⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

{{task}} These number series are an expansion of the ordinary [[Fibonacci sequence]] where:

...

# For general $n>2$ we have the Fibonacci $n$-step sequence - $F_k^n$; with initial values of the first $n$ values of the $\left(n-1\right)$'th Fibonacci $n$-step sequence $F_k^\left\{n-1\right\}$; and $k$'th value of this $n$'th sequence being $F_k^n = \sum_\left\{i=1\right\}^\left\{\left(n\right)\right\} \left\{F_\left\{k-i\right\}^\left\{\left(n\right)\right\}\right\}$

For small values of $n$, [[wp:Number prefix#Greek_series|Greek numeric prefixes]] are sometimes used to individually name each series.

:::: {| style="text-align: left;" border="4" cellpadding="2" cellspacing="2" |+ Fibonacci $n$-step sequences |- style="background-color: rgb(255, 204, 255);" ! $n$ !! Series name !! Values |- | 2 || fibonacci || 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... |- | 3 || tribonacci || 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... |- | 4 || tetranacci || 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... |- | 5 || pentanacci || 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... |- | 6 || hexanacci || 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... |- | 7 || heptanacci || 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... |- | 8 || octonacci || 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... |- | 9 || nonanacci || 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... |- | 10 || decanacci || 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... |}

Allied sequences can be generated where the initial values are changed: : '''The [[wp:Lucas number|Lucas series]]''' sums the two preceding values like the fibonacci series for $n=2$ but uses $\left[2, 1\right]$ as its initial values.

# Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences.

• [[Fibonacci sequence]]
• [http://mathworld.wolfram.com/Fibonaccin-StepNumber.html Wolfram Mathworld]
• [[Leonardo numbers]]

;Also see:

• [https://www.youtube.com/watch?v=PeUbRXnbmms Lucas Numbers - Numberphile] (Video)
• [https://www.youtube.com/watch?v=fMJflV_GUpU Tribonacci Numbers (and the Rauzy Fractal) - Numberphile] (Video)

First, we specify a package Bonacci, that defines the type Sequence (of Positive numbers), a function Generate that takes a given Start sequence and outputs a generalized N-Bonacci Sequence of a spefified Length, and some constant start sequences.

package Bonacci is

type Sequence is array(Positive range <>) of Positive;

function Generate(Start: Sequence; Length: Positive := 10) return Sequence;

Start_Fibonacci:  constant Sequence := (1, 1);
Start_Tribonacci: constant Sequence := (1, 1, 2);
Start_Tetranacci: constant Sequence := (1, 1, 2, 4);
Start_Lucas:      constant Sequence := (2, 1);
end Bonacci;


The implementation is quite straightforward.

package body Bonacci is

function Generate(Start: Sequence; Length: Positive := 10) return Sequence is
begin
if Length <= Start'Length then
return Start(Start'First .. Start'First+Length-1);
else
declare
Sum: Natural := 0;
begin
for I in Start'Range loop
Sum := Sum + Start(I);
end loop;
return Start(Start'First)
& Generate(Start(Start'First+1 .. Start'Last) & Sum, Length-1);
end;
end if;
end Generate;

end Bonacci;


Finally, we actually generate some sequences, as required by the task. For convenience, we define a procedure Print that outputs a sequence,

with Ada.Text_IO, Bonacci;

procedure Test_Bonacci is

procedure Print(Name: String; S: Bonacci.Sequence) is
begin
for I in S'First .. S'Last-1 loop
end loop;
end Print;

begin
Print("Fibonacci:   ", Bonacci.Generate(Bonacci.Start_Fibonacci));
Print("Tribonacci:  ", Bonacci.Generate(Bonacci.Start_Tribonacci));
Print("Tetranacci:  ", Bonacci.Generate(Bonacci.Start_Tetranacci));
Print("Lucas:       ", Bonacci.Generate(Bonacci.Start_Lucas));
Print("Decanacci:   ",
Bonacci.Generate((1, 1, 2, 4, 8, 16, 32, 64, 128, 256), 15));
end Test_Bonacci;


The output:

Fibonacci:   ( 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 )
Tribonacci:  ( 1, 1, 2, 4, 7, 13, 24, 44, 81, 149 )
Tetranacci:  ( 1, 1, 2, 4, 8, 15, 29, 56, 108, 208 )
Lucas:       ( 2, 1, 3, 4, 7, 11, 18, 29, 47, 76 )
Decanacci:   ( 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172 )


## ACL2

(defun sum (xs)
(if (endp xs)
0
(+ (first xs)
(sum (rest xs)))))

(defun n-bonacci (prevs limit)
(if (zp limit)
nil
(let ((next (append (rest prevs)
(list (sum prevs)))))
(cons (first next)
(n-bonacci next (1- limit))))))


Output:

&gt; (n-bonacci '(1 1) 10)
(1 2 3 5 8 13 21 34 55 89)
&gt; (n-bonacci '(1 1 2) 10)
(1 2 4 7 13 24 44 81 149 274)
&gt; (n-bonacci '(1 1 2 4) 10)
(1 2 4 8 15 29 56 108 208 401)
&gt; (n-bonacci '(2 1) 10)
(1 3 4 7 11 18 29 47 76 123)


## ALGOL 68

# returns an array of the first required count elements of an a n-step fibonacci sequence #
# the initial values are taken from the init array                                        #
PROC n step fibonacci sequence = ( []INT init, INT required count )[]INT:
BEGIN
[ 1 : required count ]INT result;
[]INT initial values = init[ AT 1 ];
INT step             = UPB initial values;
# install the initial values                                                     #
FOR n TO step DO result[ n ] := initial values[ n ] OD;
# calculate the rest of the sequence                                             #
FOR n FROM step + 1 TO required count DO
result[ n ] := 0;
FOR p FROM n - step TO n - 1 DO result[ n ] +:= result[ p ] OD
OD;
result
END; # required count #

# prints the elements of a sequence                                                       #
PROC print sequence = ( STRING legend, []INT sequence )VOID:
BEGIN
print( ( legend, ":" ) );
FOR e FROM LWB sequence TO UPB sequence DO print( ( " ", whole( sequence[ e ], 0 ) ) ) OD;
print( ( newline ) )
END; # print sequence #

# print some sequences                                                                    #
print sequence( "fibonacci   ", n step fibonacci sequence( ( 1, 1 ),       10 ) );
print sequence( "tribonacci  ", n step fibonacci sequence( ( 1, 1, 2 ),    10 ) );
print sequence( "tetrabonacci", n step fibonacci sequence( ( 1, 1, 2, 4 ), 10 ) );
print sequence( "lucus       ", n step fibonacci sequence( ( 2, 1 ),       10 ) )



{{out}}


fibonacci   : 1 1 2 3 5 8 13 21 34 55
tribonacci  : 1 1 2 4 7 13 24 44 81 149
tetrabonacci: 1 1 2 4 8 15 29 56 108 208
lucus       : 2 1 3 4 7 11 18 29 47 76



## AppleScript

use AppleScript version "2.4"
use framework "Foundation"

-- Start sequence -> Number of terms -> terms
-- takeNFibs :: [Int] -> Int -> [Int]
on takeNFibs(xs, n)
script go
on |λ|(xs, n)
if 0 < n and 0 < length of xs then
|λ|(append(tail(xs), {sum(xs)}), n - 1))
else
{}
end if
end |λ|
end script
go's |λ|(xs, n)
end takeNFibs

-- fibInit :: Int -> [Int]
on fibInit(n)
script powerOfTwo
on |λ|(x)
2 ^ x as integer
end |λ|
end script
cons(1, map(powerOfTwo, enumFromToInt(0, n - 2)))
end fibInit

-- TEST ---------------------------------------------------
on run
set intTerms to 15
script series
on |λ|(s, n)
justifyLeft(12, space, s & "nacci") & " -> " & ¬
showJSON(takeNFibs(fibInit(n), intTerms))
end |λ|
end script

set strTable to unlines(zipWith(series, ¬
words of ("fibo tribo tetra penta hexa hepta octo nona deca"), ¬
enumFromToInt(2, 10)))

justifyLeft(12, space, "Lucas ") & " -> " & ¬
showJSON(takeNFibs({2, 1}, intTerms)) & linefeed & strTable
end run

-- GENERIC FUNCTIONS --------------------------------------

-- Append two lists.
-- append (++) :: [a] -> [a] -> [a]
-- append (++) :: String -> String -> String
on append(xs, ys)
xs & ys
end append

-- cons :: a -> [a] -> [a]
on cons(x, xs)
if list is class of xs then
{x} & xs
else
x & xs
end if
end cons

-- enumFromToInt :: Int -> Int -> [Int]
on enumFromToInt(m, n)
if m ≤ n then
set lst to {}
repeat with i from m to n
set end of lst to i
end repeat
return lst
else
return {}
end if
end enumFromToInt

-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl

-- head :: [a] -> a
if xs = {} then
missing value
else
item 1 of xs
end if

-- justifyLeft :: Int -> Char -> String -> String
on justifyLeft(n, cFiller, strText)
if n > length of strText then
text 1 thru n of (strText & replicate(n, cFiller))
else
strText
end if
end justifyLeft

-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map

-- min :: Ord a => a -> a -> a
on min(x, y)
if y < x then
y
else
x
end if
end min

-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length
-- replicate :: Int -> a -> [a]
on replicate(n, a)
set out to {}
if n < 1 then return out
set dbl to {a}

repeat while (n > 1)
if (n mod 2) > 0 then set out to out & dbl
set n to (n div 2)
set dbl to (dbl & dbl)
end repeat
return out & dbl
end replicate

-- showJSON :: a -> String
on showJSON(x)
set c to class of x
if (c is list) or (c is record) then
set ca to current application
set {json, e} to ca's NSJSONSerialization's ¬
dataWithJSONObject:x options:0 |error|:(reference)
if json is missing value then
e's localizedDescription() as text
else
(ca's NSString's alloc()'s ¬
initWithData:json encoding:(ca's NSUTF8StringEncoding)) as text
end if
else if c is date then
"\"" & ((x - (time to GMT)) as «class isot» as string) & ".000Z" & "\""
else if c is text then
"\"" & x & "\""
else if (c is integer or c is real) then
x as text
else if c is class then
"null"
else
try
x as text
on error
("«" & c as text) & "»"
end try
end if
end showJSON

-- sum :: [Num] -> Num
on sum(xs)
on |λ|(a, b)
a + b
end |λ|
end script

end sum

-- tail :: [a] -> [a]
on tail(xs)
set blnText to text is class of xs
if blnText then
set unit to ""
else
set unit to {}
end if
set lng to length of xs
if 1 > lng then
missing value
else if 2 > lng then
unit
else
if blnText then
text 2 thru -1 of xs
else
rest of xs
end if
end if
end tail

-- unlines :: [String] -> String
on unlines(xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set str to xs as text
set my text item delimiters to dlm
str
end unlines

-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
on zipWith(f, xs, ys)
set lng to min(length of xs, length of ys)
if 1 > lng then return {}
set lst to {}
tell mReturn(f)
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, item i of ys)
end repeat
return lst
end tell
end zipWith



{{Out}}

Lucas        -> [2,1,3,4,7,11,18,29,47,76,123,199,322,521,843]
fibonacci    -> [1,1,2,3,5,8,13,21,34,55,89,144,233,377,610]
tribonacci   -> [1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136]
tetranacci   -> [1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,5536]
pentanacci   -> [1,1,2,4,8,16,31,61,120,236,464,912,1793,3525,6930]
hexanacci    -> [1,1,2,4,8,16,32,63,125,248,492,976,1936,3840,7617]
heptanacci   -> [1,1,2,4,8,16,32,64,127,253,504,1004,2000,3984,7936]
octonacci    -> [1,1,2,4,8,16,32,64,128,255,509,1016,2028,4048,8080]
nonanacci    -> [1,1,2,4,8,16,32,64,128,256,511,1021,2040,4076,8144]
decanacci    -> [1,1,2,4,8,16,32,64,128,256,512,1023,2045,4088,8172]


## AutoHotkey

for i, seq in ["nacci", "lucas"]
Loop, 9 {
Out .= seq "(" A_Index + 1 "): "
for key, val in NStepSequence(i, 1, A_Index + 1, 15)
Out .= val (A_Index = 15 ? "n" : ", ")
}
MsgBox, % Out

NStepSequence(v1, v2, n, k) {
a := [v1, v2]
Loop, % k - 2 {
a[j := A_Index + 2] := 0
Loop, % j < n + 2 ? j - 1 : n
a[j] += a[j - A_Index]
}
return, a
}


'''Output:'''

nacci(2): 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610
nacci(3): 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136
nacci(4): 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536
nacci(5): 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930
nacci(6): 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617
nacci(7): 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936
nacci(8): 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080
nacci(9): 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144
nacci(10): 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172
lucas(2): 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843
lucas(3): 2, 1, 3, 6, 10, 19, 35, 64, 118, 217, 399, 734, 1350, 2483, 4567
lucas(4): 2, 1, 3, 6, 12, 22, 43, 83, 160, 308, 594, 1145, 2207, 4254, 8200
lucas(5): 2, 1, 3, 6, 12, 24, 46, 91, 179, 352, 692, 1360, 2674, 5257, 10335
lucas(6): 2, 1, 3, 6, 12, 24, 48, 94, 187, 371, 736, 1460, 2896, 5744, 11394
lucas(7): 2, 1, 3, 6, 12, 24, 48, 96, 190, 379, 755, 1504, 2996, 5968, 11888
lucas(8): 2, 1, 3, 6, 12, 24, 48, 96, 192, 382, 763, 1523, 3040, 6068, 12112
lucas(9): 2, 1, 3, 6, 12, 24, 48, 96, 192, 384, 766, 1531, 3059, 6112, 12212
lucas(10): 2, 1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1534, 3067, 6131, 12256


## AWK


function sequence(values, howmany) {
init_length = length(values)
for (i=init_length + 1; i<=howmany; i++) {
values[i] = 0
for (j=1; j<=init_length; j++) {
values[i] += values[i-j]
}
}
result = ""
for (i in values) {
result = result values[i] " "
}
delete values
return result
}

# print some sequences
END	{
a[1] = 1; a[2] = 1
print("fibonacci :\t",sequence(a, 10))

a[1] = 1; a[2] = 1; a[3] = 2
print("tribonacci :\t",sequence(a, 10))

a[1] = 1 ; a[2] = 1 ; a[3] = 2 ; a[4] = 4
print("tetrabonacci :\t",sequence(a, 10))

a[1] = 2; a[2] = 1
print("lucas :\t\t",sequence(a, 10))
}



'''Output:'''


fibonacci :	 1 1 2 3 5 8 13 21 34 55
tribonacci :	 1 1 2 4 7 13 24 44 81 149
tetrabonacci :	 1 1 2 4 8 15 29 56 108 208
lucas :		 2 1 3 4 7 11 18 29 47 76



## Batch File


@echo off

echo Fibonacci Sequence:
call:nfib 1 1
echo.

echo Tribonacci Sequence:
call:nfib 1 1 2
echo.

echo Tetranacci Sequence:
call:nfib 1 1 2 4
echo.

echo Lucas Numbers:
call:nfib 2 1
echo.

pause>nul
exit /b

:nfib
setlocal enabledelayedexpansion

for %%i in (%*) do (
set /a count+=1
set seq=!seq! %%i
)
set "seq=%seq% ^| "
set n=-%count%
set /a n+=1
for %%i in (%*) do (
set F!n!=%%i
set /a n+=1
)

for /l %%i in (1,1,10) do (
set /a termstart=%%i-%count%%
set /a termend=%%i-1
for /l %%j in (!termstart!,1,!termend!) do (
set /a F%%i+=!F%%j!
)
set seq=!seq! !F%%i!
)
echo %seq%

endlocal
exit /b



{{out}}


Fibonacci Sequence:
1 1 |  2 3 5 8 13 21 34 55 89 144

Tribonacci Sequence:
1 1 2 |  4 7 13 24 44 81 149 274 504 927

Tetranacci Sequence:
1 1 2 4 |  8 15 29 56 108 208 401 773 1490 2872

Lucas Numbers:
2 1 |  3 4 7 11 18 29 47 76 123 199



## BBC BASIC

The BBC BASIC '''SUM''' function is useful here.

