⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}} A given rectangle is made from ''m'' × ''n'' squares. If ''m'' and ''n'' are not both odd, then it is possible to cut a path through the rectangle along the square edges such that the rectangle splits into two connected pieces with the same shape (after rotating one of the pieces by 180°). All such paths for 2 × 2 and 4 × 3 rectangles are shown below.
[[file:rect-cut.svg]]
Write a program that calculates the number of different ways to cut an ''m'' × ''n'' rectangle. Optionally, show each of the cuts.
Possibly related task: [[Maze generation]] for depth-first search.
C
Exhaustive search on the cutting path. Symmetric configurations are only calculated once, which helps with larger sized grids.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef unsigned char byte;
byte *grid = 0;
int w, h, len;
unsigned long long cnt;
static int next[4], dir[4][2] = {{0, -1}, {-1, 0}, {0, 1}, {1, 0}};
void walk(int y, int x)
{
int i, t;
if (!y || y == h || !x || x == w) {
cnt += 2;
return;
}
t = y * (w + 1) + x;
grid[t]++, grid[len - t]++;
for (i = 0; i < 4; i++)
if (!grid[t + next[i]])
walk(y + dir[i][0], x + dir[i][1]);
grid[t]--, grid[len - t]--;
}
unsigned long long solve(int hh, int ww, int recur)
{
int t, cx, cy, x;
h = hh, w = ww;
if (h & 1) t = w, w = h, h = t;
if (h & 1) return 0;
if (w == 1) return 1;
if (w == 2) return h;
if (h == 2) return w;
cy = h / 2, cx = w / 2;
len = (h + 1) * (w + 1);
grid = realloc(grid, len);
memset(grid, 0, len--);
next[0] = -1;
next[1] = -w - 1;
next[2] = 1;
next[3] = w + 1;
if (recur) cnt = 0;
for (x = cx + 1; x < w; x++) {
t = cy * (w + 1) + x;
grid[t] = 1;
grid[len - t] = 1;
walk(cy - 1, x);
}
cnt++;
if (h == w)
cnt *= 2;
else if (!(w & 1) && recur)
solve(w, h, 0);
return cnt;
}
int main()
{
int y, x;
for (y = 1; y <= 10; y++)
for (x = 1; x <= y; x++)
if (!(x & 1) || !(y & 1))
printf("%d x %d: %llu\n", y, x, solve(y, x, 1));
return 0;
}
output
More awkward solution: after compiling, run <code>./a.out -v [width] [height]</code> for display of cuts.
```c
#include <stdio.h>
#include <stdlib.h>
typedef unsigned char byte;
int w = 0, h = 0, verbose = 0;
unsigned long count = 0;
byte **hor, **ver, **vis;
byte **c = 0;
enum { U = 1, D = 2, L = 4, R = 8 };
byte ** alloc2(int w, int h)
{
int i;
byte **x = calloc(1, sizeof(byte*) * h + h * w);
x[0] = (byte *)&x[h];
for (i = 1; i < h; i++)
x[i] = x[i - 1] + w;
return x;
}
void show()
{
int i, j, v, last_v;
printf("%ld\n", count);
#if 0
for (i = 0; i <= h; i++) {
for (j = 0; j <= w; j++)
printf("%d ", hor[i][j]);
puts("");
}
puts("");
for (i = 0; i <= h; i++) {
for (j = 0; j <= w; j++)
printf("%d ", ver[i][j]);
puts("");
}
puts("");
#endif
for (i = 0; i < h; i++) {
if (!i) v = last_v = 0;
else last_v = v = hor[i][0] ? !last_v : last_v;
for (j = 0; j < w; v = ver[i][++j] ? !v : v)
printf(v ? "\033[31m[]" : "\033[33m{}");
puts("\033[m");
}
putchar('\n');
}
void walk(int y, int x)
{
if (x < 0 || y < 0 || x > w || y > h) return;
if (!x || !y || x == w || y == h) {
++count;
if (verbose) show();
return;
}
if (vis[y][x]) return;
vis[y][x]++; vis[h - y][w - x]++;
if (x && !hor[y][x - 1]) {
hor[y][x - 1] = hor[h - y][w - x] = 1;
walk(y, x - 1);
hor[y][x - 1] = hor[h - y][w - x] = 0;
}
if (x < w && !hor[y][x]) {
hor[y][x] = hor[h - y][w - x - 1] = 1;
walk(y, x + 1);
hor[y][x] = hor[h - y][w - x - 1] = 0;
}
if (y && !ver[y - 1][x]) {
ver[y - 1][x] = ver[h - y][w - x] = 1;
walk(y - 1, x);
ver[y - 1][x] = ver[h - y][w - x] = 0;
}
if (y < h && !ver[y][x]) {
ver[y][x] = ver[h - y - 1][w - x] = 1;
walk(y + 1, x);
ver[y][x] = ver[h - y - 1][w - x] = 0;
}
vis[y][x]--; vis[h - y][w - x]--;
}
void cut(void)
{
if (1 & (h * w)) return;
hor = alloc2(w + 1, h + 1);
ver = alloc2(w + 1, h + 1);
vis = alloc2(w + 1, h + 1);
if (h & 1) {
ver[h/2][w/2] = 1;
walk(h / 2, w / 2);
} else if (w & 1) {
hor[h/2][w/2] = 1;
walk(h / 2, w / 2);
} else {
vis[h/2][w/2] = 1;
hor[h/2][w/2-1] = hor[h/2][w/2] = 1;
walk(h / 2, w / 2 - 1);
hor[h/2][w/2-1] = hor[h/2][w/2] = 0;
ver[h/2 - 1][w/2] = ver[h/2][w/2] = 1;
walk(h / 2 - 1, w/2);
}
}
void cwalk(int y, int x, int d)
{
if (!y || y == h || !x || x == w) {
++count;
return;
}
vis[y][x] = vis[h-y][w-x] = 1;
if (x && !vis[y][x-1])
cwalk(y, x - 1, d|1);
if ((d&1) && x < w && !vis[y][x+1])
cwalk(y, x + 1, d|1);
if (y && !vis[y-1][x])
cwalk(y - 1, x, d|2);
if ((d&2) && y < h && !vis[y + 1][x])
cwalk(y + 1, x, d|2);
vis[y][x] = vis[h-y][w-x] = 0;
}
void count_only(void)
{
int t;
long res;
if (h * w & 1) return;
if (h & 1) t = h, h = w, w = t;
vis = alloc2(w + 1, h + 1);
vis[h/2][w/2] = 1;
if (w & 1) vis[h/2][w/2 + 1] = 1;
if (w > 1) {
cwalk(h/2, w/2 - 1, 1);
res = 2 * count - 1;
count = 0;
if (w != h)
cwalk(h/2+1, w/2, (w & 1) ? 3 : 2);
res += 2 * count - !(w & 1);
} else {
res = 1;
}
if (w == h) res = 2 * res + 2;
count = res;
}
int main(int c, char **v)
{
int i;
for (i = 1; i < c; i++) {
if (v[i][0] == '-' && v[i][1] == 'v' && !v[i][2]) {
verbose = 1;
} else if (!w) {
w = atoi(v[i]);
if (w <= 0) goto bail;
} else if (!h) {
h = atoi(v[i]);
if (h <= 0) goto bail;
} else
goto bail;
}
if (!w) goto bail;
if (!h) h = w;
if (verbose) cut();
else count_only();
printf("Total: %ld\n", count);
return 0;
bail: fprintf(stderr, "bad args\n");
return 1;
}
Common Lisp
Count only.
(defun cut-it (w h &optional (recur t))
(if (oddp (* w h)) (return-from cut-it 0))
(if (oddp h) (rotatef w h))
(if (= w 1) (return-from cut-it 1))
(let ((cnt 0)
(m (make-array (list (1+ h) (1+ w))
:element-type 'bit
:initial-element 0))
(cy (truncate h 2))
(cx (truncate w 2)))
(setf (aref m cy cx) 1)
(if (oddp w) (setf (aref m cy (1+ cx)) 1))
(labels
((walk (y x turned)
(when (or (= y 0) (= y h) (= x 0) (= x w))
(incf cnt (if turned 2 1))
(return-from walk))
(setf (aref m y x) 1)
(setf (aref m (- h y) (- w x)) 1)
(loop for i from 0
for (dy dx) in '((0 -1) (-1 0) (0 1) (1 0))
while (or turned (< i 2)) do
(let ((y2 (+ y dy))
(x2 (+ x dx)))
(when (zerop (aref m y2 x2))
(walk y2 x2 (or turned (> i 0))))))
(setf (aref m (- h y) (- w x)) 0)
(setf (aref m y x) 0)))
(walk cy (1- cx) nil)
(cond ((= h w) (incf cnt cnt))
((oddp w) (walk (1- cy) cx t))
(recur (incf cnt (cut-it h w nil))))
cnt)))
(loop for w from 1 to 9 do
(loop for h from 1 to w do
(if (evenp (* w h))
(format t "~d x ~d: ~d~%" w h (cut-it w h)))))
output
## D
{{trans|C}}
```d
import core.stdc.stdio, core.stdc.stdlib, core.stdc.string, std.typecons;
enum int[2][4] dir = [[0, -1], [-1, 0], [0, 1], [1, 0]];
__gshared ubyte[] grid;
__gshared uint w, h, len;
__gshared ulong cnt;
__gshared uint[4] next;
void walk(in uint y, in uint x) nothrow @nogc {
if (!y || y == h || !x || x == w) {
cnt += 2;
return;
}
immutable t = y * (w + 1) + x;
grid[t]++;
grid[len - t]++;
foreach (immutable i; staticIota!(0, 4))
if (!grid[t + next[i]])
walk(y + dir[i][0], x + dir[i][1]);
grid[t]--;
grid[len - t]--;
}
ulong solve(in uint hh, in uint ww, in bool recur) nothrow @nogc {
h = (hh & 1) ? ww : hh;
w = (hh & 1) ? hh : ww;
if (h & 1) return 0;
if (w == 1) return 1;
if (w == 2) return h;
if (h == 2) return w;
immutable cy = h / 2;
immutable cx = w / 2;
len = (h + 1) * (w + 1);
{
// grid.length = len; // Slower.
