⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}}
The digital root, , of a number, , is calculated: : find as the sum of the digits of : find a new by summing the digits of , repeating until has only one digit.
The additive persistence is the number of summations required to obtain the single digit.
The task is to calculate the additive persistence and the digital root of a number, e.g.: : has additive persistence and digital root of ; : has additive persistence and digital root of ; : has additive persistence and digital root of ; : has additive persistence and digital root of ;
The digital root may be calculated in bases other than 10.
;See:
- [[Casting out nines]] for this wiki's use of this procedure.
- [[Digital root/Multiplicative digital root]]
- [[Sum digits of an integer]]
- [[oeis:A010888|Digital root sequence on OEIS]]
- [[oeis:A031286|Additive persistence sequence on OEIS]]
- [[Iterated digits squaring]]
11l
{{trans|Python}}
F digital_root(=n)
V ap = 0
L n >= 10
n = sum(String(n).map(digit -> Int(digit)))
ap++
R (ap, n)
L(n) [Int64(627615), 39390, 588225, 393900588225, 55]
Int64 persistance, root
(persistance, root) = digital_root(n)
print(‘#12 has additive persistance #2 and digital root #..’.format(n, persistance, root))
{{out}}
627615 has additive persistance 2 and digital root 9.
39390 has additive persistance 2 and digital root 6.
588225 has additive persistance 2 and digital root 3.
393900588225 has additive persistance 2 and digital root 9.
55 has additive persistance 2 and digital root 1.
360 Assembly
* Digital root 21/04/2017
DIGROOT CSECT
USING DIGROOT,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) save previous context
ST R13,4(R15) link backward
ST R15,8(R13) link forward
LR R13,R15 set addressability
LA R6,1 i=1
DO WHILE=(C,R6,LE,=A((PG-T)/4)) do i=1 to hbound(t)
LR R1,R6 i
SLA R1,2 *4
L R10,T-4(R1) nn=t(i)
LR R7,R10 n=nn
SR R9,R9 ap=0
DO WHILE=(C,R7,GE,=A(10)) do while(n>=10)
SR R8,R8 x=0
DO WHILE=(C,R7,GE,=A(10)) do while(n>=10)
LR R4,R7 n
SRDA R4,32 >>r5
D R4,=A(10) m=n//10
LR R7,R5 n=n/10
AR R8,R4 x=x+m
ENDDO , end
AR R7,R8 n=x+n
LA R9,1(R9) ap=ap+1
ENDDO , end
XDECO R10,XDEC nn
MVC PG+7(10),XDEC+2
XDECO R9,XDEC ap
MVC PG+31(3),XDEC+9
XDECO R7,XDEC n
MVC PG+41(1),XDEC+11
XPRNT PG,L'PG print
LA R6,1(R6) i++
ENDDO , enddo i
L R13,4(0,R13) restore previous savearea pointer
LM R14,R12,12(R13) restore previous context
XR R15,R15 rc=0
BR R14 exit
T DC F'627615',F'39390',F'588225',F'2147483647'
PG DC CL80'number=xxxxxxxxxx persistence=xxx root=x'
XDEC DS CL12
YREGS
END DIGROOT
{{out}}
number= 627615 persistence= 2 root=9
number= 39390 persistence= 2 root=6
number= 588225 persistence= 2 root=3
number=2147483647 persistence= 3 root=1
Ada
We first specify a Package "Generic_Root" with a generic procedure "Compute". The package is reduced for the implementation of multiplicative digital roots [[http://rosettacode.org/wiki/Digital_root/Multiplicative_digital_root#Ada]]. Further note the tunable parameter for the number base (default 10).
package Generic_Root is
type Number is range 0 .. 2**63-1;
type Number_Array is array(Positive range <>) of Number;
type Base_Type is range 2 .. 16; -- any reasonable base to write down numb
generic
with function "&"(X, Y: Number) return Number;
-- instantiate with "+" for additive digital roots
-- instantiate with "*" for multiplicative digital roots
procedure Compute_Root(N: Number;
Root, Persistence: out Number;
Base: Base_Type := 10);
-- computes Root and Persistence of N;
end Generic_Root;
The implementation is straightforward: If the input N is a digit, then the root is N and the persistence is zero. Else, commute the digit-sum DS. The root of N is the root of DS, the persistence of N is 1 + (the persistence of DS).
package body Generic_Root is
procedure Compute_Root(N: Number;
Root, Persistence: out Number;
Base: Base_Type := 10) is
function Digit_Sum(N: Number) return Number is
begin
if N < Number(Base) then
return N;
else
return (N mod Number(Base)) & Digit_Sum(N / Number(Base));
end if;
end Digit_Sum;
begin
if N < Number(Base) then
Root := N;
Persistence := 0;
else
Compute_Root(Digit_Sum(N), Root, Persistence, Base);
Persistence := Persistence + 1;
end if;
end Compute_Root;
end Generic_Root;
Finally the main program. The procedure "Print_Roots" is for our convenience.
with Generic_Root, Ada.Text_IO; use Generic_Root;
procedure Digital_Root is
procedure Compute is new Compute_Root("+");
-- "+" for additive digital roots
package TIO renames Ada.Text_IO;
procedure Print_Roots(Inputs: Number_Array; Base: Base_Type) is
package NIO is new TIO.Integer_IO(Number);
Root, Pers: Number;
begin
for I in Inputs'Range loop
Compute(Inputs(I), Root, Pers, Base);
NIO.Put(Inputs(I), Base => Integer(Base), Width => 12);
NIO.Put(Root, Base => Integer(Base), Width => 9);
NIO.Put(Pers, Base => Integer(Base), Width => 12);
TIO.Put_Line(" " & Base_Type'Image(Base));
end loop;
end Print_Roots;
begin
TIO.Put_Line(" Number Root Persistence Base");
Print_Roots((961038, 923594037444, 670033, 448944221089), Base => 10);
Print_Roots((16#7e0#, 16#14e344#, 16#12343210#), Base => 16);
end Digital_Root;
{{out}}
Number Root Persistence Base
961038 9 2 10
923594037444 9 2 10
670033 1 3 10
448944221089 1 3 10
16#7E0# 16#6# 16#2# 16
16#14E344# 16#F# 16#2# 16
16#12343210# 16#1# 16#2# 16
ALGOL 68
# calculates the digital root and persistance of n #
PROC digital root = ( LONG LONG INT n, REF INT root, persistance )VOID:
BEGIN
LONG LONG INT number := ABS n;
persistance := 0;
WHILE persistance PLUSAB 1;
LONG LONG INT digit sum := 0;
WHILE number > 0
DO
digit sum PLUSAB number MOD 10;
number OVERAB 10
OD;
number := digit sum;
number > 9
DO
SKIP
OD;
root := SHORTEN SHORTEN number
END; # digital root #
# calculates and prints the digital root and persistace of number #
PROC print digital root and persistance = ( LONG LONG INT number )VOID:
BEGIN
INT root, persistance;
digital root( number, root, persistance );
print( ( whole( number, -15 ), " root: ", whole( root, 0 ), " persistance: ", whole( persistance, -3 ), newline ) )
END; # print digital root and persistance #
# test the digital root proc #
BEGIN print digital root and persistance( 627615 )
; print digital root and persistance( 39390 )
; print digital root and persistance( 588225 )
; print digital root and persistance( 393900588225 )
END
{{out}}
627615 root: 9 persistance: 2
39390 root: 6 persistance: 2
588225 root: 3 persistance: 2
393900588225 root: 9 persistance: 2
ALGOL W
begin
% calculates the digital root and persistence of an integer in base 10 %
% in order to allow for numbers larger than 2^31, the number is passed %
% as the lower and upper digits e.g. 393900588225 can be processed by %
% specifying upper = 393900, lower = 58825 %
procedure findDigitalRoot( integer value upper, lower
; integer result digitalRoot, persistence
) ;
begin
integer procedure sumDigits( integer value n ) ;
begin
integer digits, sum;
digits := abs n;
sum := 0;
while digits > 0
do begin
sum := sum + ( digits rem 10 );
digits := digits div 10
end % while digits > 0 % ;
% result: % sum
end sumDigits;
digitalRoot := sumDigits( upper ) + sumDigits( lower );
persistence := 1;
while digitalRoot > 9
do begin
persistence := persistence + 1;
digitalRoot := sumDigits( digitalRoot );
end % while digitalRoot > 9 % ;
end findDigitalRoot ;
% calculates and prints the digital root and persistence %
procedure printDigitalRootAndPersistence( integer value upper, lower ) ;
begin
integer digitalRoot, persistence;
findDigitalRoot( upper, lower, digitalRoot, persistence );
write( s_w := 0 % set field saeparator width for this statement %
, i_w := 8 % set integer field width for this statement %
, upper
, ", "
, lower
, i_w := 2 % change integer field width %
, ": digital root: "
, digitalRoot
, ", persistence: "
, persistence
)
end printDigitalRootAndPersistence ;
% test the digital root and persistence procedures %
printDigitalRootAndPersistence( 0, 627615 );
printDigitalRootAndPersistence( 0, 39390 );
printDigitalRootAndPersistence( 0, 588225 );
printDigitalRootAndPersistence( 393900, 588225 )
end.
{{out}}
0, 627615: digital root: 9, persistence: 2
0, 39390: digital root: 6, persistence: 2
0, 588225: digital root: 3, persistence: 2
393900, 588225: digital root: 9, persistence: 2
AppleScript
on digitalroot(N as integer)
script math
to sum(L)
if L = {} then return 0
(item 1 of L) + sum(rest of L)
end sum
end script
set i to 0
set M to N
repeat until M < 10
set digits to the characters of (M as text)
set M to math's sum(digits)
set i to i + 1
end repeat
{N:N, persistences:i, root:M}
end digitalroot
digitalroot(627615)
{{out}}
{N:627615, persistences:2, root:9}
Applesoft BASIC
1 GOSUB 430"BASE SETUP
2 FOR E = 0 TO 1 STEP 0
3 GOSUB 7"READ
4 ON E + 1 GOSUB 50, 10
5 NEXT E
6 END
7 READ N$
8 E = N$ = ""
9 RETURN
10 GOSUB 7"READ BASE
20 IF E THEN RETURN
30 BASE = VAL(N$)
40 READ N$
50 GOSUB 100"DIGITAL ROOT
60 GOSUB 420: PRINT " HAS AD";
70 PRINT "DITIVE PERSISTENCE";
80 PRINT " "P" AND DIGITAL R";
90 PRINT "OOT "X$";" : RETURN
REM DIGITAL ROOT OF N$, RETURNS X$ AND P
100 P = 0 : L = LEN(N$)
110 X$ = MID$(N$, 2, L - 1)
120 N = LEFT$(X$, 1) = "-"
130 IF NOT N THEN X$ = N$
140 FOR P = 0 TO 1E38
150 L = LEN(X$)
160 IF L < 2 THEN RETURN
170 GOSUB 200"DIGIT SUM
180 X$ = S$
190 NEXT P : STOP
REM DIGIT SUM OF X$, RETURNS S$
200 S$ = "0"
210 R$ = X$
220 L = LEN(R$)
230 FOR L = L TO 1 STEP -1
240 E$ = "" : V$ = RIGHT$(R$, 1)
250 GOSUB 400 : S = LEN(S$)
260 ON R$ <> "0" GOSUB 300
270 R$ = MID$(R$, 1, L - 1)
280 NEXT L
290 RETURN
REM ADD V TO S$
300 FOR C = V TO 0 STEP 0
310 V$ = RIGHT$(S$, 1)
320 GOSUB 400 : S = S - 1
330 S$ = MID$(S$, 1, S)
340 V = V + C : C = V >= BASE
350 IF C THEN V = V - BASE
360 GOSUB 410 : E$ = V$ + E$
370 IF S THEN NEXT C
380 IF C THEN S$ = "1"
390 S$ = S$ + E$ : RETURN
REM BASE VAL
400 V = V(ASC(V$)) : RETURN
REM BASE STR$
410 V$ = V$(V) : RETURN
REM BASE DISPLAY
420 PRINT N$;
421 IF BASE = 10 THEN RETURN
422 PRINT "("BASE")";
423 RETURN
REM BASE SETUP
430 IF BASE = 0 THEN BASE = 10
440 DIM V(127), V$(35)
450 FOR I = 0 TO 35
460 V = 55 + I - (I < 10) * 7
470 V$(I) = CHR$(V)
480 V(V) = I
490 NEXT I : RETURN
500 DATA627615,39390,588225
510 DATA393900588225
1000 DATA,30
1010 DATADIGITALROOT
63999DATA,
{{out}}
627615 HAS ADDITIVE PERSISTENCE 2 AND DIGITAL ROOT 9;
39390 HAS ADDITIVE PERSISTENCE 2 AND DIGITAL ROOT 6;
588225 HAS ADDITIVE PERSISTENCE 2 AND DIGITAL ROOT 3;
393900588225 HAS ADDITIVE PERSISTENCE 2 AND DIGITAL ROOT 9;
DIGITALROOT(30) HAS ADDITIVE PERSISTENCE 2 AND DIGITAL ROOT Q;
AutoHotkey
p := {}
for key, val in [30,1597,381947,92524902,448944221089]
{
n := val
while n > 9
{
m := 0
Loop, Parse, n
m += A_LoopField
n := m, i := A_Index
}
p[A_Index] := [val, n, i]
}
for key, val in p
Output .= val[1] ": Digital Root = " val[2] ", Additive Persistence = " val[3] "`n"
MsgBox, 524288, , % Output
{{out}}
30: Digital Root = 3, Additive Persistence = 1
1597: Digital Root = 4, Additive Persistence = 2
381947: Digital Root = 5, Additive Persistence = 2
92524902: Digital Root = 6, Additive Persistence = 2
448944221089: Digital Root = 1, Additive Persistence = 3
AWK
# syntax: GAWK -f DIGITAL_ROOT.AWK
BEGIN {
n = split("627615,39390,588225,393900588225,10,199",arr,",")
for (i=1; i<=n; i++) {
dr = digitalroot(arr[i],10)
printf("%12.0f has additive persistence %d and digital root of %d\n",arr[i],p,dr)
}
exit(0)
}
function digitalroot(n,b) {
p = 0 # global
while (n >= b) {
p++
n = digitsum(n,b)
}
return(n)
}
function digitsum(n,b, q,s) {
while (n != 0) {
q = int(n / b)
s += n - q * b
n = q
}
return(s)
}
{{out}}
627615 has additive persistence 2 and digital root of 9
39390 has additive persistence 2 and digital root of 6
588225 has additive persistence 2 and digital root of 3
393900588225 has additive persistence 2 and digital root of 9
10 has additive persistence 1 and digital root of 1
199 has additive persistence 3 and digital root of 1
BASIC
{{works with|QBasic}} {{improve}} This calculates the result "the hard way", but is limited to the limits of a 32-bit signed integer (+/-2,147,483,647) and therefore can't calculate the digital root of 393,900,588,225.
