⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}}
;Task: Given a [[wp:List_(abstract_data_type)|list]] of arbitrarily many strings, show how to:
- test if they are all lexically '''equal'''
- test if every string is lexically '''less than''' the one after it ''(i.e. whether the list is in strict ascending order)''
Each of those two tests should result in a single true or false value, which could be used as the condition of an if
statement or similar.
If the input list has less than two elements, the tests should always return true.
There is ''no'' need to provide a complete program and output.
Assume that the strings are already stored in an array/list/sequence/tuple variable (whatever is most idiomatic) with the name strings
, and just show the expressions for performing those two tests on it (plus of course any includes and custom functions etc. that it needs), with as little distractions as possible.
Try to write your solution in a way that does not modify the original list, but if it does then please add a note to make that clear to readers.
If you need further guidance/clarification, see [[#Perl]] and [[#Python]] for solutions that use implicit short-circuiting loops, and [[#Perl_6]] for a solution that gets away with simply using a built-in language feature.
;Related tasks:
- [[String comparison]]
11l
{{trans|D}}
L(strings_s) [‘AA AA AA AA’, ‘AA ACB BB CC’]
V strings = strings_s.split(‘ ’)
print(strings)
print(all(zip(strings, strings[1..]).map(a -> a[0] == a[1])))
print(all(zip(strings, strings[1..]).map(a -> a[0] < a[1])))
print()
360 Assembly
The program uses one ASSIST macro (XPRNT) to keep the code as short as possible.
* Compare a list of strings 31/01/2017
COMPLIST CSECT
USING COMPLIST,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) prolog
ST R13,4(R15) " <-
ST R15,8(R13) " ->
LR R13,R15 " addressability
MVC SNAME,=C'ABC'
LA R1,SNAME
LA R2,ABC
BAL R14,TEST call test('ABC',abc)
MVC SNAME,=C'AAA'
LA R1,SNAME
LA R2,AAA
BAL R14,TEST call test('AAA',aaa)
MVC SNAME,=C'ACB'
LA R1,SNAME
LA R2,ACB
BAL R14,TEST call test('ACB',acb)
L R13,4(0,R13) epilog
LM R14,R12,12(R13) " restore
XR R15,R15 " rc=0
BR R14 exit
*------- ---- test(name,xlist) -----------------------
TEST MVC NAME,0(R1) store argument #1
MVC XLIST(6),0(R2) store argument #2
MVI ALLEQ,X'01' alleq=true
MVI INCRE,X'01' incre=true
LA R6,1 i=1
LOOPI LA R2,NXLIST hbound(xlist)
BCTR R2,0 -1
CR R6,R2 do i to hbound(xlist)-1
BH ELOOPI
MVC XBOOL,ALLEQ
OC XBOOL,INCRE or
CLI XBOOL,X'01' and while alleq or incre
BNE ELOOPI
LA R2,1(R6) i+1
SLA R2,1 *2
LA R3,XLIST-2(R2) @xlist(i+1)
LR R1,R6 i
SLA R1,1 *2
LA R4,XLIST-2(R1) @xlist(i)
CLC 0(2,R3),0(R4) if xlist(i+1)=xlist(i)
BNE SEL1B
MVI INCRE,X'00' incre=false
B SEL1END
SEL1B CLC 0(2,R3),0(R4) if xlist(i+1)<xlist(i)
BNL SEL1OTH
MVI INCRE,X'00' incre=false
MVI ALLEQ,X'00' alleq=false
B SEL1END
SEL1OTH MVI ALLEQ,X'00' alleq=false
SEL1END LA R6,1(R6) i=i+1
B LOOPI
ELOOPI CLI ALLEQ,X'01' if alleq
BNE SEL2B
MVC TXT,=CL40'all elements are equal'
B SEL2END
SEL2B CLI INCRE,X'01' if incre
BNE SEL2OTH
MVC TXT,=CL40'elements are in increasing order'
B SEL2END
SEL2OTH MVC TXT,=CL40'neither equal nor in increasing order'
SEL2END MVI PG,C' '
MVC PG+1(79),PG clear buffer
MVC PG(3),NAME
MVC PG+3(3),=C' : '
MVC PG+6(40),TXT
XPRNT PG,L'PG
BR R14 return to caller
* ---- ----------------------------------------
SNAME DS CL3
ABC DC CL2'AA',CL2'BB',CL2'CC'
AAA DC CL2'AA',CL2'AA',CL2'AA'
ACB DC CL2'AA',CL2'CC',CL2'BB'
NAME DS CL3
XLIST DS 3CL2
NXLIST EQU (*-XLIST)/L'XLIST
ALLEQ DS X
INCRE DS X
TXT DS CL40
XBOOL DS X
PG DS CL80
YREGS
END COMPLIST
{{out}}
ABC : elements are in increasing order
AAA : all elements are equal
ACB : neither equal nor in increasing order
Ada
We will store the "list" of strings in a vector. The vector will hold "indefinite" strings, i.e., the strings can have different lengths.
package String_Vec is new Ada.Containers.Indefinite_Vectors
(Index_Type => Positive, Element_Type => String);
use type String_Vec.Vector;
The equality test iterates from the first to the last-but one index. For index Idx, it checks checks if Strings(Idx) and Strings(Idx+1) are different. If the answer is yes for any Idx, the function immediately returns False. If the answer is no for all Idx, the function finally returns True.
function All_Are_The_Same(Strings: String_Vec.Vector) return Boolean is
begin
for Idx in Strings.First_Index .. Strings.Last_Index-1 loop
if Strings(Idx) /= Strings(Idx+1) then
return False;
end if;
end loop;
return True;
end All_Are_The_Same;
Similarily, the strictly ascending test checks if Strings(Idx) is greater or equal Strings(Idx+1).
function Strictly_Ascending(Strings: String_Vec.Vector) return Boolean is
begin
for Idx in Strings.First_Index+1 .. Strings.Last_Index loop
if Strings(Idx-1) >= Strings(Idx) then
return False;
end if;
end loop;
return True;
end Strictly_Ascending;
If the variable Strings is of the type String_Vec.vector, one can call these two functions as usual.
Put_Line(Boolean'Image(All_Are_The_Same(Strings)) & ", " &
Boolean'Image(Strictly_Ascending(Strings)));
If Strings holds two or more strings, the result will be either of TRUE, FALSE, or FALSE, TRUE, or FALSE, FALSE, indicating all strings are the same, or they are strictly ascending, or neither.
However, if Strings only holds zero or one string, the result will be TRUE, TRUE.