alias T = typeof(grid[0]);
auto ptr = cast(T*)alloca(len * T.sizeof);
if (ptr == null)
exit(1);
grid = ptr[0 .. len];
}
grid[] = 0;
len--;
next = [-1, -w - 1, 1, w + 1];
if (recur)
cnt = 0;
foreach (immutable x; cx + 1 .. w) {
immutable t = cy * (w + 1) + x;
grid[t] = 1;
grid[len - t] = 1;
walk(cy - 1, x);
}
cnt++;
if (h == w)
cnt *= 2;
else if (!(w & 1) && recur)
solve(w, h, 0);
return cnt;
}
void main() {
foreach (immutable uint y; 1 .. 11)
foreach (immutable uint x; 1 .. y + 1)
if (!(x & 1) || !(y & 1))
printf("%d x %d: %llu\n", y, x, solve(y, x, true));
}
{{out}}
2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667
10 x 1: 1
10 x 2: 10
10 x 3: 115
10 x 4: 1228
10 x 5: 10295
10 x 6: 118276
10 x 7: 1026005
10 x 8: 11736888
10 x 9: 99953769
10 x 10: 1124140214
Using the LDC2 compiler the runtime is about 15.98 seconds (the first C entry runs in about 16.75 seconds with GCC).
Eiffel
class
APPLICATION
create
make
feature {NONE} -- Initialization
make
-- Finds solution for cut a rectangle up to 10 x 10.
local
i, j, n: Integer
r: GRID
do
n := 10
from
i := 1
until
i > n
loop
from
j := 1
until
j > i
loop
if i.bit_and (1) /= 1 or j.bit_and (1) /= 1 then
create r.make (i, j)
r.print_solution
end
j := j + 1
end
i := i + 1
end
end
end
class
GRID
create
make
feature {NONE}
n: INTEGER
m: INTEGER
feature
print_solution
-- Prints solution to cut a rectangle.
do
calculate_possibilities
io.put_string ("Rectangle " + n.out + " x " + m.out + ": " + count.out + " possibilities%N")
end
count: INTEGER
-- Number of solutions
make (a_n: INTEGER; a_m: INTEGER)
-- Initialize Problem with 'a_n' and 'a_m'.
require
a_n > 0
a_m > 0
do
n := a_n
m := a_m
count := 0
end
calculate_possibilities
-- Select all possible starting points.
local
i: INTEGER
do
if (n = 1 or m = 1) then
count := 1
end
from
i := 0
until
i > n or (n = 1 or m = 1)
loop
solve (create {POINT}.make_with_values (i, 0), create {POINT}.make_with_values (n - i, m), create {LINKED_LIST [POINT]}.make, create {LINKED_LIST [POINT]}.make)
i := i + 1
variant
n - i + 1
end
from
i := 0
until
i > m or (n = 1 or m = 1)
loop
solve (create {POINT}.make_with_values (n, i), create {POINT}.make_with_values (0, m - i), create {LINKED_LIST [POINT]}.make, create {LINKED_LIST [POINT]}.make)
i := i + 1
variant
m - i + 1
end
end
feature {NONE}
solve (p, q: POINT; visited_p, visited_q: LINKED_LIST [POINT])
-- Recursive solution of cut a rectangle.
local
possible_next: LINKED_LIST [POINT]
next: LINKED_LIST [POINT]
opposite: POINT
do
if p.negative or q.negative then
elseif p.same (q) then
add_solution
else
possible_next := get_possible_next (p)
create next.make
across
possible_next as x
loop
if x.item.x >= n or x.item.y >= m then
-- Next point cannot be on the border. Do nothing.
elseif x.item.same (q) then
add_solution
elseif not contains (x.item, visited_p) and not contains (x.item, visited_q) then
next.extend (x.item)
end
end
across
next as x
loop
-- Move in one direction
-- Calculate the opposite end of the cut by moving into the opposite direction (compared to p -> x)
create opposite.make_with_values (q.x - (x.item.x - p.x), q.y - (x.item.y - p.y))
visited_p.extend (p)
visited_q.extend (q)
solve (x.item, opposite, visited_p, visited_q)
-- Remove last point again
visited_p.finish
visited_p.remove
visited_q.finish
visited_q.remove
end
end
end
get_possible_next (p: POINT): LINKED_LIST [POINT]
-- Four possible next points.
local
q: POINT
do
create Result.make
--up
create q.make_with_values (p.x + 1, p.y)
if q.valid and q.x <= n and q.y <= m then
Result.extend (q);
end
--down
create q.make_with_values (p.x - 1, p.y)
if q.valid and q.x <= n and q.y <= m then
Result.extend (q)
end
--left
create q.make_with_values (p.x, p.y - 1)
if q.valid and q.x <= n and q.y <= m then
Result.extend (q)
end
--right
create q.make_with_values (p.x, p.y + 1)
if q.valid and q.x <= n and q.y <= m then
Result.extend (q)
end
end
add_solution
-- Increment count.
do
count := count + 1
end
contains (p: POINT; set: LINKED_LIST [POINT]): BOOLEAN
-- Does set contain 'p'?
do
set.compare_objects
Result := set.has (p)
end
end
class
POINT
create
make, make_with_values
feature
make_with_values (a_x: INTEGER; a_y: INTEGER)
-- Initialize x and y with 'a_x' and 'a_y'.
do
x := a_x
y := a_y
end
make
-- Initialize x and y with 0.
do
x := 0
y := 0
end
x: INTEGER
y: INTEGER
negative: BOOLEAN
-- Are x or y negative?
do
Result := x < 0 or y < 0
end
same (other: POINT): BOOLEAN
-- Does x and y equal 'other's x and y?
do
Result := (x = other.x) and (y = other.y)
end
valid: BOOLEAN
-- Are x and y valid points?
do
Result := (x > 0) and (y > 0)
end
end
{{out}}
Rectangle 2 x 1: 1 possibilities
Rectangle 2 x 2: 2 possibilities
Rectangle 3 x 2: 3 possibilities
Rectangle 4 x 1: 1 possibilities
Rectangle 4 x 2: 4 possibilities
Rectangle 4 x 3: 9 possibilities
Rectangle 4 x 4: 22 possibilities
Rectangle 5 x 2: 5 possibilities
Rectangle 5 x 4: 39 possibilities
Rectangle 6 x 1: 1 possibilities
Rectangle 6 x 2: 6 possibilities
Rectangle 6 x 3: 23 possibilities
Rectangle 6 x 4: 90 possibilities
Rectangle 6 x 5: 263 possibilities
Rectangle 6 x 6: 1018 possibilities
Rectangle 7 x 2: 7 possibilities
Rectangle 7 x 4: 151 possibilities
Rectangle 7 x 6: 2947 possibilities
Rectangle 8 x 1: 1 possibilities
Rectangle 8 x 2: 8 possibilities
Rectangle 8 x 3: 53 possibilities
Rectangle 8 x 4: 340 possibilities
Rectangle 8 x 5: 1675 possibilities
Rectangle 8 x 6: 11174 possibilities
Rectangle 8 x 7: 55939 possibilities
Rectangle 8 x 8: 369050 possibilities
Rectangle 9 x 2: 9 possibilities
Rectangle 9 x 4: 553 possibilities
Rectangle 9 x 6: 31721 possibilities
Rectangle 9 x 8: 1812667 possibilities
Rectangle 10 x 1: 1 possibilities
Rectangle 10 x 2: 10 possibilities
Rectangle 10 x 3: 115 possibilities
Rectangle 10 x 4: 1228 possibilities
Rectangle 10 x 5: 10295 possibilities
Rectangle 10 x 6: 118276 possibilities
Rectangle 10 x 7: 1026005 possibilities
Rectangle 10 x 8: 11736888 possibilities
Rectangle 10 x 9: 99953769 possibilities
Rectangle 10 x 10: 1124140214 possibilities
Elixir
{{trans|Ruby}}
Count only
import Integer
defmodule Rectangle do
def cut_it(h, w) when is_odd(h) and is_odd(w), do: 0
def cut_it(h, w) when is_odd(h), do: cut_it(w, h)
def cut_it(_, 1), do: 1
def cut_it(h, 2), do: h
def cut_it(2, w), do: w
def cut_it(h, w) do
grid = List.duplicate(false, (h + 1) * (w + 1))
t = div(h, 2) * (w + 1) + div(w, 2)
if is_odd(w) do
grid = grid |> List.replace_at(t, true) |> List.replace_at(t+1, true)
walk(h, w, div(h, 2), div(w, 2) - 1, grid) + walk(h, w, div(h, 2) - 1, div(w, 2), grid) * 2
else
grid = grid |> List.replace_at(t, true)
count = walk(h, w, div(h, 2), div(w, 2) - 1, grid)
if h == w, do: count * 2,
else: count + walk(h, w, div(h, 2) - 1, div(w, 2), grid)
end
end
defp walk(h, w, y, x, grid, count\\0)
defp walk(h, w, y, x,_grid, count) when y in [0,h] or x in [0,w], do: count+1
defp walk(h, w, y, x, grid, count) do
blen = (h + 1) * (w + 1) - 1
t = y * (w + 1) + x