DECLARE SUB digitalRoot (what AS LONG)
'test inputs:
digitalRoot 627615
digitalRoot 39390
digitalRoot 588225
SUB digitalRoot (what AS LONG)
DIM w AS LONG, t AS LONG, c AS INTEGER
w = ABS(what)
IF w > 10 THEN
DO
c = c + 1
WHILE w
t = t + (w MOD (10))
w = w \ 10
WEND
w = t
t = 0
LOOP WHILE w > 9
END IF
PRINT what; ": additive persistance "; c; ", digital root "; w
END SUB
{{out}} 627615 : additive persistance 2 , digital root 9 39390 : additive persistance 2 , digital root 6 588225 : additive persistance 2 , digital root 3
Batch File
::
::Digital Root Task from Rosetta Code Wiki
::Batch File Implementation
::
::Base 10...
::
@echo off
setlocal enabledelayedexpansion
::THE MAIN THING...
for %%x in (9876543214 393900588225 1985989328582 34559) do (
call :droot %%x
)
echo.
pause
exit /b
::/THE MAIN THING...
::THE FUNCTION
:droot
set inp2sum=%1&set persist=1
:cyc1
set sum=0
set scan_digit=0
:cyc2
set digit=!inp2sum:~%scan_digit%,1!
if "%digit%"=="" (goto :sumdone)
set /a sum+=%digit%
set /a scan_digit+=1
goto :cyc2
:sumdone
if %sum% lss 10 (
echo.
echo ^(%1^)
echo Additive Persistence=%persist% Digital Root=%sum%.
goto :EOF
)
set /a persist+=1
set inp2sum=%sum%
goto :cyc1
::/THE FUNCTION
{{out}}
(9876543214)
Additive Persistence=3 Digital Root=4.
(393900588225)
Additive Persistence=2 Digital Root=9.
(1985989328582)
Additive Persistence=3 Digital Root=5.
(34559)
Additive Persistence=2 Digital Root=8.
Press any key to continue . . .
BBC BASIC
{{works with|BBC BASIC for Windows}}
*FLOAT64
PRINT "Digital root of 627615 is "; FNdigitalroot(627615, 10, p) ;
PRINT " (additive persistence " ; p ")"
PRINT "Digital root of 39390 is "; FNdigitalroot(39390, 10, p) ;
PRINT " (additive persistence " ; p ")"
PRINT "Digital root of 588225 is "; FNdigitalroot(588225, 10, p) ;
PRINT " (additive persistence " ; p ")"
PRINT "Digital root of 393900588225 is "; FNdigitalroot(393900588225, 10, p) ;
PRINT " (additive persistence " ; p ")"
PRINT "Digital root of 9992 is "; FNdigitalroot(9992, 10, p) ;
PRINT " (additive persistence " ; p ")"
END
DEF FNdigitalroot(n, b, RETURN c)
c = 0
WHILE n >= b
c += 1
n = FNdigitsum(n, b)
ENDWHILE
= n
DEF FNdigitsum(n, b)
LOCAL q, s
WHILE n <> 0
q = INT(n / b)
s += n - q * b
n = q
ENDWHILE
= s
{{out}}
Digital root of 627615 is 9 (additive persistence 2)
Digital root of 39390 is 6 (additive persistence 2)
Digital root of 588225 is 3 (additive persistence 2)
Digital root of 393900588225 is 9 (additive persistence 2)
Digital root of 9992 is 2 (additive persistence 3)
Befunge
The number, ''n'', is read as a string from stdin in order to support a larger range of values than would typically be accepted by the numeric input of most Befunge implementations. After the initial value has been summed, though, subsequent iterations are simply calculated as integer sums.
0" :rebmun retnE">:#,_0 0v
v\1:/+55p00<v\`\0::-"0"<~<
#>:55+%00g+^>9`+#v_+\ 1+\^
>|`9:p000<_v#`1\$< v"gi"<
|> \ 1 + \ >0" :toor lat"^
>$$00g\1+^@,+<v"Di",>#+ 5<
>:#,_$ . 5 5 ^>:#,_\.55+,v
^"Additive Persistence: "<
{{out}} (multiple runs)
Enter number: 1003201
Digital root: 7
Additive Persistence: 1
Enter number: 393900588225
Digital root: 9
Additive Persistence: 2
Enter number: 448944221089
Digital root: 1
Additive Persistence: 3
Bracmat
( root
= sum persistence n d
. !arg:(~>9.?)
| !arg:(?n.?persistence)
& 0:?sum
& ( @( !n
: ?
(#%@?d&!d+!sum:?sum&~)
?
)
| root$(!sum.!persistence+1)
)
)
& ( 627615 39390 588225 393900588225 10 199
: ?
( #%@?N
& root$(!N.0):(?Sum.?Persistence)
& out
$ ( !N
"has additive persistence"
!Persistence
"and digital root of"
!Sum
)
& ~
)
?
| done
);
{{out}}
627615 has additive persistence 2 and digital root of 9
39390 has additive persistence 2 and digital root of 6
588225 has additive persistence 2 and digital root of 3
393900588225 has additive persistence 2 and digital root of 9
10 has additive persistence 1 and digital root of 1
199 has additive persistence 3 and digital root of 1
C
#include <stdio.h>
int droot(long long int x, int base, int *pers)
{
int d = 0;
if (pers)
for (*pers = 0; x >= base; x = d, (*pers)++)
for (d = 0; x; d += x % base, x /= base);
else if (x && !(d = x % (base - 1)))
d = base - 1;
return d;
}
int main(void)
{
int i, d, pers;
long long x[] = {627615, 39390, 588225, 393900588225LL};
for (i = 0; i < 4; i++) {
d = droot(x[i], 10, &pers);
printf("%lld: pers %d, root %d\n", x[i], pers, d);
}
return 0;
}
C#
using System;
using System.Linq;
class Program
{
static Tuple<int, int> DigitalRoot(long num)
{
int additivepersistence = 0;
while (num > 9)
{
num = num.ToString().ToCharArray().Sum(x => x - '0');
additivepersistence++;
}
return new Tuple<int, int>(additivepersistence, (int)num);
}
static void Main(string[] args)
{
foreach (long num in new long[] { 627615, 39390, 588225, 393900588225 })
{
var t = DigitalRoot(num);
Console.WriteLine("{0} has additive persistence {1} and digital root {2}", num, t.Item1, t.Item2);
}
}
}
{{out}}
627615 has additive persistence 2 and digital root 9
39390 has additive persistence 2 and digital root 6
588225 has additive persistence 2 and digital root 3
393900588225 has additive persistence 2 and digital root 9
C++
For details of SumDigits see: http://rosettacode.org/wiki/Sum_digits_of_an_integer
// Calculate the Digital Root and Additive Persistance of an Integer - Compiles with gcc4.7
//
// Nigel Galloway. July 23rd., 2012
//
#include <iostream>
#include <cmath>
#include <utility>
template<class P_> P_ IncFirst(const P_& src) {return P_(src.first + 1, src.second);}
std::pair<int, int> DigitalRoot(unsigned long long digits, int base = 10)
{
int x = SumDigits(digits, base);
return x < base ? std::make_pair(1, x) : IncFirst(DigitalRoot(x, base)); // x is implicitly converted to unsigned long long; this is lossless
}
int main() {
const unsigned long long ip[] = {961038,923594037444,670033,448944221089};
for (auto i:ip){
auto res = DigitalRoot(i);
std::cout << i << " has digital root " << res.second << " and additive persistance " << res.first << "\n";
}
std::cout << "\n";
const unsigned long long hip[] = {0x7e0,0x14e344,0xd60141,0x12343210};
for (auto i:hip){
auto res = DigitalRoot(i,16);
std::cout << std::hex << i << " has digital root " << res.second << " and additive persistance " << res.first << "\n";
}
return 0;
}
{{out}}
961038 has digital root 9 and additive persistance 2
923594037444 has digital root 9 and additive persistance 2
670033 has digital root 1 and additive persistance 3
448944221089 has digital root 1 and additive persistance 3
7e0 has digital root 6 and additive persistance 2
14e344 has digital root f and additive persistance 2
d60141 has digital root a and additive persistance 2
12343210 has digital root 1 and additive persistance 2
Component Pascal
{{Works with|BlackBox Component Builder}}
MODULE DigitalRoot;
IMPORT StdLog, Strings, TextMappers, DevCommanders;
PROCEDURE CalcDigitalRoot(x: LONGINT; OUT dr,pers: LONGINT);
VAR
str: ARRAY 64 OF CHAR;
i: INTEGER;
BEGIN
dr := 0;pers := 0;
LOOP
Strings.IntToString(x,str);
IF LEN(str$) = 1 THEN dr := x ;EXIT END;
i := 0;dr := 0;
WHILE (i < LEN(str$)) DO
INC(dr,ORD(str[i]) - ORD('0'));
INC(i)
END;
INC(pers);
x := dr
END;
END CalcDigitalRoot;
PROCEDURE Do*;
VAR
dr,pers: LONGINT;
s: TextMappers.Scanner;
BEGIN
s.ConnectTo(DevCommanders.par.text);
s.SetPos(DevCommanders.par.beg);
REPEAT
s.Scan;
IF (s.type = TextMappers.int) OR (s.type = TextMappers.lint) THEN
CalcDigitalRoot(s.int,dr,pers);
StdLog.Int(s.int);
StdLog.String(" Digital root: ");StdLog.Int(dr);
StdLog.String(" Persistence: ");StdLog.Int(pers);StdLog.Ln
END
UNTIL s.rider.eot;
END Do;
END DigitalRoot.
Execute: ^Q DigitalRoot.Do 627615 39390 588225 393900588~ {{out}}
627615 Digital root: 9 Persistence: 2
39390 Digital root: 6 Persistence: 2
588225 Digital root: 3 Persistence: 2
393900588 Digital root: 9 Persistence: 2
Common Lisp
Using SUM-DIGITS
from the task "[[Sum_digits_of_an_integer#Common_Lisp|Sum digits of an integer]]".