ALGOL 68
[]STRING list1 = ("AA","BB","CC");
[]STRING list2 = ("AA","AA","AA");
[]STRING list3 = ("AA","CC","BB");
[]STRING list4 = ("AA","ACB","BB","CC");
[]STRING list5 = ("single_element");
[][]STRING all lists to test = (list1, list2, list3, list4, list5);
PROC equal = ([]STRING list) BOOL:
BEGIN
BOOL ok := TRUE;
FOR i TO UPB list - 1 WHILE ok DO
ok := list[i] = list[i+1]
OD;
ok
END;
PROC less than = ([]STRING list) BOOL:
BEGIN
BOOL ok := TRUE;
FOR i TO UPB list - 1 WHILE ok DO
ok := list[i] < list[i + 1]
OD;
ok
END;
FOR i TO UPB all lists to test DO
[]STRING list = all lists to test[i];
print (("list:", (STRING s; FOR i TO UPB list DO s +:= " " + list[i] OD; s), new line));
IF equal (list) THEN
print (("...is lexically equal", new line))
ELSE
print (("...is not lexically equal", new line))
FI;
IF less than (list) THEN
print (("...is in strict ascending order", new line))
ELSE
print (("...is not in strict ascending order", new line))
FI
OD
{{out}}
list: AA BB CC
...is not lexically equal
...is in strict ascending order
list: AA AA AA
...is lexically equal
...is not in strict ascending order
list: AA CC BB
...is not lexically equal
...is not in strict ascending order
list: AA ACB BB CC
...is not lexically equal
...is in strict ascending order
list: single_element
...is lexically equal
...is in strict ascending order
ALGOL W
% returns true if all elements of the string array a are equal, false otherwise %
% As Algol W procedures cannot determine the bounds of an array, the bounds %
% must be specified in lo and hi %
logical procedure allStringsEqual ( string(256) array a ( * )
; integer value lo, hi
) ;
begin
logical same;
integer listPos;
same := true;
listPos := lo + 1;
while same and listPos <= hi do begin
same := a( lo ) = a( listPos );
listPos := listPos + 1
end;
same
end allStringsEqual ;
% returns true if the elements of the string array a are in ascending order, %
% false otherwise %
% As Algol W procedures cannot determine the bounds of an array, the bounds %
% must be specified in lo and hi %
logical procedure ascendingOrder ( string(256) array a ( * )
; integer value lo, hi
) ;
begin
logical ordered;
integer listPos;
ordered := true;
listPos := lo + 1;
while ordered and listPos <= hi do begin
ordered := a( listPos - 1 ) < a( listPos );
listPos := listPos + 1
end;
ordered
end ascendingOrder ;
AppleScript
{{trans|JavaScript}} (ES6 Functional example)
-- allEqual :: [String] -> Bool
on allEqual(xs)
_and(zipWith(my _equal, xs, rest of xs))
end allEqual
-- azSorted :: [String] -> Bool
on azSorted(xs)
_and(zipWith(my azBeforeOrSame, xs, rest of xs))
end azSorted
-- _equal :: a -> a -> Bool
on _equal(a, b)
a = b
end _equal
-- azBefore :: String -> String -> Bool
on azBeforeOrSame(a, b)
a ≥ b
end azBeforeOrSame
-- _and :: [a] -> Bool
on _and(xs)
foldr(_equal, true, xs)
end _and
-- TEST
on run
set lstA to ["isiZulu", "isiXhosa", "isiNdebele", "Xitsonga", "Tshivenda", ¬
"Setswana", "Sesotho sa Leboa", "Sesotho", "English", "Afrikaans"]
set lstB to ["Afrikaans", "English", "Sesotho", "Sesotho sa Leboa", "Setswana", ¬
"Tshivenda", "Xitsonga", "isiNdebele", "isiXhosa", "isiZulu"]
set lstC to ["alpha", "alpha", "alpha", "alpha", "alpha", "alpha", "alpha", ¬
"alpha", "alpha", "alpha"]
{allEqual:map(allEqual, [lstA, lstB, lstC]), azSorted:map(azSorted, [lstA, lstB, lstC])}
-- > {allEqual:{false, false, true}, azSorted:{false, true, true}}
end run
-- GENERIC FUNCTIONS
-- foldr :: (a -> b -> a) -> a -> [b] -> a
on foldr(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from lng to 1 by -1
set v to lambda(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldr
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to lambda(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
on zipWith(f, xs, ys)
set nx to length of xs
set ny to length of ys
if nx < 1 or ny < 1 then
{}
else
set lng to cond(nx < ny, nx, ny)
set lst to {}
tell mReturn(f)
repeat with i from 1 to lng
set end of lst to lambda(item i of xs, item i of ys)
end repeat
return lst
end tell
end if
end zipWith
-- cond :: Bool -> (a -> b) -> (a -> b) -> (a -> b)
on cond(bool, f, g)
if bool then
f
else
g
end if
end cond
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property lambda : f
end script
end if
end mReturn
{{Out}}
{allEqual:{false, false, true}, azSorted:{false, true, true}}
AWK
# syntax: GAWK -f COMPARE_A_LIST_OF_STRINGS.AWK
BEGIN {
main("AA,BB,CC")
main("AA,AA,AA")
main("AA,CC,BB")
main("AA,ACB,BB,CC")
main("single_element")
exit(0)
}
function main(list, arr,i,n,test1,test2) {
test1 = 1 # elements are identical
test2 = 1 # elements are in ascending order
n = split(list,arr,",")
printf("\nlist:")
for (i=1; i<=n; i++) {
printf(" %s",arr[i])
if (i > 1) {
if (arr[i-1] != arr[i]) {
test1 = 0 # elements are not identical
}
if (arr[i-1] >= arr[i]) {
test2 = 0 # elements are not in ascending order
}
}
}
printf("\n%d\n%d\n",test1,test2)
}
{{out}}
list: AA BB CC
0
1
list: AA AA AA
1
0
list: AA CC BB
0
0
list: AA ACB BB CC
0
1
list: single_element
1
1
C
#include <stdio.h>
#include <string.h>
int strings_are_equal(char * * strings, int nstrings)
{
int result = 1;
while (result && (--nstrings > 0))
{
result = !strcmp(*strings, *(strings+nstrings));
}
return result;
}
int strings_are_in_ascending_order(char * * strings, int nstrings)
{
int result = 1;
int k = 0;
while (result && (++k < nstrings))
{
result = (0 >= strcmp(*(strings+k-1), *(strings+k)));
}
return result;
}
C#
{{works with|C sharp|7}}
public static (bool lexicallyEqual, bool strictlyAscending) CompareAListOfStrings(List<string> strings) =>
strings.Count < 2 ? (true, true) :
(
strings.Distinct().Count() < 2,
Enumerable.Range(1, strings.Count - 1).All(i => string.Compare(strings[i-1], strings[i]) < 0)
);
C++
Assuming that the strings
variable is of type T<std::string>
where T
is an ordered STL container such as std::vector
:
{{works with|C++|11}}
#include <algorithm>
#include <string>
std::all_of( ++(strings.begin()), strings.end(),
[&](std::string a){ return a == strings.front(); } ) // All equal
std::is_sorted( strings.begin(), strings.end(),
[](std::string a, std::string b){ return !(b < a); }) ) // Strictly ascending
D
void main() {
import std.stdio, std.algorithm, std.range, std.string;
foreach (const strings; ["AA AA AA AA", "AA ACB BB CC"].map!split) {
strings.writeln;
strings.zip(strings.dropOne).all!(ab => ab[0] == ab[1]).writeln;
strings.zip(strings.dropOne).all!(ab => ab[0] < ab[1]).writeln;
writeln;
}
}
{{out}}
["AA", "AA", "AA", "AA"]
true
false
["AA", "ACB", "BB", "CC"]
false
true
Dyalect
func isSorted(xs) {
var prev
for x in xs {
if prev && !(x > prev) {
return false
}
prev = x
}
true
}
func isEqual(xs) {
var prev
for x in xs {
if prev && x != prev {
return false
}
prev = x
}
true
}
Clojure
Used similar approach as the Python solution
;; Checks if all items in strings list are equal (returns true if list is empty)
(every? (fn [[a nexta]] (= a nexta)) (map vector strings (rest strings))))
;; Checks strings list is in ascending order (returns true if list is empty)
(every? (fn [[a nexta]] (<= (compare a nexta) 0)) (map vector strings (rest strings))))
Common Lisp
(defun strings-equal-p (strings)
(null (remove (first strings) (rest strings) :test #'string=)))
(defun strings-ascending-p (strings)
(loop for string1 = (first strings) then string2
for string2 in (rest strings)
always (string-lessp string1 string2)))
Elena
ELENA 4.1 :
import system'collections;
import system'routines;
import extensions;
extension helper
{
isEqual()
= nil == self.seekEach(self.FirstMember, (n,m => m.equal:n.Inverted ));
isAscending()
{
var former := self.enumerator();
var later := self.enumerator();
later.next();
^ nil == former.zipBy(later, (prev,next => next <= prev )).seekEach:(b => b)
}
}
testCases
= new string[][]::(
new string[]::("AA","BB","CC"),
new string[]::("AA","AA","AA"),
new string[]::("AA","CC","BB"),
new string[]::("AA","ACB","BB","CC"),
new string[]::("single_element"));
public program()
{
testCases.forEach:(list)
{
console.printLine(list.asEnumerable()," all equal - ",list.isEqual());
console.printLine(list.asEnumerable()," ascending - ",list.isAscending())
};
console.readChar()
}
{{out}}
AA,BB,CC all equal - false
AA,BB,CC ascending - true
AA,AA,AA all equal - true
AA,AA,AA ascending - false
AA,CC,BB all equal - false
AA,CC,BB ascending - false
AA,ACB,BB,CC all equal - false
AA,ACB,BB,CC ascending - true
single_element all equal - true
single_element ascending - true
Elixir
defmodule RC do
def compare_strings(strings) do
{length(Enum.uniq(strings))<=1, strict_ascending(strings)}
end
defp strict_ascending(strings) when length(strings) <= 1, do: true
defp strict_ascending([first, second | _]) when first >= second, do: false
defp strict_ascending([_, second | rest]), do: strict_ascending([second | rest])
end
lists = [ ~w(AA AA AA AA), ~w(AA ACB BB CC), ~w(AA CC BB), [], ["XYZ"] ]
Enum.each(lists, fn list ->
IO.puts "#{inspect RC.compare_strings(list)}\t<= #{inspect list} "
end)
{{out}}
{true, false} <= ["AA", "AA", "AA", "AA"]
{false, true} <= ["AA", "ACB", "BB", "CC"]
{false, false} <= ["AA", "CC", "BB"]
{true, true} <= []
{true, true} <= ["XYZ"]
Erlang
{{trans|Haskell}}
-module(compare_strings).