grid = grid |> List.replace_at(t, true) |> List.replace_at(blen-t, true)
Enum.reduce(next(w), count, fn {nt, dy, dx}, cnt ->
if Enum.at(grid, t+nt), do: cnt, else: cnt + walk(h, w, y+dy, x+dx, grid)
end)
end
defp next(w), do: [{w+1, 1, 0}, {-w-1, -1, 0}, {-1, 0, -1}, {1, 0, 1}] # {next,dy,dx}
end
Enum.each(1..9, fn w ->
Enum.each(1..w, fn h ->
if is_even(w * h), do: IO.puts "#{w} x #{h}: #{Rectangle.cut_it(w, h)}"
end)
end)
{{out}}
2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667
Show each of the cuts
{{works with|Elixir|1.2}}
defmodule Rectangle do
def cut(h, w, disp\\true) when rem(h,2)==0 or rem(w,2)==0 do
limit = div(h * w, 2)
start_link
grid = make_grid(h, w)
walk(h, w, grid, 0, 0, limit, %{}, [])
if disp, do: display(h, w)
result = Agent.get(__MODULE__, &(&1))
Agent.stop(__MODULE__)
MapSet.to_list(result)
end
defp start_link do
Agent.start_link(fn -> MapSet.new end, name: __MODULE__)
end
defp make_grid(h, w) do
for i <- 0..h-1, j <- 0..w-1, into: %{}, do: {{i,j}, true}
end
defp walk(h, w, grid, x, y, limit, cut, select) do
grid2 = grid |> Map.put({x,y}, false) |> Map.put({h-x-1,w-y-1}, false)
select2 = [{x,y} | select] |> Enum.sort
unless cut[select2] do
if length(select2) == limit do
Agent.update(__MODULE__, fn set -> MapSet.put(set, select2) end)
else
cut2 = Map.put(cut, select2, true)
search_next(grid2, select2)
|> Enum.each(fn {i,j} -> walk(h, w, grid2, i, j, limit, cut2, select2) end)
end
end
end
defp dirs(x, y), do: [{x+1, y}, {x-1, y}, {x, y-1}, {x, y+1}]
defp search_next(grid, select) do
(for {x,y} <- select, {i,j} <- dirs(x,y), grid[{i,j}], do: {i,j})
|> Enum.uniq
end
defp display(h, w) do
Agent.get(__MODULE__, &(&1))
|> Enum.each(fn select ->
grid = Enum.reduce(select, make_grid(h,w), fn {x,y},grid ->
%{grid | {x,y} => false}
end)
IO.puts to_string(h, w, grid)
end)
end
defp to_string(h, w, grid) do
text = for x <- 0..h*2, into: %{}, do: {x, String.duplicate(" ", w*4+1)}
text = Enum.reduce(0..h, text, fn i,acc ->
Enum.reduce(0..w, acc, fn j,txt ->
to_s(txt, i, j, grid)
end)
end)
Enum.map_join(0..h*2, "\n", fn i -> text[i] end)
end
defp to_s(text, i, j, grid) do
text = if grid[{i,j}] != grid[{i-1,j}], do: replace(text, i*2, j*4+1, "---"), else: text
text = if grid[{i,j}] != grid[{i,j-1}], do: replace(text, i*2+1, j*4, "|"), else: text
replace(text, i*2, j*4, "+")
end
defp replace(text, x, y, replacement) do
len = String.length(replacement)
Map.update!(text, x, fn str ->
String.slice(str, 0, y) <> replacement <> String.slice(str, y+len..-1)
end)
end
end
Rectangle.cut(2, 2) |> length |> IO.puts
Rectangle.cut(3, 4) |> length |> IO.puts
{{out}}
+---+---+ | | +---+---+ | | +---+---+ +---+---+ | | | + + + | | | +---+---+ 2 +---+---+---+---+ | | + + +---+---+ | | | +---+---+ + + | | +---+---+---+---+ +---+---+---+---+ | | + +---+ +---+ | | | | | +---+ +---+ + | | +---+---+---+---+ +---+---+---+---+ | | +---+ +---+ + | | | | | + +---+ +---+ | | +---+---+---+---+ +---+---+---+---+ | | +---+---+ + + | | | + + +---+---+ | | +---+---+---+---+ +---+---+---+---+ | | | + + +---+ + | | | + +---+ + + | | | +---+---+---+---+ +---+---+---+---+ | | | + +---+ + + | | | | | + + +---+ + | | | +---+---+---+---+ +---+---+---+---+ | | | + + + + + | | | + + + + + | | | +---+---+---+---+ +---+---+---+---+ | | | + +---+ + + | | | + + +---+ + | | | +---+---+---+---+ +---+---+---+---+ | | | + + +---+ + | | | | | + +---+ + + | | | +---+---+---+---+ 9 ``` ## Go {{trans|C}} ```go package main import "fmt" var grid []byte var w, h, last int var cnt int var next [4]int var dir = [4][2]int{{0, -1}, {-1, 0}, {0, 1}, {1, 0}} func walk(y, x int) { if y == 0 || y == h || x == 0 || x == w { cnt += 2 return } t := y*(w+1) + x grid[t]++ grid[last-t]++ for i, d := range dir { if grid[t+next[i]] == 0 { walk(y+d[0], x+d[1]) } } grid[t]-- grid[last-t]-- } func solve(hh, ww, recur int) int { h = hh w = ww if h&1 != 0 { h, w = w, h } switch { case h&1 == 1: return 0 case w == 1: return 1 case w == 2: return h case h == 2: return w } cy := h / 2 cx := w / 2 grid = make([]byte, (h+1)*(w+1)) last = len(grid) - 1 next[0] = -1 next[1] = -w - 1 next[2] = 1 next[3] = w + 1 if recur != 0 { cnt = 0 } for x := cx + 1; x < w; x++ { t := cy*(w+1) + x grid[t] = 1 grid[last-t] = 1 walk(cy-1, x) } cnt++ if h == w { cnt *= 2 } else if w&1 == 0 && recur != 0 { solve(w, h, 0) } return cnt } func main() { for y := 1; y <= 10; y++ { for x := 1; x <= y; x++ { if x&1 == 0 || y&1 == 0 { fmt.Printf("%d x %d: %d\n", y, x, solve(y, x, 1)) } } } } ``` {{out}} ```txt 2 x 1: 1 2 x 2: 2 3 x 2: 3 4 x 1: 1 4 x 2: 4 4 x 3: 9 4 x 4: 22 5 x 2: 5 5 x 4: 39 6 x 1: 1 6 x 2: 6 6 x 3: 23 6 x 4: 90 6 x 5: 263 6 x 6: 1018 7 x 2: 7 7 x 4: 151 7 x 6: 2947 8 x 1: 1 8 x 2: 8 8 x 3: 53 8 x 4: 340 8 x 5: 1675 8 x 6: 11174 8 x 7: 55939 8 x 8: 369050 9 x 2: 9 9 x 4: 553 9 x 6: 31721 9 x 8: 1812667 10 x 1: 1 10 x 2: 10 10 x 3: 115 10 x 4: 1228 10 x 5: 10295 10 x 6: 118276 10 x 7: 1026005 10 x 8: 11736888 10 x 9: 99953769 10 x 10: 1124140214 ``` ## Haskell {{trans|Python}} Calculation of the cuts happens in the ST monad, using a mutable STVector and a mutable STRef. The program style is therefore very imperative. The strictness annotations in the Env type are necessary; otherwise, unevaluated thunks of updates of "env" would pile up with each recursion, ending in a stack overflow. ```Haskell import qualified Data.Vector.Unboxed.Mutable as V import Data.STRef import Control.Monad (forM_, when) import Control.Monad.ST dir :: [(Int, Int)] dir = [(1, 0), (-1, 0), (0, -1), (0, 1)] data Env = Env { w, h, len, count, ret :: !Int, next :: ![Int] } cutIt :: STRef s Env -> ST s () cutIt env = do e <- readSTRef env when (odd $ h e) $ modifySTRef env $ \en -> en { h = w e, w = h e } e <- readSTRef env if odd (h e) then modifySTRef env $ \en -> en { ret = 0 } else if w e == 1 then modifySTRef env $ \en -> en { ret = 1 } else do let blen = (h e + 1) * (w e + 1) - 1 t = (h e `div` 2) * (w e + 1) + (w e `div` 2) modifySTRef env $ \en -> en { len = blen, count = 0, next = [ w e + 1, (negate $ w e) - 1, -1, 1] } grid <- V.replicate (blen + 1) False case odd (w e) of True -> do V.write grid t True V.write grid (t + 1) True walk grid (h e `div` 2) (w e `div` 2 - 1) e1 <- readSTRef env let res1 = count e1 modifySTRef env $ \en -> en { count = 0 } walk grid (h e `div` 2 - 1) (w e `div` 2) modifySTRef env $ \en -> en { ret = res1 + (count en * 2) } False -> do V.write grid t True walk grid (h e `div` 2) (w e `div` 2 - 1) e2 <- readSTRef env let count2 = count e2 if h e == w e then modifySTRef env $ \en -> en { ret = count2 * 2 } else do walk grid (h e `div` 2 - 1) (w e `div` 2) modifySTRef env $ \en -> en { ret = count en } where walk grid y x = do e <- readSTRef env if y <= 0 || y >= h e || x <= 0 || x >= w e then modifySTRef env $ \en -> en { count = count en + 1 } else do let t = y * (w e + 1) + x V.write grid t True V.write grid (len e - t) True forM_ (zip (next e) [0..3]) $ \(n, d) -> do g <- V.read grid (t + n) when (not g) $ walk grid (y + fst (dir !! d)) (x + snd (dir !! d)) V.write grid t False V.write grid (len e - t) False cut :: (Int, Int) -> Int cut (x, y) = runST $ do env <- newSTRef $ Env { w = y, h = x, len = 0, count = 0, ret = 0, next = [] } cutIt env result <- readSTRef env return $ ret result main :: IO () main = do mapM_ (\(x, y) -> when (even (x * y)) (putStrLn $ show x ++ " x " ++ show y ++ ": " ++ show (cut (x, y)))) [ (x, y) | x <- [1..10], y <- [1..x] ] ``` With GHC -O3 the run-time is about 39 times the D entry. ## J ```j init=: - {. 