(defun digital-root (number &optional (base 10))
(loop for n = number then s
for ap = 1 then (1+ ap)
for s = (sum-digits n base)
when (< s base)
return (values s ap)))
(loop for (nr base) in '((627615 10) (393900588225 10) (#X14e344 16) (#36Rdg9r 36))
do (multiple-value-bind (dr ap) (digital-root nr base)
(format T "~vR (base ~a): additive persistence = ~a, digital root = ~vR~%"
base nr base ap base dr)))
{{Out}}
627615 (base 10): additive persistence = 2, digital root = 9
393900588225 (base 10): additive persistence = 2, digital root = 9
14E344 (base 16): additive persistence = 2, digital root = F
DG9R (base 36): additive persistence = 2, digital root = U
D
import std.stdio, std.typecons, std.conv, std.bigint, std.math,
std.traits;
Tuple!(uint, Unqual!T) digitalRoot(T)(in T inRoot, in uint base)
pure nothrow
in {
assert(base > 1);
} body {
Unqual!T root = inRoot.abs;
uint persistence = 0;
while (root >= base) {
auto num = root;
root = 0;
while (num != 0) {
root += num % base;
num /= base;
}
persistence++;
}
return typeof(return)(persistence, root);
}
void main() {
enum f1 = "%s(%d): additive persistance= %d, digital root= %d";
foreach (immutable b; [2, 3, 8, 10, 16, 36]) {
foreach (immutable n; [5, 627615, 39390, 588225, 393900588225])
writefln(f1, text(n, b), b, n.digitalRoot(b)[]);
writeln;
}
enum f2 = "<BIG>(%d): additive persistance= %d, digital root= %d";
immutable n = BigInt("581427189816730304036810394583022044713" ~
"00738980834668522257090844071443085937");
foreach (immutable b; [2, 3, 8, 10, 16, 36])
writefln(f2, b, n.digitalRoot(b)[]); // Shortened output.
}
{{out}}
101(2): additive persistance= 2, digital root= 1
10011001001110011111(2): additive persistance= 3, digital root= 1
1001100111011110(2): additive persistance= 3, digital root= 1
10001111100111000001(2): additive persistance= 3, digital root= 1
101101110110110010011011111110011000001(2): additive persistance= 3, digital root= 1
12(3): additive persistance= 2, digital root= 1
1011212221000(3): additive persistance= 3, digital root= 1
2000000220(3): additive persistance= 2, digital root= 2
1002212220010(3): additive persistance= 3, digital root= 1
1101122201121110011000000(3): additive persistance= 3, digital root= 1
5(8): additive persistance= 0, digital root= 5
2311637(8): additive persistance= 3, digital root= 2
114736(8): additive persistance= 3, digital root= 1
2174701(8): additive persistance= 3, digital root= 1
5566623376301(8): additive persistance= 3, digital root= 4
5(10): additive persistance= 0, digital root= 5
627615(10): additive persistance= 2, digital root= 9
39390(10): additive persistance= 2, digital root= 6
588225(10): additive persistance= 2, digital root= 3
393900588225(10): additive persistance= 2, digital root= 9
5(16): additive persistance= 0, digital root= 5
9939F(16): additive persistance= 2, digital root= 15
99DE(16): additive persistance= 2, digital root= 15
8F9C1(16): additive persistance= 2, digital root= 15
5BB64DFCC1(16): additive persistance= 2, digital root= 15
5(36): additive persistance= 0, digital root= 5
DG9R(36): additive persistance= 2, digital root= 30
UE6(36): additive persistance= 2, digital root= 15
CLVL(36): additive persistance= 2, digital root= 15
50YE8N29(36): additive persistance= 2, digital root= 25
<BIG>(2): additive persistance= 4, digital root= 1
<BIG>(3): additive persistance= 4, digital root= 1
<BIG>(8): additive persistance= 3, digital root= 3
<BIG>(10): additive persistance= 3, digital root= 4
<BIG>(16): additive persistance= 3, digital root= 7
<BIG>(36): additive persistance= 3, digital root= 17
Dc
Tested on GNU dc.
Procedure p
is for breaking up the number into individual digits.
Procedure q
is for summing all digits left by procedure p
.
Procedure r
is for overall control (when to stop).
?[10~rd10<p]sp[+z1<q]sq[lpxlqxd10<r]dsrxp
DCL
$ x = p1
$ count = 0
$ sum = x
$ loop1:
$ length = f$length( x )
$ if length .eq. 1 then $ goto done
$ i = 0
$ sum = 0
$ loop2:
$ digit = f$extract( i, 1, x )
$ sum = sum + digit
$ i = i + 1
$ if i .lt. length then $ goto loop2
$ x = f$string( sum )
$ count = count + 1
$ goto loop1
$ done:
$ write sys$output p1, " has additive persistence ", count, " and digital root of ", sum
{{out}}
$ @digital_root 627615
627615 has additive persistence 2 and digital root of 9
$ @digital_root 6
6 has additive persistence 0 and digital root of 6
$ @digital_root 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998
99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998 has additive persistence 3 and digital root of 8
Eiffel
class
APPLICATION
inherit
ARGUMENTS
create
make
feature {NONE} -- Initialization
digital_root_test_values: ARRAY [INTEGER_64]
-- Test values.
once
Result := <<670033, 39390, 588225, 393900588225>> -- base 10
end
digital_root_expected_result: ARRAY [INTEGER_64]
-- Expected result values.
once
Result := <<1, 6, 3, 9>> -- base 10
end
make
local
results: ARRAY [INTEGER_64]
i: INTEGER
do
from
i := 1
until
i > digital_root_test_values.count
loop
results := compute_digital_root (digital_root_test_values [i], 10)
if results [2] ~ digital_root_expected_result [i] then
print ("%N" + digital_root_test_values [i].out + " has additive persistence " + results [1].out + " and digital root " + results [2].out)
else
print ("Error in the calculation of the digital root of " + digital_root_test_values [i].out + ". Expected value: " + digital_root_expected_result [i].out + ", produced value: " + results [2].out)
end
i := i + 1
end
end
compute_digital_root (a_number: INTEGER_64; a_base: INTEGER): ARRAY [INTEGER_64]
-- Returns additive persistence and digital root of `a_number' using `a_base'.
require
valid_number: a_number >= 0
valid_base: a_base > 1
local
temp_num: INTEGER_64
do
create Result.make_filled (0, 1, 2)
from
Result [2] := a_number
until
Result [2] < a_base
loop
from
temp_num := Result [2]
Result [2] := 0
until
temp_num = 0
loop
Result [2] := Result [2] + (temp_num \\ a_base)
temp_num := temp_num // a_base
end
Result [1] := Result [1] + 1
end
end
{{out}}
670033 has additive persistence 3 and digital root 1
39390 has additive persistence 2 and digital root 6
588225 has additive persistence 2 and digital root 3
393900588225 has additive persistence 2 and digital root 9
Elena
{{trans|C#}} ELENA 4.1 :
import extensions;
import system'routines;
import system'collections;
extension op
{
get DigitalRoot()
{
int additivepersistence := 0;
long num := self;
while (num > 9)
{
num := num.Printable.toArray().selectBy:(ch => ch.toInt() - 48).summarize(new LongInteger());
additivepersistence += 1
};
^ new Tuple<int,int>(additivepersistence, num.toInt())
}
}
public program()
{
new long[]::(627615l, 39390l, 588225l, 393900588225l).forEach:(num)
{
var t := num.DigitalRoot;
console.printLineFormatted("{0} has additive persistence {1} and digital root {2}", num, t.Item1, t.Item2)
}
}
{{out}}
627615 has additive persistence 2 and digital root 9
39390 has additive persistence 2 and digital root 6
588225 has additive persistence 2 and digital root 3
393900588225 has additive persistence 2 and digital root 9
Elixir
{{works with|Elixir|1.1}}
defmodule Digital do
def root(n, base\\10), do: root(n, base, 0)
defp root(n, base, ap) when n < base, do: {n, ap}
defp root(n, base, ap) do
Integer.digits(n, base) |> Enum.sum |> root(base, ap+1)
end
end
data = [627615, 39390, 588225, 393900588225]
Enum.each(data, fn n ->
{dr, ap} = Digital.root(n)
IO.puts "#{n} has additive persistence #{ap} and digital root of #{dr}"
end)
base = 16
IO.puts "\nBase = #{base}"
fmt = "~.#{base}B(#{base}) has additive persistence ~w and digital root of ~w~n"
Enum.each(data, fn n ->
{dr, ap} = Digital.root(n, base)
:io.format fmt, [n, ap, dr]
end)
{{out}}
627615 has additive persistence 2 and digital root of 9
39390 has additive persistence 2 and digital root of 6
588225 has additive persistence 2 and digital root of 3
393900588225 has additive persistence 2 and digital root of 9
Base = 16
9939F(16) has additive persistence 2 and digital root of 15
99DE(16) has additive persistence 2 and digital root of 15
8F9C1(16) has additive persistence 2 and digital root of 15
5BB64DFCC1(16) has additive persistence 2 and digital root of 15
Erlang
Using [[Sum_digits_of_an_integer]].
-module( digital_root ).
-export( [task/0] ).
task() ->
Ns = [N || N <- [627615, 39390, 588225, 393900588225]],
Persistances = [persistance_root(X) || X <- Ns],
[io:fwrite("~p has additive persistence ~p and digital root of ~p~n", [X, Y, Z]) || {X, {Y, Z}} <- lists:zip(Ns, Persistances)].
persistance_root( X ) -> persistance_root( sum_digits:sum_digits(X), 1 ).
persistance_root( X, N ) when X < 10 -> {N, X};
persistance_root( X, N ) -> persistance_root( sum_digits:sum_digits(X), N + 1 ).
{{out}}
11> digital_root:task().
627615 has additive persistence 2 and digital root of 9
39390 has additive persistence 2 and digital root of 6
588225 has additive persistence 2 and digital root of 3
393900588225 has additive persistence 2 and digital root of 9
=={{header|F_Sharp|F#}}== This code uses sumDigits from [[Sum_digits_of_an_integer#or_Generically]]
//Find the Digital Root of An Integer - Nigel Galloway: February 1st., 2015
//This code will work with any integer type
let inline digitalRoot N BASE =
let rec root(p,n) =
let s = sumDigits n BASE
if s < BASE then (s,p) else root(p+1, s)
root(LanguagePrimitives.GenericZero<_> + 1, N)
{{out}}
> digitalRoot 627615 10;;
val it : int * int = (9, 2)
> digitalRoot 39390 10;;
val it : int * int = (6, 2)
> digitalRoot 588225 10;;
val it : int * int = (3, 2)
> digitalRoot 393900588225L 10L;;
val it : int64 * int = (9L, 2)
> digitalRoot 123456789123456789123456789123456789123456789I 10I;;
val it : System.Numerics.BigInteger * int = (9 {IsEven = false;
IsOne = false;
IsPowerOfTwo = false;
IsZero = false;
Sign = 1;}, 2)
Factor
USING: arrays formatting kernel math math.text.utils sequences ;
IN: rosetta-code.digital-root
: digital-root ( n -- persistence root )
0 swap [ 1 digit-groups dup length 1 > ] [ sum [ 1 + ] dip ]
while first ;
: print-root ( n -- )
dup digital-root
"%-12d has additive persistence %d and digital root %d.\n"
printf ;
{ 627615 39390 588225 393900588225 } [ print-root ] each
{{out}}
627615 has additive persistence 2 and digital root 9.
39390 has additive persistence 2 and digital root 6.
588225 has additive persistence 2 and digital root 3.
393900588225 has additive persistence 2 and digital root 9.