      @% = 5 : REM Column width

PRINT "Fibonacci:"
DIM f2%(1) : f2%() = 1,1
FOR i% = 1 TO 12 : PRINT f2%(0); : PROCfibn(f2%()) : NEXT : PRINT " ..."

PRINT "Tribonacci:"
DIM f3%(2) : f3%() = 1,1,2
FOR i% = 1 TO 12 : PRINT f3%(0); : PROCfibn(f3%()) : NEXT : PRINT " ..."

PRINT "Tetranacci:"
DIM f4%(3) : f4%() = 1,1,2,4
FOR i% = 1 TO 12 : PRINT f4%(0); : PROCfibn(f4%()) : NEXT : PRINT " ..."

PRINT "Lucas:"
DIM fl%(1) : fl%() = 2,1
FOR i% = 1 TO 12 : PRINT fl%(0); : PROCfibn(fl%()) : NEXT : PRINT " ..."
END

DEF PROCfibn(f%())
LOCAL i%, s%
s% = SUM(f%())
FOR i% = 1 TO DIM(f%(),1)
f%(i%-1) = f%(i%)
NEXT
f%(i%-1) = s%
ENDPROC


'''Output:'''


Fibonacci:
1    1    2    3    5    8   13   21   34   55   89  144 ...
Tribonacci:
1    1    2    4    7   13   24   44   81  149  274  504 ...
Tetranacci:
1    1    2    4    8   15   29   56  108  208  401  773 ...
Lucas:
2    1    3    4    7   11   18   29   47   76  123  199 ...



## Befunge

55+109"iccanaceD"22099v
v9013"Tetranacci"9014"Lucas"<
>"iccanobirT"2109"iccanobiF"v
>>:#,_0p20p0>:01-\2>#v0>#g<>>
^_@#:,+55$_^ JH v1:v#\p03< _$.1+:77+^vg03:_0g+>\:1+#^
50p-\30v v\<>\30g1-\^_:1-
05g04\g< >#^_:40p30g0>^!:g


{{out}}

Fibonacci       1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
Tribonacci      1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136
Tetranacci      1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536
Lucas           2 1 3 4 7 11 18 29 47 76 123 199 322 521 843
Decanacci       1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172


## Bracmat

{{trans|PicoLisp}}

( ( nacci
=   Init Cnt N made tail
.   ( plus
=   n
.   !arg:#%?n ?arg&!n+plus$!arg | 0 ) & !arg:(?Init.?Cnt) & !Init:? [?N & !Init:?made & !Cnt+-1*!N:?times & -1+-1*!N:?M & whl ' ( !times+-1:~<0:?times & !made:? [!M ?tail & !made plus$!tail:?made
)
)
=   len w
.   @(!arg:? [?len)
& @("          ":? [!len ?w)
& !w !arg
)
&     (fibonacci.1 1)
(tribonacci.1 1 2)
(tetranacci.1 1 2 4)
(pentanacci.1 1 2 4 8)
(hexanacci.1 1 2 4 8 16)
(heptanacci.1 1 2 4 8 16 32)
(octonacci.1 1 2 4 8 16 32 64)
(nonanacci.1 1 2 4 8 16 32 64 128)
(decanacci.1 1 2 4 8 16 32 64 128 256)
(lucas.2 1)
: ?L
&   whl
' ( !L:(?name.?Init) ?L
& out$(str$(pad$!name ": ") nacci$(!Init.12))
)
);


Output:

 fibonacci:  1 1 2 3 5 8 13 21 34 55 89 144
tribonacci:  1 1 2 4 7 13 24 44 81 149 274 504
tetranacci:  1 1 2 4 8 15 29 56 108 208 401 773
pentanacci:  1 1 2 4 8 16 31 61 120 236 464 912
hexanacci:  1 1 2 4 8 16 32 63 125 248 492 976
heptanacci:  1 1 2 4 8 16 32 64 127 253 504 1004
octonacci:  1 1 2 4 8 16 32 64 128 255 509 1016
nonanacci:  1 1 2 4 8 16 32 64 128 256 511 1021
decanacci:  1 1 2 4 8 16 32 64 128 256 512 1023
lucas:  2 1 3 4 7 11 18 29 47 76 123 199


## C

/*
The function anynacci determines the n-arity of the sequence from the number of seed elements. 0 ended arrays are used since C does not have a way of determining the length of dynamic and function-passed integer arrays.*/

#include<stdlib.h>
#include<stdio.h>

int *
anynacci (int *seedArray, int howMany)
{
int *result = malloc (howMany * sizeof (int));
int i, j, initialCardinality;

for (i = 0; seedArray[i] != 0; i++);
initialCardinality = i;

for (i = 0; i < initialCardinality; i++)
result[i] = seedArray[i];

for (i = initialCardinality; i < howMany; i++)
{
result[i] = 0;
for (j = i - initialCardinality; j < i; j++)
result[i] += result[j];
}
return result;
}

int
main ()
{
int fibo[] = { 1, 1, 0 }, tribo[] = { 1, 1, 2, 0 }, tetra[] = { 1, 1, 2, 4, 0 }, luca[] = { 2, 1, 0 };
int *fibonacci = anynacci (fibo, 10), *tribonacci = anynacci (tribo, 10), *tetranacci = anynacci (tetra, 10),
*lucas = anynacci(luca, 10);
int i;

printf ("\nFibonacci\tTribonacci\tTetranacci\tLucas\n");

for (i = 0; i < 10; i++)
printf ("\n%d\t\t%d\t\t%d\t\t%d", fibonacci[i], tribonacci[i],
tetranacci[i], lucas[i]);

return 0;
}


Output:


Fibonacci       Tribonacci      Tetranacci      Lucas

1               1               1               2
1               1               1               1
2               2               2               3
3               4               4               4
5               7               8               7
8               13              15              11
13              24              29              18
21              44              56              29
34              81              108             47
55              149             208             76



## C++

#include <vector>
#include <iostream>
#include <numeric>
#include <iterator>
#include <memory>
#include <string>
#include <algorithm>
#include <iomanip>

std::vector<int> nacci ( const std::vector<int> & start , int arity ) {
std::vector<int> result ( start ) ;
int sumstart = 1 ;//summing starts at vector's begin + sumstart as
//soon as the vector is longer than arity
while ( result.size( ) < 15 ) { //we print out the first 15 numbers
if ( result.size( ) <= arity )
result.push_back( std::accumulate( result.begin( ) ,
result.begin( ) + result.size( ) , 0 ) ) ;
else {
result.push_back( std::accumulate ( result.begin( ) +
sumstart , result.begin( ) + sumstart + arity  , 0 )) ;
sumstart++ ;
}
}
return std::move ( result ) ;
}

int main( ) {
std::vector<std::string> naccinames {"fibo" , "tribo" ,
"tetra" , "penta" , "hexa" , "hepta" , "octo" , "nona" , "deca" } ;
const std::vector<int> fibo { 1 , 1 } , lucas { 2 , 1 } ;
for ( int i = 2 ; i < 11 ; i++ ) {
std::vector<int> numberrow = nacci ( fibo , i ) ;
std::cout << std::left << std::setw( 10 ) <<
naccinames[ i - 2 ].append( "nacci" ) <<
std::setw( 2 ) << " : " ;
std::copy ( numberrow.begin( ) , numberrow.end( ) ,
std::ostream_iterator<int>( std::cout , " " ) ) ;
std::cout << "...\n" ;
numberrow = nacci ( lucas , i ) ;
std::cout << "Lucas-" << i ;
if ( i < 10 )               //for formatting purposes
std::cout << "    : " ;
else
std::cout << "   : " ;
std::copy ( numberrow.begin( ) , numberrow.end( ) ,
std::ostream_iterator<int>( std::cout , " " ) ) ;
std::cout << "...\n" ;
}
return 0 ;
}


Output:

fibonacci  : 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
Lucas-2    : 2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 ...
tribonacci : 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
Lucas-3    : 2 1 3 6 10 19 35 64 118 217 399 734 1350 2483 4567 ...
tetranacci : 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
Lucas-4    : 2 1 3 6 12 22 43 83 160 308 594 1145 2207 4254 8200 ...
pentanacci : 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
Lucas-5    : 2 1 3 6 12 24 46 91 179 352 692 1360 2674 5257 10335 ...
hexanacci  : 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
Lucas-6    : 2 1 3 6 12 24 48 94 187 371 736 1460 2896 5744 11394 ...
heptanacci : 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
Lucas-7    : 2 1 3 6 12 24 48 96 190 379 755 1504 2996 5968 11888 ...
octonacci  : 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
Lucas-8    : 2 1 3 6 12 24 48 96 192 382 763 1523 3040 6068 12112 ...
nonanacci  : 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
Lucas-9    : 2 1 3 6 12 24 48 96 192 384 766 1531 3059 6112 12212 ...
decanacci  : 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
Lucas-10   : 2 1 3 6 12 24 48 96 192 384 768 1534 3067 6131 12256 ...



### Alternate Version

This version focuses on a clean, simple class that adapts to any pair of starting numbers and any order. Rather than summing over all history every time, it uses an O(1) incremental update to a running total. Thus, performance remains essentially unchanged even for very large orders.


#include <iostream>
#include <vector>

// This class forms a simple 'generator', where operator() returns the next
// element in the series.  It uses a small sliding window buffer to minimize
class nacci_t
{
std::vector< int >  history;
unsigned            windex;             // sliding window index
unsigned            rindex;             // result index
int                 running_sum;        // sum of values in sliding window

public:

nacci_t( unsigned int order, int a0 = 1, int a1 = 1 )
:   history( order + 1 ), windex( 0 ), rindex( order - 1 ),
running_sum( a0 + a1 )
{
// intialize sliding window
history[order - 1] = a0;
history[order - 0] = a1;
}

int operator()()
{
int result   = history[ rindex ];   // get 'nacci number to return
running_sum -= history[ windex ];   // old 'nacci falls out of window

history[ windex ] = running_sum;    // new 'nacci enters the window
running_sum      += running_sum;    // new 'nacci added to the sum

if ( ++windex == history.size() ) windex = 0;
if ( ++rindex == history.size() ) rindex = 0;

return result;
}
};

int main()
{
for ( unsigned int i = 2; i <= 10; ++i )
{
nacci_t nacci( i ); // fibonacci sequence

std::cout << "nacci( " << i << " ): ";

for ( int j = 0; j < 10; ++j )
std::cout << " " << nacci();

std::cout << std::endl;
}

for ( unsigned int i = 2; i <= 10; ++i )
{
nacci_t lucas( i, 2, 1 ); // Lucas sequence

std::cout << "lucas( " << i << " ): ";

for ( int j = 0; j < 10; ++j )
std::cout << " " << lucas();

std::cout << std::endl;
}
}



## C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Fibonacci
{
class Program
{
static void Main(string[] args)
{
PrintNumberSequence("Fibonacci", GetNnacciNumbers(2, 10));
PrintNumberSequence("Lucas", GetLucasNumbers(10));
PrintNumberSequence("Tribonacci", GetNnacciNumbers(3, 10));
PrintNumberSequence("Tetranacci", GetNnacciNumbers(4, 10));
}

private static IList<ulong> GetLucasNumbers(int length)
{
IList<ulong> seedSequence = new List<ulong>() { 2, 1 };
return GetFibLikeSequence(seedSequence, length);
}

private static IList<ulong> GetNnacciNumbers(int seedLength, int length)
{
return GetFibLikeSequence(GetNacciSeed(seedLength), length);
}

private static IList<ulong> GetNacciSeed(int seedLength)
{
IList<ulong> seedSquence = new List<ulong>() { 1 };

for (uint i = 0; i < seedLength - 1; i++)
{
}

return seedSquence;
}

private static IList<ulong> GetFibLikeSequence(IList<ulong> seedSequence, int length)
{
IList<ulong> sequence = new List<ulong>();

int count = seedSequence.Count();

if (length <= count)
{
sequence = seedSequence.Take((int)length).ToList();
}
else
{
sequence = seedSequence;

for (int i = count; i < length; i++)
{
ulong num = 0;

for (int j = 0; j < count; j++)
{
num += sequence[sequence.Count - 1 - j];
}

}
}

return sequence;
}

private static void PrintNumberSequence(string Title, IList<ulong> numbersequence)
{
StringBuilder output = new StringBuilder(Title).Append("   ");

foreach (long item in numbersequence)
{
output.AppendFormat("{0}, ", item);
}

Console.WriteLine(output.ToString());
}
}
}

Fibonacci   1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
Lucas   2, 1, 3, 4, 7, 11, 18, 29, 47, 76,
Tribonacci   1, 1, 2, 4, 7, 13, 24, 44, 81, 149,
Tetranacci   1, 1, 2, 4, 8, 15, 29, 56, 108, 208,


## Clojure

(defn nacci [init]
(letfn [(s [] (lazy-cat init (apply map + (map #(drop % (s)) (range (count init))))))]
(s)))

(let [show (fn [name init] (println "first 20" name (take 20 (nacci init))))]
(show "Fibonacci" [1 1])
(show "Tribonacci" [1 1 2])
(show "Tetranacci" [1 1 2 4])
(show "Lucas" [2 1]))


{{out}}

first 20 Fibonacci (1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765)
first 20 Tribonacci (1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513 35890 66012)
first 20 Tetranacci (1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 10671 20569 39648 76424 147312)
first 20 Lucas (2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349)


## Common Lisp


(defun gen-fib (lst m)
"Return the first m members of a generalized Fibonacci sequence using lst as initial values
and the length of lst as step."
(let ((l (- (length lst) 1)))
(do* ((fib-list (reverse lst) (cons (loop for i from 0 to l sum (nth i fib-list)) fib-list))
(c (+ l 2) (+ c 1)))
((> c m) (reverse fib-list)))))

(defun initial-values (n)
"Return the initial values of the Fibonacci n-step sequence"
(cons 1
(loop for i from 0 to (- n 2)
collect (expt 2 i))))

(defun start ()
(format t "Lucas series: ~a~%" (gen-fib '(2 1) 10))
(loop for i from 2 to 4
do (format t "Fibonacci ~a-step sequence: ~a~%" i (gen-fib (initial-values i) 10))))


{{out}}

Lucas series: (2 1 3 4 7 11 18 29 47 76)
Fibonacci 2-step sequence: (1 1 2 3 5 8 13 21 34 55)
Fibonacci 3-step sequence: (1 1 2 4 7 13 24 44 81 149)
Fibonacci 4-step sequence: (1 1 2 4 8 15 29 56 108 208)


## D

### Basic Memoization

void main() {
import std.stdio, std.algorithm, std.range, std.conv;

const(int)[] memo;

}

int fibber(in size_t n) nothrow @safe {
if (n >= memo.length)
memo ~= iota(n - addNum, n).map!fibber.sum;
return memo[n];
}

10.iota.map!fibber.writeln;
10.iota.map!fibber.writeln;

const prefixes = "fibo tribo tetra penta hexa hepta octo nona deca";
foreach (immutable n, const name; prefixes.split.enumerate(2)) {
setHead(1 ~ iota(n - 1).map!q{2 ^^ a}.array);
writefln("n=%2d, %5snacci -> %(%d %) ...", n, name,
15.iota.map!fibber);
}
}


{{out}}

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76]
n= 2,  fibonacci -> 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
n= 3, tribonacci -> 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
n= 4, tetranacci -> 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
n= 5, pentanacci -> 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
n= 6,  hexanacci -> 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
n= 7, heptanacci -> 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
n= 8,  octonacci -> 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
n= 9,  nonanacci -> 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
n=10,  decanacci -> 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...