1: NB. initial state: 1 square choosen prop=: < {:,~2 ~:/\ ] NB. propagate: neighboring squares (vertically) poss=: I.@,@(prop +. prop"1 +. prop&.|. +. prop&.|."1) keep=: poss -. <:@#@, - I.@, NB. symmetrically valid possibilities N=: <:@-:@#@, NB. how many neighbors to add step=: [: ~.@; <@(((= i.@$) +. ])"0 _~ keep)"2 all=: step^:N@init ``` In other words, starting with a boolean matrix with one true square in one corner, make a list of all false squares which neighbor a true square, and then make each of those neighbors true, independently (discarding duplicate matrices from the resulting sequence of boolean matrices), and repeat this N times where N is (total cells divided by two)-1. Then discard those matrices where inverting them (boolean not), then flipping on horizontal and vertical axis is not an identity. (In other words, this implementation uses a breadth first search -- breadth first searches tend to be natural in J because of the parallelism they offer.) Example use: ```j '.#' <"2@:{~ all 3 4 ┌────┬────┬────┬────┬────┬────┬────┬────┬────┐ │.###│.###│..##│...#│...#│....│....│....│....│ │.#.#│..##│..##│..##│.#.#│..##│.#.#│#.#.│##..│ │...#│...#│..##│.###│.###│####│####│####│####│ └────┴────┴────┴────┴────┴────┴────┴────┴────┘ $ all 4 5 39 4 5 3 13$ '.#' <"2@:{~ all 4 5 ┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐ │.####│.####│.####│.####│.####│.####│..###│..###│..###│..###│..###│...##│...##│ │.####│.##.#│.#..#│..###│...##│....#│.####│.##.#│..###│...##│....#│.####│..###│ │....#│.#..#│.##.#│...##│..###│.####│....#│.#..#│...##│..###│.####│....#│...##│ │....#│....#│....#│....#│....#│....#│...##│...##│...##│...##│...##│..###│..###│ ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │...##│...##│...##│....#│....#│....#│....#│....#│....#│.....│.....│.....│.....│ │...##│....#│.#..#│.####│..###│...##│....#│.#..#│.##.#│.####│..###│...##│....#│ │..###│.####│.##.#│....#│...##│..###│.####│.##.#│.#..#│....#│...##│..###│.####│ │..###│..###│..###│.####│.####│.####│.####│.####│.####│#####│#####│#####│#####│ ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │.....│.....│.....│.....│.....│.....│.....│.....│.....│.....│.....│.....│.....│ │.#..#│.##.#│..##.│...#.│.....│.#...│.##..│#.##.│#..#.│#....│##...│###..│####.│ │.##.#│.#..#│#..##│#.###│#####│###.#│##..#│#..#.│#.##.│####.│###..│##...│#....│ │#####│#####│#####│#####│#####│#####│#####│#####│#####│#####│#####│#####│#####│ └─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘ ``` ## Java {{works with|Java|7}} ```java import java.util.*; public class CutRectangle { private static int[][] dirs = {{0, -1}, {-1, 0}, {0, 1}, {1, 0}}; public static void main(String[] args) { cutRectangle(2, 2); cutRectangle(4, 3); } static void cutRectangle(int w, int h) { if (w % 2 == 1 && h % 2 == 1) return; int[][] grid = new int[h][w]; Stackstack = new Stack<>(); int half = (w * h) / 2; long bits = (long) Math.pow(2, half) - 1; for (; bits > 0; bits -= 2) { for (int i = 0; i < half; i++) { int r = i / w; int c = i % w; grid[r][c] = (bits & (1 << i)) != 0 ? 1 : 0; grid[h - r - 1][w - c - 1] = 1 - grid[r][c]; } stack.push(0); grid[0][0] = 2; int count = 1; while (!stack.empty()) { int pos = stack.pop(); int r = pos / w; int c = pos % w; for (int[] dir : dirs) { int nextR = r + dir[0]; int nextC = c + dir[1]; if (nextR >= 0 && nextR < h && nextC >= 0 && nextC < w) { if (grid[nextR][nextC] == 1) { stack.push(nextR * w + nextC); grid[nextR][nextC] = 2; count++; } } } } if (count == half) { printResult(grid); } } } static void printResult(int[][] arr) { for (int[] a : arr) System.out.println(Arrays.toString(a)); System.out.println(); } } ``` ```txt [2, 2] [0, 0] [2, 0] [2, 0] [2, 2, 2, 2] [2, 2, 0, 0] [0, 0, 0, 0] [2, 2, 2, 0] [2, 2, 0, 0] [2, 0, 0, 0] [2, 2, 0, 0] [2, 2, 0, 0] [2, 2, 0, 0] [2, 0, 0, 0] [2, 2, 0, 0] [2, 2, 2, 0] [2, 2, 2, 2] [0, 2, 0, 2] [0, 0, 0, 0] [2, 2, 2, 2] [2, 0, 2, 0] [0, 0, 0, 0] [2, 2, 2, 0] [2, 0, 2, 0] [2, 0, 0, 0] [2, 0, 0, 0] [2, 0, 2, 0] [2, 2, 2, 0] [2, 2, 2, 2] [0, 0, 2, 2] [0, 0, 0, 0] ``` ## Julia {{trans|C}} ```julia const count = [0] const dir = [[0, -1], [-1, 0], [0, 1], [1, 0]] function walk(y, x, h, w, grid, len, next) if y == 0 || y == h || x == 0 || x == w count[1] += 2 return end t = y * (w + 1) + x grid[t + 1] += UInt8(1) grid[len - t + 1] += UInt8(1) for i in 1:4 if grid[t + next[i] + 1] == 0 walk(y + dir[i][1], x + dir[i][2], h, w, grid, len, next) end end grid[t + 1] -= 1 grid[len - t + 1] -= 1 end function cutrectangle(hh, ww, recur) if isodd(hh) h, w = ww, hh else h, w = hh, ww end if isodd(h) return 0 elseif w == 1 return 1 elseif w == 2 return h elseif h == 2 return w end cy = div(h, 2) cx = div(w, 2) len = (h + 1) * (w + 1) grid = zeros(UInt8, len) len -= 1 next = [-1, -w - 1, 1, w + 1] if recur count[1] = 0 end for x in cx + 1:w - 1 t = cy * (w + 1) + x grid[t + 1] = 1 grid[len - t + 1] = 1 walk(cy - 1, x, h, w, grid, len, next) end count[1] += 1 if h == w count[1] *= 2 elseif iseven(w) && recur cutrectangle(w, h, false) end return count[1] end function runtest() for y in 1:10, x in 1:y if iseven(x) || iseven(y) println("$y x $x: $(cutrectangle(y, x, true))") end end end runtest() ``` {{output}} ```txt 2 x 1: 1 2 x 2: 2 3 x 2: 3 4 x 1: 1 4 x 2: 4 4 x 3: 9 4 x 4: 22 5 x 2: 5 5 x 4: 39 6 x 1: 1 6 x 2: 6 6 x 3: 23 6 x 4: 90 6 x 5: 263 6 x 6: 1018 7 x 2: 7 7 x 4: 151 7 x 6: 2947 8 x 1: 1 8 x 2: 8 8 x 3: 53 8 x 4: 340 8 x 5: 1675 8 x 6: 11174 8 x 7: 55939 8 x 8: 369050 9 x 2: 9 9 x 4: 553 9 x 6: 31721 9 x 8: 1812667 10 x 1: 1 10 x 2: 10 10 x 3: 115 10 x 4: 1228 10 x 5: 10295 10 x 6: 118276 10 x 7: 1026005 10 x 8: 11736888 10 x 9: 99953769 10 x 10: 1124140214 ``` ## Kotlin {{trans|C}} ```scala // version 1.0.6 object RectangleCutter { private var w: Int = 0 private var h: Int = 0 private var len: Int = 0 private var cnt: Long = 0 private lateinit var grid: ByteArray private val next = IntArray(4) private val dir = arrayOf( intArrayOf(0, -1), intArrayOf(-1, 0), intArrayOf(0, 1), intArrayOf(1, 0) ) private fun walk(y: Int, x: Int) { if (y == 0 || y == h || x == 0 || x == w) { cnt += 2 return } val t = y * (w + 1) + x grid[t]++ grid[len - t]++ (0..3).filter { grid[t + next[it]] == 0.toByte() } .forEach { walk(y + dir[it][0], x + dir[it][1]) } grid[t]-- grid[len - t]-- } fun solve(hh: Int, ww: Int, recur: Boolean): Long { var t: Int h = hh w = ww if ((h and 1) != 0) { t = w w = h h = t } if ((h