-export([all_equal/1,all_incr/1]).
all_equal(Strings) ->
all_fulfill(fun(S1,S2) -> S1 == S2 end,Strings).
all_incr(Strings) ->
all_fulfill(fun(S1,S2) -> S1 < S2 end,Strings).
all_fulfill(Fun,Strings) ->
lists:all(fun(X) -> X end,lists:zipwith(Fun, lists:droplast(Strings), tl(Strings)) ).
=={{header|F_Sharp|F#}}==
let allEqual strings = Seq.isEmpty strings || Seq.forall (fun x -> x = Seq.head strings) (Seq.tail strings)
let ascending strings = Seq.isEmpty strings || Seq.forall2 (fun x y -> x < y) strings (Seq.tail strings)
Actually allEqual
is a shortcut and ascending
is a general pattern. We can make a function
out of it which constructs a new function from a comparision function
let (!) f s = Seq.isEmpty s || Seq.forall2 f s (Seq.tail s)
and define the 2 task functions that way
let allEqual = !(=)
let ascending = !(<)
getting something similar as the builtin in Perl 6
Factor
Assuming the list is on top of the data stack, testing for lexical equality:
USE: grouping
all-equal?
Testing for ascending order:
USING: grouping math.order ;
[ before? ] monotonic?
=={{header|Fōrmulæ}}==
In [https://wiki.formulae.org/Compare_a_list_of_strings this] page you can see the solution of this task.
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text ([http://wiki.formulae.org/Editing_F%C5%8Drmul%C3%A6_expressions more info]). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.
The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.
Forth
note: This will work under some ANS-Forth systems. It assumes that WORD stores its string at HERE --- this isn't guaranteed by ANS-Forth.
Raw Forth is a very low level language and has no Native lists so we have to build from scratch.
Remarkably by concatenating these low level operations and using the simple Forth parser we can build the linked lists of strings and the list operators quite simply. The operators and lists that we create become extensions to the language.
: nth ( n list -- addr) swap 0 do count + loop ; \ return address of the Nth item in a list
: items ( list -- n ) \ return the number of items in a list 0 >R BEGIN COUNT + DUP R> 1+ >R 0= UNTIL DROP R> 1- ;
: compare$ ( $1 $2 -- -n|0|n ) count rot count compare ; \ compare is an ANS Forth word. returns 0 if $1=$2
: compare[] ( list n1 n2 -- flag) \ compare items n1 and n2 in list ROT dup >R nth ( -- $1) swap r> nth ( -- $1 $2) compare$ ;
\ create our lexical operators : LEX= ( list -- flag) 0 \ place holder for the flag over items 1 DO over I I 1+ compare[] + \ we sum the comparison results on the stack LOOP nip 0= ;
: LEX< ( list -- flag) 0 \ place holder for the flag over items 1 DO over I I 1+ compare[] 0< NOT + LOOP nip 0= ;
\ make some lists create strings [[ ," ENTRY 4" ," ENTRY 3" ," ENTRY 2" ," ENTRY 1" ]] create strings2 [[ ," the same" ," the same" ," the same" ]] create strings3 [[ ," AAA" ," BBB" ," CCC" ," DDD" ]]
Test at the Forth console
(-1 is the result for TRUE)
```txt
STRINGS lex= . 0 ok
STRINGS2 lex= . -1 ok
STRINGS3 lex= . 0 ok
STRINGS lex< . 0 ok
STRINGS2 lex< . 0 ok
STRINGS3 lex< . -1 ok
Forth
This depends upon having the novice-package available --- the novice-package is ANS-Forth, as is this code.
I don't think it is a good idea to write "Raw Forth" as described above. Application code is hard to write and hard to read when low-level code is mixed in with application code. It is better to hide low-level code in general-purpose code-libraries so that the application code can be simple. Here is my solution using LIST.4TH from my novice-package: http://www.forth.org/novice.html
: test-ascending ( string node -- new-string bad? ) .line @ >r count r@ count compare -1 <> \ -- bad? r> swap ;
: test-seq { seq 'test -- flag } \ 'TEST picture: string node -- new-string bad? seq length 2 < if true exit then seq .line @ seq 2nd 'test find-node nip 0= ;
Here is a test of the above code:
<lang>
(( c" aaa" new-seq >> c" aaa" new-seq >> c" aaa" new-seq )) drop ok-1
dup ' test-equality test-seq . -1 ok-1
kill-seq ok
(( c" aaa" new-seq >> c" bbb" new-seq >> c" aaa" new-seq )) drop ok-1
dup ' test-equality test-seq . 0 ok-1
kill-seq ok
(( c" aaa" new-seq >> c" bbb" new-seq >> c" ccc" new-seq )) drop ok-1
dup ' test-ascending test-seq . -1 ok-1
kill-seq ok
(( c" aaa" new-seq >> c" bbb" new-seq >> c" aaa" new-seq )) drop ok-1
dup ' test-ascending test-seq . 0 ok-1
kill-seq ok
Fortran
Fortran does not offer a "string" item, which is to say, a sequence of items ''plus the length'' as one entity as in Pascal, among others. It does offer a CHARACTER variable, having some specified number of characters so the usual approach is to choose a length that is "long enough". In character comparisons, trailing spaces are ignored so that "xx" and "xx " are deemed equal. Similarly, it does not offer a list-of-thingies item, so again the usual approach is to provide an array of a size "long enough". One could develop a scheme with auxiliary counters stating how many elements are in use and so forth, but for this example, the parameterisation will do. Inspection of such arrays of character entities requires explicit DO-loops and IF-statements, and functions ALLINORDER and ALLEQUAL could be devised. Earlier Fortrans (prior to 77) lack a CHARACTER type, and so one must struggle with integer arrays.
Later Fortran (90 ''et seq'') offers the special function ALL (and its associate, ANY) for testing multiple logical expressions, and also syntax allowing multiple elements of an array to be specified, as in A(3:7) to access elements 3, 4, 5, 6, 7 of array A. The ALL function has the special feature that if ''no'' logical expressions exist, then they, er, ... all ... are true and the result of ALL(nothing) is true. Well, none of them are false... Whatever the rationalisations this delivers the required result when the list has but one element and so there are no pairs to produce logical expressions, so, none of them are false, so the result is true, as specified.
On the other hand a function such as ALLINORDER would show the sound of one hand clapping. It would also reveal the order in which comparisons were made, and whether the loop would quit on the first failure or blockheadedly slog on through the lot regardless. Alas, on these questions the documentation for ALL is suspiciously silent.
INTEGER MANY,LONG
PARAMETER (LONG = 6,MANY = 4) !Adjust to suit.
CHARACTER*(LONG) STRINGS(MANY) !A list of text strings.
STRINGS(1) = "Fee"
STRINGS(2) = "Fie"
STRINGS(3) = "Foe"
STRINGS(4) = "Fum"
IF (ALL(STRINGS(1:MANY - 1) .LT. STRINGS(2:MANY))) THEN
WRITE (6,*) MANY," strings: strictly increasing in order."
ELSE
WRITE (6,*) MANY," strings: not strictly increasing in order."
END IF
IF (ALL(STRINGS(1:MANY - 1) .EQ. STRINGS(2:MANY))) THEN
WRITE (6,*) MANY," strings: all equal."
ELSE
WRITE (6,*) MANY," strings: not all equal."
END IF
END
And yes, if MANY is set to one and the extra texts are commented out, the results are both true, and ungrammatical statements are made. Honest. Possibly, another special function, as in COUNT(STRINGS(1:MANY - 1) .LT. STRINGS(2:MANY)))
would involve less one-hand-clapping when there are no comparisons to make, but the production of a report that would use it is not in the specification.
===F2003-F2008=== F2008 standard ([ISO 2010], 4.4.3) defines the character variable of the character type as a set of values composed of character strings and a character string is a sequence of characters, numbered from left to right 1, 2, 3, ... up to the number of characters in the string. The number of characters in the string is called the length of the string. The length is a type parameter; its kind is processor dependent and its value is greater than or equal to zero. I.e in declaration
character (len=12) :: surname
keyword len is NOT a size of array, it is an intrinsic parameter of character type, and character type is in fortran a [[first-class type]]: they can be assigned as objects or passed as parameters to a subroutine.
