(ABC DEF)], [qw(ABC DEF G H)]; ``` {{out}} ```txt {} {ABC} {ABC and DEF} {ABC, DEF, G and H} ``` ## Perl 6 ```perl6 sub comma-quibbling(@A) { <{ }>.join: @A < 2 ?? @A !! "@A[0..*-2].join(', ') and @A[*-1]"; } say comma-quibbling($_) for [], [