and 1) != 0) return 0L if (w == 1) return 1L if (w == 2) return h.toLong() if (h == 2) return w.toLong() val cy = h / 2 val cx = w / 2 len = (h + 1) * (w + 1) grid = ByteArray(len) len-- next[0] = -1 next[1] = -w - 1 next[2] = 1 next[3] = w + 1 if (recur) cnt = 0L for (x in cx + 1 until w) { t = cy * (w + 1) + x grid[t] = 1 grid[len - t] = 1 walk(cy - 1, x) } cnt++ if (h == w) cnt *= 2 else if ((w and 1) == 0 && recur) solve(w, h, false) return cnt } } fun main(args: Array ) { for (y in 1..10) { for (x in 1..y) { if ((x and 1) == 0 || (y and 1) == 0) { println("${"%2d".format(y)} x ${"%2d".format(x)}: ${RectangleCutter.solve(y, x, true)}") } } } } ``` {{out}} ```txt 2 x 1: 1 2 x 2: 2 3 x 2: 3 4 x 1: 1 4 x 2: 4 4 x 3: 9 4 x 4: 22 5 x 2: 5 5 x 4: 39 6 x 1: 1 6 x 2: 6 6 x 3: 23 6 x 4: 90 6 x 5: 263 6 x 6: 1018 7 x 2: 7 7 x 4: 151 7 x 6: 2947 8 x 1: 1 8 x 2: 8 8 x 3: 53 8 x 4: 340 8 x 5: 1675 8 x 6: 11174 8 x 7: 55939 8 x 8: 369050 9 x 2: 9 9 x 4: 553 9 x 6: 31721 9 x 8: 1812667 10 x 1: 1 10 x 2: 10 10 x 3: 115 10 x 4: 1228 10 x 5: 10295 10 x 6: 118276 10 x 7: 1026005 10 x 8: 11736888 10 x 9: 99953769 10 x 10: 1124140214 ``` ## Perl {{trans|C}} Output is identical to C's. ```perl use strict; use warnings; my @grid = 0; my ($w, $h, $len); my $cnt = 0; my @next; my @dir = ([0, -1], [-1, 0], [0, 1], [1, 0]); sub walk { my ($y, $x) = @_; if (!$y || $y == $h || !$x || $x == $w) { $cnt += 2; return; } my $t = $y * ($w + 1) + $x; $grid[$_]++ for $t, $len - $t; for my $i (0 .. 3) { if (!$grid[$t + $next[$i]]) { walk($y + $dir[$i]->[0], $x + $dir[$i]->[1]); } } $grid[$_]-- for $t, $len - $t; } sub solve { my ($hh, $ww, $recur) = @_; my ($t, $cx, $cy, $x); ($h, $w) = ($hh, $ww); if ($h & 1) { ($t, $w, $h) = ($w, $h, $w); } if ($h & 1) { return 0; } if ($w == 1) { return 1; } if ($w == 2) { return $h; } if ($h == 2) { return $w; } { use integer; ($cy, $cx) = ($h / 2, $w / 2); } $len = ($h + 1) * ($w + 1); @grid = (); $grid[$len--] = 0; @next = (-1, -$w - 1, 1, $w + 1); if ($recur) { $cnt = 0; } for ($x = $cx + 1; $x < $w; $x++) { $t = $cy * ($w + 1) + $x; @grid[$t, $len - $t] = (1, 1); walk($cy - 1, $x); } $cnt++; if ($h == $w) { $cnt *= 2; } elsif (!($w & 1) && $recur) { solve($w, $h); } return $cnt; } sub MAIN { print "ok\n"; my ($y, $x); for my $y (1 .. 10) { for my $x (1 .. $y) { if (!($x & 1) || !($y & 1)) { printf("%d x %d: %d\n", $y, $x, solve($y, $x, 1)); } } } } MAIN(); ``` ## Perl 6 {{trans|C}} This is a very dumb, straightforward translation of the C code. It is very slow so we'll interrupt the execution and display the partial output. ```perl6 subset Byte of Int where ^256; my @grid of Byte = 0; my Int ($w, $h, $len); my Int $cnt = 0; my @next; my @dir = [0, -1], [-1, 0], [0, 1], [1, 0]; sub walk(Int $y, Int $x) { my ($i, $t); if !$y || $y == $h || !$x || $x == $w { $cnt += 2; return; } $t = $y * ($w + 1) + $x; @grid[$t]++, @grid[$len - $t]++; loop ($i = 0; $i < 4; $i++) { if !@grid[$t + @next[$i]] { walk($y + @dir[$i][0], $x + @dir[$i][1]); } } @grid[$t]--, @grid[$len - $t]--; } sub solve(Int $hh, Int $ww, Int $recur) returns Int { my ($t, $cx, $cy, $x); $h = $hh, $w = $ww; if $h +& 1 { $t = $w, $w = $h, $h = $t; } if $h +& 1 { return 0; } if $w == 1 { return 1; } if $w == 2 { return $h; } if $h == 2 { return $w; } $cy = $h div 2, $cx = $w div 2; $len = ($h + 1) * ($w + 1); @grid = (); @grid[$len--] = 0; @next[0] = -1; @next[1] = -$w - 1; @next[2] = 1; @next[3] = $w + 1; if $recur { $cnt = 0; } loop ($x = $cx + 1; $x < $w; $x++) { $t = $cy * ($w + 1) + $x; @grid[$t] = 1; @grid[$len - $t] = 1; walk($cy - 1, $x); } $cnt++; if $h == $w { $cnt *= 2; } elsif !($w +& 1) && $recur { solve($w, $h, 0); } return $cnt; } my ($y, $x); loop ($y = 1; $y <= 9; $y++) { loop ($x = 1; $x <= $y; $x++) { if (!($x +& 1) || !($y +& 1)) { printf("%d x %d: %d\n", $y, $x, solve($y, $x, 1)); } } } ``` {{out}} ```txt 2 x 1: 1 2 x 2: 2 3 x 2: 3 4 x 1: 1 4 x 2: 4 4 x 3: 9 4 x 4: 22 5 x 2: 5 5 x 4: 39 6 x 1: 1 6 x 2: 6 6 x 3: 23 6 x 4: 90 6 x 5: 263 6 x 6: 1018 7 x 2: 7 7 x 4: 151 7 x 6: 2947 8 x 1: 1 8 x 2: 8 8 x 3: 53 8 x 4: 340 8 x 5: 1675 ^C ``` ## Phix Using a completely different home-brewed algorithm, slightly sub-optimal as noted in the code. ```Phix integer show = 2, -- max number to show -- (nb mirrors are not shown) chance = 1000 -- 1=always, 2=50%, 3=33%, etc sequence grid integer gh, -- = length(grid), gw -- = length(grid[1]) integer ty1, ty2, tx1, tx2 -- target {y,x}s procedure mirror(integer y, x, ch) -- plant/reset ch and the symmetric copy grid[y,x] = ch grid[gh-y+1,gw-x+1] = ch end procedure enum RIGHT, UP, DOWN, LEFT constant dyx = {{0,+1},{-1,0},{+1,0},{0,-1}}, chx = "-||-" function search(integer y, x, d, level) integer count = 0 if level=0 or grid[y,x]!='x' then mirror(y,x,'x') integer {dy,dx} = dyx[d], {ny,nx} = {y+dy,x+dx}, {yy,xx} = {y+dy*2,x+dx*3} if grid[ny,nx]=' ' then integer c = chx[d] mirror(ny,nx,c) if c='-' then mirror(ny,nx+dx,c) end if integer meet = (yy=ty1 or yy=ty2) and (xx=tx1 or xx=tx2) if meet then count = 1 if show and rand(chance)=chance then show -= 1 sequence g = grid -- (make copy/avoid reset) -- fill in(/overwrite) the last cut, if any if ty1!=ty2 then g[ty1+1,tx1] = '|' elsif tx1!=tx2 then g[ty1][tx1+1..tx1+2] = "--" end if puts(1,join(g,'\n')&"\n\n") end if else if grid[yy,xx]='+' then -- (minor gain) for d=RIGHT to LEFT do -- (kinda true!) count += search(yy,xx,d,level+1) end for end if end if mirror(ny,nx,' ') if c='-' then mirror(ny,nx+dx,' ') end if end if if level!=0 then -- ((level=0)==leave outer edges 'x' for next iteration) mirror(y,x,'+') end if end if return count end function function odd(integer n) return remainder(n,2)=1 end function function even(integer n) return remainder(n,2)=0 end function procedure make_grid(integer w,h) -- The outer edges are 'x'; the inner '+' become 'x' when visited. -- Likewise edges are cuts but the inner ones get filled in later. sequence tb = join(repeat("x",w+1),"--"), hz = join('x'&repeat("+",w-1)&'x'," ")&"\n", vt = "|"&repeat(' ',w*3-1)&"|\n" grid = split(tb&"\n"&join(repeat(vt,h),hz)&tb,'\n') -- set size (for mirroring) and target info: gh = length(grid) gw = length(grid[1]) ty1 = h+even(h) ty2 = ty1+odd(h)*2 tx1 = floor(w/2)*3+1 tx2 = tx1+odd(w)*3 end procedure function side(integer w, h) make_grid(w,h) -- search top to mid-point integer count = 0, last = 0 for r=3 to h+1 by 2 do last = search(r,1,RIGHT,0) -- left to right count += 2*last end for if even(h) then count -= last -- (un-double the centre line) end if return count end function --atom t0 = time() -- nb sub-optimal: obviously "grid" was designed for easy display, rather than speed. for y=1 to 9 do -- 24s --for y=1 to 10 do -- (gave up on >10x8) for x=1 to y do -- for x=1 to min(y,8) do -- 4 mins 16s (with y to 10) if even(x*y) then integer count = side(x,y) if x=y then count *= 2 else count += side(y,x) end if printf(1,"%d x %d: %d\n", {y, x, count}) end if end for end for --?elapsed(time()-t0) ``` {{out}} Includes two random grids ```txt 2 x 1: 1 2 x 2: 2 3 x 2: 3 4 x 1: 1 4 x 2: 4 4 x 3: 9 4 x 4: 22 5 x 2: 5 5 x 4: 39 6 x 1: 1 6 x 2: 6 6 x 3: 23 6 x 4: 90 6 x 5: 263 6 x 6: 1018 7 x 2: 7 7 x 4: 151 x--x--x--x--x--x--x | | x--x + + + + x | | | x x x--x--x + x | | | | | x x--x x--x + x | | | x + x--x x--x x | | | | | x + x--x--x x x | | | x + + + + x--x | | x--x--x--x--x--x--x x--x--x--x--x--x--x--x | | x + x--x--x--x--x x | | | | x--x--x x--x--x x x | | | | | x x--x x--x x--x x | | | | | x x x--x--x x--x--x | | | | x x--x--x--x--x + x | | x--x--x--x--x--x--x--x 7 x 6: 2947 8 x 1: 1 8 x 2: 8 8 x 3: 53 8 x 4: 340 8 x 5: 1675 8 x 6: 11174 8 x 7: 55939 8 x 8: 369050 9 x 2: 9 9 x 4: 553 9 x 6: 31721 9 x 8: 1812667 10 x 1: 1 10 x 2: 10 10 x 3: 115 10 x 4: 1228 10 x 5: 10295 10 x 6: 118276 10 x 7: 1026005 10 x 8: 11736888 ``` ## Python {{trans|D}} ```python def cut_it(h, w): dirs = ((1, 0), (-1, 0), (0, -1), (0, 1)) if h & 1: h, w = w, h if h & 1: return 0 if w == 1: return 1 count = 0 next = [w + 1, -w - 1, -1, 1] blen = (h + 1) * (w + 1) - 1 grid = [False] * (blen + 1) def walk(y, x, count): if not y or y == h or not x or x == w: return count + 1 t = y * (w + 1) + x grid[t] = grid[blen - t] = True if not grid[t + next[0]]: count = walk(y + dirs[0][0], x + dirs[0][1], count) if not grid[t + next[1]]: count = walk(y + dirs[1][0], x + dirs[1][1], count) if not grid[t + next[2]]: count = walk(y + dirs[2][0], x + dirs[2][1], count) if not grid[t + next[3]]: count = walk(y + dirs[3][0], x + dirs[3][1], count) grid[t] = grid[blen - t] = False return count t = h // 2 * (w + 1) + w // 2 if w & 1: grid[t] = grid[t + 1] = True count = walk(h // 2, w // 2 - 1, count) res = count count = 0 count = walk(h // 2 - 1, w // 2, count) return res + count * 2 else: grid[t] = True count = walk(h // 2, w // 2 - 1, count) if h == w: return count * 2 count = walk(h // 2 - 1, w // 2, count) return count def main(): for w in xrange(1, 10): for h in xrange(1, w + 1): if not((w * h) & 1): print "%d x %d: %d" % (w, h, cut_it(w, h)) main() ``` Output: ```txt 2 x 1: 1 2 x 2: 2 3 x 2: 3 4 x 1: 1 4 x 2: 4 4 x 3: 9 4 x 4: 22 5 x 2: 5 5 x 4: 39 6 x 1: 1 6 x 2: 6 6 x 3: 23 6 x 4: 90 6 x 5: 263 6 x 6: 1018 7 x 2: 7 7 x 4: 151 7 x 6: 2947 8 x 1: 1 8 x 2: 8 8 x 3: 53 8 x 4: 340 8 x 5: 1675 8 x 6: 11174 8 x 7: 55939 8 x 8: 369050 9 x 2: 9 9 x 4: 553 9 x 6: 31721 9 x 8: 1812667 ``` ### Faster version {{trans|D}} ```python try: import psyco except ImportError: pass else: psyco.full() w, h = 0, 0 count = 0 vis = [] def cwalk(y, x, d): global vis, count, w, h if not y or y == h or not x or x == w: count += 1 return vis[y][x] = vis[h - y][w - x] = 1 if x and not vis[y][x - 1]: cwalk(y, x - 1, d | 1) if (d & 1) and x < w and not vis[y][x+1]: cwalk(y, x + 1, d|1) if y and not vis[y - 1][x]: cwalk(y - 1, x, d | 2) if (d & 2) and y < h and not vis[y + 1][x]: cwalk(y + 1, x, d | 2) vis[y][x] = vis[h - y][w - x] = 0 def count_only(x, y): global vis, count, w, h count = 0 w = x h = y if (h * w) & 1: return count if h & 1: w, h = h, w vis = [[0] * (w + 1) for _ in xrange(h + 1)] vis[h // 2][w // 2] = 1 if w & 1: vis[h // 2][w // 2 + 1] = 1 res = 0 if w > 1: cwalk(h // 2, w // 2 - 1, 1) res = 2 * count - 1 count = 0 if w != h: cwalk(h // 2 + 1, w // 2, 3 if (w & 1) else 2) res += 2 * count - (not (w & 1)) else: res = 1 if w == h: res = 2 * res + 2 return res def main(): for y in xrange(1, 10): for x in xrange(1, y + 1): if not (x & 1) or not (y & 1): print "%d x %d: %d" % (y, x, count_only(x, y)) main() ``` The output is the same. ## Racket ```racket #lang racket (define (cuts W H [count 0]) ; count = #f => visualize instead (define W1 (add1 W)) (define H1 (add1 H)) (define B (make-vector (* W1 H1) #f)) (define (fD d) (cadr (assq d '([U D] [D U] [L R] [R L] [#f #f] [#t #t])))) (define (fP p) (- (* W1 H1) p 1)) (define (Bset! p d) (vector-set! B p d) (vector-set! B (fP p) (fD d))) (define center (/ (fP 0) 2)) (when (integer? center) (Bset! center #t)) (define (run c* d) (define p (- center c*)) (Bset! p d) (let loop ([p p]) (define-values [q r] (quotient/remainder p W1)) (if (and (< 0 r W) (< 0 q H)) (for ([d '(U D L R)]) (define n (+ p (case d [(U) (- W1)] [(D) W1] [(L) -1] [(R) 1]))) (unless (vector-ref B n) (Bset! n (fD d)) (loop n) (Bset! n #f))) (if count (set! count (add1 count)) (visualize B W H)))) (Bset! p #f)) (when (even? W) (run (if (odd? H) (/ W1 2) W1) 'D)) (when (even? H) (run (if (odd? W) 1/2 1) 'R)) (or count (void))) (define (visualize B W H) (define W2 (+ 2 (* W 2))) (define H2 (+ 1 (* H 2))) (define str (make-string (* H2 W2) #\space)) (define (Sset! i c) (string-set! str i c)) (for ([i (in-range (- W2 1) (* W2 H2) W2)]) (Sset! i #\newline)) (for ([i (in-range 0 (- W2 1))]) (Sset! i #\#) (Sset! (+ i (* W2 H 2)) #\#)) (for ([i (in-range 0 (* W2 H2) W2)]) (Sset! i #\#) (Sset! (+ i W2 -2) #\#)) (for* ([i (add1 W)] [j (add1 H)]) (define p (* 2 (+ i (* j W2)))) (define b (vector-ref B (+ i (* j (+ W 1))))) (cond [b (Sset! p #\#) (define d (case b [(U) (- W2)] [(D) W2] [(R) 1] [(L) -1])) (when (integer? d) (Sset! (+ p d) #\#))] [(equal? #\space (string-ref str p)) (Sset! p #\.)])) (display str) (newline)) (printf "Counts:\n") (for* ([W (in-range 1 10)] [H (in-range 1 (add1 W))] #:unless (and (odd? W) (odd? H))) (printf "~s x ~s: ~s\n" W H (cuts W H))) (newline) (cuts 4 3 #f) ``` {{out}} ```txt Counts: 2 x 1: 1 2 x 2: 2 3 x 2: 3 4 x 1: 1 4 x 2: 4 4 x 3: 9 4 x 4: 22 5 x 2: 5 5 x 4: 39 6 x 1: 1 6 x 2: 6 6 x 3: 23 6 x 4: 90 6 x 5: 263 6 x 6: 1018 7 x 2: 7 7 x 4: 151 7 x 6: 2947 8 x 1: 1 8 x 2: 8 8 x 3: 53 8 x 4: 340 8 x 5: 1675 8 x 6: 11174 8 x 7: 55939 8 x 8: 369050 9 x 2: 9 9 x 4: 553 9 x 6: 31721 9 x 8: 1812667 ######### # # # # . # . # # # # # . # . # # # # ######### ######### # # # # ### . # # # # # . ### # # # # ######### ######### # # # # ### # # # # # # # # # ### # # # # ######### ######### # # # ### ### # # # # # ### ### # # # ######### ######### # # ##### . # # # # # . ##### # # ######### ######### # # # # . ### # # # # # ### . # # # # ######### ######### # # # # # ### # # # # # # # ### # # # # # ######### ######### # # ### ### # # # # # # # ### ### # # ######### ######### # # # . ##### # # # ##### . # # # ######### ``` ## REXX ### idiomatic ```rexx /*REXX program cuts rectangles into two symmetric pieces, the rectangles are cut along */ /*────────────────────────────────────────────────── unit dimensions and may be rotated.*/ numeric digits 20 /*be able to handle some big integers. */ parse arg N .; if N=='' | N=="," then N=10 /*N not specified? Then use default.*/ dir.=0; dir.0.1=-1; dir.1.0=-1; dir.2.1=1; dir.3.0=1 /*the four directions.*/ do y=2 to N; say /*calculate rectangles up to size NxN.*/ do x=1 for y; if x//2 & y//2 then iterate /*not if both X&Y odd.