In summary, the character data type in Fortran is a real, first class data type. Fortran character strings are not hacked-up arrays!
program compare_char_list
implicit none
character(len=6), allocatable, dimension(:) :: ss
integer :: many
ss = ["Fee","Fie","Foe","Fum"]
many = size(ss)
if (all(ss(1:many - 1) .lt. ss(2:many))) then
write (*,*) many," strings: strictly increasing in order."
else
write (*,*) many," strings: not strictly increasing in order."
end if
if (all(ss(1:many - 1) .eq. ss(2:many))) then
write (*,*) many," strings: all equal."
else
write (*,*) many," strings: not all equal."
end if
end program compare_char_list
FreeBASIC
' FB 1.05.0 Win64
Function AllEqual(strings() As String) As Boolean
Dim length As Integer = UBound(strings) - LBound(strings) + 1
If length < 2 Then Return False
For i As Integer = LBound(strings) + 1 To UBound(strings)
If strings(i - 1) <> strings(i) Then Return False
Next
Return True
End Function
Function AllAscending(strings() As String) As Boolean
Dim length As Integer = UBound(strings) - LBound(strings) + 1
If length < 2 Then Return False
For i As Integer = LBound(strings) + 1 To UBound(strings)
If strings(i - 1) >= strings(i) Then Return False
Next
Return True
End Function
Go
package cmp
func AllEqual(strings []string) bool {
if len(strings) < 2 {
return true
}
first := strings[0]
for _, s := range strings[1:] {
if s != first {
return false
}
}
return true
}
func AllLessThan(strings []string) bool {
if len(strings) < 2 {
return true
}
last := strings[0]
for _, s := range strings[1:] {
if !(last < s) {
return false
}
last = s
}
return true
}
See [[Compare_a_list_of_strings/GoTests]] for validation tests.
Note also there is the function [https://golang.org/pkg/sort/#StringsAreSorted sort.StringsAreSorted] in the Go standard library. This function tests that the list is ordered by less than or equal to, but not strictly less than.
Gosu
var list = {"a", "b", "c", "d"}
var isHomogeneous = list.toSet().Count < 2
var isOrderedSet = list.toSet().order().toList() == list
Haskell
[a] -> Bool
allEqual xs = and $ zipWith (==) xs (tail xs)
allIncr :: Ord a => [a] -> Bool
allIncr xs = and $ zipWith (<) xs (tail xs)
Alternatively, using folds:
allEqual
:: Eq a
=> [a] -> Bool
allEqual [] = True
allEqual (h:t) = foldl (\a x -> a && x == h) True t
allIncreasing
:: Ord a
=> [a] -> Bool
allIncreasing [] = True
allIncreasing (h:t) = fst $ foldl (\(a, x) y -> (a && x < y, y)) (True, h) t
or seeking earlier exit (from longer lists) with '''until''', but in fact, perhaps due to lazy execution, the zipWith at the top performs best.
allEq
:: Eq a
=> [a] -> Bool
allEq [] = True
allEq (h:t) =
null . snd $
until
(\(x, xs) -> null xs || x /= head xs)
(\(_, x:xs) -> (x, xs))
(h, t)
allInc
:: Ord a
=> [a] -> Bool
allInc [] = True
allInc (h:t) =
null . snd $
until
(\(x, xs) -> null xs || x >= head xs)
(\(_, x:xs) -> (x, xs))
(h, t)
J
'''Solution''' (''equality test''):
allEq =: 1 = +/@~: NB. or 1 = #@:~. or -: 1&|. or }.-:}:
'''Solution''' (''order test''):
asc =: /: -: i.@# NB. or -: (/:~) etc.
'''Notes''': asc indicates whether y is monotonically increasing, but not necessarily strictly monotonically increasing (in other words, it allows equal elements if they are adjacent to each other).
Java
{{works with|Java|8}}
import java.util.Arrays;
public class CompareListOfStrings {
public static void main(String[] args) {
String[][] arr = {{"AA", "AA", "AA", "AA"}, {"AA", "ACB", "BB", "CC"}};
for (String[] a : arr) {
System.out.printf("%s%n%s%n%s%n", Arrays.toString(a),
Arrays.stream(a).distinct().count() < a.length,
Arrays.equals(Arrays.stream(a).distinct().sorted().toArray(), a));
}
}
}
{{out}}
[AA, AA, AA, AA]
true
false
[AA, ACB, BB, CC]
false
true
JavaScript
ES5
=Iterative=
function allEqual(a) {
var out = true, i = 0;
while (++i<a.length) {
out = out && (a[i-1] === a[i]);
} return out;
}
function azSorted(a) {
var out = true, i = 0;
while (++i<a.length) {
out = out && (a[i-1] < a[i]);
} return out;
}
var e = ['AA', 'AA', 'AA', 'AA'], s = ['AA', 'ACB', 'BB', 'CC'], empty = [], single = ['AA'];
console.log(allEqual(e)); // true
console.log(allEqual(s)); // false
console.log(allEqual(empty)); // true
console.log(allEqual(single)); // true
console.log(azSorted(e)); // false
console.log(azSorted(s)); // true
console.log(azSorted(empty)); // true
console.log(azSorted(single)); // true
ES6
=Functional=
Using a generic zipWith, and functionally composed predicates:
(() => {
'use strict';
// allEqual :: [String] -> Bool
let allEqual = xs => and(zipWith(equal, xs, xs.slice(1))),
// azSorted :: [String] -> Bool
azSorted = xs => and(zipWith(azBefore, xs, xs.slice(1))),
// equal :: a -> a -> Bool
equal = (a, b) => a === b,
// azBefore :: String -> String -> Bool
azBefore = (a, b) => a.toLowerCase() <= b.toLowerCase();
// GENERIC
// and :: [Bool] -> Bool
let and = xs => xs.reduceRight((a, x) => a && x, true),
// zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith = (f, xs, ys) => {
let ny = ys.length;
return (xs.length <= ny ? xs : xs.slice(0, ny))
.map((x, i) => f(x, ys[i]));
};
// TEST
let lists = [
['isiZulu', 'isiXhosa', 'isiNdebele', 'Xitsonga',
'Tshivenda', 'Setswana', 'Sesotho sa Leboa', 'Sesotho',
'English', 'Afrikaans'
],
['Afrikaans', 'English', 'isiNdebele', 'isiXhosa',
'isiZulu', 'Sesotho', 'Sesotho sa Leboa', 'Setswana',
'Tshivenda', 'Xitsonga',
],
['alpha', 'alpha', 'alpha', 'alpha', 'alpha', 'alpha',
'alpha', 'alpha', 'alpha', 'alpha', 'alpha', 'alpha'
]
];
return {
allEqual: lists.map(allEqual),
azSorted: lists.map(azSorted)
};
})();
{{Out}}
{
"allEqual": [
false,
false,
true
],
"azSorted": [
false,
true,
true
]
}
jq
{{works with|jq |1.4}}
For both the following functions, the input is assumed to be a (possibly empty) array of strings. In both cases also, the implementations are fast but could be improved at the expense of complexity.
# Are the strings all equal?
def lexically_equal:
. as $in
| reduce range(0;length-1) as $i
(true; if . then $in[$i] == $in[$i + 1] else false end);
# Are the strings in strictly ascending order?
def lexically_ascending:
. as $in
| reduce range(0;length-1) as $i
(true; if . then $in[$i] < $in[$i + 1] else false end);
'''Examples''':
[] | lexically_equal #=> true
["a", "ab"] | lexically_ascending #=> true
Jsish
Code from Javascript, ES5.
/* Compare list of strings, in Jsish */
function allEqual(a) {
var out = true, i = 0;
while (++i<a.length) {
out = out && (a[i-1] === a[i]);
} return out;
}
function allAscending(a) {
var out = true, i = 0;
while (++i<a.length) {
out = out && (a[i-1] < a[i]);
} return out;
}
if (allEqual(strings)) puts("strings array all equal");
else puts("strings array not all equal");
if (allAscending(strings)) puts("strings array in strict ascending order");
else puts("strings array not in strict ascending order");
{{out}} None, task requirement asks for an assumed preloaded ''strings'' array, no full program, and little other distractions.
Julia
{{works with|Julia|0.6}}
allequal(arr::AbstractArray) = isempty(arr) || all(x -> x == first(arr), arr)
test = [["RC", "RC", "RC"], ["RC", "RC", "Rc"], ["RA", "RB", "RC"],
["RC"], String[], ones(Int64, 4), 1:4]
for v in test
println("\n# Testing $v:")
println("The elements are $("not " ^ !allequal(v))all equal.")
println("The elements are $("not " ^ !issorted(v))strictly increasing.")
end
{{out}}
# Testing String["RC", "RC", "RC"]:
The elements are all equal.
The elements are strictly increasing.
# Testing String["RC", "RC", "Rc"]:
The elements are not all equal.
The elements are strictly increasing.
# Testing String["RA", "RB", "RC"]:
The elements are not all equal.
The elements are strictly increasing.
# Testing String["RC"]:
The elements are all equal.
The elements are strictly increasing.