### Callable Struct

The output is similar.

import std.stdio, std.algorithm, std.range, std.conv;

struct fiblike(T) {
const(T)[] memo;

this(in T[] start) nothrow @safe {
this.memo = start.dup;
}

T opCall(in size_t n) nothrow @safe {
if (n >= memo.length)
memo ~= iota(n - addNum, n)
.map!(i => opCall(i))
.sum
.to!int;
return memo[n];
}
}

void main() {
auto fibo = fiblike!int([1, 1]);
iota(10).map!fibo.writeln;

auto lucas = fiblike!int([2, 1]);
iota(10).map!lucas.writeln;

const prefixes = "fibo tribo tetra penta hexa hepta octo nona deca";
foreach (immutable n, const name; prefixes.split.enumerate(2)) {
auto fib = fiblike!int(1 ~ iota(n - 1).map!q{2 ^^ a}.array);
writefln("n=%2d, %5snacci -> %(%d %) ...",
n, name, 15.iota.map!fib);
}
}


### Struct With opApply

The output is similar.

import std.stdio, std.algorithm, std.range, std.traits;

struct Fiblike(T) {
T[] tail;

int opApply(int delegate(immutable ref T) dg) {
int result, pos;
foreach (immutable x; tail) {
result = dg(x);
if (result)
return result;
}
foreach (immutable i; tail.length.iota.cycle) {
immutable x = tail.sum;
result = dg(x);
if (result)
break;
tail[i] = x;
}
return result;
}
}

// std.range.take doesn't work with opApply.
ForeachType!It[] takeApply(It)(It iterable, in size_t n) {
typeof(return) result;
foreach (immutable x; iterable) {
result ~= x;
if (result.length == n)
break;
}
return result;
}

void main() {
Fiblike!int([1, 1]).takeApply(10).writeln;
Fiblike!int([2, 1]).takeApply(10).writeln;

const prefixes = "fibo tribo tetra penta hexa hepta octo nona deca";
foreach (immutable n, const name; prefixes.split.enumerate(2)) {
auto fib = Fiblike!int(1 ~ iota(n - 1).map!q{2 ^^ a}.array);
writefln("n=%2d, %5snacci -> %s", n, name, fib.takeApply(15));
}
}


### Range Generator Version

void main() {
import std.stdio, std.algorithm, std.range, std.concurrency;

immutable fibLike = (int[] tail) => new Generator!int({
foreach (x; tail)
yield(x);
foreach (immutable i; tail.length.iota.cycle)
yield(tail[i] = tail.sum);
});

foreach (seed; [[1, 1], [2, 1]])
fibLike(seed).take(10).writeln;

immutable prefixes = "fibo tribo tetra penta hexa hepta octo nona deca";
foreach (immutable n, const name; prefixes.split.enumerate(2)) {
auto fib = fibLike(1 ~ iota(n - 1).map!q{2 ^^ a}.array);
writefln("n=%2d, %5snacci -> %(%s, %), ...", n, name, fib.take(15));
}
}


{{out}}

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76]
n= 2,  fibonacci -> 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, ...
n= 3, tribonacci -> 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, ...
n= 4, tetranacci -> 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, ...
n= 5, pentanacci -> 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930, ...
n= 6,  hexanacci -> 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617, ...
n= 7, heptanacci -> 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936, ...
n= 8,  octonacci -> 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, ...
n= 9,  nonanacci -> 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, ...
n=10,  decanacci -> 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172, ...


## EchoLisp


;; generate a recursive lambda() for a x-nacci
;; equip it with memoïzation
;; bind it to its name
(define (make-nacci name seed)
(define len (1+ (vector-length seed)))
(define-global name
(lambda(n) (for/sum ((i (in-range (1- n) (- n ,len) -1)))  (,name i))))
(remember name seed)
name)

(define nacci-family (
(Fibonacci #(1 1))
(Tribonacci #(1 1 2))
(Tetranacci #(1 1 2 4))
(Decanacci #(1 1 2 4 8 16 32 64 128 256))
(Random-😜-nacci ,(list->vector (take 6 (shuffle (iota 100)))))
(Lucas #(2 1))))

(for ((nacci naccis))
(define-values (name seed) nacci)
(make-nacci name seed)
(printf "%s[%d]  → %d" name (vector-length seed) (take name 16))))



{{out}}



Fibonacci[2] → (1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987)
Tribonacci[3] → (1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768)
Tetranacci[4] → (1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 10671)
Decanacci[10] → (1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 16336)
Random-😜-nacci[6] → (95 52 16 48 59 56 326 557 1062 2108 4168 8277 16498 32670 64783 128504)
Lucas[2] → (2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364)



## Elixir

{{trans|Ruby}}

defmodule RC do
def anynacci(start_sequence, count) do
n = length(start_sequence)
anynacci(Enum.reverse(start_sequence), count-n, n)
end

def anynacci(seq, 0, _), do: Enum.reverse(seq)
def anynacci(seq, count, n) do
next = Enum.sum(Enum.take(seq, n))
anynacci([next|seq], count-1, n)
end
end

IO.inspect RC.anynacci([1,1], 15)

naccis = [ lucus:      [2,1],
fibonacci:  [1,1],
tribonacci: [1,1,2],
tetranacci: [1,1,2,4],
pentanacci: [1,1,2,4,8],
hexanacci:  [1,1,2,4,8,16],
heptanacci: [1,1,2,4,8,16,32],
octonacci:  [1,1,2,4,8,16,32,64],
nonanacci:  [1,1,2,4,8,16,32,64,128],
decanacci:  [1,1,2,4,8,16,32,64,128,256] ]
Enum.each(naccis, fn {name, list} ->
:io.format("~11s: ", [name])
IO.inspect RC.anynacci(list, 15)
end)


{{out}}


lucus: [2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843]
fibonacci: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
tribonacci: [1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136]
tetranacci: [1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536]
pentanacci: [1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930]
hexanacci: [1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617]
heptanacci: [1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936]
octonacci: [1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080]
nonanacci: [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144]
decanacci: [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172]



## Erlang

-module( fibonacci_nstep ).

nacci( N, Ns ) when N =< erlang:length(Ns) -> {Sequence, _Not_sequence} = lists:split( N, Ns ), Sequence; nacci( N, Ns ) -> Nth = erlang:length( Ns ), {_Nth, Sequence_reversed} = lists:foldl( fun nacci_foldl/2, {Nth, lists:reverse(Ns)}, lists:seq(Nth+1, N) ), lists:reverse( Sequence_reversed ).

task() -> Names_and_funs = [{X, fun (N) -> nacci( N, Y ) end} || {X, Y} <- [{fibonacci, [1, 1]}, {tribonacci, [1, 1, 2]}, {tetranacci, [1, 1, 2, 4]}, {lukas, [2, 1]}]], [io:fwrite( "~p: ~p~n", [X, Y(10)] ) || {X, Y} <- Names_and_funs].

nacci_foldl( _N, {Nth, Ns} ) -> {Sum_ns, _Not_sum_ns} = lists:split( Nth, Ns ), {Nth, [lists:sum(Sum_ns) | Ns]}.


{{out}}

txt

fibonacci: [1,1,2,3,5,8,13,21,34,55]
tribonacci: [1,1,2,4,7,13,24,44,81,149]
tetranacci: [1,1,2,4,8,15,29,56,108,208]
lukas: [2,1,3,4,7,11,18,29,47,76]



## ERRE


PROGRAM FIBON

!
! for rosettacode.org
!

DIM F[20]

PROCEDURE FIB(TIPO$,F$)
FOR I%=0 TO 20 DO
F[I%]=0
END FOR
B=0
LOOP
Q=INSTR(F$,",") B=B+1 IF Q=0 THEN F[B]=VAL(F$)
EXIT
ELSE
F[B]=VAL(MID$(F$,1,Q-1))
F$=MID$(F$,Q+1) END IF END LOOP PRINT(TIPO$;" =>";)
FOR I=B TO 14+B DO
IF I<>B THEN PRINT(",";) END IF
PRINT(F[I-B+1];)
FOR J=(I-B)+1 TO I DO
F[I+1]=F[I+1]+F[J]
END FOR
END FOR
PRINT
END PROCEDURE

BEGIN
PRINT(CHR$(12);) ! CLS FIB("Fibonacci","1,1") FIB("Tribonacci","1,1,2") FIB("Tetranacci","1,1,2,4") FIB("Lucas","2,1") END PROGRAM  =={{header|F_Sharp|F#}}== let fibinit = Seq.append (Seq.singleton 1) (Seq.unfold (fun n -> Some(n, 2*n)) 1) let fiblike init = Seq.append (Seq.ofList init) (Seq.unfold (function | least :: rest -> let this = least + Seq.reduce (+) rest Some(this, rest @ [this]) | _ -> None) init) let lucas = fiblike [2; 1] let nacci n = Seq.take n fibinit |> Seq.toList |> fiblike [<EntryPoint>] let main argv = let start s = Seq.take 15 s |> Seq.toList let prefix = "fibo tribo tetra penta hexa hepta octo nona deca".Split() Seq.iter (fun (p, n) -> printfn "n=%2i, %5snacci -> %A" n p (start (nacci n))) (Seq.init prefix.Length (fun i -> (prefix.[i], i+2))) printfn " lucas -> %A" (start (fiblike [2; 1])) 0  Output n= 2, fibonacci -> [1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; 377; 610] n= 3, tribonacci -> [1; 1; 2; 4; 7; 13; 24; 44; 81; 149; 274; 504; 927; 1705; 3136] n= 4, tetranacci -> [1; 1; 2; 4; 8; 15; 29; 56; 108; 208; 401; 773; 1490; 2872; 5536] n= 5, pentanacci -> [1; 1; 2; 4; 8; 16; 31; 61; 120; 236; 464; 912; 1793; 3525; 6930] n= 6, hexanacci -> [1; 1; 2; 4; 8; 16; 32; 63; 125; 248; 492; 976; 1936; 3840; 7617] n= 7, heptanacci -> [1; 1; 2; 4; 8; 16; 32; 64; 127; 253; 504; 1004; 2000; 3984; 7936] n= 8, octonacci -> [1; 1; 2; 4; 8; 16; 32; 64; 128; 255; 509; 1016; 2028; 4048; 8080] n= 9, nonanacci -> [1; 1; 2; 4; 8; 16; 32; 64; 128; 256; 511; 1021; 2040; 4076; 8144] n=10, decanacci -> [1; 1; 2; 4; 8; 16; 32; 64; 128; 256; 512; 1023; 2045; 4088; 8172] lucas -> [2; 1; 3; 4; 7; 11; 18; 29; 47; 76; 123; 199; 322; 521; 843]  ## Factor building is a dynamic variable that refers to the sequence being built by make. This is useful when the next element of the sequence depends on previous elements. USING: formatting fry kernel make math namespaces qw sequences ; : n-bonacci ( n initial -- seq ) [ [ [ , ] each ] [ length - ] [ length ] tri '[ building get _ tail* sum , ] times ] { } make ; qw{ fibonacci tribonacci tetranacci lucas } { { 1 1 } { 1 1 2 } { 1 1 2 4 } { 2 1 } } [ 10 swap n-bonacci "%-10s %[%3d, %]\n" printf ] 2each  {{out}}  fibonacci { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 } tribonacci { 1, 1, 2, 4, 7, 13, 24, 44, 81, 149 } tetranacci { 1, 1, 2, 4, 8, 15, 29, 56, 108, 208 } lucas { 2, 1, 3, 4, 7, 11, 18, 29, 47, 76 }  =={{header|Fōrmulæ}}== In [http://wiki.formulae.org/Fibonacci_n-step_number_sequences this] page you can see the solution of this task. Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text ([http://wiki.formulae.org/Editing_F%C5%8Drmul%C3%A6_expressions more info]). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition. The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code. ## Forth : length @ ; \ length of an array is stored at its address : a{ here cell allot ; : } , here over - cell / over ! ; defer nacci : step ( a- i n -- a- i m ) >r 1- 2dup nacci r> + ; : steps ( a- i n -- m ) 0 tuck do step loop nip nip ; :noname ( a- i -- n ) over length over > \ if i is within the array if cells + @ \ fetch i...if not, else over length 1- steps \ get length of array for calling step and recurse then ; is nacci : show-nacci 11 1 do dup i nacci . loop cr drop ; ." fibonacci: " a{ 1 , 1 } show-nacci ." tribonacci: " a{ 1 , 1 , 2 } show-nacci ." tetranacci: " a{ 1 , 1 , 2 , 4 } show-nacci ." lucas: " a{ 2 , 1 } show-nacci  {{out}} fibonacci: 1 1 2 3 5 8 13 21 34 55 tribonacci: 1 1 2 4 7 13 24 44 81 149 tetranacci: 1 1 2 4 8 15 29 56 108 208 lucas: 2 1 3 4 7 11 18 29 47 76  ## Fortran  ! save this program as file f.f08 ! gnu-linux command to build and test !$ a=./f && gfortran -Wall -std=f2008 $a.f08 -o$a && echo -e 2\\n5\\n\\n | $a ! -*- mode: compilation; default-directory: "/tmp/" -*- ! Compilation started at Fri Apr 4 23:20:27 ! ! a=./f && gfortran -Wall -std=f2008$a.f08 -o $a && echo -e 2\\n8\\ny\\n |$a
! Enter the number of terms to sum: Show the the first how many terms of the sequence?   Accept this initial sequence (y/n)?
!            1           1
!            1           1           2           3           5           8          13          21
!
! Compilation finished at Fri Apr  4 23:20:27

program f
implicit none
integer :: n, terms
integer, allocatable, dimension(:) :: sequence
integer :: i
write(6,'(a)',advance='no')'Enter the number of terms to sum: '
if ((n < 2) .or. (29 < n)) stop'Unreasonable!  Exit.'
write(6,'(a)',advance='no')'Show the the first how many terms of the sequence?  '
if (terms < 1) stop'Lazy programmer has not implemented backward sequences.'
n = min(n, terms)
allocate(sequence(1:terms))
sequence(1) = 1
do i = 0, n - 2
sequence(i+2) = 2**i
end do
write(6,*)'Accept this initial sequence (y/n)?'
write(6,*) sequence(:n)
write(6,*) 'Fine.  Enter the initial terms.'
do i=1, n
write(6, '(i2,a2)', advance = 'no') i, ': '
end do
end if
call nacci(n, sequence)
write(6,*) sequence(:terms)
deallocate(sequence)

contains

subroutine nacci(n, s)
! nacci =:  (] , +/@{.)^:(-@#@](-#)])
integer, intent(in) :: n
integer, intent(inout), dimension(:) :: s
integer :: i, terms
terms = size(s)
!      do i = n+1, terms
!        s(i) = sum(s(i-n:i-1))
!    end do
i = n+1
if (n+1 .le. terms) s(i) = sum(s(i-n:i-1))
do i = n + 2, terms
s(i) = 2*s(i-1) - s(i-(n+1))
end do
end subroutine nacci
end program f



$./f # Lucas series Enter the number of terms to sum: 2 Show the the first how many terms of the sequence? 10 Accept this initial sequence (y/n)? 1 1 n Fine. Enter the initial terms. 1: 2 2: 1 2 1 3 4 7 11 18 29 47 76$