Fortran
program prec
implicit none
integer(kind=16) :: i
i = 627615
call root_pers(i)
i = 39390
call root_pers(i)
i = 588225
call root_pers(i)
i = 393900588225
call root_pers(i)
end program
subroutine root_pers(i)
implicit none
integer(kind=16) :: N, s, a, i
write(*,*) 'Number: ', i
n = i
a = 0
do while(n.ge.10)
a = a + 1
s = 0
do while(n.gt.0)
s = s + n-int(real(n,kind=8)/10.0D0,kind=8) * 10_8
n = int(real(n,kind=16)/real(10,kind=8),kind=8)
end do
n = s
end do
write(*,*) 'digital root = ', s
write(*,*) 'additive persistance = ', a
end subroutine
Number: 627615
digital root = 9
additive persistance = 2
Number: 39390
digital root = 6
additive persistance = 2
Number: 588225
digital root = 3
additive persistance = 2
Number: 393900588225
digital root = 9
additive persistance = 2
Forth
This is trivial to do in Forth, because radix control is one of its most prominent feature. The 32-bits version just takes two lines:
: (Sdigit) 0 swap begin base @ /mod >r + r> dup 0= until drop ;
: digiroot 0 swap begin (Sdigit) >r 1+ r> dup base @ < until ;
This will take care of most numbers:
627615 digiroot . . 9 2 ok
39390 digiroot . . 6 2 ok
588225 digiroot . . 3 2 ok
For the last one we will need a "double number" version. '''MU/MOD''' is not available in some Forth implementations, but it is easy to define:
[UNDEFINED] mu/mod [IF] : mu/mod >r 0 r@ um/mod r> swap >r um/mod r> ; [THEN]
: (Sdigit) 0. 2swap begin base @ mu/mod 2>r s>d d+ 2r> 2dup d0= until 2drop ;
: digiroot 0 -rot begin (Sdigit) 2>r 1+ 2r> 2dup base @ s>d d< until d>s ;
That one will take care of the last one:
393900588225. digiroot . . 9 2 ok
FreeBASIC
' FB 1.05.0 Win64
Function digitalRoot(n As UInteger, ByRef ap As Integer, base_ As Integer = 10) As Integer
Dim dr As Integer
ap = 0
Do
dr = 0
While n > 0
dr += n Mod base_
n = n \ base_
Wend
ap += 1
n = dr
Loop until dr < base_
Return dr
End Function
Dim As Integer dr, ap
Dim a(3) As UInteger = {627615, 39390, 588225, 393900588225}
For i As Integer = 0 To 3
ap = 0
dr = digitalRoot(a(i), ap)
Print a(i), "Additive Persistence ="; ap, "Digital root ="; dr
Print
Next
Print "Press any key to quit"
Sleep
{{out}}
627615 Additive Persistence = 2 Digital root = 9
39390 Additive Persistence = 2 Digital root = 6
588225 Additive Persistence = 2 Digital root = 3
393900588225 Additive Persistence = 2 Digital root = 9
Go
With function Sum
from [[Sum digits of an integer#Go]].
package main
import (
"fmt"
"log"
"strconv"
)
func Sum(i uint64, base int) (sum int) {
b64 := uint64(base)
for ; i > 0; i /= b64 {
sum += int(i % b64)
}
return
}
func DigitalRoot(n uint64, base int) (persistence, root int) {
root = int(n)
for x := n; x >= uint64(base); x = uint64(root) {
root = Sum(x, base)
persistence++
}
return
}
// Normally the below would be moved to a *_test.go file and
// use the testing package to be runnable as a regular test.
var testCases = []struct {
n string
base int
persistence int
root int
}{
{"627615", 10, 2, 9},
{"39390", 10, 2, 6},
{"588225", 10, 2, 3},
{"393900588225", 10, 2, 9},
{"1", 10, 0, 1},
{"11", 10, 1, 2},
{"e", 16, 0, 0xe},
{"87", 16, 1, 0xf},
// From Applesoft BASIC example:
{"DigitalRoot", 30, 2, 26}, // 26 is Q base 30
// From C++ example:
{"448944221089", 10, 3, 1},
{"7e0", 16, 2, 0x6},
{"14e344", 16, 2, 0xf},
{"d60141", 16, 2, 0xa},
{"12343210", 16, 2, 0x1},
// From the D example:
{"1101122201121110011000000", 3, 3, 1},
}
func main() {
for _, tc := range testCases {
n, err := strconv.ParseUint(tc.n, tc.base, 64)
if err != nil {
log.Fatal(err)
}
p, r := DigitalRoot(n, tc.base)
fmt.Printf("%12v (base %2d) has additive persistence %d and digital root %s\n",
tc.n, tc.base, p, strconv.FormatInt(int64(r), tc.base))
if p != tc.persistence || r != tc.root {
log.Fatalln("bad result:", tc, p, r)
}
}
}
{{out}}
627615 (base 10) has additive persistence 2 and digital root 9
39390 (base 10) has additive persistence 2 and digital root 6
588225 (base 10) has additive persistence 2 and digital root 3
393900588225 (base 10) has additive persistence 2 and digital root 9
1 (base 10) has additive persistence 0 and digital root 1
11 (base 10) has additive persistence 1 and digital root 2
e (base 16) has additive persistence 0 and digital root e
87 (base 16) has additive persistence 1 and digital root f
DigitalRoot (base 30) has additive persistence 2 and digital root q
448944221089 (base 10) has additive persistence 3 and digital root 1
7e0 (base 16) has additive persistence 2 and digital root 6
14e344 (base 16) has additive persistence 2 and digital root f
d60141 (base 16) has additive persistence 2 and digital root a
12343210 (base 16) has additive persistence 2 and digital root 1
1101122201121110011000000 (base 3) has additive persistence 3 and digital root 1
Haskell
import Data.Tuple (swap)
import Data.List (unfoldr)
digSum :: Int -> Int -> Int
digSum base = sum . unfoldr f
where
f 0 = Nothing
f n = Just (swap (quotRem n base))
digRoot :: Int -> Int -> (Int, Int)
digRoot base =
head . dropWhile ((>= base) . snd) . zip [0 ..] . iterate (digSum base)
main :: IO ()
main = do
putStrLn "in base 10:"
mapM_ (print . ((,) <*> digRoot 10)) [627615, 39390, 588225, 393900588225]
{{out}}
in base 10:
(627615,(2,9))
(39390,(2,6))
(588225,(2,3))
(393900588225,(2,9))
import Data.Tuple (swap)
import Data.Maybe (fromJust)
import Data.List (elemIndex, unfoldr)
import Numeric (readInt, showIntAtBase)
-- Return a pair consisting of the additive persistence and digital root of a
-- base b number.
digRoot :: Integer -> Integer -> (Integer, Integer)
digRoot b = find . zip [0 ..] . iterate (sum . toDigits b)
where
find = head . dropWhile ((>= b) . snd)
-- Print the additive persistence and digital root of a base b number (given as
-- a string).
printDigRoot :: Integer -> String -> IO ()
printDigRoot b s = do
let (p, r) = digRoot b $ strToInt b s
(putStrLn . unwords)
[s, "-> additive persistence:", show p, "digital root:", intToStr b r]
--
-- Utility methods for dealing with numbers in different bases.
--
-- Convert a base b number to a list of digits, from least to most significant.
toDigits
:: Integral a
=> a -> a -> [a]
toDigits b = unfoldr f
where
f 0 = Nothing
f n = Just (swap (quotRem n b))
-- A list of digits, for bases up to 36.
digits :: String
digits = ['0' .. '9'] ++ ['A' .. 'Z']
-- Return a number's base b string representation.
intToStr
:: (Integral a, Show a)
=> a -> a -> String
intToStr b n
| b < 2 || b > 36 = error "intToStr: base must be in [2..36]"
| otherwise = showIntAtBase b (digits !!) n ""
-- Return the number for the base b string representation.
strToInt
:: Integral a
=> a -> String -> a
strToInt b =
fst . head . readInt b (`elem` digits) (fromJust . (`elemIndex` digits))
main :: IO ()
main =
mapM_
(uncurry printDigRoot)
[ (2, "1001100111011110")
, (3, "2000000220")
, (8, "5566623376301")
, (10, "39390")
, (16, "99DE")
, (36, "50YE8N29")
, (36, "37C71GOYNYJ25M3JTQQVR0FXUK0W9QM71C1LVN")
]
{{out}}
1001100111011110 -> additive persistence: 3 digital root: 1
2000000220 -> additive persistence: 2 digital root: 2
5566623376301 -> additive persistence: 3 digital root: 4
39390 -> additive persistence: 2 digital root: 6
99DE -> additive persistence: 2 digital root: F
50YE8N29 -> additive persistence: 2 digital root: P
37C71GOYNYJ25M3JTQQVR0FXUK0W9QM71C1LVN -> additive persistence: 2 digital root: N
Huginn
main( argv_ ) {
if ( size( argv_ ) < 2 ) {
throw Exception( "usage: digital-root {NUM}" );
}
n = argv_[1];
if ( ( size( n ) == 0 ) || ( n.find_other_than( "0123456789" ) >= 0 ) ) {
throw Exception( "{} is not a number".format( n ) );
}
shift = integer( '0' ) + 1;
acc = 0;
for ( d : n ) {
acc = 1 + ( acc + integer( d ) - shift ) % 9;
}
print( "{}\n".format( acc ) );
return ( 0 );
}
=={{header|Icon}} and {{header|Unicon}}== The following works in both languages:
procedure main(A)
every m := n := integer(!A) do {
ap := 0
while (*n > 1) do (ap +:= 1, n := sumdigits(n))
write(m," has additive persistence of ",ap," and digital root of ",n)
}
end
procedure sumdigits(n)
s := 0
n ? while s +:= move(1)
return s
end
{{out|Sample run}}
->dr 627615 39390 588225 393900588225
627615 has additive persistence of 2 and digital root of 9
39390 has additive persistence of 2 and digital root of 6
588225 has additive persistence of 2 and digital root of 3
393900588225 has additive persistence of 2 and digital root of 9
->
J
digrot=: +/@(#.inv~&10)^:_
addper=: _1 + [: # +/@(#.inv~&10)^:a:
Example use:
(, addper, digrot)&> 627615 39390 588225 393900588225
627615 2 9
39390 2 6
588225 2 3
393900588225 2 9
Here's an equality operator for comparing these digital roots:
equals=: =&(9&|)"0
table of results:
equals table i. 10
┌──────┬───────────────────┐
│equals│0 1 2 3 4 5 6 7 8 9│
├──────┼───────────────────┤
│0 │1 0 0 0 0 0 0 0 0 1│
│1 │0 1 0 0 0 0 0 0 0 0│
│2 │0 0 1 0 0 0 0 0 0 0│
│3 │0 0 0 1 0 0 0 0 0 0│
│4 │0 0 0 0 1 0 0 0 0 0│
│5 │0 0 0 0 0 1 0 0 0 0│
│6 │0 0 0 0 0 0 1 0 0 0│
│7 │0 0 0 0 0 0 0 1 0 0│
│8 │0 0 0 0 0 0 0 0 1 0│
│9 │1 0 0 0 0 0 0 0 0 1│
└──────┴───────────────────┘
If digital roots other than 10 are desired, the modifier ~&10 can be removed from the above definitions of digrot
and addper
, and the base can be supplied as a left argument. Since this is a simplification, these definitions are shown here:
digrt=: +/@(#.inv)^:_
addpr=: _1 + [: # +/@(#.inv)^:a:
Note that these routines merely calculate results, which are numbers. If you want the result to be displayed in some other base converting the result from numbers to character strings needs an additional step. Since that's currently not a part of the task, this is left as an exercise for the reader.
Example use (note: names spelled slightly different for the updated definitions):
10 digrt 627615
9
10 addpr 627615
2
Java
;
import java.math.BigInteger;
class DigitalRoot
{
public static int[] calcDigitalRoot(String number, int base)
{
BigInteger bi = new BigInteger(number, base);
int additivePersistence = 0;
if (bi.signum() < 0)
bi = bi.negate();
BigInteger biBase = BigInteger.valueOf(base);
while (bi.compareTo(biBase) >= 0)
{
number = bi.toString(base);
bi = BigInteger.ZERO;
for (int i = 0; i < number.length(); i++)
bi = bi.add(new BigInteger(number.substring(i, i + 1), base));
additivePersistence++;
}
return new int[] { additivePersistence, bi.intValue() };
}
public static void main(String[] args)
{
for (String arg : args)
{
int[] results = calcDigitalRoot(arg, 10);
System.out.println(arg + " has additive persistence " + results[0] + " and digital root of " + results[1]);
}
}
}
{{out|Example}}
java DigitalRoot 627615 39390 588225 393900588225
627615 has additive persistence 2 and digital root of 9
39390 has additive persistence 2 and digital root of 6
588225 has additive persistence 2 and digital root of 3
393900588225 has additive persistence 2 and digital root of 9
JavaScript
/// Digital root of 'x' in base 'b'.
