⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}}
The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence [http://hal.archives-ouvertes.fr/docs/00/36/79/72/PDF/The_Fibonacci_word_fractal.pdf as described here]:
Define F_Word<sub>1</sub> as '''1'''
Define F_Word<sub>2</sub> as '''0'''
Form F_Word<sub>3</sub> as F_Word<sub>2</sub> concatenated with F_Word<sub>1</sub> i.e.: '''01'''
Form F_Word<sub>n</sub> as F_Word<sub>n-1</sub> concatenated with F_word<sub>n-2</sub>
;Task: Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words '''1''' to '''37''' which shows: ::* The number of characters in the word ::* The word's [[Entropy]]
;Related tasks:
- [[Fibonacci_word/fractal|Fibonacci word/fractal]]
- [[Entropy]]
- [[Entropy/Narcissist]]
Ada
with Ada.Text_IO, Ada.Integer_Text_IO, Ada.Strings.Unbounded,
Ada.Strings.Unbounded.Text_IO, Ada.Numerics.Long_Elementary_Functions,
Ada.Long_Float_Text_IO;
use Ada.Text_IO, Ada.Integer_Text_IO, Ada.Strings.Unbounded,
Ada.Strings.Unbounded.Text_IO, Ada.Numerics.Long_Elementary_Functions,
Ada.Long_Float_Text_IO;
procedure Fibonacci_Words is
function Entropy (S : Unbounded_String) return Long_Float is
CF : array (Character) of Natural := (others => 0);
Len : constant Natural := Length (S);
H : Long_Float := 0.0;
Ratio : Long_Float;
begin
for I in 1 .. Len loop
CF (Element (S, I)) := CF (Element (S, I)) + 1;
end loop;
for C in Character loop
Ratio := Long_Float (CF (C)) / Long_Float (Len);
if Ratio /= 0.0 then
H := H - Ratio * Log (Ratio, 2.0);
end if;
end loop;
return H;
end Entropy;
procedure Print_Line (Word : Unbounded_String; Number : Integer) is
begin
Put (Number, 4);
Put (Length (Word), 10);
Put (Entropy (Word), 2, 15, 0);
if Length (Word) < 35 then
Put (" " & Word);
end if;
New_Line;
end Print_Line;
First, Second, Result : Unbounded_String;
begin
Set_Col (4); Put ("N");
Set_Col (9); Put ("Length");
Set_Col (16); Put ("Entropy");
Set_Col (35); Put_Line ("Word");
First := To_Unbounded_String ("1");
Print_Line (First, 1);
Second := To_Unbounded_String ("0");
Print_Line (Second, 2);
for N in 3 .. 37 loop
Result := Second & First;
Print_Line (Result, N);
First := Second;
Second := Result;
end loop;
end Fibonacci_Words;
Output
N Length Entropy Word
1 1 0.000000000000000 1
2 1 0.000000000000000 0
3 2 1.000000000000000 01
4 3 0.918295834054490 010
5 5 0.970950594454669 01001
6 8 0.954434002924965 01001010
7 13 0.961236604722876 0100101001001
8 21 0.958711882977132 010010100100101001010
9 34 0.959686893774217 0100101001001010010100100101001001
10 55 0.959316032054378
11 89 0.959457915838670
12 144 0.959403754221023
13 233 0.959424446955987
14 377 0.959416543740441
15 610 0.959419562603144
16 987 0.959418409515224
17 1597 0.959418849957810
18 2584 0.959418681724032
19 4181 0.959418745983664
20 6765 0.959418721438675
21 10946 0.959418730814028
22 17711 0.959418727232962
23 28657 0.959418728600807
24 46368 0.959418728078337
25 75025 0.959418728277903
26 121393 0.959418728201675
27 196418 0.959418728230792
28 317811 0.959418728219670
29 514229 0.959418728223918
30 832040 0.959418728222296
31 1346269 0.959418728222916
32 2178309 0.959418728222679
33 3524578 0.959418728222769
34 5702887 0.959418728222735
35 9227465 0.959418728222748
36 14930352 0.959418728222743