 ./f # Waltzing the 6-step
Enter the number of terms to sum: 6
Show the the first how many terms of the sequence?  10
Accept this initial sequence (y/n)?
1           1           2           4           8          16
y
1           1           2           4           8          16          32          63         125         248
println "  tetra[3]: ${fib([1,1,2,4],3)}"  {{out}}  fibonacci: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] tribonacci: [1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274] tetranacci: [1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401] pentanacci: [1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464] hexanacci: [1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492] heptanacci: [1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504] octonacci: [1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509] nonanacci: [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511] decanacci: [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512] lucas: [2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123] lucas[0]: [2] tetra[3]: [1, 1, 2, 4]  ## Haskell import Data.List (tails) import Control.Monad (zipWithM_) fiblike :: [Integer] -> [Integer] fiblike st = xs where xs = st ++ map (sum . take n) (tails xs) n = length st nstep :: Int -> [Integer] nstep n = fiblike$ take n $1 : iterate (2*) 1 main :: IO () main = do print$ take 10 $fiblike [1,1] print$ take 10 $fiblike [2,1] zipWithM_ (\n name -> do putStr (name ++ "nacci -> ") print$ take 15 $nstep n) [2..] (words "fibo tribo tetra penta hexa hepta octo nona deca")  {{out}}  [1,1,2,3,5,8,13,21,34,55] [2,1,3,4,7,11,18,29,47,76] fibonacci -> [1,1,2,3,5,8,13,21,34,55,89,144,233,377,610] tribonacci -> [1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136] tetranacci -> [1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,5536] pentanacci -> [1,1,2,4,8,16,31,61,120,236,464,912,1793,3525,6930] hexanacci -> [1,1,2,4,8,16,32,63,125,248,492,976,1936,3840,7617] heptanacci -> [1,1,2,4,8,16,32,64,127,253,504,1004,2000,3984,7936] octonacci -> [1,1,2,4,8,16,32,64,128,255,509,1016,2028,4048,8080] nonanacci -> [1,1,2,4,8,16,32,64,128,256,511,1021,2040,4076,8144] decanacci -> [1,1,2,4,8,16,32,64,128,256,512,1023,2045,4088,8172]  Or alternatively, without imports – using only the default Prelude: nFibs :: [Int] -> [Int] nFibs [] = [] nFibs xs = let go ys@(z:zs) = z : go (zs ++ [sum ys]) in go xs fibInit :: Int -> [Int] fibInit = (1 :) . fmap (2 ^) . enumFromTo 0 . subtract 2 -- TEST --------------------------------------------------------------- main :: IO () main = do putStrLn$
justifyLeft 12 ' ' "Lucas" ++ "-> " ++ show (take 15 (nFibs [2, 1]))
(putStrLn . unlines)
(zipWith
(\s n ->
justifyLeft 12 ' ' (s ++ "naccci") ++
("-> " ++ show (take 15 (nFibs (fibInit n)))))
(words "fibo tribo tetra penta hexa hepta octo nona deca")
[2 ..])

justifyLeft :: Int -> Char -> String -> String
justifyLeft n c s = take n (s ++ replicate n c)

Lucas       -> [2,1,3,4,7,11,18,29,47,76,123,199,322,521,843]
fibonaccci  -> [1,1,2,3,5,8,13,21,34,55,89,144,233,377,610]
tribonaccci -> [1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136]
tetranaccci -> [1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,5536]
pentanaccci -> [1,1,2,4,8,16,31,61,120,236,464,912,1793,3525,6930]
hexanaccci  -> [1,1,2,4,8,16,32,63,125,248,492,976,1936,3840,7617]
heptanaccci -> [1,1,2,4,8,16,32,64,127,253,504,1004,2000,3984,7936]
octonaccci  -> [1,1,2,4,8,16,32,64,128,255,509,1016,2028,4048,8080]
nonanaccci  -> [1,1,2,4,8,16,32,64,128,256,511,1021,2040,4076,8144]
decanaccci  -> [1,1,2,4,8,16,32,64,128,256,512,1023,2045,4088,8172]


Works in both languages:

procedure main(A)
every writes("F2:\t"|right((fnsGen(1,1))\14,5) | "\n")
every writes("F3:\t"|right((fnsGen(1,1,2))\14,5) | "\n")
every writes("F4:\t"|right((fnsGen(1,1,2,4))\14,5) | "\n")
every writes("Lucas:\t"|right((fnsGen(2,1))\14,5) | "\n")
every writes("F?:\t"|right((fnsGen!A)\14,5) | "\n")
end

procedure fnsGen(cache[])
n := *cache
every i := seq() do {
if i > *cache then every (put(cache,0),cache[i] +:= cache[i-n to i-1])
suspend cache[i]
}
end


Output:


->fns 3 1 4 1 5
F2:         1    1    2    3    5    8   13   21   34   55   89  144  233  377
F3:         1    1    2    4    7   13   24   44   81  149  274  504  927 1705
F4:         1    1    2    4    8   15   29   56  108  208  401  773 1490 2872
Lucas:      2    1    3    4    7   11   18   29   47   76  123  199  322  521
F?:         3    1    4    1    5   14   25   49   94  187  369  724 1423 2797
->



A slightly longer version of fnsGen that reduces the memory footprint is:

procedure fnsGen(cache[])
every i := seq() do {
if i := (i > *cache, *cache) then {
every (sum := 0) +:= !cache
put(cache, sum)              # cache only 'just enough'
pop(cache)
}
suspend cache[i]
}
end


The output is identical.

## J

'''Solution''':

   nacci     =:  (] , +/@{.)^:(-@#@](-#)])


'''Example''' ''(Lucas)'':

   10 nacci 2 1 NB.  Lucas series, first 10 terms
2 1 3 4 7 11 18 29 47 76


'''Example''' ''(extended 'nacci series)'':

   TESTS     =:  }."1 fixdsv noun define  [   require 'tables/dsv'             NB.  Tests from task description
2 	fibonacci 	1 1 2 3 5  8 13 21  34  55  89  144  233  377  610 ...
3 	tribonacci	1 1 2 4 7 13 24 44  81 149 274  504  927 1705 3136 ...
4 	tetranacci	1 1 2 4 8 15 29 56 108 208 401  773 1490 2872 5536 ...
5 	pentanacci	1 1 2 4 8 16 31 61 120 236 464  912 1793 3525 6930 ...
6 	hexanacci 	1 1 2 4 8 16 32 63 125 248 492  976 1936 3840 7617 ...
7 	heptanacci	1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
8 	octonacci 	1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
9 	nonanacci 	1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
10	decanacci 	1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
)
testNacci =:  ] -: #@] nacci {.                                             NB. Given an order & test sequence, compare nacci to sequence
OT        =:  __ ".&.> (<<<1) { |: TESTS                                    NB. 'nacci order and test sequence
(> 1 {"1 TESTS) ,. ' ' ,. (u: 16b274c 16b2713) {~ (testNacci }:)&>/ OT      NB. ✓ or ❌ for success or failure
fibonacci  ✓
tribonacci ✓
tetranacci ✓
pentanacci ✓
hexanacci  ✓
heptanacci ✓
octonacci  ✓
nonanacci  ✓
decanacci  ✓


## Java

'''Code:'''

class Fibonacci
{
public static int[] lucas(int n, int numRequested)
{
if (n < 2)
throw new IllegalArgumentException("Fibonacci value must be at least 2");
return fibonacci((n == 2) ? new int[] { 2, 1 } : lucas(n - 1, n), numRequested);
}

public static int[] fibonacci(int n, int numRequested)
{
if (n < 2)
throw new IllegalArgumentException("Fibonacci value must be at least 2");
return fibonacci((n == 2) ? new int[] { 1, 1 } : fibonacci(n - 1, n), numRequested);
}

public static int[] fibonacci(int[] startingValues, int numRequested)
{
int[] output = new int[numRequested];
int n = startingValues.length;
System.arraycopy(startingValues, 0, output, 0, n);
for (int i = n; i < numRequested; i++)
for (int j = 1; j <= n; j++)
output[i] += output[i - j];
return output;
}

public static void main(String[] args)
{
for (int n = 2; n <= 10; n++)
{
System.out.print("nacci(" + n + "):");
for (int value : fibonacci(n, 15))
System.out.print(" " + value);
System.out.println();
}
for (int n = 2; n <= 10; n++)
{
System.out.print("lucas(" + n + "):");
for (int value : lucas(n, 15))
System.out.print(" " + value);
System.out.println();
}
}
}


Output:

nacci(2): 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
nacci(3): 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136
nacci(4): 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536
nacci(5): 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930
nacci(6): 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617
nacci(7): 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936
nacci(8): 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080
nacci(9): 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144
nacci(10): 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172
lucas(2): 2 1 3 4 7 11 18 29 47 76 123 199 322 521 843
lucas(3): 2 1 3 6 10 19 35 64 118 217 399 734 1350 2483 4567
lucas(4): 2 1 3 6 12 22 43 83 160 308 594 1145 2207 4254 8200
lucas(5): 2 1 3 6 12 24 46 91 179 352 692 1360 2674 5257 10335
lucas(6): 2 1 3 6 12 24 48 94 187 371 736 1460 2896 5744 11394
lucas(7): 2 1 3 6 12 24 48 96 190 379 755 1504 2996 5968 11888
lucas(8): 2 1 3 6 12 24 48 96 192 382 763 1523 3040 6068 12112
lucas(9): 2 1 3 6 12 24 48 96 192 384 766 1531 3059 6112 12212
lucas(10): 2 1 3 6 12 24 48 96 192 384 768 1534 3067 6131 12256


## JavaScript

### ES5

function fib(arity, len) {
return nacci(nacci([1,1], arity, arity), arity, len);
}

function lucas(arity, len) {
return nacci(nacci([2,1], arity, arity), arity, len);
}

function nacci(a, arity, len) {
while (a.length < len) {
var sum = 0;
for (var i = Math.max(0, a.length - arity); i < a.length; i++)
sum += a[i];
a.push(sum);
}
return a;
}

function main() {
for (var arity = 2; arity <= 10; arity++)
console.log("fib(" + arity + "): " + fib(arity, 15));
for (var arity = 2; arity <= 10; arity++)
console.log("lucas(" + arity + "): " + lucas(arity, 15));
}

main();


{{out}}

fib(2): 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610
fib(3): 1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136
fib(4): 1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,5536
fib(5): 1,1,2,4,8,16,31,61,120,236,464,912,1793,3525,6930
fib(6): 1,1,2,4,8,16,32,63,125,248,492,976,1936,3840,7617
fib(7): 1,1,2,4,8,16,32,64,127,253,504,1004,2000,3984,7936
fib(8): 1,1,2,4,8,16,32,64,128,255,509,1016,2028,4048,8080
fib(9): 1,1,2,4,8,16,32,64,128,256,511,1021,2040,4076,8144
fib(10): 1,1,2,4,8,16,32,64,128,256,512,1023,2045,4088,8172
lucas(2): 2,1,3,4,7,11,18,29,47,76,123,199,322,521,843
lucas(3): 2,1,3,6,10,19,35,64,118,217,399,734,1350,2483,4567
lucas(4): 2,1,3,6,12,22,43,83,160,308,594,1145,2207,4254,8200
lucas(5): 2,1,3,6,12,24,46,91,179,352,692,1360,2674,5257,10335
lucas(6): 2,1,3,6,12,24,48,94,187,371,736,1460,2896,5744,11394
lucas(7): 2,1,3,6,12,24,48,96,190,379,755,1504,2996,5968,11888
lucas(8): 2,1,3,6,12,24,48,96,192,382,763,1523,3040,6068,12112
lucas(9): 2,1,3,6,12,24,48,96,192,384,766,1531,3059,6112,12212
lucas(10): 2,1,3,6,12,24,48,96,192,384,768,1534,3067,6131,12256


### ES6

(() => {
'use strict';

// Start sequence -> Number of terms -> terms

// takeNFibs :: [Int] -> Int -> [Int]
const takeNFibs = (xs, n) => {
const go = (xs, n) =>
0 < n && 0 < xs.length ? (
cons(
go(
append(tail(xs), [sum(xs)]),
n - 1
)
)
) : [];
return go(xs, n);
};

// fibInit :: Int -> [Int]
const fibInit = n =>
cons(
1,
map(x => Math.pow(2, x),
enumFromToInt(0, n - 2)
)
);

// TEST -----------------------------------------------------------------
const main = () => {
const
intTerms = 15,
strTable = unlines(
zipWith(
(s, n) =>
justifyLeft(12, ' ', s + 'nacci') + ' -> ' +
showJSON(
takeNFibs(fibInit(n), intTerms)
),
words('fibo tribo tetra penta hexa hepta octo nona deca'),
enumFromToInt(2, 10)
)
);

return justifyLeft(12, ' ', 'Lucas ') + ' -> ' +
showJSON(takeNFibs([2, 1], intTerms)) + '\n' +
strTable;
};

// GENERIC FUNCTIONS ----------------------------

// append (++) :: [a] -> [a] -> [a]
// append (++) :: String -> String -> String
const append = (xs, ys) => xs.concat(ys);

// cons :: a -> [a] -> [a]
const cons = (x, xs) =>
Array.isArray(xs) ? (
[x].concat(xs)
) : (x + xs);

// enumFromToInt :: Int -> Int -> [Int]
const enumFromToInt = (m, n) =>
m <= n ? iterateUntil(
x => n <= x,
x => 1 + x,
m
) : [];

// head :: [a] -> a
const head = xs => xs.length ? xs[0] : undefined;

// iterateUntil :: (a -> Bool) -> (a -> a) -> a -> [a]
const iterateUntil = (p, f, x) => {
const vs = [x];
let h = x;
while (!p(h))(h = f(h), vs.push(h));
return vs;
};

// justifyLeft :: Int -> Char -> String -> String
const justifyLeft = (n, cFiller, s) =>
n > s.length ? (
) : s;

// map :: (a -> b) -> [a] -> [b]
const map = (f, xs) => xs.map(f);

// showJSON :: a -> String
const showJSON = x => JSON.stringify(x);

// sum :: [Num] -> Num
const sum = xs => xs.reduce((a, x) => a + x, 0);

// tail :: [a] -> [a]
const tail = xs => 0 < xs.length ? xs.slice(1) : [];

// unlines :: [String] -> String
const unlines = xs => xs.join('\n');

// words :: String -> [String]
const words = s => s.split(/\s+/);

// zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
const zipWith = (f, xs, ys) =>
Array.from({
length: Math.min(xs.length, ys.length)
}, (_, i) => f(xs[i], ys[i], i));

// MAIN ---
return main();
})();

Lucas        -> [2,1,3,4,7,11,18,29,47,76,123,199,322,521,843]
fibonacci    -> [1,1,2,3,5,8,13,21,34,55,89,144,233,377,610]
tribonacci   -> [1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136]
tetranacci   -> [1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,5536]
pentanacci   -> [1,1,2,4,8,16,31,61,120,236,464,912,1793,3525,6930]
hexanacci    -> [1,1,2,4,8,16,32,63,125,248,492,976,1936,3840,7617]
heptanacci   -> [1,1,2,4,8,16,32,64,127,253,504,1004,2000,3984,7936]
octonacci    -> [1,1,2,4,8,16,32,64,128,255,509,1016,2028,4048,8080]
nonanacci    -> [1,1,2,4,8,16,32,64,128,256,511,1021,2040,4076,8144]
decanacci    -> [1,1,2,4,8,16,32,64,128,256,512,1023,2045,4088,8172]


## jq

{{Works with|jq|1.4}}

# Input: the initial array
def nacci(arity; len):
arity as $arity | len as$len
| reduce range(length; $len) as$i
(.;
([0, (length - $arity)] | max ) as$lower
| . + [ .[ ($lower) : length] | add] ) ; def fib(arity; len): arity as$arity | len as $len | [1,1] | nacci($arity; $arity) | nacci($arity; $len) ; def lucas(arity; len): arity as$arity | len as $len | [2,1] | nacci($arity; $arity) | nacci($arity; $len) ;  '''Example''': def main: (range(2; 11) | "fib(\(.)): \(fib(.; 15))"), (range(2; 11) | "lucas(\(.)): \(lucas(.; 15))") ; main  {{Out}}$ jq -M -r -n -f fibonacci_n-step.jq ... [as for JavaScript] ...

## Julia

This solution provides a generalized Fibonacci iterator that is then made specific to particular sorts of series by setting its parameters. NFib is the type that holds the series parameters. FState contains the iteration state. The methods start, end and next, provided for these new types, enable Julia's iteration mechanics upon them.