# Testing String[]:
The elements are all equal.
The elements are strictly increasing.
# Testing [1, 1, 1, 1]:
The elements are all equal.
The elements are strictly increasing.
# Testing 1:4:
The elements are not all equal.
The elements are strictly increasing.
Klong
{:[2>#x;1;&/=:'x]}:(["test" "test" "test"])
1
{:[2>#x;1;&/<:'x]}:(["bar" "baz" "foo"])
1
Kotlin
// version 1.0.6
fun areEqual(strings: Array<String>): Boolean {
if (strings.size < 2) return true
return (1 until strings.size).none { strings[it] != strings[it - 1] }
}
fun areAscending(strings: Array<String>): Boolean {
if (strings.size < 2) return true
return (1 until strings.size).none { strings[it] <= strings[it - 1] }
}
// The strings are given in the command line arguments
fun main(args: Array<String>) {
println("The strings are : ${args.joinToString()}")
if (areEqual(args)) println("They are all equal")
else if (areAscending(args)) println("They are in strictly ascending order")
else println("They are neither equal nor in ascending order")
}
Sample input/output: {{out}}
The strings are : first, second, third
They are in strictly ascending order
Lua
function identical(t_str)
_, fst = next(t_str)
if fst then
for _, i in pairs(t_str) do
if i ~= fst then return false end
end
end
return true
end
function ascending(t_str)
prev = false
for _, i in ipairs(t_str) do
if prev and prev >= i then return false end
prev = i
end
return true
end
function check(str)
t_str = {}
for i in string.gmatch(str, "[%a_]+") do
table.insert(t_str, i)
end
str = str .. ": "
if not identical(t_str) then str = str .. "not " end
str = str .. "identical and "
if not ascending(t_str) then str = str .. "not " end
print(str .. "ascending.")
end
check("ayu dab dog gar panda tui yak")
check("oy oy oy oy oy oy oy oy oy oy")
check("somehow somewhere sometime")
check("Hoosiers")
check("AA,BB,CC")
check("AA,AA,AA")
check("AA,CC,BB")
check("AA,ACB,BB,CC")
check("single_element")
{{out}}
ayu dab dog gar panda tui yak: not identical and ascending.
oy oy oy oy oy oy oy oy oy oy: identical and not ascending.
somehow somewhere sometim: not identical and not ascending.
Hoosiers: identical and ascending.
AA,BB,CC: not identical and ascending.
AA,AA,AA: identical and not ascending.
AA,CC,BB: not identical and not ascending.
AA,ACB,BB,CC: not identical and ascending.
single_element: identical and ascending.
M2000 Interpreter
Module CheckIt {
Function Equal(Strings){
k=Each(Strings, 2, -1)
a$=Array$(Strings, 0)
=True
While k {
=False
if a$<>array$(k) then exit
=True
}
}
Function LessThan(Strings){
=True
if len(Strings)<2 then exit
k=Each(Strings, 2)
a$=Array$(Strings, 0)
While k {
=False
if a$>=array$(k) then exit
a$=array$(k)
=True
}
}
Print Equal(("alfa","alfa","alfa", "alfa"))=True
Print Equal(("alfa",))=True
Dim A$(10)="alfa"
Print Equal(A$())=True
Print Equal(("alfa1","alfa2","alfa3", "alfa4"))=False
Print LessThan(("alfa1","alfa2","alfa3", "alfa4"))=True
Print LessThan(("alfa1",))=true
alfa$=Lambda$ k=1 ->{=String$("*", k) : k++}
Dim A$(20)<<alfa$()
Print LessThan(A$())=True
A$(5)=""
Print LessThan(A$())=False
}
Checkit
Maple
lexEqual := proc(lst)
local i:
for i from 2 to numelems(lst) do
if lst[i-1] <> lst[i] then return false: fi:
od:
return true:
end proc:
lexAscending := proc(lst)
local i:
for i from 2 to numelems(lst) do
if StringTools:-Compare(lst[i],lst[i-1]) then return false: fi:
od:
return true:
end proc:
tst := ["abc","abc","abc","abc","abc"]:
lexEqual(tst):
lexAscending(tst):
{{Out|Examples}}
true
false
Mathematica
data1 = {"aaa", "aaa", "aab"};
Apply[Equal, data]
OrderedQ[data]
{{out}}
False
True
NetRexx
/* NetRexx */
options replace format comments java crossref symbols nobinary
runSample(arg)
return
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method isEqual(list = Rexx[]) public static binary returns boolean
state = boolean (1 == 1) -- default to true
loop ix = 1 while ix < list.length
state = list[ix - 1] == list[ix]
if \state then leave ix
end ix
return state
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method isAscending(list = Rexx[]) public static binary returns boolean
state = boolean (1 == 1) -- default to true
loop ix = 1 while ix < list.length
state = list[ix - 1] << list[ix]
if \state then leave ix
end ix
return state
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method runSample(arg) private static
samples = [ -
['AA', 'BB', 'CC'] -
, ['AA', 'AA', 'AA'] -
, ['AA', 'CC', 'BB'] -
, ['single_element'] -
]
loop ix = 0 while ix < samples.length
sample = samples[ix]
if isEqual(sample) then eq = 'elements are identical'
else eq = 'elements are not identical'
if isAscending(sample) then asc = 'elements are in ascending order'
else asc = 'elements are not in ascending order'
say 'List:' Arrays.toString(sample)
say ' 'eq
say ' 'asc
end ix
return
{{out}}
List: [AA, BB, CC]
elements are not identical
elements are in ascending order
List: [AA, AA, AA]
elements are identical
elements are not in ascending order
List: [AA, CC, BB]
elements are not identical
elements are not in ascending order
List: [single_element]
elements are identical
elements are in ascending order
OCaml
open List;;
let analyze cmp l =
let rec analyze' l prevs =
match l with
[] -> true
| [s] -> cmp prevs s
| s::rest -> (cmp prevs s) && (analyze' rest s)
in analyze' (List.tl l) (List.hd l)
;;
let isEqual = analyze (=) ;;
let isAscending = analyze (<) ;;
let test sample =
List.iter print_endline sample;
if (isEqual sample)
then (print_endline "elements are identical")
else (print_endline "elements are not identical");
if (isAscending sample)
then print_endline "elements are in ascending order"
else print_endline "elements are not in ascending order";;
let lasc = ["AA";"BB";"CC";"EE"];;
let leq = ["AA";"AA";"AA";"AA"];;
let lnoasc = ["AA";"BB";"EE";"CC"];;
List.iter test [lasc;leq;lnoasc];;
{{out}}
AA
BB
CC
EE
elements are not identical
elements are in ascending order
AA
AA
AA
AA
elements are identical
elements are not in ascending order
AA
BB
EE
CC
elements are not identical
elements are not in ascending order
Oforth
: lexEqual asSet size 1 <= ;
: lexCmp(l) l l right( l size 1- ) zipWith(#<) and ;
ooRexx
/* REXX ---------------------------------------------------------------
* 28.06.2014 Walter Pachl
*--------------------------------------------------------------------*/
Call test 'ABC',.list~of('AA','BB','CC')
Call test 'AAA',.list~of('AA','AA','AA')
Call test 'ACB',.list~of('AA','CC','BB')
Exit
test: Procedure
Use Arg name,list
all_equal=1
increasing=1
Do i=0 To list~items-2
i1=i+1
Select
When list[i1]==list[i] Then increasing=0
When list[i1]<<list[i] Then Do
all_equal=0
increasing=0
End
When list[i1]>>list[i] Then all_equal=0
End
End
Select
When all_equal Then
Say 'List' name': all elements are equal'
When increasing Then
Say 'List' name': elements are in increasing order'
Otherwise
Say 'List' name': neither equal nor in increasing order'
End
Return
{{out}}
List ABC: elements are in increasing order
List AAA: all elements are equal
List ACB: neither equal nor in increasing order
PARI/GP
Easiest is to use Set()
:
allEqual(strings)=#Set(strings)<2
inOrder(strings)=Set(strings)==strings
More efficient:
allEqual(strings)=for(i=2,#strings,if(strings[i]!=strings[i-1], return(0))); 1
inOrder(strings)=for(i=2,#strings,if(strings[i]>strings[i-1], return(0))); 1
Perl
use List::Util 1.33 qw(all);
all { $strings[0] eq $strings[$_] } 1..$#strings # All equal
all { $strings[$_-1] lt $strings[$_] } 1..$#strings # Strictly ascending
Alternatively, if you can guarantee that the input strings don't contain null bytes, the equality test can be performed by a regex like this:
join("\0", @strings) =~ /^ ( [^\0]*+ ) (?: \0 \1 )* $/x # All equal
Perl 6
In Perl 6, putting square brackets around an [[wp:Infix_notation|infix]] operator turns it into a listop that effectively works as if the operator had been but in between all of the elements of the argument list ''(or in technical terms, it [[wp:Fold_(higher-order_function)|folds/reduces]] the list using that operator, while taking into account the operator's inherent [http://perlcabal.org/syn/S03.html#line_62 associativity] and identity value)'':
[eq] @strings # All equal
[lt] @strings # Strictly ascending
Phix
function allsame(sequence s)
for i=2 to length(s) do
if s[i]!=s[1] then return 0 end if
end for
return 1
end function
function strict_order(sequence s)
for i=2 to length(s) do
if s[i]<=s[i-1] then return 0 end if
end for
return 1
end function
procedure test(sequence s)
?{s,allsame(s),strict_order(s)}
end procedure
test({"AA","BB","CC"})
test({"AA","AA","AA"})
test({"AA","CC","BB"})
test({"AA","ACB","BB","CC"})
test({"single_element"})
{{out}}
{{"AA","BB","CC"},0,1}
{{"AA","AA","AA"},1,0}
{{"AA","CC","BB"},0,0}
{{"AA","ACB","BB","CC"},0,1}
{{"single_element"},1,1}
PicoLisp
PicoLisp has the native operators =, > and < these can take an infinite number of arguments and are also able to compare Transient symbols (the Strings of PicoLisp).