37 24157817 0.959418728222745
Aime
real
entropy(data b)
{
integer count, i;
real ones, zeros;
ones = zeros = 0;
i = -(count = ~b);
while (i) {
if (b[i] == '0') {
zeros += 1;
} else {
ones += 1;
}
i += 1;
}
return -(ones /= count) * log2(ones) - (zeros /= count) * log2(zeros);
}
integer
main(void)
{
data a, b;
integer i;
a = "1";
b = "0";
o_form("%2d %9d /w12p10d10/ ~\n", 1, ~a, 0r, a);
o_form("%2d %9d /w12p10d10/ ~\n", 2, ~b, 0r, b);
i = 3;
while (i <= 37) {
bu_copy(a, 0, b);
o_form("%2d %9d /w12p10d10/ ~\n", i, ~a, entropy(a),
i < 10 ? a.string : "");
i += 1;
b.swap(a);
}
return 0;
}
{{out}}
1 1 0 1
2 1 0 0
3 2 1 01
4 3 .9182958340 010
5 5 .9709505944 01001
6 8 .9544340029 01001010
7 13 .9612366047 0100101001001
8 21 .9587118829 010010100100101001010
9 34 .9596868937 0100101001001010010100100101001001
10 55 .9593160320
11 89 .9594579158
12 144 .9594037542
13 233 .9594244469
14 377 .9594165437
15 610 .9594195626
16 987 .9594184095
17 1597 .9594188499
18 2584 .9594186817
19 4181 .9594187459
20 6765 .9594187214
21 10946 .9594187308
22 17711 .9594187272
23 28657 .9594187286
24 46368 .9594187280
25 75025 .9594187282
26 121393 .9594187282
27 196418 .9594187282
28 317811 .9594187282
29 514229 .9594187282
30 832040 .9594187282
31 1346269 .9594187282
32 2178309 .9594187282
33 3524578 .9594187282
34 5702887 .9594187282
35 9227465 .9594187282
36 14930352 .9594187282
37 24157817 .9594187282
ALGOL 68
{{works with|ALGOL 68G|Any - tested with release 2.8.win32}}
# calculate some details of "Fibonacci Words" #
# fibonacci word 1 = "1" #
# fibonacci word 2 = "0" #
# 3 = word 2 cat word 1 = "01" #
# n = word n-1 cat word n-2 #
# note the words contain only the characters "0" and "1" #
# also #
# C(word n) = C(word n-1) + C(word n-2) #
# where C(x) = the number of characters in x #
# Similarly, #
# C0(word n) = C0(word n-1) + C0(word n-2) #
# and C1(word n) = C1(word n-1) + C1(word n-2) #
# where C0(x) = the number of "0"s in x and #
# C1(x) = the number of "1"s in x #
# we therefore don't have to calculate the words themselves #
# prints the statistics for the fibonacci words from 1 to max number #
PROC print fibonacci word stats = ( INT max number )VOID:
BEGIN
# prints some statistics for a fibonacci word: #
# the word number, its length and its entropy #
PROC print one words stats = ( INT word
, INT zeros
, INT ones
)VOID:
BEGIN
REAL probability := 0;
REAL entropy := 0;
INT word length = zeros + ones;
IF zeros > 0
THEN
# the word contains some zeros #
probability := zeros / word length;
entropy -:= probability * log( probability )
FI;
IF ones > 0
THEN
# the word contains some ones #
probability := ones / word length;
entropy -:= probability * log( probability )
FI;
# we want entropy in bits so convert to log base 2 #
entropy /:= log( 2 );
print( ( ( whole( word, -5 )
+ " "
+ whole( word length, -12 )
+ " "
+ fixed( entropy, -8, 4 )
)
, newline
)
)
END; # print one words stats #
INT zeros one = 0; # number of zeros in word 1 #
INT ones one = 1; # number of ones in word 1 #
INT zeros two = 1; # number of zeros in word 2 #
INT ones two = 0; # number of ones in word 2 #
print( ( " word length entropy", newline ) );
IF max number > 0
THEN
# we want at least one number's statistics #
print one words stats( 1, zeros one, ones one );