/// @return {addpers, digrt}
function digitalRootBase(x,b) {
if (x < b)
return {addpers:0, digrt:x};
var fauxroot = 0;
while (b <= x) {
x = (x / b) | 0;
fauxroot += x % b;
}
var rootobj = digitalRootBase(fauxroot,b);
rootobj.addpers += 1;
return rootobj;
}
jq
{{works with|jq|1.4}}
digital_root(n) is defined here for decimals and strings representing decimals.
def do_until(condition; next):
def u: if condition then . else (next|u) end;
u;
# n may be a decimal number or a string representing a decimal number
def digital_root(n):
# string-only version
def dr:
# state: [mdr, persist]
do_until( .[0] | length == 1;
[ (.[0] | explode | map(.-48) | add | tostring), .[1] + 1 ]
);
[n|tostring, 0] | dr | .[0] |= tonumber;
def neatly:
. as $in
| range(0;length)
| "\(.): \($in[.])";
def rjust(n): tostring | (n-length)*" " + .;
'''Examples''':
(
" i : [DR, P]",
(961038, 923594037444, 670033, 448944221089
) as $i
| "\($i|rjust(12)): \(digital_root($i))"
),
"",
"digital_root(\"1\" * 100000) => \(digital_root( "1" * 100000))"
{{out}}
$ jq -M -n -r -c -f Digital_root.jq
i : [DR, P]
961038: [9,2]
923594037444: [9,2]
670033: [1,3]
448944221089: [1,3]
digital_root("1" * 100000) => [1,2]
Julia
{{works with|Julia|0.6}}
function digitalroot(n::Integer, bs::Integer=10)
if n < 0 || bs < 2 throw(DomainError()) end
ds, pers = n, 0
while bs ≤ ds
ds = sum(digits(ds, bs))
pers += 1
end
return pers, ds
end
for i in [627615, 39390, 588225, 393900588225, big(2) ^ 100]
pers, ds = digitalroot(i)
println(i, " has persistence ", pers, " and digital root ", ds)
end
{{out}}
627615 has persistence 2 and digital root 9
39390 has persistence 2 and digital root 6
588225 has persistence 2 and digital root 3
393900588225 has persistence 2 and digital root 9
1267650600228229401496703205376 has persistence 2 and digital root 7
K
/ print digital root and additive persistence
prt: {`"Digital root = ", x, `"Additive persistence = ",y}
/ sum of digits of an integer
sumdig: {d::(); (0<){d::d,x!10; x%:10}/x; +/d}
/ compute digital root and additive persistence
digroot: {sm::sumdig x; ap::0; (9<){sm::sumdig x;ap::ap+1; x:sm}/x; prt[sm;ap]}
{{out}}
digroot 627615
(`"Digital root = ";9;`"Additive persistence = ";2)
digroot 39390
(`"Digital root = ";6;`"Additive persistence = ";2)
digroot 588225
(`"Digital root = ";3;`"Additive persistence = ";2)
digroot 393900588225
(`"Digital root = ";9;`"Additive persistence = ";2)
digroot 14
(`"Digital root = ";5;`"Additive persistence = ";1)
digroot 3
(`"Digital root = ";3;`"Additive persistence = ";0)
Kotlin
// version 1.0.6
fun sumDigits(n: Long): Int = when {
n < 0L -> throw IllegalArgumentException("Negative numbers not allowed")
else -> {
var sum = 0
var nn = n
while (nn > 0L) {
sum += (nn % 10).toInt()
nn /= 10
}
sum
}
}
fun digitalRoot(n: Long): Pair<Int, Int> = when {
n < 0L -> throw IllegalArgumentException("Negative numbers not allowed")
n < 10L -> Pair(n.toInt(), 0)
else -> {
var dr = n
var ap = 0
while (dr > 9L) {
dr = sumDigits(dr).toLong()
ap++
}
Pair(dr.toInt(), ap)
}
}
fun main(args: Array<String>) {
val a = longArrayOf(1, 14, 267, 8128, 627615, 39390, 588225, 393900588225)
for (n in a) {
val(dr, ap) = digitalRoot(n)
println("${n.toString().padEnd(12)} has additive persistence $ap and digital root of $dr")
}
}
{{out}}
1 has additive persistence 0 and digital root of 1
14 has additive persistence 1 and digital root of 5
267 has additive persistence 2 and digital root of 6
8128 has additive persistence 3 and digital root of 1
627615 has additive persistence 2 and digital root of 9
39390 has additive persistence 2 and digital root of 6
588225 has additive persistence 2 and digital root of 3
393900588225 has additive persistence 2 and digital root of 9
Lua
With function sum_digits from [http://rosettacode.org/wiki/Sum_digits_of_an_integer#Lua]
function digital_root(n, base)
p = 0
while n > 9.5 do
n = sum_digits(n, base)
p = p + 1
end
return n, p
end
print(digital_root(627615, 10))
print(digital_root(39390, 10))
print(digital_root(588225, 10))
print(digital_root(393900588225, 10))
{{out}}
9 2
6 2
3 2
9 2
=={{header|Mathematica}} / {{header|Wolfram Language}}==
seq[n_, b_] := FixedPointList[Total[IntegerDigits[#, b]] &, n];
root[n_Integer, base_: 10] := If[base == 10, #, BaseForm[#, base]] &[Last[seq[n, base]]]
persistance[n_Integer, base_: 10] := Length[seq[n, base]] - 2;
{{out}}
root /@ {627615, 39390, 588225 , 393900, 588225, 670033, 448944221089}
{9, 6, 3, 6, 3, 1, 1}
persistance /@ {627615, 39390, 588225 , 393900, 588225, 670033, 448944221089}
{2, 2, 2, 2, 2, 3, 3}
root[16^^14E344, 16]
f
16
=={{header|Modula-2}}==
MODULE DigitalRoot;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
TYPE Root =
RECORD
persistence,root : LONGINT;
END;
PROCEDURE digitalRoot(inRoot,base : LONGINT) : Root;
VAR root,persistence,num : LONGINT;
BEGIN
root := ABS(inRoot);
persistence := 0;
WHILE root>=base DO
num := root;
root := 0;
WHILE num#0 DO
root := root + (num MOD base);
num := num DIV base;
END;
INC(persistence)
END;
RETURN Root{persistence, root}
END digitalRoot;
PROCEDURE Print(n,b : LONGINT);
VAR
buf : ARRAY[0..63] OF CHAR;
r : Root;
BEGIN
r := digitalRoot(n,b);
FormatString("%u (base %u): persistence=%u, digital root=%u\n", buf, n, b, r.persistence, r.root);
WriteString(buf)
END Print;
VAR
buf : ARRAY[0..63] OF CHAR;
b,n : LONGINT;
r : Root;
BEGIN
Print(1,10);
Print(14,10);
Print(267,10);
Print(8128,10);
Print(39390,10);
Print(627615,10);
Print(588225,10);
ReadChar
END DigitalRoot.
NetRexx
/* NetRexx ************************************************************
* Test digroot
**********************************************************************/
Say 'number -> digital_root persistence'
test_digroot(7 ,7, 0)
test_digroot(627615 ,9, 2)
test_digroot(39390 ,6, 2)
test_digroot(588225 ,3, 2)
test_digroot(393900588225,9, 2)
test_digroot(393900588225,9, 3) /* test error case */
method test_digroot(n,dx,px) static
res=digroot(n)
Parse res d p
If d=dx & p=px Then tag='ok'
Else tag='expected:' dx px
Say n '->' d p tag
method digroot(n) static
/**********************************************************************
* Compute the digital root and persistence of the given decimal number
* 19.08.2012 Walter Pachl derived from Rexx
**************************** Bottom of Data **************************/
p=0 /* persistence */
Loop While n.length()>1 /* more than one digit in n */
s=0 /* initialize sum */
p=p+1 /* increment persistence */
Loop while n<>'' /* as long as there are digits */
Parse n c +1 n /* pick the first one */
s=s+c /* add to the new sum */
End
n=s /* the 'new' number */
End
return n p /* return root and persistence */
{{out}}
number -> digital_root persistence
7 -> 7 0 ok
627615 -> 9 2 ok
39390 -> 6 2 ok
588225 -> 3 2 ok
393900588225 -> 9 2 ok
393900588225 -> 9 2 expected: 9 3
Nim
import strutils
proc droot(n: int64): auto =
var x = @[n]
while x[x.high] > 10:
var s = 0'i64
for dig in $x[x.high]:
s += parseInt("" & dig)
x.add s
return (x.len - 1, x[x.high])
for n in [627615'i64, 39390'i64, 588225'i64, 393900588225'i64]:
let (a, d) = droot(n)
echo align($n, 12)," has additive persistance ",a," and digital root of ",d
{{out}}
627615 has additive persistance 2 and digital root of 9
39390 has additive persistance 2 and digital root of 6
588225 has additive persistance 2 and digital root of 3
393900588225 has additive persistance 2 and digital root of 9
Oforth
Using result of sum digit task :
: sumDigits(n, base) 0 while(n) [ n base /mod ->n + ] ;
: digitalRoot(n, base)
0 while(n 9 >) [ 1 + sumDigits(n, base) ->n ] n swap Pair new ;
{{out}}
[ 627615, 39390 , 588225, 393900588225 ] map(#[ 10 digitalRoot ]) println
[[9, 2], [6, 2], [3, 2], [9, 2]]
Pascal
{{works with|Free Pascal|2.6.2}}
program DigitalRoot;
{$mode objfpc}{$H+}
uses
{$IFDEF UNIX}{$IFDEF UseCThreads}
cthreads,
{$ENDIF}{$ENDIF}
SysUtils, StrUtils;
// FPC has no Big mumbers implementation, Int64 will suffice.
procedure GetDigitalRoot(Value: Int64; Base: Byte; var DRoot, Pers: Integer);
var
i: Integer;
DigitSum: Int64;
begin
Pers := 0;
repeat
Inc(Pers);
DigitSum := 0;
while Value > 0 do
begin
Inc(DigitSum, Value mod Base);
Value := Value div Base;
end;
Value := DigitSum;
until Value < Base;
DRoot := Value;
End;
function IntToStrBase(Value: Int64; Base: Byte):String;
const
// usable up to 36-Base
DigitSymbols = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXY';
begin
Result := '';
while Value > 0 do
begin
Result := DigitSymbols[Value mod Base+1] + Result;
Value := Value div Base;
End;
End;
procedure Display(const Value: Int64; Base: Byte = 10);
var
DRoot, Pers: Integer;
StrValue: string;
begin
GetDigitalRoot(Value, Base, DRoot, Pers);
WriteLn(Format('%s(%d) has additive persistence %d and digital root %d.',
[IntToStrBase(Value, Base), Base, Pers, DRoot]));
End;
begin
WriteLn('--- Examples in 10-Base ---');
Display(627615);
Display(39390);
Display(588225);
Display(393900588225);
WriteLn('--- Examples in 16-Base ---');
Display(627615, 16);
Display(39390, 16);
Display(588225, 16);
Display(393900588225, 16);
ReadLn;
End.
{{out}}
--- Examples in 10-Base ---
627615(10) has additive persistence 2 and digital root 9.
39390(10) has additive persistence 2 and digital root 6.
588225(10) has additive persistence 2 and digital root 3.
393900588225(10) has additive persistence 2 and digital root 9.
--- Examples in 16-Base ---
9939F(16) has additive persistence 2 and digital root 15.
99DE(16) has additive persistence 2 and digital root 15.
8F9C1(16) has additive persistence 2 and digital root 15.
5BB64DFCC1(16) has additive persistence 2 and digital root 15.
PARI/GP
dsum(n)=my(s); while(n, s+=n%10; n\=10); s
additivePersistence(n)=my(s); while(n>9, s++; n=dsum(n)); s
digitalRoot(n)=if(n, (n-1)%9+1, 0)
Perl
#!perl
use strict;
use warnings;
use List::Util qw(sum);
my @digit = (0..9, 'a'..'z');
my %digit = map { +$digit[$_], $_ } 0 .. $#digit;
sub base {
my ($n, $b) = @_;
$b ||= 10;
die if $b > @digit;
my $result = '';
while( $n ) {
$result .= $digit[ $n % $b ];
$n = int( $n / $b );
}
reverse($result) || '0';
}
sub digi_root {
my ($n, $b) = @_;
my $inbase = base($n, $b);
my $additive_persistance = 0;
while( length($inbase) > 1 ) {
++$additive_persistance;
$n = sum @digit{split //, $inbase};
$inbase = base($n, $b);
}
$additive_persistance, $n;
}
MAIN: {
my @numbers = (5, 627615, 39390, 588225, 393900588225);
my @bases = (2, 3, 8, 10, 16, 36);
my $fmt = "%25s(%2s): persistance = %s, root = %2s\n";
if( eval { require Math::BigInt; 1 } ) {
push @numbers, Math::BigInt->new("5814271898167303040368".