(= "AA" "AA" "AA")
-> T
(= "AA" "AA" "Aa")
-> NIL
(< "AA" "AA")
-> NIL
(< "AA" "Aa")
-> T
(< "1" "A" "B" "Z" "c" )
-> T
(> "A" "B" "Z" "C")
-> NIL
If you want a function which takes one list here are some straight-forward implementation:
(de same (List)
(apply = List))
(de sorted (List)
(apply < List))
(de sorted-backwards (List)
(apply > List))
(same '("AA" "AA" "AA"))
-> T
This would of course also work with <= and >= without any hassle.
PL/I
*process source xref attributes or(!);
/*--------------------------------------------------------------------
* 01.07.2014 Walter Pachl
*-------------------------------------------------------------------*/
clist: Proc Options(main);
Dcl (hbound) Builtin;
Dcl sysprint Print;
Dcl abc(3) Char(2) Init('AA','BB','CC');
Dcl aaa(3) Char(2) Init('AA','AA','AA');
Dcl acb(3) Char(2) Init('AA','CC','BB');
Call test('ABC',ABC);
Call test('AAA',AAA);
Call test('ACB',ACB);
test: Procedure(name,x);
Dcl name Char(*);
Dcl x(*) Char(*);
Dcl (all_equal,increasing) Bit(1) Init('1'b);
Dcl (i,i1) Bin Fixed(31);
Dcl txt Char(50) Var;
Do i=1 To hbound(x)-1 While(all_equal ! increasing);
i1=i+1;
Select;
When(x(i1)=x(i)) increasing='0'b;
When(x(i1)<x(i)) Do;
increasing='0'b;
all_equal='0'b;
End;
Otherwise /* x(i1)>x(i) */
all_equal='0'b;
End;
End;
Select;
When(all_equal) txt='all elements are equal';
When(increasing) txt='elements are in increasing order';
Otherwise txt='neither equal nor in increasing order';
End;
Put Skip List(name!!': '!!txt);
End;
End;
{{out}}
ABC: elements are in increasing order
AAA: all elements are equal
ACB: neither equal nor in increasing order
PowerShell
{{works with|PowerShell|4.0}}
function IsAscending ( [string[]]$Array ) { ( 0..( $Array.Count - 2 ) ).Where{ $Array[$_] -le $Array[$_+1] }.Count -eq $Array.Count - 1 }
function IsEqual ( [string[]]$Array ) { ( 0..( $Array.Count - 2 ) ).Where{ $Array[$_] -eq $Array[$_+1] }.Count -eq $Array.Count - 1 }
IsAscending 'A', 'B', 'B', 'C'
IsAscending 'A', 'C', 'B', 'C'
IsAscending 'A', 'A', 'A', 'A'
IsEqual 'A', 'B', 'B', 'C'
IsEqual 'A', 'C', 'B', 'C'
IsEqual 'A', 'A', 'A', 'A'
{{out}}
True
False
True
False
False
True
PureBasic
EnableExplicit
DataSection
Data.s ~"AA\tAA\tAA\nAA\tBB\tCC\nAA\tCC\tBB\nAA\tACB\tBB\tCC\nsingel_element"
EndDataSection
Macro PassFail(PF)
If PF : PrintN("Pass") : Else : PrintN("Fail") : EndIf
EndMacro
Macro ProcRec(Proc)
Define tf1$,tf2$ : Static chk.b : chk=#True
tf1$=StringField(s$,c,tz$) : tf2$=StringField(s$,c+1,tz$)
If Len(tf2$) : Proc(s$,tz$,c+1) : EndIf
EndMacro
Procedure.b IsStringsEqual(s$,tz$=~"\t",c.i=1)
ProcRec(IsStringsEqual)
chk & Bool(tf1$=tf2$ Or tf2$="")
ProcedureReturn chk
EndProcedure
Procedure.b IsStringsAscending(s$,tz$=~"\t",c.i=1)
ProcRec(IsStringsAscending)
chk & Bool(tf1$<tf2$ Or tf2$="")
ProcedureReturn chk
EndProcedure
Define t$,sf$,c.i,i.i,PF.b
Read.s t$ : c=CountString(t$,~"\n")
OpenConsole("Compare a list of Strings")
For i=1 To c+1
sf$=StringField(t$,i,~"\n")
PrintN("List : "+sf$)
Print("Lexical test : ") : PassFail(IsStringsEqual(sf$))
Print("Ascending test : ") : PassFail(IsStringsAscending(sf$))
PrintN("")
Next
Input()
{{out}}
List : AA AA AA
Lexical test : Pass
Ascending test : Fail
List : AA BB CC
Lexical test : Fail
Ascending test : Pass
List : AA CC BB
Lexical test : Fail
Ascending test : Fail
List : AA ACB BB CC
Lexical test : Fail
Ascending test : Pass
List : singel_element
Lexical test : Pass
Ascending test : Pass
Python
A useful pattern is that when you need some function of an item in a list with its next item over possibly all items in the list then f(a, nexta) for a, nexta in zip(alist, alist[1:]))
works nicely.
(Especially if an index is not needed elsewhere in the algorithm).
all(a == nexta for a, nexta in zip(strings, strings[1:])) # All equal
all(a < nexta for a, nexta in zip(strings, strings[1:])) # Strictly ascending
len(set(strings)) == 1 # Concise all equal
sorted(strings, reverse=True) == strings # Concise (but not particularly efficient) ascending
Equivalently, we can also use additional list arguments with '''map''' rather than zip,
and, if we wish, pass functional forms of standard operators to either of them:
from operator import (eq, lt)
xs = ["alpha", "beta", "gamma", "delta", "epsilon", "zeta",
"eta", "theta", "iota", "kappa", "lambda", "mu"]
ys = ["alpha", "beta", "gamma", "delta", "epsilon", "zeta",
"eta", "theta", "iota", "kappa", "lambda", "mu"]
az = sorted(xs)
print (
all(map(eq, xs, ys)),
all(map(lt, xs, xs[1:])),
all(map(lt, az, az[1:]))
)
{{Out}}
True False True
R
Let's start with a function that splits a vector into sub-vectors; it starts a new vector whenever the comparison function yields false.
chunks <- function (compare, xs) {
starts = which(c(T, !compare(head(xs, -1), xs[-1]), T))
lapply(seq(1,length(starts)-1),
function(i) xs[starts[i]:(starts[i+1]-1)] )
}
Testing:
> chunks(`<`, c(0,4,8,1,3,5,7,9))
[[1]]
[1] 0 4 8
[[2]]
[1] 1 3 5 7 9
R displays the results in a very prolix manner, so let's simplify it.
> toString(chunks(`<`, c(0,4,8,1,3,5,7,9,-2,0,88)))
[1] "c(0, 4, 8), c(1, 3, 5, 7, 9), c(-2, 0, 88)"
> toString(chunks(`==`, c(0,0,0,5,5,8)))
[1] "c(0, 0, 0), c(5, 5), 8"
Defining the required functions:
all.eq <- function(xs) 1 == length( chunks(`==`, xs))
ascending <- function(xs) 1 == length( chunks(`<`, xs))
Testing:
> all.eq(c('by'))
[1] TRUE
> all.eq(c('by','by','by'))
[1] TRUE
> all.eq(c('by','by','by','zoo'))
[1] FALSE
> ascending(c("at", "even", "once", "run", "zoo"))
[1] TRUE
> ascending(c("at", "even", "once", "run", "zoo", "we"))
[1] FALSE
> ascending(c("at", "even", "go", "go"))
[1] FALSE
> ascending(c("at"))
[1] TRUE
Racket
Racket mostly has this... see [http://docs.racket-lang.org/reference/strings.html?q=string%3C%3F#%28def.%28%28quote.~23~25kernel%29._string~3c~3f%29%29 documentation of string=?
and string<?