IF max number > 1
THEN
# we want at least 2 number's statistics #
print one words stats( 2, zeros two, ones two );
IF max number > 2
THEN
# we want more statistics #
INT zeros n minus 1 := zeros two;
INT ones n minus 1 := ones two;
INT zeros n minus 2 := zeros one;
INT ones n minus 2 := ones one;
FOR word FROM 3 TO max number DO
INT zeros n := zeros n minus 1 + zeros n minus 2;
INT ones n := ones n minus 1 + ones n minus 2;
print one words stats( word, zeros n, ones n );
zeros n minus 2 := zeros n minus 1;
ones n minus 2 := ones n minus 1;
zeros n minus 1 := zeros n;
ones n minus 1 := ones n
OD
FI
FI
FI
END; # print fibonacci word stats #
main:
(
# print the statistics for the first 37 fibonacci words #
print fibonacci word stats( 37 )
)
{{out}}
word length entropy
1 1 0.0000
2 1 0.0000
3 2 1.0000
4 3 0.9183
5 5 0.9710
6 8 0.9544
7 13 0.9612
8 21 0.9587
9 34 0.9597
10 55 0.9593
11 89 0.9595
12 144 0.9594
13 233 0.9594
14 377 0.9594
15 610 0.9594
16 987 0.9594
17 1597 0.9594
18 2584 0.9594
19 4181 0.9594
20 6765 0.9594
21 10946 0.9594
22 17711 0.9594
23 28657 0.9594
24 46368 0.9594
25 75025 0.9594
26 121393 0.9594
27 196418 0.9594
28 317811 0.9594
29 514229 0.9594
30 832040 0.9594
31 1346269 0.9594
32 2178309 0.9594
33 3524578 0.9594
34 5702887 0.9594
35 9227465 0.9594
36 14930352 0.9594
37 24157817 0.9594
APL
F_WORD←{{⍵,,/⌽¯2↑⍵}⍣(0⌈⍺-2),¨⍵}
ENTROPY←{-+/R×2⍟R←(+⌿⍵∘.=∪⍵)÷⍴⍵}
FORMAT←{'N' 'LENGTH' 'ENTROPY'⍪(⍳⍵),↑{(⍴⍵),ENTROPY ⍵}¨⍵ F_WORD 1 0}
{{out}}
FORMAT 37
N LENGTH ENTROPY
1 1 0
2 1 0
3 2 1
4 3 0.9182958341
5 5 0.9709505945
6 8 0.9544340029
7 13 0.9612366047
8 21 0.958711883
9 34 0.9596868938
10 55 0.9593160321
11 89 0.9594579158
12 144 0.9594037542
13 233 0.959424447
14 377 0.9594165437
15 610 0.9594195626
16 987 0.9594184095
17 1597 0.95941885
18 2584 0.9594186817
19 4181 0.959418746
20 6765 0.9594187214
21 10946 0.9594187308
22 17711 0.9594187272
23 28657 0.9594187286
24 46368 0.9594187281
25 75025 0.9594187283
26 121393 0.9594187282
27 196418 0.9594187282
28 317811 0.9594187282
29 514229 0.9594187282
30 832040 0.9594187282
31 1346269 0.9594187282
32 2178309 0.9594187282
33 3524578 0.9594187282
34 5702887 0.9594187282
35 9227465 0.9594187282
36 14930352 0.9594187282
37 24157817 0.9594187282
AutoHotkey
SetFormat, FloatFast, 0.15
SetBatchLines, -1
OutPut := "N`tLength`t`tEntropy`n"
. "1`t" 1 "`t`t" Entropy(FW1 := "1") "`n"
. "2`t" 1 "`t`t" Entropy(FW2 := "0") "`n"
Loop, 35
{
FW3 := FW2 FW1, FW1 := FW2, FW2 := FW3
Output .= A_Index + 2 "`t" StrLen(FW3) (A_Index > 33 ? "" : "`t") "`t" Entropy(FW3) "`n"
}
MsgBox, % Output
Entropy(n)
{
a := [], len:= StrLen(n), m := n
while StrLen(m)
{
s := SubStr(m, 1, 1)
m := RegExReplace(m, s, "", c)
a[s] := c
}
for key, val in a
{
m := Log(p := val / len)
e -= p * m / Log(2)
}
return, e
}
'''Output:'''
N Length Entropy
1 1 0.000000000000000
2 1 0.000000000000000
3 2 1.000000000000000
4 3 0.918295834054490
5 5 0.970950594454669
6 8 0.954434002924965
7 13 0.961236604722875
8 21 0.958711882977132
9 34 0.959686893774216
10 55 0.959316032054378
11 89 0.959457915838669
12 144 0.959403754221023
13 233 0.959424446955987
14 377 0.959416543740440
15 610 0.959419562603144
16 987 0.959418409515225
17 1597 0.959418849957810
18 2584 0.959418681724033
19 4181 0.959418745983664