"1039458302204471300738980834668522257090844071443085937");
}
for my $base (@bases) {
for my $num (@numbers) {
my $inbase = base($num, $base);
$inbase = 'BIG' if length($inbase) > 25;
printf $fmt, $inbase, $base, digi_root($num, $base);
}
print "\n";
}
}
{{out}}
101( 2): persistance = 2, root = 1
10011001001110011111( 2): persistance = 3, root = 1
1001100111011110( 2): persistance = 3, root = 1
10001111100111000001( 2): persistance = 3, root = 1
BIG( 2): persistance = 3, root = 1
BIG( 2): persistance = 4, root = 1
12( 3): persistance = 2, root = 1
1011212221000( 3): persistance = 3, root = 1
2000000220( 3): persistance = 2, root = 2
1002212220010( 3): persistance = 3, root = 1
1101122201121110011000000( 3): persistance = 3, root = 1
BIG( 3): persistance = 4, root = 1
5( 8): persistance = 0, root = 5
2311637( 8): persistance = 3, root = 2
114736( 8): persistance = 3, root = 1
2174701( 8): persistance = 3, root = 1
5566623376301( 8): persistance = 3, root = 4
BIG( 8): persistance = 3, root = 3
5(10): persistance = 0, root = 5
627615(10): persistance = 2, root = 9
39390(10): persistance = 2, root = 6
588225(10): persistance = 2, root = 3
393900588225(10): persistance = 2, root = 9
BIG(10): persistance = 3, root = 4
5(16): persistance = 0, root = 5
9939f(16): persistance = 2, root = 15
99de(16): persistance = 2, root = 15
8f9c1(16): persistance = 2, root = 15
5bb64dfcc1(16): persistance = 2, root = 15
BIG(16): persistance = 3, root = 7
5(36): persistance = 0, root = 5
dg9r(36): persistance = 2, root = 30
ue6(36): persistance = 2, root = 15
clvl(36): persistance = 2, root = 15
50ye8n29(36): persistance = 2, root = 25
BIG(36): persistance = 3, root = 17
Perl 6
sub digroot ($r, :$base = 10) {
my $root = $r.base($base);
my $persistence = 0;
while $root.chars > 1 {
$root = [+]($root.comb.map({:36($_)})).base($base);
$persistence++;
}
$root, $persistence;
}
my @testnums =
627615,
39390,
588225,
393900588225,
58142718981673030403681039458302204471300738980834668522257090844071443085937;
for 10, 8, 16, 36 -> $b {
for @testnums -> $n {
printf ":$b\<%s>\ndigital root %s, persistence %s\n\n",
$n.base($b), digroot $n, :base($b);
}
}
{{out}}
:10<627615>
digital root 9, persistence 2
:10<39390>
digital root 6, persistence 2
:10<588225>
digital root 3, persistence 2
:10<393900588225>
digital root 9, persistence 2
:10<58142718981673030403681039458302204471300738980834668522257090844071443085937>
digital root 4, persistence 3
:8<2311637>
digital root 2, persistence 3
:8<114736>
digital root 1, persistence 3
:8<2174701>
digital root 1, persistence 3
:8<5566623376301>
digital root 4, persistence 3
:8<10021347156245115014463623107370014314341751427033746320331121536631531505161175135161>
digital root 3, persistence 3
:16<9939F>
digital root F, persistence 2
:16<99DE>
digital root F, persistence 2
:16<8F9C1>
digital root F, persistence 2
:16<5BB64DFCC1>
digital root F, persistence 2
:16<808B9CDCA526832679323BE018CC70FA62E1BF3341B251AF666B345389F4BA71>
digital root 7, persistence 3
:36<DG9R>
digital root U, persistence 2
:36<UE6>
digital root F, persistence 2
:36<CLVL>
digital root F, persistence 2
:36<50YE8N29>
digital root P, persistence 2
:36<37C71GOYNYJ25M3JTQQVR0FXUK0W9QM71C1LVNCBWNRVNOJYPD>
digital root H, persistence 3
Or if you are more inclined to the functional programming persuasion, you can use the ... sequence operator to calculate the values without side effects:
sub digroot ($r, :$base = 10) {
my &sum = { [+](.comb.map({:36($_)})).base($base) }
return .[*-1], .elems-1
given $r.base($base), &sum ... { .chars == 1 }
}
Phix
procedure digital_root(atom n, integer base=10)
integer root, persistence = 1
atom work = n
while 1 do
root = 0
while work!=0 do
root += remainder(work,base)
work = floor(work/base)
end while
if root<base then exit end if
work = root
persistence += 1
end while
printf(1,"%15d root: %d persistence: %d\n",{n,root,persistence})
end procedure
digital_root(627615)
digital_root(39390)
digital_root(588225)
digital_root(393900588225)
{{out}}
627615 root: 9 persistence: 2
39390 root: 6 persistence: 2
588225 root: 3 persistence: 2
393900588225 root: 9 persistence: 2
PicoLisp
(for N (627615 39390 588225 393900588225)
(for ((A . I) N T (sum format (chop I)))
(T (> 10 I)
(prinl N " has additive persistance " (dec A) " and digital root of " I ";") ) ) )
{{out}}
627615 has additive persistance 2 and digital root of 9;
39390 has additive persistance 2 and digital root of 6;
588225 has additive persistance 2 and digital root of 3;
393900588225 has additive persistance 2 and digital root of 9;
PL/I
digrt: Proc Options(main);
/* REXX ***************************************************************
* Test digroot
**********************************************************************/
Call digrtst('7');
Call digrtst('627615');
Call digrtst('39390');
Call digrtst('588225');
Call digrtst('393900588225');
digrtst: Proc(n);
Dcl n Char(100) Var;
Dcl dr Pic'9';
Dcl p Dec Fixed(5);
Call digroot(n,dr,p);
Put Edit(n,dr,p)(skip,a,col(20),f(1),f(3));
End;
digroot: Proc(n,dr,p);
/**********************************************************************
* Compute the digital root and persistence of the given decimal number
* 27.07.2012 Walter Pachl (derived from REXX)
**********************************************************************/
Dcl n Char(100) Var;
Dcl dr Pic'9';
Dcl p Dec Fixed(5);
Dcl s Pic'(14)Z9';
Dcl v Char(100) Var;
p=0;
v=strip(n); /* copy the number */
If length(v)=1 Then
dr=v;
Else Do;
Do While(length(v)>1); /* more than one digit in v */
s=0; /* initialize sum */
p+=1; /* increment persistence */
Do i=1 To length(v); /* loop over all digits */
dig=substr(v,i,1); /* pick a digit */
s=s+dig; /* add to the new sum */
End;
/*Put Skip Data(v,p,s);*/
v=strip(s); /* the 'new' number */
End;
dr=Decimal(s,1,0);
End;
Return;
End;
strip: Proc(x) Returns(Char(100) Var);
Dcl x Char(*);
Dcl res Char(100) Var Init('');
Do i=1 To length(x);
If substr(x,i,1)>' ' Then
res=res||substr(x,i,1);
End;
Return(res);
End;
End;
{{out}}
7 7 0
627615 9 2
39390 6 2
588225 3 2
393900588225 9 2
Alternative:
digital: procedure options (main); /* 29 April 2014 */
declare 1 pict union,
2 x picture '9999999999999',
2 d(13) picture '9';
declare ap fixed, n fixed (15);
do n = 5, 627615, 39390, 588225, 393900588225, 99999999999;
x = n;
do ap = 1 by 1 until (x < 10);
x = sum(d);
end;
put skip data (n, x, ap);
end;
end digital;
Results:
N= 5 PICT.X=0000000000005 AP= 1;
N= 627615 PICT.X=0000000000009 AP= 2;
N= 39390 PICT.X=0000000000006 AP= 2;
N= 588225 PICT.X=0000000000003 AP= 2;
N= 393900588225 PICT.X=0000000000009 AP= 2;
N= 99999999999 PICT.X=0000000000009 AP= 3;
Potion
digital = (x) :
dr = x string # Digital Root.
ap = 0 # Additive Persistence.
while (dr length > 1) :
sum = 0
dr length times (i): sum = sum + dr(i) number integer.
dr = sum string
ap++
.
(x, " has additive persistence ", ap,
" and digital root ", dr, ";\n") join print
.
digital(627615)
digital(39390)
digital(588225)
digital(393900588225)
PowerShell
Uses the recursive function from the 'Sum Digits of an Integer' task.
function Get-DigitalRoot ($n)
{
function Get-Digitalsum ($n)
{
if ($n -lt 10) {$n}
else {
($n % 10) + (Get-DigitalSum ([math]::Floor($n / 10)))
}
}
$ap = 0
do {$n = Get-DigitalSum $n; $ap++}
until ($n -lt 10)
$DigitalRoot = [pscustomobject]@{
'Sum' = $n
'Additive Persistence' = $ap
}
$DigitalRoot
}
Command:
Get-DigitalRoot 65536
{{out}}
Sum Additive Persistence
--- --------------------
7 2
Alternative Method
function Get-DigitalRoot {
param($n)
$ap = 0
do {$n = Invoke-Expression ("0"+([string]$n -split "" -join "+")+"0"); $ap++} while ($n -ge 10)
[PSCustomObject]@{
DigitalRoot = $n
AdditivePersistence = $ap
}
}
Command:
Get-DigitalRoot 627615
{{out}}
Name Value
---- -----
AdditivePersistence 2
DigitalRoot 9
PureBasic
; if you just want the DigitalRoot
; Procedure.q DigitalRoot(N.q) apparently will do
; i must have missed something because it seems too simple
; http://en.wikipedia.org/wiki/Digital_root#Congruence_formula
Procedure.q DigitalRoot(N.q)
Protected M.q=N%9
if M=0:ProcedureReturn 9
Else :ProcedureReturn M:EndIf
EndProcedure
; there appears to be a proof guarantying that Len(N$)<=1 for some X
; http://en.wikipedia.org/wiki/Digital_root#Proof_that_a_constant_value_exists
Procedure.s DigitalRootandPersistance(N.q)
Protected r.s,t.s,X.q,M.q,persistance,N$=Str(N)
M=DigitalRoot(N.q) ; just a test to see if we get the same DigitalRoot via the Congruence_formula
Repeat
X=0:Persistance+1
For i=1 to Len(N$) ; finding X as the sum of the digits of N
X+Val(Mid(N$,i,1))
Next
N$=Str(X)
If Len(N$)<=1:Break:EndIf ; If Len(N$)<=1:Break:EndIf
Forever
If Not (X-M)=0:t.s=" Error in my logic":else:t.s=" ok":EndIf
r.s=RSet(Str(N),15)+" has additive persistance "+Str(Persistance)
r.s+" and digital root of X(slow) ="+Str(X)+" M(fast) ="+Str(M)+t.s
ProcedureReturn r.s
EndProcedure
NewList Nlist.q()
AddElement(Nlist()) : Nlist()=627615
AddElement(Nlist()) : Nlist()=39390
AddElement(Nlist()) : Nlist()=588225
AddElement(Nlist()) : Nlist()=393900588225
FirstElement(Nlist())
ForEach Nlist()
N.q=Nlist()
; cw(DigitalRootandPersistance(N))
Debug DigitalRootandPersistance(N)
Next
{{out}}
627615 has additive persistance 2 and digital root of X(slow) =9 M(fast) =9 ok
39390 has additive persistance 2 and digital root of X(slow) =6 M(fast) =6 ok
588225 has additive persistance 2 and digital root of X(slow) =3 M(fast) =3 ok
393900588225 has additive persistance 2 and digital root of X(slow) =9 M(fast) =9 ok
Python
Procedural
def digital_root (n):
ap = 0
n = abs(int(n))
while n >= 10:
n = sum(int(digit) for digit in str(n))
ap += 1
return ap, n
if __name__ == '__main__':
for n in [627615, 39390, 588225, 393900588225, 55]:
persistance, root = digital_root(n)
print("%12i has additive persistance %2i and digital root %i."
% (n, persistance, root))
{{out}}
627615 has additive persistance 2 and digital root 9.
39390 has additive persistance 2 and digital root 6.
588225 has additive persistance 2 and digital root 3.
393900588225 has additive persistance 2 and digital root 9.
55 has additive persistance 2 and digital root 1.
Composition of pure functions
A useful functional abstraction for this kind of pattern is '''until''' ''p f x'' (predicate, function, start value).
For the digit sum, we can fuse the two-pass composition of '''sum''' and '''for''' in the procedural version to a single [[Catamorphism|'fold' or catamorphism]] using '''reduce'''.