*/ z=solve(y,x,1); _=comma(z); _=right(_, max(14, length(_))) /*align the output. */ say right(y,9) "x" right(x,2) 'rectangle can be cut' _ "way"s(z). end /*x*/ end /*y*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ comma: procedure; arg _; do k=length(_)-3 to 1 by -3; _=insert(',',_,k); end; return _ /*──────────────────────────────────────────────────────────────────────────────────────*/ s: if arg(1)=1 then return arg(3); return word(arg(2) 's', 1) /*pluralizer.*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ solve: procedure expose # dir. @. h len next. w; @.=0 /*zero rectangle coördinates.*/ parse arg h,w,recur /*get values for some args. */ if h//2 then do; t=w; w=h; h=t; if h//2 then return 0 end if w==1 then return 1 if w==2 then return h if h==2 then return w /* [↓] % is REXX's integer division.*/ cy=h % 2; cx=w % 2; wp=w + 1 /*cut the [XY] rectangle in half. */ len=(h+1) * wp - 1 /*extend the area of the rectangle. */ next.0=-1; next.1=-wp; next.2=1; next.3=wp /*direction & distance.*/ if recur then #=0 do x=cx+1 to w-1; t=x + cy*wp; @.t=1; _=len - t; @._=1 call walk cy-1, x end /*x*/ #=#+1 if h==w then #=# + # /*double the count of rectangle cuts. */ else if w//2==0 & recur then call solve w, h, 0 return # /*──────────────────────────────────────────────────────────────────────────────────────*/ walk: procedure expose # dir. @. h len next. w wp; parse arg y,x if y==h | x==0 | x==w | y==0 then do; #= #+2; return; end t=x + y*wp; @.t=@.t + 1; _=len - t @._=@._+1 do j=0 for 4; _=t + next.j /*try each of four directions.*/ if @._==0 then call walk y + dir.j.0, x + dir.j.1 end /*j*/ @.t=@.t - 1 _=len - t; @._=@._ - 1; return ``` {{out|output|text= when using the default input:}} ```txt 2 x 1 rectangle can be cut 1 way. 2 x 2 rectangle can be cut 2 ways. 3 x 2 rectangle can be cut 3 ways. 4 x 1 rectangle can be cut 1 way. 4 x 2 rectangle can be cut 4 ways. 4 x 3 rectangle can be cut 9 ways. 4 x 4 rectangle can be cut 22 ways. 5 x 2 rectangle can be cut 5 ways. 5 x 4 rectangle can be cut 39 ways. 6 x 1 rectangle can be cut 1 way. 6 x 2 rectangle can be cut 6 ways. 6 x 3 rectangle can be cut 23 ways. 6 x 4 rectangle can be cut 90 ways. 6 x 5 rectangle can be cut 263 ways. 6 x 6 rectangle can be cut 1,018 ways. 7 x 2 rectangle can be cut 7 ways. 7 x 4 rectangle can be cut 151 ways. 7 x 6 rectangle can be cut 2,947 ways. 8 x 1 rectangle can be cut 1 way. 8 x 2 rectangle can be cut 8 ways. 8 x 3 rectangle can be cut 53 ways. 8 x 4 rectangle can be cut 340 ways. 8 x 5 rectangle can be cut 1,675 ways. 8 x 6 rectangle can be cut 11,174 ways. 8 x 7 rectangle can be cut 55,939 ways. 8 x 8 rectangle can be cut 369,050 ways. 9 x 2 rectangle can be cut 9 ways. 9 x 4 rectangle can be cut 553 ways. 9 x 6 rectangle can be cut 31,721 ways. 9 x 8 rectangle can be cut 1,812,667 ways. 10 x 1 rectangle can be cut 1 way. 10 x 2 rectangle can be cut 10 ways. 10 x 3 rectangle can be cut 115 ways. 10 x 4 rectangle can be cut 1,228 ways. 10 x 5 rectangle can be cut 10,295 ways. 10 x 6 rectangle can be cut 118,276 ways. 10 x 7 rectangle can be cut 1,026,005 ways. 10 x 8 rectangle can be cut 11,736,888 ways. 10 x 9 rectangle can be cut 99,953,769 ways. 10 x 10 rectangle can be cut 1,124,140,214 ways. ``` ### optimized This version replaced the (first) multiple clause '''if''' instructions in the '''walk''' subroutine with a ''short circuit'' version. Other optimizations were also made. This made the program about 20% faster. A test run was executed to determine the order of the '''if''' statements (by counting which comparison would yield the most benefit by placing it first). ```rexx /*REXX program cuts rectangles into two symmetric pieces, the rectangles are cut along */ /*────────────────────────────────────────────────── unit dimensions and may be rotated.*/ numeric digits 20 /*be able to handle some big integers. */ parse arg N .; if N=='' | N=="," then N=10 /*N not specified? Then use default.*/ dir.=0; dir.0.1= -1; dir.1.0= -1; dir.2.1= 1; dir.3.0= 1 /*the 4 directions.*/ do y=2 to N; yEven= y//2; say /*calculate rectangles up to size NxN.*/ do x=1 for y; if x//2 then if yEven then iterate /*not if both X&Y odd*/ z= solve(y,x,1); _=comma(z); _=right(_, max(14, length(_))) /*align the output. */ say right(y, 9) "x" right(x, 2) 'rectangle can be cut' _ "way"s(z). end /*x*/ end /*y*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ comma: procedure; arg _; do k=length(_)-3 to 1 by -3; _=insert(',',_,k); end; return _ s: if arg(1)=1 then return arg(3); return word(arg(2) 's', 1) /*pluralizer.*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ solve: procedure expose # dir. @. h len next. w; @.=0 /*zero rectangle coördinates.*/ parse arg h,w,recur /*get values for some args. */ if h//2 then do; t= w; w= h; h= t; if h//2 then return 0 end if w==1 then return 1 if w==2 then return h if h==2 then return w /* [↓] % is REXX's integer division.*/ cy= h % 2; cx= w % 2; wp= w + 1 /*cut the [XY] rectangle in half. */ len= (h+1) * wp - 1 /*extend the area of the rectangle. */ next.0= -1; next.1= -wp; next.2= 1; next.3= wp /*direction & distance.*/ if recur then #= 0 do x=cx+1 to w-1; t= x + cy*wp; @.t= 1; _= len - t; @._= 1 call walk cy-1, x end /*x*/ #= #+1 if h==w then #= # + # /*double the count of rectangle cuts. */ else if w//2==0 then if recur then call solve w, h, 0 return # /*──────────────────────────────────────────────────────────────────────────────────────*/ walk: procedure expose # dir. @. h len next. w wp; parse arg y,x if y==h then do; #= #+2; return; end /* ◄──┐ REXX short circuit. */ if x==0 then do; #= #+2; return; end /* ◄──┤ " " " */ if x==w then do; #= #+2; return; end /* ◄──┤ " " " */ if y==0 then do; #= #+2; return; end /* ◄──┤ " " " */ t= x + y*wp; @.t= @.t + 1; _= len - t /* │ordered by most likely ►──┐*/ @._= @._+1 /* └──────────────────────────┘*/ do j=0 for 4; _= t + next.j /*try each of the four directions.*/ if @._==0 then do; yn= y + dir.j.0; xn= x + dir.j.1 if yn==h then do; #= #+2; iterate; end if xn==0 then do; #= #+2; iterate; end if xn==w then do; #= #+2; iterate; end if yn==0 then do; #= #+2; iterate; end call walk yn, xn end end /*j*/ @.t= @.t - 1 _= len - t; @._= @._ - 1; return ``` {{out|output|text= is the same as the idiomatic version (above).