20 6765 0.959418721438676
21 10946 0.959418730814027
22 17711 0.959418727232962
23 28657 0.959418728600807
24 46368 0.959418728078337
25 75025 0.959418728277903
26 121393 0.959418728201676
27 196418 0.959418728230791
28 317811 0.959418728219671
29 514229 0.959418728223918
30 832040 0.959418728222296
31 1346269 0.959418728222915
32 2178309 0.959418728222679
33 3524578 0.959418728222769
34 5702887 0.959418728222735
35 9227465 0.959418728222748
36 14930352 0.959418728222743
37 24157817 0.959418728222745
C
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
void print_headings()
{
printf("%2s", "N");
printf(" %10s", "Length");
printf(" %-20s", "Entropy");
printf(" %-40s", "Word");
printf("\n");
}
double calculate_entropy(int ones, int zeros)
{
double result = 0;
int total = ones + zeros;
result -= (double) ones / total * log2((double) ones / total);
result -= (double) zeros / total * log2((double) zeros / total);
if (result != result) { // NAN
result = 0;
}
return result;
}
void print_entropy(char *word)
{
int ones = 0;
int zeros = 0;
int i;
for (i = 0; word[i]; i++) {
char c = word[i];
switch (c) {
case '0':
zeros++;
break;
case '1':
ones++;
break;
}
}
double entropy = calculate_entropy(ones, zeros);
printf(" %-20.18f", entropy);
}
void print_word(int n, char *word)
{
printf("%2d", n);
printf(" %10ld", strlen(word));
print_entropy(word);
if (n < 10) {
printf(" %-40s", word);
} else {
printf(" %-40s", "...");
}
printf("\n");
}
int main(int argc, char *argv[])
{
print_headings();
char *last_word = malloc(2);
strcpy(last_word, "1");
char *current_word = malloc(2);
strcpy(current_word, "0");
print_word(1, last_word);
int i;
for (i = 2; i <= 37; i++) {
print_word(i, current_word);
char *next_word = malloc(strlen(current_word) + strlen(last_word) + 1);
strcpy(next_word, current_word);
strcat(next_word, last_word);
free(last_word);
last_word = current_word;
current_word = next_word;
}
free(last_word);
free(current_word);
return 0;
}
{{out}}
N Length Entropy Word
1 1 0.000000000000000000 1
2 1 0.000000000000000000 0
3 2 1.000000000000000000 01
4 3 0.918295834054489557 010
5 5 0.970950594454668581 01001
6 8 0.954434002924964942 01001010
7 13 0.961236604722875865 0100101001001
8 21 0.958711882977131724 010010100100101001010
9 34 0.959686893774216898 0100101001001010010100100101001001
10 55 0.959316032054377654 ...
11 89 0.959457915838669573 ...
12 144 0.959403754221022975 ...
13 233 0.959424446955986721 ...
14 377 0.959416543740440608 ...
15 610 0.959419562603144094 ...
16 987 0.959418409515224280 ...
17 1597 0.959418849957809905 ...
18 2584 0.959418681724032107 ...
19 4181 0.959418745983663834 ...
20 6765 0.959418721438675459 ...
21 10946 0.959418730814027731 ...
22 17711 0.959418727232961954 ...
23 28657 0.959418728600807347 ...
24 46368 0.959418728078337057 ...
25 75025 0.959418728277902866 ...
26 121393 0.959418728201675397 ...
27 196418 0.959418728230791773 ...
28 317811 0.959418728219670225 ...
29 514229 0.959418728223918382 ...
30 832040 0.959418728222295791 ...
31 1346269 0.959418728222915518 ...
32 2178309 0.959418728222678929 ...
33 3524578 0.959418728222769079 ...
34 5702887 0.959418728222734662 ...
35 9227465 0.959418728222747874 ...
36 14930352 0.959418728222742767 ...
37 24157817 0.959418728222744654 ...