The tabulation of '''f(x)''' values can be derived by a generalised function over the '''f''', a header string '''s''', and the input '''xs''':
from functools import (reduce)
# main :: IO ()
def main():
print (
tabulated(digitalRoot)(
'Integer -> (additive persistence, digital root):'
)([627615, 39390, 588225, 393900588225, 55])
)
# digitalRoot :: Int -> (Int, Int)
def digitalRoot(n):
'''Integer -> (additive persistence, digital root)'''
# f :: (Int, Int) -> (Int, Int)
def f(pn):
p, n = pn
return (
1 + p,
reduce(lambda a, x: a + int(x), str(n), 0)
)
# p :: (Int , Int) -> Bool
def p(pn):
return 10 > pn[1]
return until(p)(f)(
(0, abs(int(n)))
)
# GENERIC -------------------------------------------------
# compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
def compose(g):
return lambda f: lambda x: g(f(x))
# tabulated :: (a -> b) -> String -> String
def tabulated(f):
'''function -> heading -> input List -> tabulated output string'''
def go(s, xs):
fw = compose(len)(str)
w = fw(max(xs, key=fw))
return s + '\n' + '\n'.join(list(map(
lambda x: str(x).rjust(w, ' ') + ' -> ' + str(f(x)), xs
)))
return lambda s: lambda xs: go(s, xs)
# until :: (a -> Bool) -> (a -> a) -> a -> a
def until(p):
def go(f, x):
v = x
while not p(v):
v = f(v)
return v
return lambda f: lambda x: go(f, x)
if __name__ == '__main__':
main()
{{Out}}
Integer -> (additive persistence, digital root):
627615 -> (2, 9)
39390 -> (2, 6)
588225 -> (2, 3)
393900588225 -> (2, 9)
55 -> (2, 1)
R
The code prints digital root and persistence seperately
y=1
digital_root=function(n){
x=sum(as.numeric(unlist(strsplit(as.character(n),""))))
if(x<10){
k=x
}else{
y=y+1
assign("y",y,envir = globalenv())
k=digital_root(x)
}
return(k)
}
print("Given number has additive persistence",y)
Racket
#lang racket
(define/contract (additive-persistence/digital-root n (ap 0))
(->* (natural-number/c) (natural-number/c) (values natural-number/c natural-number/c))
(define/contract (sum-digits x (acc 0))
(->* (natural-number/c) (natural-number/c) natural-number/c)
(if (= x 0)
acc
(let-values (((q r) (quotient/remainder x 10)))
(sum-digits q (+ acc r)))))
(if (< n 10)
(values ap n)
(additive-persistence/digital-root (sum-digits n) (+ ap 1))))
(module+ test
(require rackunit)
(for ((n (in-list '(627615 39390 588225 393900588225)))
(ap (in-list '(2 2 2 2)))
(dr (in-list '(9 6 3 9))))
(call-with-values
(lambda () (additive-persistence/digital-root n))
(lambda (a d)
(check-equal? a ap)
(check-equal? d dr)
(printf ":~a has additive persistence ~a and digital root of ~a;~%" n a d)))))
{{out}}
627615 has additive persistence 2 and digital root of 9
39390 has additive persistence 2 and digital root of 6
588225 has additive persistence 2 and digital root of 3
393900588225 has additive persistence 2 and digital root of 9
REXX
version 1
/* REXX ***************************************************************
* Test digroot
**********************************************************************/
/* n r p */
say right(7 ,12) digroot(7 ) /* 7 7 0 */
say right(627615 ,12) digroot(627615 ) /* 627615 9 2 */
say right(39390 ,12) digroot(39390 ) /* 39390 6 2 */
say right(588225 ,12) digroot(588225 ) /* 588225 3 2 */
say right(393900588225,12) digroot(393900588225) /*393900588225 9 2 */
Exit
digroot: Procedure
/**********************************************************************
* Compute the digital root and persistence of the given decimal number
* 25.07.2012 Walter Pachl
**************************** Bottom of Data **************************/
Parse Arg n /* the number */
p=0 /* persistence */
Do While length(n)>1 /* more than one digit in n */
s=0 /* initialize sum */
p=p+1 /* increment persistence */
Do while n<>'' /* as long as there are digits */
Parse Var n c +1 n /* pick the first one */
s=s+c /* add to the new sum */
End
n=s /* the 'new' number */
End
return n p /* return root and persistence */
version 2
/*REXX program calculates and displays the digital root and additive persistence. */
say 'digital' /*display the 1st line of the header.*/
say " root persistence" center('number',77) /* " " 2nd " " " " */
say "═══════ ═══════════" left('', 77, "═") /* " " 3rd " " " " */
call digRoot 627615
call digRoot 39390
call digRoot 588225
call digRoot 393900588225
call digRoot 89999999999999999999999999999999999999999999999999999999999999999999999999999
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
digRoot: procedure; parse arg x 1 ox /*get the number, also get another copy*/
do pers=0 while length(x)\==1; $=0 /*keep summing until digRoot ≡ 1 digit.*/
do j=1 for length(x) /*add each digit in the decimal number.*/
$=$+substr(x,j,1) /*add a decimal digit to digital root. */
end /*j*/
x=$ /*a 'new' num, it may be multi-digit.*/
end /*pers*/
say center(x,7) center(pers,11) ox /*display a nicely formatted line. */
return
'''output''' when using the (internal) set of numbers:
digital
root persistence number
═══════ ═══════════ ═════════════════════════════════════════════════════════════════════════════
9 2 627615
6 2 39390
3 2 588225
9 2 393900588225
8 3 89999999999999999999999999999999999999999999999999999999999999999999999999999
version 3
This subroutine version can handle numbers with signs, blanks, and/or decimal points.
∙
∙
∙
/*──────────────────────────────────────────────────────────────────────────────────────*/
digRoot: procedure; parse arg x 1 ox /*get the number, also get another copy*/
do pers=0 while length(x)\==1; $=0 /*keep summing until digRoot ≡ 1 digit.*/
do j=1 for length(x) /*add each digit in the decimal number.*/
?=substr(x, j, 1) /*pick off a character, maybe a digit ?*/
if datatype(?, 'W') then $=$+? /*add a decimal digit to digital root. */
end /*j*/
x=$ /*a 'new' num, it may be multi-digit.*/
end /*pers*/
say center(x,7) center(pers,11) ox /*display a nicely formatted line. */
return
'''output''' is the same as the 2nd REXX version.
Ring
c = 0
see "Digital root of 627615 is " + digitRoot(627615, 10) + " persistance is " + c + nl
see "Digital root of 39390 is " + digitRoot(39390, 10) + " persistance is " + c + nl
see "Digital root of 588225 is " + digitRoot(588225, 10) + " persistance is " + c + nl
see "Digital root of 9992 is " + digitRoot(9992, 10) + " persistance is " + c + nl
func digitRoot n,b
c = 0
while n >= b
c = c + 1
n = digSum(n, b)
end
return n
func digSum n, b
s = 0
while n != 0
q = floor(n / b)
s = s + n - q * b
n = q
end
return s
Ruby
class String
def digroot_persistence(base=10)
num = self.to_i(base)
persistence = 0
until num < base do
num = num.to_s(base).each_char.reduce(0){|m, c| m + c.to_i(base) }
persistence += 1
end
[num.to_s(base), persistence]
end
end
puts "--- Examples in 10-Base ---"
%w(627615 39390 588225 393900588225).each do |str|
puts "%12s has a digital root of %s and a persistence of %s." % [str, *str.digroot_persistence]
end
puts "\n--- Examples in other Base ---"
format = "%s base %s has a digital root of %s and a persistence of %s."
[["101101110110110010011011111110011000001", 2],
[ "5BB64DFCC1", 16],
["5", 8],
["50YE8N29", 36]].each do |(str, base)|
puts format % [str, base, *str.digroot_persistence(base)]
end
{{out}}
--- Examples in 10-Base ---
627615 has a digital root of 9 and a persistence of 2.
39390 has a digital root of 6 and a persistence of 2.
588225 has a digital root of 3 and a persistence of 2.
393900588225 has a digital root of 9 and a persistence of 2.
--- Examples in other Base ---
101101110110110010011011111110011000001 base 2 has a digital root of 1 and a persistence of 3.
5BB64DFCC1 base 16 has a digital root of f and a persistence of 2.
5 base 8 has a digital root of 5 and a persistence of 0.
50YE8N29 base 36 has a digital root of p and a persistence of 2.
Run BASIC
print "Digital root of 627615 is "; digitRoot$(627615, 10)
print "Digital root of 39390 is "; digitRoot$(39390, 10)
print "Digital root of 588225 is "; digitRoot$(588225, 10)
print "Digital root of 393900588225 is "; digitRoot$(393900588225, 10)
print "Digital root of 9992 is "; digitRoot$(9992, 10)
END
function digitRoot$(n,b)
WHILE n >= b
c = c + 1
n = digSum(n, b)
wend
digitRoot$ = n;" persistance is ";c
end function
function digSum(n, b)
WHILE n <> 0
q = INT(n / b)
s = s + n - q * b
n = q
wend
digSum = s
end function
{{out}}
Digital root of 627615 is 9 persistance is 2
Digital root of 39390 is 6 persistance is 2
Digital root of 588225 is 3 persistance is 2
Digital root of 393900588225 is 9 persistance is 2
Digital root of 9992 is 2 persistance is 3
Rust
fn sum_digits(mut n: u64, base: u64) -> u64 {
let mut sum = 0u64;
while n > 0 {
sum = sum + (n % base);
n = n / base;
}
sum
}
// Returns tuple of (additive-persistence, digital-root)
fn digital_root(mut num: u64, base: u64) -> (u64, u64) {
let mut pers = 0;
while num >= base {
pers = pers + 1;
num = sum_digits(num, base);
}
(pers, num)
}
fn main() {
// Test base 10
let values = [627615u64, 39390u64, 588225u64, 393900588225u64];
for &value in values.iter() {
let (pers, root) = digital_root(value, 10);
println!("{} has digital root {} and additive persistance {}",
value,
root,
pers);
}
println!("");
// Test base 16
let values_base16 = [0x7e0, 0x14e344, 0xd60141, 0x12343210];
for &value in values_base16.iter() {
let (pers, root) = digital_root(value, 16);
println!("0x{:x} has digital root 0x{:x} and additive persistance 0x{:x}",
value,
root,
pers);
}
}
{{out}}
627615 has digital root 9 and additive persistance 2
39390 has digital root 6 and additive persistance 2
588225 has digital root 3 and additive persistance 2
393900588225 has digital root 9 and additive persistance 2
0x7e0 has digital root 0x6 and additive persistance 0x2
0x14e344 has digital root 0xf and additive persistance 0x2
0xd60141 has digital root 0xa and additive persistance 0x2
0x12343210 has digital root 0x1 and additive persistance 0x2
Scala
def digitalRoot(x:BigInt, base:Int=10):(Int,Int) = {
def sumDigits(x:BigInt):Int=x.toString(base) map (_.asDigit) sum
def loop(s:Int, c:Int):(Int,Int)=if (s < 10) (s, c) else loop(sumDigits(s), c+1)
loop(sumDigits(x), 1)
}
Seq[BigInt](627615, 39390, 588225, BigInt("393900588225")) foreach {x =>
var (s, c)=digitalRoot(x)
println("%d has additive persistance %d and digital root of %d".format(x,c,s))
}
var (s, c)=digitalRoot(0x7e0, 16)
println("%x has additive persistance %d and digital root of %d".format(0x7e0,c,s))
{{out}}
627615 has additive persistance 2 and digital root of 9
39390 has additive persistance 2 and digital root of 6
588225 has additive persistance 2 and digital root of 3
393900588225 has additive persistance 2 and digital root of 9
7e0 has additive persistance 2 and digital root of 6
Seed7
$ include "seed7_05.s7i";
include "bigint.s7i";
const func bigInteger: digitalRoot (in var bigInteger: num, in bigInteger: base, inout bigInteger: persistence) is func
result
var bigInteger: sum is 0_;
begin
persistence := 0_;
while num >= base do