This iterator is implemented using an n-element circular list that contains the previous values of the sequence that are needed to calculate the current value. To do this without clumsy initialization logic, the "seed" sequence consists of the $n$ values prior to $k=1$ rather than the first $n$ values. For example the (2 step) Fibonacci sequence is $F_\left\{k+1\right\}=F_\left\{k\right\}+F_\left\{k-1\right\}$ with $F_\left\{-1\right\}=1$ and $F_\left\{0\right\}=0$ rather than $F_\left\{1\right\}=1$ and $F_\left\{2\right\}=1$. See [https://cs.uwaterloo.ca/journals/JIS/VOL8/Noe/noe5.html Primes in Fibonacci n-step and Lucas n-step Sequences] for further details.

'''Generalized Fibonacci Iterator Definition'''


type NFib{T<:Integer}
n::T
klim::T
seeder::Function
end

type FState
a::Array{BigInt,1}
k::Integer
end

function Base.start{T<:Integer}(nf::NFib{T})
a = nf.seeder(nf.n)
k = 1
end

function Base.done{T<:Integer}(nf::NFib{T}, fs::FState)
fs.k > nf.klim
end

function Base.next{T<:Integer}(nf::NFib{T}, fs::FState)
f = sum(fs.a)
fs.k += 1
return (f, fs)
end



'''Specification of the n-step Fibonacci Iterator'''

The seeding for this series of sequences is $F_\left\{1-n\right\} = 1$ and $F_\left\{2-n\right\} \ldots F_\left\{0\right\}=0$.


function fib_seeder{T<:Integer}(n::T)
a = zeros(BigInt, n)
a[1] = one(BigInt)
return a
end

function fib{T<:Integer}(n::T, k::T)
NFib(n, k, fib_seeder)
end



'''Specification of the Rosetta Code n-step Lucas Iterator'''

This iterator produces the task description's version of the Lucas Sequence ([https://oeis.org/A000032 OEIS A000032]) and its generalization to n-steps as was done by some of the other solutions to this task. The seeding for this series of sequences is $F_\left\{1-n\right\} = 3$, $F_\left\{2-n\right\} = -1$ and, for $n > 2$, $F_\left\{3-n\right\} \ldots F_\left\{0\right\}=0$.


function luc_rc_seeder{T<:Integer}(n::T)
a = zeros(BigInt, n)
a[1] = 3
a[2] = -1
return a
end

function luc_rc{T<:Integer}(n::T, k::T)
NFib(n, k, luc_rc_seeder)
end



'''Specification of the MathWorld n-step Lucas Iterator'''

This iterator produces the Mathworld version of the Lucas Sequence ([http://mathworld.wolfram.com/LucasNumber.html Lucas Number] and [https://oeis.org/A000204 OEIS A000204]) and its generalization to n-steps according to Mathworld ([http://mathworld.wolfram.com/Lucasn-StepNumber.html Lucas n-Step Number] and [https://cs.uwaterloo.ca/journals/JIS/VOL8/Noe/noe5.html Primes in Fibonacci n-step and Lucas n-step Sequences]). The seeding for this series of sequences is $F_\left\{0\right\} = n$ and $F_\left\{1-n\right\} \ldots F_\left\{-1\right\}=-1$.


function luc_seeder{T<:Integer}(n::T)
a = -ones(BigInt, n)
a[end] = big(n)
return a
end

function luc{T<:Integer}(n::T, k::T)
NFib(n, k, luc_seeder)
end



'''Main'''


lo = 2
hi = 10
klim = 16

print("n-step Fibonacci for n = (", lo, ",", hi)
println(") up to k = ", klim, ":")
for i in 2:10
print(@sprintf("%5d => ", i))
for j in fib(i, klim)
print(j, " ")
end
println()
end

println()
print("n-step Rosetta Code Lucas for n = (", lo, ",", hi)
println(") up to k = ", klim, ":")
for i in 2:10
print(@sprintf("%5d => ", i))
for j in luc_rc(i, klim)
print(j, " ")
end
println()
end

println()
print("n-step MathWorld Lucas for n = (", lo, ",", hi)
println(") up to k = ", klim, ":")
for i in 2:10
print(@sprintf("%5d => ", i))
for j in luc(i, klim)
print(j, " ")
end
println()
end



{{out}}


n-step Fibonacci for n = (2,10) up to k = 16:
2 => 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
3 => 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768
4 => 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 10671
5 => 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 13624
6 => 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 15109
7 => 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 15808
8 => 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 16128
9 => 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 16272
10 => 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 16336

n-step Rosetta Code Lucas for n = (2,10) up to k = 16:
2 => 2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364
3 => 2 1 3 6 10 19 35 64 118 217 399 734 1350 2483 4567 8400
4 => 2 1 3 6 12 22 43 83 160 308 594 1145 2207 4254 8200 15806
5 => 2 1 3 6 12 24 46 91 179 352 692 1360 2674 5257 10335 20318
6 => 2 1 3 6 12 24 48 94 187 371 736 1460 2896 5744 11394 22601
7 => 2 1 3 6 12 24 48 96 190 379 755 1504 2996 5968 11888 23680
8 => 2 1 3 6 12 24 48 96 192 382 763 1523 3040 6068 12112 24176
9 => 2 1 3 6 12 24 48 96 192 384 766 1531 3059 6112 12212 24400
10 => 2 1 3 6 12 24 48 96 192 384 768 1534 3067 6131 12256 24500

n-step MathWorld Lucas for n = (2,10) up to k = 16:
2 => 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207
3 => 1 3 7 11 21 39 71 131 241 443 815 1499 2757 5071 9327 17155
4 => 1 3 7 15 26 51 99 191 367 708 1365 2631 5071 9775 18842 36319
5 => 1 3 7 15 31 57 113 223 439 863 1695 3333 6553 12883 25327 49791
6 => 1 3 7 15 31 63 120 239 475 943 1871 3711 7359 14598 28957 57439
7 => 1 3 7 15 31 63 127 247 493 983 1959 3903 7775 15487 30847 61447
8 => 1 3 7 15 31 63 127 255 502 1003 2003 3999 7983 15935 31807 63487
9 => 1 3 7 15 31 63 127 255 511 1013 2025 4047 8087 16159 32287 64511
10 => 1 3 7 15 31 63 127 255 511 1023 2036 4071 8139 16271 32527 65023



## Kotlin

// version 1.1.2

fun fibN(initial: IntArray, numTerms: Int) : IntArray {
val n = initial.size
require(n >= 2 && numTerms >= 0)
val fibs = initial.copyOf(numTerms)
if (numTerms <= n) return fibs
for (i in n until numTerms) {
var sum = 0
for (j in i - n until i) sum += fibs[j]
fibs[i] = sum
}
return fibs
}

fun main(args: Array<String>) {
val names = arrayOf("fibonacci",  "tribonacci", "tetranacci", "pentanacci", "hexanacci",
"heptanacci", "octonacci",  "nonanacci",  "decanacci")
val initial = intArrayOf(1, 1, 2, 4, 8, 16, 32, 64, 128, 256)
println(" n  name        values")
var values = fibN(intArrayOf(2, 1), 15).joinToString(", ")
println("%2d  %-10s  %s".format(2, "lucas", values))
for (i in 0..8) {
values = fibN(initial.sliceArray(0 until i + 2), 15).joinToString(", ")
println("%2d  %-10s  %s".format(i + 2, names[i], values))
}
}


{{out}}


n  name        values
2  lucas       2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843
2  fibonacci   1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610
3  tribonacci  1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136
4  tetranacci  1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536
5  pentanacci  1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930
6  hexanacci   1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617
7  heptanacci  1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936
8  octonacci   1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080
9  nonanacci   1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144
10  decanacci   1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172



## Lua

function nStepFibs (seq, limit)
local iMax, sum = #seq - 1
while #seq < limit do
sum = 0
for i = 0, iMax do sum = sum + seq[#seq - i] end
table.insert(seq, sum)
end
return seq
end

local fibSeqs = {
{name = "Fibonacci",  values = {1, 1}      },
{name = "Tribonacci", values = {1, 1, 2}   },
{name = "Tetranacci", values = {1, 1, 2, 4}},
{name = "Lucas",      values = {2, 1}      }
}
for _, sequence in pairs(fibSeqs) do
io.write(sequence.name .. ": ")
print(table.concat(nStepFibs(sequence.values, 10), " "))
end


{{out}}

Fibonacci: 1 1 2 3 5 8 13 21 34 55
Tribonacci: 1 1 2 4 7 13 24 44 81 149
Tetranacci: 1 1 2 4 8 15 29 56 108 208
Lucas: 2 1 3 4 7 11 18 29 47 76


## Maple

numSequence := proc(initValues :: Array)
local n, i, values;
n := numelems(initValues);
values := copy(initValues);
for i from (n+1) to 15 do
end do;
return values;
end proc:

initValues := Array([1]):
for i from 2 to 10 do
printf ("nacci(%d): %a\n", i, convert(numSequence(initValues), list));
end do:
printf ("lucas: %a\n", convert(numSequence(Array([2, 1])), list));


{{out}}


nacci(2): [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
nacci(3): [1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136]
nacci(4): [1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536]
nacci(5): [1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930]
nacci(6): [1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617]
nacci(7): [1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936]
nacci(8): [1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080]
nacci(9): [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144]
nacci(10): [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172]
lucas: [2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843]




f2=Function[{l,k},
Module[{n=Length@l,m},
m=SparseArray[{{i_,j_}/;i==1||i==j+1->1},{n,n}];
NestList[m.#&,l,k]]];
Table[Last/@f2[{1,1}~Join~Table[0,{n-2}],15+n][[-18;;]],{n,2,10}]//TableForm
Table[Last/@f2[{1,2}~Join~Table[0,{n-2}],15+n][[-18;;]],{n,2,10}]//TableForm



Output:


1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	1597	2584
1	1	2	4	7	13	24	44	81	149	274	504	927	1705	3136	5768	10609	19513
1	1	2	4	8	15	29	56	108	208	401	773	1490	2872	5536	10671	20569	39648
1	1	2	4	8	16	31	61	120	236	464	912	1793	3525	6930	13624	26784	52656
1	1	2	4	8	16	32	63	125	248	492	976	1936	3840	7617	15109	29970	59448
1	1	2	4	8	16	32	64	127	253	504	1004	2000	3984	7936	15808	31489	62725
1	1	2	4	8	16	32	64	128	255	509	1016	2028	4048	8080	16128	32192	64256
1	1	2	4	8	16	32	64	128	256	511	1021	2040	4076	8144	16272	32512	64960
1	1	2	4	8	16	32	64	128	256	512	1023	2045	4088	8172	16336	32656	65280

2	1	3	4	7	11	18	29	47	76	123	199	322	521	843	1364	2207	3571
2	1	3	6	10	19	35	64	118	217	399	734	1350	2483	4567	8400	15450	28417
2	1	3	6	12	22	43	83	160	308	594	1145	2207	4254	8200	15806	30467	58727
2	1	3	6	12	24	46	91	179	352	692	1360	2674	5257	10335	20318	39944	78528
2	1	3	6	12	24	48	94	187	371	736	1460	2896	5744	11394	22601	44831	88926
2	1	3	6	12	24	48	96	190	379	755	1504	2996	5968	11888	23680	47170	93961
2	1	3	6	12	24	48	96	192	382	763	1523	3040	6068	12112	24176	48256	96320
2	1	3	6	12	24	48	96	192	384	766	1531	3059	6112	12212	24400	48752	97408
2	1	3	6	12	24	48	96	192	384	768	1534	3067	6131	12256	24500	48976	97904



## Nim

{{trans|Python}}

import sequtils, strutils

proc fiblike(start: seq[int]): auto =
var memo = start
proc fibber(n: int): int =
if n < memo.len:
return memo[n]
else:
var ans = 0
for i in n-start.len .. <n:
ans += fibber(i)
return ans
return fibber

let fibo = fiblike(@[1,1])
echo toSeq(0..9).map(fibo)
let lucas = fiblike(@[2,1])
echo toSeq(0..9).map(lucas)

for n, name in items({2: "fibo", 3: "tribo", 4: "tetra", 5: "penta", 6: "hexa",
7: "hepta", 8: "octo", 9: "nona", 10: "deca"}):
var se = @[1]
for i in 0..n-2:
let fibber = fiblike(se)
echo "n = ", align(n,2), ", ", align(name, 5), "nacci -> ", toSeq(0..14).mapIt(string,fibber(it)).join(" "), " ..."


Output:

@[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
@[2, 1, 3, 4, 7, 11, 18, 29, 47, 76]
n =  2,  fibonacci -> 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
n =  3, tribonacci -> 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
n =  4, tetranacci -> 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
n =  5, pentanacci -> 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
n =  6,  hexanacci -> 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
n =  7, heptanacci -> 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
n =  8,  octonacci -> 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
n =  9,  nonanacci -> 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
n = 10,  decanacci -> 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...


## Ol

We will use lazy lists, so can get any amount of n-nacci numbers.


(define (n-fib-iterator ll)
(cons (car ll)
(lambda ()
(n-fib-iterator (append (cdr ll) (list (fold + 0 ll)))))))



Testing:


(print "2, fibonacci : " (ltake (n-fib-iterator '(1 1)) 15))
(print "3, tribonacci: " (ltake (n-fib-iterator '(1 1 2)) 15))
(print "4, tetranacci: " (ltake (n-fib-iterator '(1 1 2 4)) 15))
(print "5, pentanacci: " (ltake (n-fib-iterator '(1 1 2 4 8)) 15))
(print "2, lucas : " (ltake (n-fib-iterator '(2 1)) 15))

; ==>
2, fibonacci : (1 1 2 3 5 8 13 21 34 55 89 144 233 377 610)
3, tribonacci: (1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136)
4, tetranacci: (1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536)
5, pentanacci: (1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930)
2, lucas : (2 1 3 4 7 11 18 29 47 76 123 199 322 521 843)



## PARI/GP

The function gen generates code to generate a given number of terms of the k-th sequence. Of course there are other approaches.

Use genV if you prefer to supply a different starting vector.

gen(n)=k->my(v=vector(k,i,1));for(i=3,min(k,n),v[i]=2^(i-2));for(i=n+1,k,v[i]=sum(j=i-n,i-1,v[j]));v
genV(n)=v->for(i=3,min(#v,n),v[i]=2^(i-2));for(i=n+1,#v,v[i]=sum(j=i-n,i-1,v[j]));v
for(n=2,10,print(n"\t"gen(n)(10)))


{{out}}

2       [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
3       [1, 1, 2, 4, 7, 13, 24, 44, 81, 149]
4       [1, 1, 2, 4, 8, 15, 29, 56, 108, 208]
5       [1, 1, 2, 4, 8, 16, 31, 61, 120, 236]
6       [1, 1, 2, 4, 8, 16, 32, 63, 125, 248]
7       [1, 1, 2, 4, 8, 16, 32, 64, 127, 253]
8       [1, 1, 2, 4, 8, 16, 32, 64, 128, 255]
9       [1, 1, 2, 4, 8, 16, 32, 64, 128, 256]
10      [1, 1, 2, 4, 8, 16, 32, 64, 128, 256]


## Pascal

{{works with|Free_Pascal}}

program FibbonacciN (output);

type
TintArray = array of integer;
const
Name: array[2..11] of string = ('Fibonacci:  ',
'Tribonacci: ',
'Tetranacci: ',
'Pentanacci: ',
'Hexanacci:  ',
'Heptanacci: ',
'Octonacci:  ',
'Nonanacci:  ',
'Decanacci:  ',
'Lucas:      '
);
var
sequence: TintArray;
j, k: integer;

function CreateFibbo(n: integer): TintArray;
var
i: integer;
begin
setlength(CreateFibbo, n);
CreateFibbo[0] := 1;
CreateFibbo[1] := 1;
i := 2;
while i < n do
begin
CreateFibbo[i] := CreateFibbo[i-1] * 2;
inc(i);
end;
end;

procedure Fibbonacci(var start: TintArray);
const
No_of_examples = 11;
var
n, i, j: integer;
begin
n := length(start);
setlength(start, No_of_examples);
for i := n to high(start) do
begin
start[i] := 0;
for j := 1 to n do
start[i] := start[i] + start[i-j]
end;
end;

begin
for j := 2 to 10 do
begin
sequence := CreateFibbo(j);
Fibbonacci(sequence);
write (Name[j]);
for k := low(sequence) to high(sequence) do
write(sequence[k], ' ');
writeln;
end;
setlength(sequence, 2);
sequence[0] := 2;
sequence[1] := 1;
Fibbonacci(sequence);
write (Name[11]);
for k := low(sequence) to high(sequence) do
write(sequence[k], ' ');
writeln;
end.