].
There are two small issues:
- Racket will not cope with comparing less than 2 strings
- also
string=?
andstring<?
take variable arguments, so the list has to beapply
ed to the functions
Hence the wrapper in the code below:
#lang racket/base
(define ((list-stringX? stringX?) strs)
(or (null? strs) (null? (cdr strs)) (apply stringX? strs)))
(define list-string=? (list-stringX? string=?))
(define list-string<? (list-stringX? string<?))
(module+ test
(require tests/eli-tester)
(test
(list-string=? '()) => #t
(list-string=? '("a")) => #t
(list-string=? '("a" "a")) => #t
(list-string=? '("a" "a" "a")) => #t
(list-string=? '("b" "b" "a")) => #f)
(test
(list-string<? '()) => #t
(list-string<? '("a")) => #t
(list-string<? '("a" "b")) => #t
(list-string<? '("a" "a")) => #f
(list-string<? '("a" "b" "a")) => #f
(list-string<? '("a" "b" "c")) => #t))
Red
Red []
list1: ["asdf" "Asdf" "asdf"]
list2: ["asdf" "bsdf" "asdf"]
list3: ["asdf" "asdf" "asdf"]
all-equal?: func [list][ 1 = length? unique/case list ]
sorted?: func [list][ list == sort/case copy list ] ;; sort without copy would modify list !
print all-equal? list1
print sorted? list1
print all-equal? list2
print sorted? list2
print all-equal? list3
print sorted? list3
{{out}}
false
false
false
false
true
true
REXX
version 1
/* REXX ---------------------------------------------------------------
* 28.06.2014 Walter Pachl
*--------------------------------------------------------------------*/
Call mklist 'ABC','AA','BB','CC'
Call test 'ABC'
Call mklist 'AAA','AA','AA','AA'
Call mklist 'ACB','AA','CC','BB'
Call test 'AAA'
Call test 'ACB'
Exit
mklist:
list=arg(1)
do i=1 by 1 To arg()-1
call value list'.'i,arg(i+1)
End
Call value list'.0',i-1
Return
test:
Parse Arg list
all_equal=1
increasing=1
Do i=1 To value(list'.0')-1 While all_equal | increasing
i1=i+1
Select
When value(list'.i1')==value(list'.i') Then increasing=0
When value(list'.i1')<<value(list'.i') Then Do
all_equal=0
increasing=0
End
When value(list'.i1')>>value(list'.i') Then all_equal=0
End
End
Select
When all_equal Then
Say 'List' value(list)': all elements are equal'
When increasing Then
Say 'List' value(list)': elements are in increasing order'
Otherwise
Say 'List' value(list)': neither equal nor in increasing order'
End
Return
{{out}}
List ABC: elements are in increasing order
List AAA: all elements are equal
List ACB: neither equal nor in increasing order
version 2
Programming note: If a caseless compare (case insensitive) is desired, the two :::::::* '''parse arg x''' (on lines '''14''' & '''20''') REXX statements could be replaced with either of (they're equivalent): :::::::* '''parse upper arg x''' :::::::* '''arg x'''
/*REXX program compares a list of (character) strings for: equality, all ascending. */
@.1= 'ayu dab dog gar panda tui yak' /*seven strings: they're all ascending.*/
@.2= 'oy oy oy oy oy oy oy oy oy oy' /* ten strings: all equal. */
@.3= 'somehow somewhere sometime' /*three strings: ¬equal, ¬ascending.*/
@.4= 'Hoosiers' /*only a single string is defined. */
@.5= /*Null. That is, no strings here. */
do j=1 for 5; say; say /* [↓] traipse through all the lists. */
say center(' '@.j, 50, "═") /*display a centered title/header. */
if ifEqual( @.j) then say 'strings are all equal.'
if ifAscend(@.j) then say 'strings are ascending.'
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
ifEqual: procedure; parse arg strings /*set STRINGS to a string in the list*/
do k=2 to words(strings) /*scan the strings in the list. */
if word(strings,k)\==word(strings,k-1) then return 0 /*string=prev? */
end /*k*/ /* [↑] 0=false, [↓] 1=true. */
return 1 /*indicate that all strings are equal. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
ifAscend: procedure; parse arg strings /*set STRINGS to a string in the list*/
do k=2 to words(strings) /*scan the strings in the list. */
if word(strings,k)<<=word(strings,k-1) then return 0 /*string>prev? */
end /*k*/ /* [↑] 0=false, [↓] 1=true. */
return 1 /*indicate that strings are ascending. */
{{out|output|text= when using the supplied lists:>>
══════════ ayu dab dog gar panda tui yak══════════
The strings are ascending.
══════════ oy oy oy oy oy oy oy oy oy oy══════════
The strings are all equal.
══════════ somehow somewhere sometime══════════
════════════════════ Hoosiers═════════════════════
The strings are all equal.
The strings are ascending.
════════════════════════ ═════════════════════════
The strings are all equal.
The strings are ascending.
version 3
This REXX version is more idiomatic.
/*REXX program compares a list of strings for: equality, all ascending. */
@.1= 'ayu dab dog gar panda tui yak' /*seven strings: they're all ascending.*/
@.2= 'oy oy oy oy oy oy oy oy oy oy' /* ten strings: all equal. */
@.3= 'somehow somewhere sometime' /*three strings: ¬equal, ¬ascending.*/
@.4= 'Hoosiers' /*only a single string is defined. */
@.5= /*Null. That is, no strings here. */
#= 5; do j=1 for #; say; say /* [↓] traipse through all the lists. */
say center(' '@.j, 50, "═") /*display a centered title/header. */
if cStr(@.j, 'Equal' ) then say " The strings are all equal."
if cStr(@.j, 'Ascending') then say " The strings are ascending."
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
cStr: procedure; parse arg x; arg , how 2 /*set X to list; get 1st char of arg #2*/
do k=2 to words(x) /*scan the strings in the list. */
if how=='E' then if word(x,k) \== word(x,k-1) then return 0 /*¬=prev.?*/
if how=='A' then if word(x,k) <<= word(x,k-1) then return 0 /*≤ prev.?*/
end /*k*/ /* [↓] 1=true. [↑] 0=false. */
return 1 /*indicate strings have true comparison*/
{{out|output|text= is identical to the above REXX version.
Ring
cString1 = "hello"
cString2 = "hello"
compare(cString1,cString2)
cString1 = "abc"
cString2 = "bcd"
compare(cString1,cString2)
cString1 = "bcd"
cString2 = "abc"
compare(cString1,cString2)
func compare aString, bString
n = strcmp(aString,bString)
if n = 0 see aString + " = " + bString + nl
but n < 0 see aString + " < " + bString + nl
but n > 0 see aString + " > " + bString + nl ok
Ruby
strings.uniq.one? # all equal?
strings == strings.uniq.sort # ascending?
Short circuiting:
strings.all?{|str| str == strings.first} # all equal?
strings.each_cons(2).all?{|str1, str2| str1 < str2} # ascending?
Rust
// Note that this solution uses the feature 'slice_patterns' which is available Rust nightly!