sum := 0_;
while num > 0_ do
sum +:= num rem base;
num := num div base;
end while;
num := sum;
incr(persistence);
end while;
end func;
const proc: main is func
local
var bigInteger: num is 0_;
var bigInteger: root is 0_;
var bigInteger: persistence is 0_;
begin
for num range [] (627615_, 39390_, 588225_, 393900588225_) do
root := digitalRoot(num, 10_, persistence);
writeln(num <& " has additive persistence " <& persistence <& " and digital root of " <& root);
end for;
end func;
{{out}}
627615 has additive persistence 2 and digital root of 9
39390 has additive persistence 2 and digital root of 6
588225 has additive persistence 2 and digital root of 3
393900588225 has additive persistence 2 and digital root of 9
Sidef
{{trans|Perl}}
func digroot (r, base = 10) {
var root = r.base(base)
var persistence = 0
while (root.len > 1) {
root = root.chars.map{|n| Number(n, 36) }.sum(0).base(base)
++persistence
}
return(persistence, root)
}
var nums = [5, 627615, 39390, 588225, 393900588225]
var bases = [2, 3, 8, 10, 16, 36]
var fmt = "%25s(%2s): persistance = %s, root = %2s\n"
nums << (550777011503 *
105564897893993412813307040538786690718089963180462913406682192479)
bases.each { |b|
nums.each { |n|
var x = n.base(b)
x = 'BIG' if (x.len > 25)
fmt.printf(x, b, digroot(n, b))
}
print "\n"
}
{{out}}
101( 2): persistance = 2, root = 1
10011001001110011111( 2): persistance = 3, root = 1
1001100111011110( 2): persistance = 3, root = 1
10001111100111000001( 2): persistance = 3, root = 1
BIG( 2): persistance = 3, root = 1
BIG( 2): persistance = 4, root = 1
12( 3): persistance = 2, root = 1
1011212221000( 3): persistance = 3, root = 1
2000000220( 3): persistance = 2, root = 2
1002212220010( 3): persistance = 3, root = 1
1101122201121110011000000( 3): persistance = 3, root = 1
BIG( 3): persistance = 4, root = 1
5( 8): persistance = 0, root = 5
2311637( 8): persistance = 3, root = 2
114736( 8): persistance = 3, root = 1
2174701( 8): persistance = 3, root = 1
5566623376301( 8): persistance = 3, root = 4
BIG( 8): persistance = 3, root = 3
5(10): persistance = 0, root = 5
627615(10): persistance = 2, root = 9
39390(10): persistance = 2, root = 6
588225(10): persistance = 2, root = 3
393900588225(10): persistance = 2, root = 9
BIG(10): persistance = 3, root = 4
5(16): persistance = 0, root = 5
9939f(16): persistance = 2, root = f
99de(16): persistance = 2, root = f
8f9c1(16): persistance = 2, root = f
5bb64dfcc1(16): persistance = 2, root = f
BIG(16): persistance = 3, root = 7
5(36): persistance = 0, root = 5
dg9r(36): persistance = 2, root = u
ue6(36): persistance = 2, root = f
clvl(36): persistance = 2, root = f
50ye8n29(36): persistance = 2, root = p
BIG(36): persistance = 3, root = h
SmileBASIC
DEF DIGITAL_ROOT N OUT DR,AP
AP=0
DR=N
WHILE DR>9
INC AP
STRDR$=STR$(DR)
NEWDR=0
FOR I=0 TO LEN(STRDR$)-1
INC NEWDR,VAL(MID$(STRDR$,I,1))
NEXT
DR=NEWDR
WEND
END
Tcl
package require Tcl 8.5
proc digitalroot num {
for {set p 0} {[string length $num] > 1} {incr p} {
set num [::tcl::mathop::+ {*}[split $num ""]]
}
list $p $num
}
foreach n {627615 39390 588225 393900588225} {
lassign [digitalroot $n] p r
puts [format "$n has additive persistence $p and digital root of $r"]
}
{{out}}
627615 has additive persistence 2 and digital root of 9
39390 has additive persistence 2 and digital root of 6
588225 has additive persistence 2 and digital root of 3
393900588225 has additive persistence 2 and digital root of 9
=={{header|TI-83 BASIC}}==
:ClrHome
:1→X
:Input ">",Str1
:Str1→Str2
:Repeat L≤1
:Disp Str1
:length(Str1→L
:L→dim(L₁
:seq(expr(sub(Str1,A,1)),A,1,L)→L₁
:sum(L₁→N
:{0,.5,1→L₂
:NL₂→L₃
:Med-Med L₂,L₃,Y₁
:Equ►String(Y₁,Str1
:sub(Str1,1,length(Str1)-3→Str1
:X+1→X
:End
:Pause
:ClrHome
:Disp Str2,"DIGITAL ROOT",expr(Str1),"ADDITIVE","PERSISTENCE",X
:Pause
{{out}}
627615
DIGITAL ROOT 9
ADDITIVE PERSISTENCE 2
39390
DIGITAL ROOT 6
ADDITIVE PERSISTENCE 2
588225
DIGITAL ROOT 3
ADDITIVE PERSISTENCE 2
393900588225
DIGITAL ROOT 9
ADDITIVE PERSISTENCE 2
uBasic/4tH
{{trans|BBC Basic}}
PRINT "Digital root of 39390 is "; FUNC(_FNdigitalroot(39390, 10)) ; PRINT " (additive persistence " ; Pop(); ")"
PRINT "Digital root of 588225 is "; FUNC(_FNdigitalroot(588225, 10)) ; PRINT " (additive persistence " ; Pop(); ")"
PRINT "Digital root of 9992 is "; FUNC(_FNdigitalroot(9992, 10)) ; PRINT " (additive persistence " ; Pop(); ")" END
_FNdigitalroot Param(2) Local (1) c@ = 0 Do Until a@ < b@ c@ = c@ + 1 a@ = FUNC(_FNdigitsum (a@, b@)) Loop Push (c@) ' That's how uBasic handles an extra Return (a@) ' return value: on the stack
_FNdigitsum Param (2) Local (2) d@ =0 Do While a@ # 0 c@ = a@ / b@ d@ = d@ + a@ - (c@ * b@) a@ = c@ Loop Return (d@)
{{Out}}
```txt
Digital root of 627615 is 9 (additive persistence 2)
Digital root of 39390 is 6 (additive persistence 2)
Digital root of 588225 is 3 (additive persistence 2)
Digital root of 9992 is 2 (additive persistence 3)
0 OK, 0:737
UNIX Shell
#!/usr/bin/env bash
numbers=(627615 39390 588225 393900588225 55)
declare root
for number in "${numbers[@]}"; do
declare -i iterations
root="${number}"
while [[ "${#root}" -ne 1 ]]; do
root="$(( $(fold -w1 <<<"${root}" | xargs | sed 's/ /+/g') ))"
iterations+=1
done
echo -e "${number} has additive persistence ${iterations} and digital root ${root}"
unset iterations
done | column -t
{{ Out }}
627615 has additive persistence 2 and digital root 9
39390 has additive persistence 2 and digital root 6
588225 has additive persistence 2 and digital root 3
393900588225 has additive persistence 2 and digital root 9
55 has additive persistence 2 and digital root 1
VBA
Option Base 1
Private Sub digital_root(n As Variant)
Dim s As String, t() As Integer
s = CStr(n)
ReDim t(Len(s))
For i = 1 To Len(s)
t(i) = Mid(s, i, 1)
Next i
Do
dr = WorksheetFunction.Sum(t)
s = CStr(dr)
ReDim t(Len(s))
For i = 1 To Len(s)
t(i) = Mid(s, i, 1)
Next i
persistence = persistence + 1
Loop Until Len(s) = 1
Debug.Print n; "has additive persistence"; persistence; "and digital root of "; dr & ";"
End Sub
Public Sub main()
digital_root 627615
digital_root 39390
digital_root 588225
digital_root 393900588225#
End Sub
{{out}}
627615 has additive persistence 2 and digital root of 9;
39390 has additive persistence 2 and digital root of 6;
588225 has additive persistence 2 and digital root of 3;
393900588225 has additive persistence 2 and digital root of 9;
VBScript
Function digital_root(n)
ap = 0
Do Until Len(n) = 1
x = 0
For i = 1 To Len(n)
x = x + CInt(Mid(n,i,1))
Next
n = x
ap = ap + 1
Loop
digital_root = "Additive Persistence = " & ap & vbCrLf &_
"Digital Root = " & n & vbCrLf
End Function
WScript.StdOut.Write digital_root(WScript.Arguments(0))
{{Out}}
F:\>cscript /nologo digital_root.vbs 627615
Additive Persistence = 2
Digital Root = 9
F:\>cscript /nologo digital_root.vbs 39390
Additive Persistence = 2
Digital Root = 6
F:\>cscript /nologo digital_root.vbs 588225
Additive Persistence = 2
Digital Root = 3
F:\>cscript /nologo digital_root.vbs 393900588225
Additive Persistence = 2
Digital Root = 9
Visual Basic .NET
{{trans|C#}}
Module Module1
Function DigitalRoot(num As Long) As Tuple(Of Integer, Integer)
Dim additivepersistence = 0
While num > 9
num = num.ToString().ToCharArray().Sum(Function(x) Integer.Parse(x))
additivepersistence = additivepersistence + 1
End While
Return Tuple.Create(additivepersistence, CType(num, Integer))
End Function
Sub Main()
Dim nums = {627615, 39390, 588225, 393900588225}
For Each num In nums
Dim t = DigitalRoot(num)
Console.WriteLine("{0} has additive persistence {1} and digital root {2}", num, t.Item1, t.Item2)
Next
End Sub
End Module
{{out}}
627615 has additive persistence 2 and digital root 9
39390 has additive persistence 2 and digital root 6
588225 has additive persistence 2 and digital root 3
393900588225 has additive persistence 2 and digital root 9
Wortel
@let {
sumDigits ^(@sum @arr)
drootl &\@rangef [. sumDigits ^(\~>1 #@arr)]
droot ^(@last drootl)
apers ^(#-drootl)
[
!console.log "[number]: [digital root] [additive persistence] [intermediate sums]"
~@each [627615 39390 588225 393900588225]
&n !console.log "{n}: {!droot n} {!apers n} {@str !drootl n}"
]
}
{{out}}
[number]: [digital root] [additive persistence] [intermediate sums]
627615: 9 2 [627615 27 9]
39390: 6 2 [39390 24 6]
588225: 3 2 [588225 30 3]
393900588225: 9 2 [393900588225 54 9]
XPL0
Since integers are only 32 bits, floating point is used to get the extra precision needed.
include c:\cxpl\codes; \intrinsic 'code' declarations
func DRoot(N, B, P); \Return digital root and persistance P
real N, B; int P;
int S;
[P(0):= 0;
while N >= B do
[S:= 0;
repeat S:= S + fix(Mod(N,B)); \sum last digit
N:= N/B; \remove last digit
N:= N - Mod(N,1.);
until N < 0.1; \(beware of rounding errors)
P(0):= P(0)+1; \increment persistance
N:= float(S);
];
return fix(N);
];
real Tbl;
int I, Root, Pers;
[Tbl:= [627615., 39390., 588225., 393900588225.];
for I:= 0 to 4-1 do
[Root:= DRoot(Tbl(I), 10., @Pers);
IntOut(0, Pers); ChOut(0, ^ ); IntOut(0, Root); CrLf(0);
];
]
{{out}}
2 9
2 6
2 3
2 9
zkl
fcn sum(n,b){ n.split(b).sum(0) }
fcn droot(n,b=10,X=0) // -->(digital root, additive persistence)
{ if(n<b)return(n,X); return(self.fcn(sum(n,b),b,X+1)) }
droot(627615)
droot(39390)
droot(588225)
droot(393900588225)
droot(7,2)
droot(0x7e0,16)
{{out}}
L(9,2) //627615
L(6,2) //39390
L(3,2) //588225
L(9,2) //393900588225
L(1,3) //111 base 2: 111-->11-->10-->1
L(6,2) //7e0 base 16: 0x7e0-->0x15-->0x6
zonnon
module Main;
type
longint = integer{64};
type {public,ref}
Response = object (dr,p: longint)
var {public,immutable}
digitalRoot,persistence: longint;
procedure {public} Writeln;
begin
writeln("digital root: ",digitalRoot:2," persistence: ",persistence:2)
end Writeln;
begin
self.digitalRoot := dr;
self.persistence := p;
end Response;
procedure DigitalRoot(n:longint):Response;
var
sum,p: longint;
begin
p := 0;
loop
inc(p);sum := 0;
while (n > 0) do
inc(sum,n mod 10);
n := n div 10;
end;
if sum < 10 then return new Response(sum,p) else n := sum end
end
end DigitalRoot;
begin
write(627615:22,":> ");DigitalRoot(627615).Writeln;
write(39390:22,":> ");DigitalRoot(39390).Writeln;
write(588225:22,":> ");DigitalRoot(588225).Writeln;
write(max(integer{64}):22,":> ");DigitalRoot(max(integer{64})).Writeln;
end Main.
{{Out}}
627615 :> digital root: 9 persistence: 2
39390 :> digital root: 6 persistence: 2
588225 :> digital root: 3 persistence: 2
9223372036854775807 :> digital root: 7 persistence: 3
ZX Spectrum Basic
{{trans|Run BASIC}}
10 DATA 4,627615,39390,588225,9992
20 READ j: LET b=10
30 FOR i=1 TO j
40 READ n
50 PRINT "Digital root of ";n;" is"
60 GO SUB 1000
70 NEXT i
80 STOP
1000 REM Digital Root
1010 LET c=0
1020 IF n>=b THEN LET c=c+1: GO SUB 2000: GO TO 1020
1030 PRINT n;" persistance is ";c''
1040 RETURN
2000 REM Digit sum
2010 LET s=0
2020 IF n<>0 THEN LET q=INT (n/b): LET s=s+n-q*b: LET n=q: GO TO 2020
2030 LET n=s
2040 RETURN