Output:

% ./Fibbonacci
Fibonacci:  1 1 2 3 5 8 13 21 34 55 89
Tribonacci: 1 1 2 4 7 13 24 44 81 149 274
Tetranacci: 1 1 2 4 8 15 29 56 108 208 401
Pentanacci: 1 1 2 4 8 16 31 61 120 236 464
Hexanacci:  1 1 2 4 8 16 32 63 125 248 492
Heptanacci: 1 1 2 4 8 16 32 64 127 253 504
Octonacci:  1 1 2 4 8 16 32 64 128 255 509
Nonanacci:  1 1 2 4 8 16 32 64 128 256 511
Decanacci:  1 1 2 4 8 16 32 64 128 256 512
Lucas:      2 1 3 4 7 11 18 29 47 76 123


### Alternative

With the same output like above. A little bit like C++ alternative, but using only one idx and the observation, that Sum[n] = 2*Sum[n-1]- Sum[n-stepSize]. There is no need to do so in Terms of speed, since fib(100) is out of reach using Uint64. Fib(n)/Fib(n-1) tends to the golden ratio = 1.618... 1.618^100 > 2^64 {{works with|Free_Pascal}}


program FibbonacciN (output);
{$IFNDEF FPC} {$APPTYPE CONSOLE}
{$ENDIF} const MAX_Nacci = 10; No_of_examples = 11;// max 90; (golden ratio)^No < 2^64 Name: array[2..11] of string = ('Fibonacci: ', 'Tribonacci: ', 'Tetranacci: ', 'Pentanacci: ', 'Hexanacci: ', 'Heptanacci: ', 'Octonacci: ', 'Nonanacci: ', 'Decanacci: ', 'Lucas: ' ); type tfibIdx = 0..MAX_Nacci; tNacVal = Uint64;// longWord tNacci = record ncSum : tNacVal; ncLastFib : array[tFibIdx] of tNacVal; ncNextIdx : array[tFibIdx] of tFibIdx; ncIdx : tFibIdx; ncValue : tFibIdx; end; function CreateNacci(n: tFibIdx): TNacci; var i : tFibIdx; sum :tNacVal; begin //With result do with CreateNacci do begin ncLastFib[0] := 1; ncLastFib[1] := 1; For i := 2 to n-1 do ncLastFib[i] := ncLastFib[i-1] * 2; Sum := 0; For i := 0 to n-1 do sum := sum +ncLastFib[i]; ncSum := Sum; //No need to do a compare //inc(idx); //if idx>= n then // idx := 0; //idx := nextIdx[idx] For i := 0 to n-2 do ncNextIdx[i] := i+1; ncNextIdx[n-1] := 0; ncIdx := 0; end; end; function LehmerCreate:TNacci; begin with LehmerCreate do begin ncLastFib[0] := 2; ncLastFib[1] := 1; ncSum := 3; ncNextIdx[0] := 1; ncNextIdx[1] := 0; ncIdx := 0; end; end; function NextNacci(var Nacci:tNacci):tNacVal; var NewSum :tNacVal; begin with Nacci do begin NewSum := 2*ncSum- ncLastFib[ncIdx]; ncLastFib[ncIdx] := ncSum; ncIdx := ncNextIdx[ncIdx]; NextNacci := ncSum; ncSum := NewSum; end; end; var Nacci : tNacci; j, k: integer; BEGIN for j := 2 to 10 do begin Nacci := CreateNacci(j); write (Name[j]); For k := 0 to j-1 do write(Nacci.ncLastFib[k],' '); For k := j to No_of_examples-1 do write(NextNacci(Nacci),' '); writeln; end; write (Name[11]); j := 2; Nacci := LehmerCreate; For k := 0 to j-1 do write(Nacci.ncLastFib[k],' '); For k := j to No_of_examples-1 do write(NextNacci(Nacci),' '); writeln; END.  ## Perl use 5.010; use List::Util qw/max sum/; sub fib { my$n = shift;
my $xs = shift // [1]; my @xs = @{$xs};

while (my $len = scalar @xs) { last if$len >= 20;
push(
@xs,
sum(@xs[max($len -$n, 0)..$len-1]) ); } return @xs; } for (2..10) { say join(' ', fib($_));
}
say join(' ', fib(2, [2,1]));


{{out}}

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513 35890 66012
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 10671 20569 39648 76424 147312
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 13624 26784 52656 103519 203513
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 15109 29970 59448 117920 233904
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 15808 31489 62725 124946 248888
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 16128 32192 64256 128257 256005
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 16272 32512 64960 129792 259328
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 16336 32656 65280 130496 260864
2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349


## Perl 6

### Lazy List with Closure

use MONKEY-SEE-NO-EVAL;

sub fibo ($n) { constant @starters = 1,1,2,4 ... *; nacci @starters[^$n];
}

sub nacci (*@starter) {
EVAL "|@starter, { join '+', '*' xx @starter } ... *";
}

for 2..10 -> $n { say fibo($n)[^20] }
say nacci(2,1)[^20];


{{out}}

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513 35890 66012
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 10671 20569 39648 76424 147312
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 13624 26784 52656 103519 203513
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 15109 29970 59448 117920 233904
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 15808 31489 62725 124946 248888
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 16128 32192 64256 128257 256005
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 16272 32512 64960 129792 259328
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 16336 32656 65280 130496 260864
2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349


### Generative

A slightly more straight forward way of constructing a lazy list. {{works with|Rakudo|2015.12}}

sub fib ($n, @xs is copy = [1]) { flat gather { take @xs[*]; loop { take my$x = [+] @xs;
@xs.push: $x; @xs.shift if @xs >$n;
}
}
}

for 2..10 -> $n { say fib($n, [1])[^20];
}
say fib(2, [2,1])[^20];


## Phix

function nacci_noo(integer n, s, l)
if n<2 then return n+n*l end if
if n=2 then return 1 end if
atom res = nacci_noo(n-1,s,l)
for i=2 to min(s,n-1) do
res += nacci_noo(n-i,s,l)
end for
return res
end function

constant names = split("lucas fibo tribo tetra penta hexa hepta octo nona deca")
sequence f = repeat(0,10)
for i=1 to 4 do
for j=1 to 10 do
f[j] = nacci_noo(j,i+(i=1),i=1)
end for
printf(1,"%snacci: %s\n",{names[i],sprint(f)})
end for


{{out}}


lucasnacci: {2,1,3,4,7,11,18,29,47,76}
fibonacci: {1,1,2,3,5,8,13,21,34,55}
tribonacci: {1,1,2,4,7,13,24,44,81,149}
tetranacci: {1,1,2,4,8,15,29,56,108,208}



## PHP

<?php
/**
*/

/**
* @param int $x * @param array$series
* @param int $n * @return array */ function fib_n_step($x, &$series = array(1, 1),$n = 15)
{
$count = count($series);

if($count >$x && $count ==$n) // exit point
{
return $series; } if($count < $n) { if($count >= $x) // 4 or less { fib($series, $x,$count);
return fib_n_step($x,$series, $n); } else // 5 or more { while(count($series) < $x ) {$count = count($series); fib($series, $count,$count);
}
return fib_n_step($x,$series, $n); } } return$series;
}

/**
* @param array $series * @param int$n
* @param int $i */ function fib(&$series, $n,$i)
{
$end = 0; for($j = $n;$j > 0; $j--) {$end += $series[$i-$j]; }$series[$i] =$end;
}

/*
### ================  OUTPUT =========================
*/

$steps = array( 'LUCAS' => array(2, array(2, 1)), 'FIBONACCI' => array(2, array(1, 1)), 'TRIBONACCI' => array(3, array(1, 1, 2)), 'TETRANACCI' => array(4, array(1, 1, 2, 4)), 'PENTANACCI' => array(5, array(1, 1, 2, 4)), 'HEXANACCI' => array(6, array(1, 1, 2, 4)), 'HEPTANACCI' => array(7, array(1, 1, 2, 4)), 'OCTONACCI' => array(8, array(1, 1, 2, 4)), 'NONANACCI' => array(9, array(1, 1, 2, 4)), 'DECANACCI' => array(10, array(1, 1, 2, 4)), ); foreach($steps as $name=>$pair)
{
$ser = fib_n_step($pair[0],$pair[1]);$n = count($ser)-1; echo$name." => ".implode(',', $ser) . "\n"; }  {{out}}  LUCAS => 2,1,3,4,7,11,18,29,47,76,123,199,322,521,843 FIBONACCI => 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610 TRIBONACCI => 1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136 TETRANACCI => 1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,5536 PENTANACCI => 1,1,2,4,8,16,31,61,120,236,464,912,1793,3525,6930 HEXANACCI => 1,1,2,4,8,16,32,63,125,248,492,976,1936,3840,7617 HEPTANACCI => 1,1,2,4,8,16,32,64,127,253,504,1004,2000,3984,7936 OCTONACCI => 1,1,2,4,8,16,32,64,128,255,509,1016,2028,4048,8080 NONANACCI => 1,1,2,4,8,16,32,64,128,256,511,1021,2040,4076,8144 DECANACCI => 1,1,2,4,8,16,32,64,128,256,512,1023,2045,4088,8172  ## PicoLisp (de nacci (Init Cnt) (let N (length Init) (make (made Init) (do (- Cnt N) (link (apply + (tail N (made)))) ) ) ) )  Test: # Fibonacci : (nacci (1 1) 10) -> (1 1 2 3 5 8 13 21 34 55) # Tribonacci : (nacci (1 1 2) 10) -> (1 1 2 4 7 13 24 44 81 149) # Tetranacci : (nacci (1 1 2 4) 10) -> (1 1 2 4 8 15 29 56 108 208) # Lucas : (nacci (2 1) 10) -> (2 1 3 4 7 11 18 29 47 76) # Decanacci : (nacci (1 1 2 4 8 16 32 64 128 256) 15) -> (1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172)  ## PL/I (subscriptrange, fixedoverflow, size): n_step_Fibonacci: procedure options (main); declare line character (100) varying; declare (i, j, k) fixed binary; put ('n-step Fibonacci series: Please type the initial values on one line:'); get edit (line) (L); line = trim(line); k = tally(line, ' ') - tally(line, ' ') + 1; /* count values */ begin; declare (n(k), s) fixed decimal (15); get string (line || ' ') list ( n ); if n(1) = 2 then put ('We have a Lucan series'); else put ('We have a ' || trim(k) || '-step Fibonacci series.'); put skip edit ( (trim(n(i)) do i = 1 to k) ) (a, x(1)); do j = k+1 to 20; /* In toto, generate 20 values in the series. */ s = sum(n); /* the next value in the series */ put edit (trim(s)) (x(1), a); do i = lbound(n,1)+1 to k; /* Discard the oldest value */ n(i-1) = n(i); end; n(k) = s; /* and insert the new value */ end; end; end n_step_Fibonacci;  Output:  We have a Lucan series. 2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349 We have a 2-step Fibonacci series. 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 We have a 3-step Fibonacci series. 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513 35890 66012 We have a 4-step Fibonacci series. 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 10671 20569 39648 76424 147312 We have a 5-step Fibonacci series. 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 13624 26784 52656 103519 203513  ## Powershell #Create generator of extended fibonaci Function Get-ExtendedFibonaciGenerator($InitialValues ){
$Values =$InitialValues
{
#exhaust initial values first before calculating next values by summation
if ($InitialValues.Length -gt 0) {$NextValue = $InitialValues[0]$Script:InitialValues = $InitialValues | Select -Skip 1 return$NextValue
}

$NextValue =$Values | Measure-Object -Sum | Select -ExpandProperty Sum
$Script:Values = @($Values | Select-Object -Skip 1) + @($NextValue)$NextValue
}.GetNewClosure()
}