}} ## Ruby {{trans|Python}} ```ruby def cut_it(h, w) if h.odd? return 0 if w.odd? h, w = w, h end return 1 if w == 1 nxt = [[w+1, 1, 0], [-w-1, -1, 0], [-1, 0, -1], [1, 0, 1]] # [next,dy,dx] blen = (h + 1) * (w + 1) - 1 grid = [false] * (blen + 1) walk = lambda do |y, x, count=0| return count+1 if y==0 or y==h or x==0 or x==w t = y * (w + 1) + x grid[t] = grid[blen - t] = true nxt.each do |nt, dy, dx| count += walk[y + dy, x + dx] unless grid[t + nt] end grid[t] = grid[blen - t] = false count end t = h / 2 * (w + 1) + w / 2 if w.odd? grid[t] = grid[t + 1] = true count = walk[h / 2, w / 2 - 1] count + walk[h / 2 - 1, w / 2] * 2 else grid[t] = true count = walk[h / 2, w / 2 - 1] return count * 2 if h == w count + walk[h / 2 - 1, w / 2] end end for w in 1..9 for h in 1..w puts "%d x %d: %d" % [w, h, cut_it(w, h)] if (w * h).even? end end ``` {{out}} ```txt 2 x 1: 1 2 x 2: 2 3 x 2: 3 4 x 1: 1 4 x 2: 4 4 x 3: 9 4 x 4: 22 5 x 2: 5 5 x 4: 39 6 x 1: 1 6 x 2: 6 6 x 3: 23 6 x 4: 90 6 x 5: 263 6 x 6: 1018 7 x 2: 7 7 x 4: 151 7 x 6: 2947 8 x 1: 1 8 x 2: 8 8 x 3: 53 8 x 4: 340 8 x 5: 1675 8 x 6: 11174 8 x 7: 55939 8 x 8: 369050 9 x 2: 9 9 x 4: 553 9 x 6: 31721 9 x 8: 1812667 ``` ### Show each of the cuts ```ruby class Rectangle DIRS = [[1, 0], [-1, 0], [0, -1], [0, 1]] def initialize(h, w) raise ArgumentError if (h.odd? and w.odd?) or h<=0 or w<=0 @h, @w = h, w @limit = h * w / 2 end def cut(disp=true) @cut = {} @select = [] @result = [] @grid = make_grid walk(0,0) display if disp @result end def make_grid Array.new(@h+1) {|i| Array.new(@w+1) {|j| true if i<@h and j<@w }} end def walk(y, x) @grid[y][x] = @grid[@h-y-1][@w-x-1] = false @select.push([y,x]) select = @select.sort unless @cut[select] @cut[select] = true if @select.size == @limit @result << select else search_next.each {|yy,xx| walk(yy,xx)} end end @select.pop @grid[y][x] = @grid[@h-y-1][@w-x-1] = true end def search_next nxt = {} @select.each do |y,x| DIRS.each do |dy, dx| nxt[[y+dy, x+dx]] = true if @grid[y+dy][x+dx] end end nxt.keys end def display @result.each do |select| @grid = make_grid select.each {|y,x| @grid[y][x] = false} puts to_s end end def to_s text = Array.new(@h*2+1) {" " * (@w*4+1)} for i in 0..@h for j in 0..@w text[i*2][j*4+1,3] = "---" if @grid[i][j] != @grid[i-1][j] text[i*2+1][j*4] = "|" if @grid[i][j] != @grid[i][j-1] text[i*2][j*4] = "+" end end text.join("\n") end end rec = Rectangle.new(2,2) puts rec.cut.size rec = Rectangle.new(3,4) puts rec.cut.size ``` {{out}} +---+---+ | | | + + + | | | +---+---+ +---+---+ | | +---+---+ | | +---+---+ 2 +---+---+---+---+ | | | + + +---+ + | | | + +---+ + + | | | +---+---+---+---+ +---+---+---+---+ | | | + + + + + | | | + + + + + | | | +---+---+---+---+ +---+---+---+---+ | | | + +---+ + + | | | | | + + +---+ + | | | +---+---+---+---+ +---+---+---+---+ | | + + +---+---+ | | | +---+---+ + + | | +---+---+---+---+ +---+---+---+---+ | | + +---+ +---+ | | | | | +---+ +---+ + | | +---+---+---+---+ +---+---+---+---+ | | | + +---+ + + | | | + + +---+ + | | | +---+---+---+---+ +---+---+---+---+ | | | + + +---+ + | | | | | + +---+ + + | | | +---+---+---+---+ +---+---+---+---+ | | +---+ +---+ + | | | | | + +---+ +---+ | | +---+---+---+---+ +---+---+---+---+ | | +---+---+ + + | | | + + +---+---+ | | +---+---+---+---+ 9 ``` ## Rust {{trans|Python}} ```rust fn cwalk(mut vis: &mut Vec>, count: &mut isize, w: usize, h: usize, y: usize, x: usize, d: usize) { if x == 0 || y == 0 || x == w || y == h { *count += 1; return; } vis[y][x] = true; vis[h - y][w - x] = true; if x != 0 && ! vis[y][x - 1] { cwalk(&mut vis, count, w, h, y, x - 1, d | 1); } if d & 1 != 0 && x < w && ! vis[y][x+1] { cwalk(&mut vis, count, w, h, y, x + 1, d | 1); } if y != 0 && ! vis[y - 1][x] { cwalk(&mut vis, count, w, h, y - 1, x, d | 2); } if d & 2 != 0 && y < h && ! vis[y + 1][x] { cwalk(&mut vis, count, w, h, y + 1, x, d | 2); } vis[y][x] = false; vis[h - y][w - x] = false; } fn count_only(x: usize, y: usize) -> isize { let mut count = 0; let mut w = x; let mut h = y; if (h * w) & 1 != 0 { return count; } if h & 1 != 0 { std::mem::swap(&mut w, &mut h); } let mut vis = vec![vec![false; w + 1]; h + 1]; vis[h / 2][w / 2] = true; if w & 1 != 0 { vis[h / 2][w / 2 + 1] = true; } let mut res; if w > 1 { cwalk(&mut vis, &mut count, w, h, h / 2, w / 2 - 1, 1); res = 2 * count - 1; count = 0; if w != h { cwalk(&mut vis, &mut count, w, h, h / 2 + 1, w / 2, if w & 1 != 0 { 3 } else { 2 }); } res += 2 * count - if w & 1 == 0 { 1 } else { 0 }; } else { res = 1; } if w == h { res = 2 * res + 2; } res } fn main() { for y in 1..10 { for x in 1..y + 1 { if x & 1 == 0 || y & 1 == 0 { println!("{} x {}: {}", y, x, count_only(x, y)); } } } } ``` ## Tcl {{trans|C}} ```tcl package require Tcl 8.5 proc walk {y x} { global w ww h cnt grid len if {!$y || $y==$h || !$x || $x==$w} { incr cnt 2 return } set t [expr {$y*$ww + $x}] set m [expr {$len - $t}] lset grid $t [expr {[lindex $grid $t] + 1}] lset grid $m [expr {[lindex $grid $m] + 1}] if {![lindex $grid [expr {$y*$ww + $x-1}]]} { walk $y [expr {$x-1}] } if {![lindex $grid [expr {($y-1)*$ww + $x}]]} { walk [expr {$y-1}] $x } if {![lindex $grid [expr {$y*$ww + $x+1}]]} { walk $y [expr {$x+1}] } if {![lindex $grid [expr {($y+1)*$ww + $x}]]} { walk [expr {$y+1}] $x } lset grid $t [expr {[lindex $grid $t] - 1}] lset grid $m [expr {[lindex $grid $m] - 1}] } # Factored out core of [solve] proc SolveCore {} { global w ww h cnt grid len set ww [expr {$w+1}] set cy [expr {$h / 2}] set cx [expr {$w / 2}] set len [expr {($h+1) * $ww}] set grid [lrepeat $len 0] incr len -1 for {set x $cx;incr x} {$x < $w} {incr x} { set t [expr {$cy*$ww+$x}] lset grid $t 1 lset grid [expr {$len - $t}] 1 walk [expr {$cy - 1}] $x } incr cnt } proc solve {H W} { global w h cnt set h $H set w $W if {$h & 1} { set h $W set w $H } if {$h & 1} { return 0 } if {$w==1} {return 1} if {$w==2} {return $h} if {$h==2} {return $w} set cnt 0 SolveCore if {$h==$w} { incr cnt $cnt } elseif {!($w & 1)} { lassign [list $w $h] h w SolveCore } return $cnt } apply {{limit} { for {set yy 1} {$yy <= $limit} {incr yy} { for {set xx 1} {$xx <= $yy} {incr xx} { if {!($xx&1 && $yy&1)} { puts [format "%d x %d: %ld" $yy $xx [solve $yy $xx]] } } } }} 10 ``` Output is identical. ## zkl {{trans|Ruby}} ```zkl fcn cut_it(h,w){ if(h.isOdd){ if(w.isOdd) return(0); t,h,w=h,w,t; // swap w,h: a,b=c,d --> a=c; b=d; so need a tmp } if(w==1) return(1); nxt :=T(T(w+1, 1,0), T(-w-1, -1,0), T(-1, 0,-1), T(1, 0,1)); #[next, dy,dx] blen:=(h + 1)*(w + 1) - 1; grid:=(blen + 1).pump(List(),False); //-->L(False,False...) walk:='wrap(y,x){ // lambda closure if(y==0 or y==h or x==0 or x==w) return(1); count,t:=0,y*(w + 1) + x; grid[t]=grid[blen - t]=True; foreach nt,dy,dx in (nxt){ if(not grid[t + nt]) count+=self.fcn(y + dy, x + dx,vm.pasteArgs(2)); } grid[t]=grid[blen - t]=False; count }; t:=h/2*(w + 1) + w/2; if(w.isOdd){ grid[t]=grid[t + 1]=True; count:=walk(h/2, w/2 - 1); count + walk(h/2 - 1, w/2)*2; }else{ grid[t]=True; count:=walk(h/2, w/2 - 1); if(h==w) return(count*2); count + walk(h/2 - 1, w/2); } } ``` Note the funkiness in walk: vm.pasteArgs. This is because zkl functions are unaware of their scope, so a closure is needed (when calling walk) to capture state (nxt, blen, grid, h, w). Rather than creating a closure object each call, that state is passed in the arg list. So, when doing recursion, that state needs to be restored to the stack (the compiler isn't smart enough to recognize this case). ```zkl foreach w,h in ([1..9],[1..w]){ if((w*h).isEven) println("%d x %d: %d".fmt(w, h, cut_it(w,h))); } ``` {{out}} Output is identical. ```txt 2 x 1: 1 2 x 2: 2 3 x 2: 3 4 x 1: 1 4 x 2: 4 4 x 3: 9 4 x 4: 22 ... 9 x 2: 9 9 x 4: 553 9 x 6: 31721 ``` {{omit from|GUISS}} {{omit from|Lilypond}} {{omit from|TPP}} [[Category:Geometry]]