⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

'''Alternative Solution:'''

This version classifies surface normals by comparison to reference surfaces. Multiple spheres may be removed. Exercises for the intrepid student: enhance color resolution with more reference surfaces or combinations of all surfaces matching better than some criterion, incorporate ThinFaces for anti-aliasing, map the colors for realism.

```

resolution=: 8
spheres=: 3 1 #"1 ] 0 1,_1 1,:0.3 0.6  NB. spheres x y z r

coordinates=: (% <:)~ (,"1 0~"0 3 ,"0"1 0~)@:i:
length=: +/ &.: *:
centers=: _ 3&{.

NB. resolution SlicePittedSphere spheres  generates a binary array, 1 in the geometric object
SlicePittedSphere=: (0 { {. > [: +./ }.)@:(radii@[ >:"0 3 ((length@:-"1"_ 1 centers)~ coordinates))~

spanTo=: conjunction def '(m<:y)*.y<:n'     NB. algebraic similarity, m <= y <= n

tessellate=: ] ];._3"3~ 3 # [               NB. All cubical edge length x subarrays of array y

NB. Define "faces" as those points with 9 to 18 inclusive "solid" neighbors.
detectFace=: (9 spanTo 18) @: (+/@:,"3) @: (3&tessellate)

NB. arrange faces in ANSYS brick face order
ThickFaces=: ((|:"3 , (, |:"2))(,: |."1)3 3 3\$2j1#1) /: 'SENWDU' i. 'DUEWSN'
ThinFaces=:  ((|:"3 , (, |:"2))(,: |."1)3 3 3\$1j2#1) /: 'SENWDU' i. 'DUEWSN'

FACES=:ThickFaces  NB. 6 below comes from #Faces

NORMALS=: 2 tessellate FACES

matchNormals=: [: +/@,"6 NORMALS ="6"6 _ (2 tessellate 3 tessellate ])

bestFit=: (i.>./)"1&.|:

topFace=: detectFace i:"1 1:

choose=: 4 : 'x}y'

viewmat resolution (topFace choose (,&(#FACES))@:bestFit@matchNormals)@SlicePittedSphere spheres

<"_1 ThickFaces         NB. display the 6 cubes with reference faces
┌─────┬─────┬─────┬─────┬─────┬─────┐
│1 1 1│1 1 0│0 0 0│0 1 1│1 1 1│0 0 0│
│1 1 1│1 1 0│1 1 1│0 1 1│1 1 1│0 0 0│
│0 0 0│1 1 0│1 1 1│0 1 1│1 1 1│0 0 0│
│     │     │     │     │     │     │
│1 1 1│1 1 0│0 0 0│0 1 1│1 1 1│1 1 1│
│1 1 1│1 1 0│1 1 1│0 1 1│1 1 1│1 1 1│
│0 0 0│1 1 0│1 1 1│0 1 1│1 1 1│1 1 1│
│     │     │     │     │     │     │
│1 1 1│1 1 0│0 0 0│0 1 1│0 0 0│1 1 1│
│1 1 1│1 1 0│1 1 1│0 1 1│0 0 0│1 1 1│
│0 0 0│1 1 0│1 1 1│0 1 1│0 0 0│1 1 1│
└─────┴─────┴─────┴─────┴─────┴─────┘

```