Example of invocation to generate up to decanaci

$Name = 'fibo tribo tetra penta hexa hepta octo nona deca'.Split() 0..($Name.Length-1) | foreach { $Index =$_
$InitialValues = @(1) + @(foreach ($I In 0..$Index) { [Math]::Pow(2,$I) })
$Generator = Get-ExtendedFibonaciGenerator$InitialValues
[PSCustomObject] @{
n        = $InitialValues.Length; Name = "$($Name[$Index])naci";
Sequence = 1..15 | foreach { & $Generator } | Join-String -Separator ',' } } | Format-Table -AutoSize  Sample output  n Name Sequence - ---- -------- 2 fibonaci 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610 3 tribonaci 1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136 4 tetranaci 1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,5536 5 pentanaci 1,1,2,4,8,16,31,61,120,236,464,912,1793,3525,6930 6 hexanaci 1,1,2,4,8,16,32,63,125,248,492,976,1936,3840,7617 7 heptanaci 1,1,2,4,8,16,32,64,127,253,504,1004,2000,3984,7936 8 octonaci 1,1,2,4,8,16,32,64,128,255,509,1016,2028,4048,8080 9 nonanaci 1,1,2,4,8,16,32,64,128,256,511,1021,2040,4076,8144 10 decanaci 1,1,2,4,8,16,32,64,128,256,512,1023,2045,4088,8172  ## PureBasic  Procedure.i FibonacciLike(k,n=2,p.s="",d.s=".") Protected i,r if k<0:ProcedureReturn 0:endif if p.s n=CountString(p.s,d.s)+1 for i=0 to n-1 if k=i:ProcedureReturn val(StringField(p.s,i+1,d.s)):endif next else if k=0:ProcedureReturn 1:endif if k=1:ProcedureReturn 1:endif endif for i=1 to n r+FibonacciLike(k-i,n,p.s,d.s) next ProcedureReturn r EndProcedure ; The fact that PureBasic supports default values for procedure parameters ; is very useful in a case such as this. ; Since: ; k=4 ; Debug FibonacciLike(k) ;good old Fibonacci ; Debug FibonacciLike(k,3) ;here we specified n=3 [Tribonacci] ; Debug FibonacciLike(k,3,"1.1.2") ;using the default delimiter "." ; Debug FibonacciLike(k,3,"1,1,2",",") ;using a different delimiter "," ; the last three all produce the same result. ; as do the following two for the Lucas series: ; Debug FibonacciLike(k,2,"2.1") ;using the default delimiter "." ; Debug FibonacciLike(k,2,"2,1",",") ;using a different delimiter "," m=10 t.s=lset("n",5) for k=0 to m t.s+lset(str(k),5) next Debug t.s for n=2 to 10 t.s=lset(str(n),5) for k=0 to m t.s+lset(str(FibonacciLike(k,n)),5) next Debug t.s next Debug "" p.s="2.1" t.s=lset(p.s,5) for k=0 to m t.s+lset(str(FibonacciLike(k,n,p.s)),5) next Debug t.s Debug ""  '''Sample Output'''  n 0 1 2 3 4 5 6 7 8 9 10 2 1 1 2 3 5 8 13 21 34 55 89 3 1 1 2 4 7 13 24 44 81 149 274 4 1 1 2 4 8 15 29 56 108 208 401 5 1 1 2 4 8 16 31 61 120 236 464 6 1 1 2 4 8 16 32 63 125 248 492 7 1 1 2 4 8 16 32 64 127 253 504 8 1 1 2 4 8 16 32 64 128 255 509 9 1 1 2 4 8 16 32 64 128 256 511 10 1 1 2 4 8 16 32 64 128 256 512 2.1 2 1 3 4 7 11 18 29 47 76 123  ## Python ### Python: function returning a function  def fiblike(start): addnum = len(start) memo = start[:] def fibber(n): try: return memo[n] except IndexError: ans = sum(fibber(i) for i in range(n-addnum, n)) memo.append(ans) return ans return fibber >>> fibo = fiblike([1,1]) >>> [fibo(i) for i in range(10)] [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> lucas = fiblike([2,1]) >>> [lucas(i) for i in range(10)] [2, 1, 3, 4, 7, 11, 18, 29, 47, 76] >>> for n, name in zip(range(2,11), 'fibo tribo tetra penta hexa hepta octo nona deca'.split()) : fibber = fiblike([1] + [2**i for i in range(n-1)]) print('n=%2i, %5snacci -> %s ...' % (n, name, ' '.join(str(fibber(i)) for i in range(15)))) n= 2, fibonacci -> 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... n= 3, tribonacci -> 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... n= 4, tetranacci -> 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... n= 5, pentanacci -> 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... n= 6, hexanacci -> 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... n= 7, heptanacci -> 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... n= 8, octonacci -> 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... n= 9, nonanacci -> 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... n=10, decanacci -> 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... >>>  ### Python: Callable class  class Fiblike(): def __init__(self, start): self.addnum = len(start) self.memo = start[:] def __call__(self, n): try: return self.memo[n] except IndexError: ans = sum(self(i) for i in range(n-self.addnum, n)) self.memo.append(ans) return ans >>> fibo = Fiblike([1,1]) >>> [fibo(i) for i in range(10)] [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> lucas = Fiblike([2,1]) >>> [lucas(i) for i in range(10)] [2, 1, 3, 4, 7, 11, 18, 29, 47, 76] >>> for n, name in zip(range(2,11), 'fibo tribo tetra penta hexa hepta octo nona deca'.split()) : fibber = Fiblike([1] + [2**i for i in range(n-1)]) print('n=%2i, %5snacci -> %s ...' % (n, name, ' '.join(str(fibber(i)) for i in range(15)))) n= 2, fibonacci -> 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... n= 3, tribonacci -> 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... n= 4, tetranacci -> 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... n= 5, pentanacci -> 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... n= 6, hexanacci -> 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... n= 7, heptanacci -> 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... n= 8, octonacci -> 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... n= 9, nonanacci -> 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... n=10, decanacci -> 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... >>>  ### Python: Generator from itertools import islice, cycle def fiblike(tail): for x in tail: yield x for i in cycle(xrange(len(tail))): tail[i] = x = sum(tail) yield x fibo = fiblike([1, 1]) print list(islice(fibo, 10)) lucas = fiblike([2, 1]) print list(islice(lucas, 10)) suffixes = "fibo tribo tetra penta hexa hepta octo nona deca" for n, name in zip(xrange(2, 11), suffixes.split()): fib = fiblike([1] + [2 ** i for i in xrange(n - 1)]) items = list(islice(fib, 15)) print "n=%2i, %5snacci -> %s ..." % (n, name, items)  {{out}} [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] [2, 1, 3, 4, 7, 11, 18, 29, 47, 76] n= 2, fibonacci -> [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610] ... n= 3, tribonacci -> [1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136] ... n= 4, tetranacci -> [1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536] ... n= 5, pentanacci -> [1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930] ... n= 6, hexanacci -> [1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617] ... n= 7, heptanacci -> [1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936] ... n= 8, octonacci -> [1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080] ... n= 9, nonanacci -> [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144] ... n=10, decanacci -> [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172] ...  ### Python: Curried A recipe quickly assembled from generic ingredients in the cupboard. {{Trans|Haskell}} {{Works with|Python|3.7}} '''Fibonacci n-step number sequences''' # fibInit :: Int -> [Int] def fibInit(n): '''Initial values for a Fibonacci n-step number sequence of order n. ''' return [1] + [ pow(2, x) for x in enumFromTo(0)(n - 2) ] # takeNFibs :: [Int] -> Int -> [Int] def takeNFibs(xs): '''Given the initial members, the continuation to the nth member of a Fibonacci n-step number sequence. ''' def go(xs, n): h, *t = xs return [h] + ( go(t + [sum(xs)], n - 1) ) if 0 < n and xs else [] return lambda n: go(xs, n) # TESTS ---------------------------------------------------- # main :: IO () def main(): '''Various n-step sequences''' print( fTable(__doc__ + ':\n')(fst)(showList)( compose(flip(takeNFibs)(15))(snd) )([('Lucas', [2, 1])] + list(zip( [k + 'nacci' for k in words( 'fibo tribo tetra penta hexa hepta octo nona deca' )], [fibInit(n) for n in enumFromTo(2)(10)] ))) ) # GENERIC ------------------------------------------------- # compose (<<<) :: (b -> c) -> (a -> b) -> a -> c def compose(g): '''Right to left function composition.''' return lambda f: lambda x: g(f(x)) # enumFromTo :: (Int, Int) -> [Int] def enumFromTo(m): '''Integer enumeration from m to n.''' return lambda n: list(range(m, 1 + n)) # flip :: (a -> b -> c) -> b -> a -> c def flip(f): '''The curried function f with its arguments reversed.''' return lambda a: lambda b: f(b)(a) # fst :: (a, b) -> a def fst(tpl): '''First member of a pair.''' return tpl[0] # showList :: [a] -> String def showList(xs): '''Stringification of a list.''' return '[' + ','.join(str(x) for x in xs) + ']' # words :: String -> [String] def words(s): '''A list of words delimited by characters representing white space.''' return s.split() # fTable :: String -> (a -> String) -> # (b -> String) -> # (a -> b) -> [a] -> String def fTable(s): '''Heading -> x display function -> fx display function -> f -> value list -> tabular string.''' def go(xShow, fxShow, f, xs): w = max(map(compose(len)(xShow), xs)) return s + '\n' + '\n'.join([ xShow(x).rjust(w, ' ') + ' -> ' + fxShow(f(x)) for x in xs ]) return lambda xShow: lambda fxShow: ( lambda f: lambda xs: go( xShow, fxShow, f, xs ) ) # snd :: (a, b) -> b def snd(tpl): '''Second member of a pair.''' return tpl[1] # MAIN --- if __name__ == '__main__': main()  {{Out}} Fibonacci n-step number sequences: Lucas -> [2,1,3,4,7,11,18,29,47,76,123,199,322,521,843] fibonacci -> [1,1,2,3,5,8,13,21,34,55,89,144,233,377,610] tribonacci -> [1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136] tetranacci -> [1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,5536] pentanacci -> [1,1,2,4,8,16,31,61,120,236,464,912,1793,3525,6930] hexanacci -> [1,1,2,4,8,16,32,63,125,248,492,976,1936,3840,7617] heptanacci -> [1,1,2,4,8,16,32,64,127,253,504,1004,2000,3984,7936] octonacci -> [1,1,2,4,8,16,32,64,128,255,509,1016,2028,4048,8080] nonanacci -> [1,1,2,4,8,16,32,64,128,256,511,1021,2040,4076,8144] decanacci -> [1,1,2,4,8,16,32,64,128,256,512,1023,2045,4088,8172]  ## Racket #lang racket ;; fib-list : [Listof Nat] x Nat -> [Listof Nat] ;; Given a non-empty list of natural numbers, the length of the list ;; becomes the size of the step; return the first n numbers of the ;; sequence; assume n >= (length lon) (define (fib-list lon n) (define len (length lon)) (reverse (for/fold ([lon (reverse lon)]) ([_ (in-range (- n len))]) (cons (apply + (take lon len)) lon)))) ;; Show the series ... (define (show-fibs name l) (printf "~a: " name) (for ([n (in-list (fib-list l 20))]) (printf "~a, " n)) (printf "...\n")) ;; ... with initial 2-powers lists (for ([n (in-range 2 11)]) (show-fibs (format "~anacci" (case n [(2) 'fibo] [(3) 'tribo] [(4) 'tetra] [(5) 'penta] [(6) 'hexa] [(7) 'hepta] [(8) 'octo] [(9) 'nona] [(10) 'deca])) (cons 1 (build-list (sub1 n) (curry expt 2))))) ;; and with an initial (2 1) (show-fibs "lucas" '(2 1))  {{out}} fibonacci: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, ... tribonacci: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012, ... tetranacci: 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, 10671, 20569, 39648, 76424, 147312, ... pentanacci: 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930, 13624, 26784, 52656, 103519, 203513, ... hexanacci: 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617, 15109, 29970, 59448, 117920, 233904, ... heptanacci: 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936, 15808, 31489, 62725, 124946, 248888, ... octonacci: 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, 16128, 32192, 64256, 128257, 256005, ... nonanacci: 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, 16272, 32512, 64960, 129792, 259328, ... decanacci: 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172, 16336, 32656, 65280, 130496, 260864, ... lucas: 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, ...  ## REXX /*REXX program calculates and displays a N-step Fibonacci sequence(s). */ parse arg FibName values /*allows a Fibonacci name, starter vals*/ if FibName\='' then do; call nStepFib FibName,values; signal done; end /* [↓] no args specified, show a bunch*/ call nStepFib 'Lucas' , 2 1 call nStepFib 'fibonacci' , 1 1 call nStepFib 'tribonacci' , 1 1 2 call nStepFib 'tetranacci' , 1 1 2 4 call nStepFib 'pentanacci' , 1 1 2 4 8 call nStepFib 'hexanacci' , 1 1 2 4 8 16 call nStepFib 'heptanacci' , 1 1 2 4 8 16 32 call nStepFib 'octonacci' , 1 1 2 4 8 16 32 64 call nStepFib 'nonanacci' , 1 1 2 4 8 16 32 64 128 call nStepFib 'decanacci' , 1 1 2 4 8 16 32 64 128 256 call nStepFib 'undecanacci' , 1 1 2 4 8 16 32 64 128 256 512 call nStepFib 'dodecanacci' , 1 1 2 4 8 16 32 64 128 256 512 1024 call nStepFib '13th-order' , 1 1 2 4 8 16 32 64 128 256 512 1024 2048 done: exit /*stick a fork in it, we're all done. */ /*────────────────────────────────────────────────────────────────────────────*/ nStepFib: procedure; parse arg Fname,vals,m; if m=='' then m=30; L= N=words(vals) do pop=1 for N /*use N initial values. */ @.pop=word(vals,pop) /*populate initial numbers*/ end /*pop*/ do j=1 for m /*calculate M Fib numbers.*/ if j>N then do; @.j=0 /*initialize the sum to 0.*/ do k=j-N for N /*sum the last N numbers.*/ @.j=@.j+@.k /*add the [N-j]th number.*/ end /*k*/ end L=L @.j /*append Fib number──►list*/ end /*j*/ say right(Fname,11)'[sum'right(N,3) "terms]:" strip(L) '···' return  '''output''' when using the default input:  Lucas[sum 2 terms]: 2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349 15127 24476 39603 64079 103682 167761 271443 439204 710647 1149851 ··· fibonacci[sum 2 terms]: 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040 ··· tribonacci[sum 3 terms]: 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513 35890 66012 121415 223317 410744 755476 1389537 2555757 4700770 8646064 15902591 29249425 ··· tetranacci[sum 4 terms]: 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 10671 20569 39648 76424 147312 283953 547337 1055026 2033628 3919944 7555935 14564533 28074040 54114452 104308960 ··· pentanacci[sum 5 terms]: 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 13624 26784 52656 103519 203513 400096 786568 1546352 3040048 5976577 11749641 23099186 45411804 89277256 175514464 ··· hexanacci[sum 6 terms]: 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 15109 29970 59448 117920 233904 463968 920319 1825529 3621088 7182728 14247536 28261168 56058368 111196417 220567305 ··· heptanacci[sum 7 terms]: 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 15808 31489 62725 124946 248888 495776 987568 1967200 3918592 7805695 15548665 30972384 61695880 122895984 244804400 ··· octonacci[sum 8 terms]: 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 16128 32192 64256 128257 256005 510994 1019960 2035872 4063664 8111200 16190208 32316160 64504063 128752121 256993248 ··· nonanacci[sum 9 terms]: 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 16272 32512 64960 129792 259328 518145 1035269 2068498 4132920 8257696 16499120 32965728 65866496 131603200 262947072 ··· decanacci[sum 10 terms]: 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 16336 32656 65280 130496 260864 521472 1042432 2083841 4165637 8327186 16646200 33276064 66519472 132973664 265816832 ··· undecanacci[sum 11 terms]: 1 1 2 4 8 16 32 64 128 256 512 1024 2047 4093 8184 16364 32720 65424 130816 261568 523008 1045760 2091008 4180992 8359937 16715781 33423378 66830392 133628064 267190704 ··· dodecanacci[sum 12 terms]: 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4095 8189 16376 32748 65488 130960 261888 523712 1047296 2094336 4188160 8375296 16748544 33492993 66977797 133939218 267845688 ··· 13th-order[sum 13 terms]: 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8191 16381 32760 65516 131024 262032 524032 1048000 2095872 4191488 8382464 16763904 33525760 67047424 134086657 268156933 ···  ## Ring  # Project : Fibonacci n-step number sequences f = list(12) see "Fibonacci:" + nl f2 = [1,1] for nr2 = 1 to 10 see "" + f2[1] + " " fibn(f2) next showarray(f2) see " ..." + nl + nl see "Tribonacci:" + nl f3 = [1,1,2] for nr3 = 1 to 9 see "" + f3[1] + " " fibn(f3) next showarray(f3) see " ..." + nl + nl see "Tetranacci:" + nl f4 = [1,1,2,4] for nr4 = 1 to 8 see "" + f4[1] + " " fibn(f4) next showarray(f4) see " ..." + nl + nl see "Lucas:" + nl f5 = [2,1] for nr5 = 1 to 10 see "" + f5[1] + " " fibn(f5) next showarray(f5) see " ..." + nl + nl func fibn(fs) s = sum(fs) for i = 2 to len(fs) fs[i-1] = fs[i] next fs[i-1] = s return fs func sum(arr) sm = 0 for sn = 1 to len(arr) sm = sm + arr[sn] next return sm func showarray(fn) svect = "" for p = 1 to len(fn) svect = svect + fn[p] + " " next see svect  Output:  Fibonacci: 1 1 2 3 5 8 13 21 34 55 89 144 ... Tribonacci: 1 1 2 4 7 13 24 44 81 149 274 504 ... Tetranacci: 1 1 2 4 8 15 29 56 108 208 401 773 ... Lucas: 2 1 3 4 7 11 18 29 47 76 123 199 ...  ## Ruby {{works with|Ruby|1.9}} def anynacci(start_sequence, count) n = start_sequence.length # Get the n-step for the type of fibonacci sequence result = start_sequence.dup # Create a new result array with the values copied from the array that was passed by reference (n+1..count).each do # Loop for the remaining results up to count result << result.last(n).reduce(:+) # Get the last n element from result and append its total to Array end result # Return result end naccis = { lucus: [2,1], fibonacci: [1,1], tribonacci: [1,1,2], tetranacci: [1,1,2,4], pentanacci: [1,1,2,4,8], hexanacci: [1,1,2,4,8,16], heptanacci: [1,1,2,4,8,16,32], octonacci: [1,1,2,4,8,16,32,64], nonanacci: [1,1,2,4,8,16,32,64,128], decanacci: [1,1,2,4,8,16,32,64,128,256] } def print_nacci(naccis, count=15) puts naccis.map {|name, seq| "%12s : %p" % [name, anynacci(seq, count)]} end print_nacci(naccis)  {{out}}  lucus : [2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843] fibonacci : [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610] tribonacci : [1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136] tetranacci : [1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536] pentanacci : [1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930] hexanacci : [1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617] heptanacci : [1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936] octonacci : [1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080] nonanacci : [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144] decanacci : [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172]  ## Run BASIC {{incomplete|Run BASIC|Lucas?}} a = fib("1,1") a = fib("1,1,2") a = fib("1,1,2,4") a = fib("1,1,2,4,8") a = fib("1,1,2,4,8,16") function fib(f$)
dim f(20)
while word$(f$,b+1,",") <> ""
b	= b + 1
f(b)	= val(word$(f$,b,","))
wend
PRINT "Fibonacci:";b;"=>";
for i = b to 13 + b
print f(i-b+1);",";
for j = (i - b) + 1 to i
f(i+1) = f(i+1) + f(j)
next j
next i
print
end function