#![feature(slice_patterns)]
fn strings_are_equal(seq: &[&str]) -> bool {
match seq {
&[] | &[_] => true,
&[x, y, ref tail..] if x == y => strings_are_equal(&[&[y], tail].concat()),
_ => false
}
}
fn asc_strings(seq: &[&str]) -> bool {
match seq {
&[] | &[_] => true,
&[x, y, ref tail..] if x < y => asc_strings(&[&[y], tail].concat()),
_ => false
}
}
=={{header|S-lang}}==
"Simple Loop" and "Array Idiomatic" versions:
a0 = sarr[0]; _for i (1, length(sarr)-1, 1) if (sarr[i] != a0) return 0;
return 1; } define ascending_sl(sarr) { variable n = length(sarr), a0, i; if (n < 2) return 1;
_for i (0, length(sarr)-2, 1) if (sarr[i] >= sarr[i+1]) return 0;
return 1; }
define equal_ai(sarr) { if (length(sarr) < 2) return 1; variable s0 = sarr[0]; return all(sarr[[1:]] == s0); }
define ascending_ai(sarr) { variable la = length(sarr); if (la < 2) return 1; return all(sarr[[0:la-2]] < sarr[[1:la-1]]); }
define atest(a) { () = printf("\n"); print(a);
() = printf("equal_sl=%d, ascending_sl=%d\n", equal_sl(a), ascending_sl(a)); () = printf("equal_ai=%d, ascending_ai=%d\n", equal_ai(a), ascending_ai(a)); }
atest(["AA","BB","CC"]); atest(["AA","AA","AA"]); atest(["AA","CC","BB"]); atest(["AA","ACB","BB","CC"]); atest(["single_element"]); atest(NULL);
{{out}}
```txt
"AA"
"BB"
"CC"
equal_sl=0, ascending_sl=1
equal_ai=0, ascending_ai=1
"AA"
"AA"
"AA"
equal_sl=1, ascending_sl=0
equal_ai=1, ascending_ai=0
"AA"
"CC"
"BB"
equal_sl=0, ascending_sl=0
equal_ai=0, ascending_ai=0
"AA"
"ACB"
"BB"
"CC"
equal_sl=0, ascending_sl=1
equal_ai=0, ascending_ai=1
"single_element"
equal_sl=1, ascending_sl=1
equal_ai=1, ascending_ai=1
NULL
equal_sl=1, ascending_sl=1
equal_ai=1, ascending_ai=1
Scala
Functions implemented in Scala following a functional paradigm
def strings_are_equal(seq:List[String]):Boolean = seq match {
case Nil => true
case s::Nil => true
case el1 :: el2 :: tail => el1==el2 && strings_are_equal(el2::tail)
}
def asc_strings(seq:List[String]):Boolean = seq match {
case Nil => true
case s::Nil => true
case el1 :: el2 :: tail => el1.compareTo(el2) < 0
}
{{out}}
'''Sample tests:'''
scala> strings_are_equal(List("asdf"))
res3: Boolean = true
scala> strings_are_equal(List("asdf","asdf","sf"))
res5: Boolean = false
scala> asc_strings(List())
res10: Boolean = true
scala> asc_strings(List("asdfas","fds"))
res11: Boolean = true
scala> asc_strings(List("sdfa","asfsdf","afas","asf"))
res8: Boolean = false
Scheme
For known lists that are 'short-enough', the simplest solution uses 'apply', but that relies on the list being shorter than the maximum number of arguments a function can accept. Better is to write a simple loop:
(define (compare-strings fn strs)
(or (null? strs) ; returns #t on empty list
(null? (cdr strs)) ; returns #t on list of size 1
(do ((fst strs (cdr fst))
(snd (cdr strs) (cdr snd)))
((or (null? snd)
(not (fn (car fst) (car snd))))
(null? snd))))) ; returns #t if the snd list is empty, meaning all comparisons are exhausted
(compare-strings string=? strings) ; test for all equal
(compare-strings string<? strings) ; test for in ascending order
Sidef
Short-circuiting:
1..arr.end -> all{ arr[0] == arr[_] } # all equal
1..arr.end -> all{ arr[_-1] < arr[_] } # strictly ascending
Non short-circuiting:
arr.uniq.len == 1 # all equal
arr == arr.uniq.sort # strictly ascending
Tcl
The command form of the eq
and <
operators (introduced in Tcl 8.5) handle arbitrarily many arguments and will check if they're all equal/ordered.
Making the operators work with a list of values is just a matter of using the expansion syntax with them.
tcl::mathop::eq {*}$strings; # All values string-equal
tcl::mathop::< {*}$strings; # All values in strict order
VBA
Private Function IsEqualOrAscending(myList) As String
Dim i&, boolEqual As Boolean, boolAsc As Boolean
On Error Resume Next
If UBound(myList) > 0 Then
If Err.Number > 0 Then
IsEqualOrAscending = "Error " & Err.Number & " : Empty array"
On Error GoTo 0
Exit Function
Else
For i = 1 To UBound(myList)
If myList(i) <> myList(i - 1) Then boolEqual = True
If myList(i) <= myList(i - 1) Then boolAsc = True
Next
End If
End If
IsEqualOrAscending = "List : " & Join(myList, ",") & ", IsEqual : " & (Not boolEqual) & ", IsAscending : " & Not boolAsc
End Function
Call :
Sub Main()
Dim List
Debug.Print IsEqualOrAscending(Array("AA", "BB", "CC"))
Debug.Print IsEqualOrAscending(Array("AA", "AA", "AA"))
Debug.Print IsEqualOrAscending(Array("AA", "CC", "BB"))
Debug.Print IsEqualOrAscending(Array("AA", "ACB", "BB", "CC"))
Debug.Print IsEqualOrAscending(Array("single_element"))
Debug.Print IsEqualOrAscending(Array("AA", "BB", "BB"))
'test with Empty Array :
Debug.Print IsEqualOrAscending(List)
End Sub
{{Out}}
List : AA,BB,CC, IsEqual : False, IsAscending : True
List : AA,AA,AA, IsEqual : True, IsAscending : False
List : AA,CC,BB, IsEqual : False, IsAscending : False
List : AA,ACB,BB,CC, IsEqual : False, IsAscending : True
List : single_element, IsEqual : True, IsAscending : True
List : AA,BB,BB, IsEqual : False, IsAscending : False
Error 13 : Empty array
VBScript
Function string_compare(arr)
lexical = "Pass"
ascending = "Pass"
For i = 0 To UBound(arr)
If i+1 <= UBound(arr) Then
If arr(i) <> arr(i+1) Then
lexical = "Fail"
End If
If arr(i) >= arr(i+1) Then
ascending = "Fail"
End If
End If
Next
string_compare = "List: " & Join(arr,",") & vbCrLf &_
"Lexical Test: " & lexical & vbCrLf &_
"Ascending Test: " & ascending & vbCrLf
End Function
WScript.StdOut.WriteLine string_compare(Array("AA","BB","CC"))
WScript.StdOut.WriteLine string_compare(Array("AA","AA","AA"))
WScript.StdOut.WriteLine string_compare(Array("AA","CC","BB"))
WScript.StdOut.WriteLine string_compare(Array("AA","ACB","BB","CC"))
WScript.StdOut.WriteLine string_compare(Array("FF"))
{{Out}}
List: AA,BB,CC
Lexical Test: Fail
Ascending Test: Pass
List: AA,AA,AA
Lexical Test: Pass
Ascending Test: Fail
List: AA,CC,BB
Lexical Test: Fail
Ascending Test: Fail
List: AA,ACB,BB,CC
Lexical Test: Fail
Ascending Test: Pass
List: FF
Lexical Test: Pass
Ascending Test: Pass
zkl
These short circuit.
fcn allEQ(strings){ (not strings.filter1('!=(strings[0]))) }
fcn monoUp(strings){
strings.len()<2 or
strings.reduce(fcn(a,b){ if(a>=b) return(Void.Stop,False); b }).toBool()
}
allEQ(T("AA")).println(); //True
allEQ(T("AA","AA","AA","AA")).println(); //True
allEQ(T("A", "AA","AA","AA")).println(); //False
monoUp(T("a")).println(); //True
monoUp(T("a","aa","aaa","aaaa")).println(); //True
monoUp(T("a","aa","aaa","aaa")).println(); //False
monoUp(T("a","b","c","cc")).println(); //True
zonnon
module CompareStrings;
type
Vector = array * of string;
var
v,w: Vector;
i: integer;
all,ascending: boolean;
begin
v := new Vector(3);
v[0] := "uno";
v[1] := "uno";
v[2] := "uno";
all := true;
for i := 1 to len(v) - 1 do
all := all & (v[i - 1] = v[i]);
end;
w := new Vector(3);
w[0] := "abc";
w[1] := "bcd";
w[2] := "cde";
v := w;
ascending := true;
for i := 1 to len(v) - 1 do
ascending := ascending & (v[i - 1] <= v[i])
end;
write("all equals?: ");writeln(all);
write("ascending?: ");writeln(ascending)
end CompareStrings.
ZX Spectrum Basic
{{trans|AWK}}
10 FOR j=160 TO 200 STEP 10
20 RESTORE j
30 READ n
40 LET test1=1: LET test2=1
50 FOR i=1 TO n
60 READ a$
70 PRINT a$;" ";
80 IF i=1 THEN GO TO 110
90 IF p$<>a$ THEN LET test1=0
100 IF p$>=a$ THEN LET test2=0
110 LET p$=a$
120 NEXT i
130 PRINT 'test1'test2
140 NEXT j
150 STOP
160 DATA 3,"AA","BB","CC"
170 DATA 3,"AA","AA","AA"
180 DATA 3,"AA","CC","BB"
190 DATA 4,"AA","ACB","BB","CC"
200 DATA 1,"single_element"