Fibonacci:2=>1,1,2,3,5,8,13,21,34,55,89,144,233,377,
Fibonacci:3=>1,1,2,4,7,13,24,44,81,149,274,504,927,1705,
Fibonacci:4=>1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,
Fibonacci:5=>1,1,2,4,8,16,31,61,120,236,464,912,1793,3525,
Fibonacci:6=>1,1,2,4,8,16,32,63,125,248,492,976,1936,3840,


## Rust


struct GenFibonacci {
buf:    Vec<u64>,
sum:    u64,
idx:    usize,
}

impl Iterator for GenFibonacci {
type Item = u64;
fn next(&mut self) -> Option<u64> {
let result = Some(self.sum);
self.sum -= self.buf[self.idx];
self.buf[self.idx] += self.sum;
self.sum += self.buf[self.idx];
self.idx = (self.idx + 1) % self.buf.len();
result
}
}

fn print(buf: Vec<u64>, len: usize) {
let mut sum = 0;
for &elt in buf.iter() { sum += elt; print!("\t{}", elt); }
let iter = GenFibonacci { buf: buf, sum: sum, idx: 0 };
for x in iter.take(len) {
print!("\t{}", x);
}
}

fn main() {
print!("Fib2:");
print(vec![1,1], 10 - 2);

print!("\nFib3:");
print(vec![1,1,2], 10 - 3);

print!("\nFib4:");
print(vec![1,1,2,4], 10 - 4);

print!("\nLucas:");
print(vec![2,1], 10 - 2);
}


Fib2: 1 1 2 3 5 8 13 21 34 55 Fib3: 1 1 2 4 7 13 24 44 81 149 Fib4: 1 1 2 4 8 15 29 56 108 208 Lucas: 2 1 3 4 7 11 18 29 47 76


## Scala

### Simple Solution

scala

//we rely on implicit conversion from Int to BigInt.
//BigInt is preferable since the numbers get very big, very fast.
//(though for a small example of the first few numbers it's not needed)
def fibStream(init: BigInt*): Stream[BigInt] = {
def inner(prev: Vector[BigInt]): Stream[BigInt] = prev.head #:: inner(prev.tail :+ prev.sum)
inner(init.toVector)
}



### Optimizing


//in the optimized version we don't compute values until it's needed.
//the unoptimized version, computed k elements ahead, where k being
//the number of elements to sum (fibonacci: k=2, tribonacci: k=3, ...).
def fibStream(init: BigInt*): Stream[BigInt] = {
def inner(prev: Vector[BigInt]): Stream[BigInt] = {
val sum = prev.sum
sum #:: inner(prev.tail :+ sum)
}
init.toStream #::: inner(init.toVector)
}



### Optimizing Further


//instead of summing k elements each phase, we exploit the fact
//that the last element is already the sum of all k preceding elements
def fib2Stream(init: BigInt*): Stream[BigInt] = {
def inner(prev: Vector[BigInt]): Stream[BigInt] = {
val n = prev.last * 2 - prev.head
n #:: inner(prev.tail :+ n)
}
//last element must be the sum of k preceding elements, vector size should be k+1
val v = init.toVector :+ init.sum
v.toStream #::: inner(v)
}



### Printing


println(s"Fibonacci:  ${fibStream(1,1).take(10).mkString(",")}") println(s"Tribonacci:${fibStream(1,1,2).take(10).mkString(",")}")
println(s"Tetranacci: ${fibStream(1,1,2,4).take(10).mkString(",")}") println(s"Lucas:${fibStream(2,1).take(10).mkString(",")}")



{{out}}


Fibonacci:  1,1,2,3,5,8,13,21,34,55
Tribonacci: 1,1,2,4,7,13,24,44,81,149
Tetranacci: 1,1,2,4,8,15,29,56,108,208
Lucas:      2,1,3,4,7,11,18,29,47,76



'''Note:''' In Scala, ''Stream'' is a lazy list. if you don't need the sequence saved in memory, just to iterate over members, you may convert the logic to use ''Iterator'' instead of ''Stream''.

## Scheme


(import (scheme base)
(scheme write)
(srfi 1))

;; uses n-step sequence formula to
;; continue lst until of length num
(define (n-fib lst num)
(let ((n (length lst)))
(do ((result (reverse lst)
(cons (fold + 0 (take result n))
result)))
((= num (length result)) (reverse result)))))

;; display examples
(do ((i 2 (+ 1 i)))
((> i 4) )
(display (string-append "n = "
(number->string i)
": "))
(display (n-fib (cons 1 (list-tabulate (- i 1) (lambda (n) (expt 2 n))))
15))
(newline))

(display "Lucas: ")
(display (n-fib '(2 1) 15))
(newline)



{{out}}


n = 2: (1 1 2 3 5 8 13 21 34 55 89 144 233 377 610)
n = 3: (1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136)
n = 4: (1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536)
Lucas: (2 1 3 4 7 11 18 29 47 76 123 199 322 521 843)



$include "seed7_05.s7i"; const func array integer: bonacci (in array integer: start, in integer: arity, in integer: length) is func result var array integer: bonacciSequence is 0 times 0; local var integer: sum is 0; var integer: index is 0; begin bonacciSequence := start[.. length]; while length(bonacciSequence) < length do sum := 0; for index range max(1, length(bonacciSequence) - arity + 1) to length(bonacciSequence) do sum +:= bonacciSequence[index]; end for; bonacciSequence &:= [] (sum); end while; end func; const proc: print (in string: name, in array integer: sequence) is func local var integer: index is 0; begin write((name <& ":") rpad 12); for index range 1 to pred(length(sequence)) do write(sequence[index] <& ", "); end for; writeln(sequence[length(sequence)]); end func; const proc: main is func begin print("Fibonacci", bonacci([] (1, 1), 2, 10)); print("Tribonacci", bonacci([] (1, 1), 3, 10)); print("Tetranacci", bonacci([] (1, 1), 4, 10)); print("Lucas", bonacci([] (2, 1), 2, 10)); end func;  {{out}}  Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 Tribonacci: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149 Tetranacci: 1, 1, 2, 4, 8, 15, 29, 56, 108, 208 Lucas: 2, 1, 3, 4, 7, 11, 18, 29, 47, 76  ## Sidef {{trans|Perl}} func fib(n, xs=[1]) { loop { var len = xs.len len >= 20 && break xs.append(xs.ft(0.max(len - n)).sum) } return xs } for i in (2..10) { say fib(i).join(' ') } say fib(2, [2, 1]).join(' ')  {{out}}  1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513 35890 66012 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 10671 20569 39648 76424 147312 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 13624 26784 52656 103519 203513 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 15109 29970 59448 117920 233904 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 15808 31489 62725 124946 248888 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 16128 32192 64256 128257 256005 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 16272 32512 64960 129792 259328 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 16336 32656 65280 130496 260864 2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349  ## Tailspin  templates fibonacciNstep@{N:} templates next @:$(1);
$(2..-1)... -> @:$ + $@; [$(2..-1)..., $@ ] ! end next @:$;
1..$N -> # <>$@(1) !
@: $@ -> next; end fibonacciNstep [1,1] -> fibonacciNstep@{N:10} -> '$; ' -> !OUT::write
'
' -> !OUT::write

[1,1,2] -> fibonacciNstep@{N:10} -> '$; ' -> !OUT::write ' ' -> !OUT::write [1,1,2,4] -> fibonacciNstep@{N:10} -> '$; ' -> !OUT::write
'
' -> !OUT::write

[2,1] -> fibonacciNstep@{N:10} -> '$; ' -> !OUT::write ' ' -> !OUT::write  {{out}}  1 1 2 3 5 8 13 21 34 55 1 1 2 4 7 13 24 44 81 149 1 1 2 4 8 15 29 56 108 208 2 1 3 4 7 11 18 29 47 76  ## Tcl {{works with|Tcl|8.6}} package require Tcl 8.6 proc fibber {args} { coroutine fib[incr ::fibs]=[join$args ","] apply {fn {
set n [info coroutine]
foreach f $fn { if {![yield$n]} return
set n $f } while {[yield$n]} {
set fn [linsert [lreplace $fn 0 0] end [set n [+ {*}$fn]]]
}
} ::tcl::mathop} $args } proc print10 cr { for {set i 1} {$i <= 10} {incr i} {
lappend out [$cr true] } puts $[join [lappend out ...] ", "]$$cr false
}
puts "FIBONACCI"
print10 [fibber 1 1]
puts "TRIBONACCI"
print10 [fibber 1 1 2]
puts "TETRANACCI"
print10 [fibber 1 1 2 4]
puts "LUCAS"
print10 [fibber 2 1]


{{out}}


FIBONACCI
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...]
TRIBONACCI
[1, 1, 2, 4, 7, 13, 24, 44, 81, 149, ...]
TETRANACCI
[1, 1, 2, 4, 8, 15, 29, 56, 108, 208, ...]
LUCAS
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ...]



## VBA

Option Explicit

Sub Main()
Dim temp$, T() As Long, i& 'Fibonacci: T = Fibonacci_Step(1, 15, 1) For i = LBound(T) To UBound(T) temp = temp & ", " & T(i) Next Debug.Print "Fibonacci: " & Mid(temp, 3) temp = "" 'Tribonacci: T = Fibonacci_Step(1, 15, 2) For i = LBound(T) To UBound(T) temp = temp & ", " & T(i) Next Debug.Print "Tribonacci: " & Mid(temp, 3) temp = "" 'Tetranacci: T = Fibonacci_Step(1, 15, 3) For i = LBound(T) To UBound(T) temp = temp & ", " & T(i) Next Debug.Print "Tetranacci: " & Mid(temp, 3) temp = "" 'Lucas: T = Fibonacci_Step(1, 15, 1, 2) For i = LBound(T) To UBound(T) temp = temp & ", " & T(i) Next Debug.Print "Lucas: " & Mid(temp, 3) temp = "" End Sub Private Function Fibonacci_Step(First As Long, Count As Long, S As Long, Optional Second As Long) As Long() Dim T() As Long, R() As Long, i As Long, Su As Long, C As Long If Second <> 0 Then S = 1 ReDim T(1 - S To Count) For i = LBound(T) To 0 T(i) = 0 Next i T(1) = IIf(Second <> 0, Second, 1) T(2) = 1 For i = 3 To Count Su = 0 C = S + 1 Do While C >= 0 Su = Su + T(i - C) C = C - 1 Loop T(i) = Su Next ReDim R(1 To Count) For i = 1 To Count R(i) = T(i) Next Fibonacci_Step = R End Function  {{Out}} Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 Tribonacci: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136 Tetranacci: 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536 Lucas: 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843  ## VBScript  'function arguments: 'init - initial series of the sequence(e.g. "1,1") 'rep - how many times the sequence repeats - init Function generate_seq(init,rep) token = Split(init,",") step_count = UBound(token) rep = rep - (UBound(token) + 1) out = init For i = 1 To rep sum = 0 n = step_count Do While n >= 0 sum = sum + token(UBound(token)-n) n = n - 1 Loop 'add the next number to the sequence ReDim Preserve token(UBound(token) + 1) token(UBound(token)) = sum out = out & "," & sum Next generate_seq = out End Function WScript.StdOut.Write "fibonacci: " & generate_seq("1,1",15) WScript.StdOut.WriteLine WScript.StdOut.Write "tribonacci: " & generate_seq("1,1,2",15) WScript.StdOut.WriteLine WScript.StdOut.Write "tetranacci: " & generate_seq("1,1,2,4",15) WScript.StdOut.WriteLine WScript.StdOut.Write "lucas: " & generate_seq("2,1",15) WScript.StdOut.WriteLine  {{Out}}  fibonacci: 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610 tribonacci: 1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136 tetranacci: 1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,5536 lucas: 2,1,3,4,7,11,18,29,47,76,123,199,322,521,843  ## XPL0 include c:\cxpl\codes; \intrinsic 'code' declarations proc Nacci(N, F0); \Generate Fibonacci N-step sequence int N, \step size F0; \array of first N values int I, J; def M = 10; \number of members in the sequence int F(M); \Fibonacci sequence [for I:= 0 to M-1 do \for all the members of the sequence... [if I < N then F(I):= F0(I) \initialize sequence else [F(I):= 0; \sum previous members to get member I for J:= 1 to N do F(I):= F(I) + F(I-J); ]; IntOut(0, F(I)); ChOut(0, ^ ); ]; CrLf(0); ]; [Text(0, " Fibonacci: "); Nacci(2, [1, 1]); Text(0, "Tribonacci: "); Nacci(3, [1, 1, 2]); Text(0, "Tetranacci: "); Nacci(4, [1, 1, 2, 4]); Text(0, " Lucas: "); Nacci(2, [2, 1]); ]  Output:  Fibonacci: 1 1 2 3 5 8 13 21 34 55 Tribonacci: 1 1 2 4 7 13 24 44 81 149 Tetranacci: 1 1 2 4 8 15 29 56 108 208 Lucas: 2 1 3 4 7 11 18 29 47 76  ## Yabasic {{trans|Lua}} sub nStepFibs$(seq$, limit) local iMax, sum, numb$(1), lim, i

lim = token(seq$, numb$(), ",")
redim numb$(limit) seq$ = ""
iMax = lim - 1
while(lim < limit)
sum = 0
for i = 0 to iMax : sum = sum + val(numb$(lim - i)) : next lim = lim + 1 numb$(lim) = str$(sum) wend for i = 0 to lim : seq$ = seq$+ " " + numb$(i) : next
return seq$end sub print "Fibonacci:", nStepFibs$("1,1", 10)
print "Tribonacci:", nStepFibs$("1,1,2", 10) print "Tetranacci:", nStepFibs$("1,1,2,4", 10)
print "Lucas:", nStepFibs\$("2,1", 10)


## zkl

fcn fibN(ns){ fcn(ns){ ns.append(ns.sum()).pop(0) }.fp(vm.arglist.copy()); }


This stores the initial n terms of the sequence and returns a function that, at each call, appends the sum of the terms to the sequence then pops the leading value and returns it.

N:=15;
lucas:=fibN(2,1); do(N){ lucas().print(","); } println();  // Lucas
ns:=L(1); foreach _ in ([ns.len()+1..10]){ // Fibonacci n-step for 2 .. 10
ns.append(ns.sum());  // the inital values for the series
"%2d: ".fmt(ns.len()).print();
(N).pump(List,fibN(ns.xplode())).println();
}


{{out}}


2,1,3,4,7,11,18,29,47,76,123,199,322,521,843,
2: L(1,1,2,3,5,8,13,21,34,55,89,144,233,377,610)
3: L(1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136)
4: L(1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,5536)
5: L(1,1,2,4,8,16,31,61,120,236,464,912,1793,3525,6930)
6: L(1,1,2,4,8,16,32,63,125,248,492,976,1936,3840,7617)
7: L(1,1,2,4,8,16,32,64,127,253,504,1004,2000,3984,7936)
8: L(1,1,2,4,8,16,32,64,128,255,509,1016,2028,4048,8080)
9: L(1,1,2,4,8,16,32,64,128,256,511,1021,2040,4076,8144)
10: L(1,1,2,4,8,16,32,64,128,256,512,1023,2045,4088,8172)

`