C++
#include <string>
#include <map>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <iomanip>
double log2( double number ) {
return ( log( number ) / log( 2 ) ) ;
}
double find_entropy( std::string & fiboword ) {
std::map<char , int> frequencies ;
std::for_each( fiboword.begin( ) , fiboword.end( ) ,
[ & frequencies ]( char c ) { frequencies[ c ]++ ; } ) ;
int numlen = fiboword.length( ) ;
double infocontent = 0 ;
for ( std::pair<char , int> p : frequencies ) {
double freq = static_cast<double>( p.second ) / numlen ;
infocontent += freq * log2( freq ) ;
}
infocontent *= -1 ;
return infocontent ;
}
void printLine( std::string &fiboword , int n ) {
std::cout << std::setw( 5 ) << std::left << n ;
std::cout << std::setw( 12 ) << std::right << fiboword.size( ) ;
std::cout << " " << std::setw( 16 ) << std::setprecision( 13 )
<< std::left << find_entropy( fiboword ) ;
std::cout << "\n" ;
}
int main( ) {
std::cout << std::setw( 5 ) << std::left << "N" ;
std::cout << std::setw( 12 ) << std::right << "length" ;
std::cout << " " << std::setw( 16 ) << std::left << "entropy" ;
std::cout << "\n" ;
std::string firststring ( "1" ) ;
int n = 1 ;
printLine( firststring , n ) ;
std::string secondstring( "0" ) ;
n++ ;
printLine( secondstring , n ) ;
while ( n < 37 ) {
std::string resultstring = firststring + secondstring ;
firststring.assign( secondstring ) ;
secondstring.assign( resultstring ) ;
n++ ;
printLine( resultstring , n ) ;
}
return 0 ;
}
{{out}}
N length entropy
1 1 -0
2 1 -0
3 2 1
4 3 0.9182958340545
5 5 0.9709505944547
6 8 0.954434002925
7 13 0.9612366047229
8 21 0.9587118829771
9 34 0.9596868937742
10 55 0.9593160320544
11 89 0.9594579158387
12 144 0.959403754221
13 233 0.959424446956
14 377 0.9594165437404
15 610 0.9594195626031
16 987 0.9594184095152
17 1597 0.9594188499578
18 2584 0.959418681724
19 4181 0.9594187459837
20 6765 0.9594187214387
21 10946 0.959418730814
22 17711 0.959418727233
23 28657 0.9594187286008
24 46368 0.9594187280783
25 75025 0.9594187282779
26 121393 0.9594187282017
27 196418 0.9594187282308
28 317811 0.9594187282197
29 514229 0.9594187282239
30 832040 0.9594187282223
31 1346269 0.9594187282229
32 2178309 0.9594187282227
33 3524578 0.9594187282228
34 5702887 0.9594187282227
35 9227465 0.9594187282227
36 14930352 0.9594187282227
37 24157817 0.9594187282227
C#
using SYS = System;
using SCG = System.Collections.Generic;
//
// Basically a port of the C++ solution as posted
// 2017-11-12.
//
namespace FibonacciWord
{
class Program
{
static void Main( string[] args )
{
PrintHeading();
string firstString = "1";
int n = 1;
PrintLine( n, firstString );
string secondString = "0";
++n;
PrintLine( n, secondString );
while ( n < 37 )
{
string resultString = firstString + secondString;
firstString = secondString;
secondString = resultString;
++n;
PrintLine( n, resultString );
}
}
private static void PrintLine( int n, string result )
{
SYS.Console.Write( "{0,-5}", n );
SYS.Console.Write( "{0,12}", result.Length );
SYS.Console.WriteLine( " {0,-16}", GetEntropy( result ) );
}
private static double GetEntropy( string result )
{
SCG.Dictionary<char, int> frequencies = new SCG.Dictionary<char, int>();
foreach ( char c in result )
{
if ( frequencies.ContainsKey( c ) )
{
++frequencies[c];
}
else
{
frequencies[c] = 1;
}
}
int length = result.Length;
double entropy = 0;
foreach ( var keyValue in frequencies )
{
double freq = (double)keyValue.Value / length;
entropy += freq * SYS.Math.Log( freq, 2 );
}
return -entropy;
}
private static void PrintHeading()
{
SYS.Console.Write( "{0,-5}", "N" );
SYS.Console.Write( "{0,12}", "Length" );
SYS.Console.WriteLine( " {0,-16}", "Entropy" );
}
}
}
{{out}}
N Length Entropy
1 1 0
2 1 0
3 2 1
4 3 0.91829583405449
5 5 0.970950594454669
6 8 0.954434002924965
7 13 0.961236604722876
8 21 0.958711882977132
9 34 0.959686893774217
10 55 0.959316032054378
11 89 0.95945791583867
12 144 0.959403754221023
13 233 0.959424446955987
14 377 0.959416543740441
15 610 0.959419562603144
16 987 0.959418409515225
17 1597 0.95941884995781
18 2584 0.959418681724032
19 4181 0.959418745983664
20 6765 0.959418721438676
21 10946 0.959418730814028
22 17711 0.959418727232962
23 28657 0.959418728600807
24 46368 0.959418728078337
25 75025 0.959418728277903
26 121393 0.959418728201676
27 196418 0.959418728230792
28 317811 0.95941872821967
29 514229 0.959418728223918
30 832040 0.959418728222296
31 1346269 0.959418728222916
32 2178309 0.959418728222679
33 3524578 0.959418728222769
34 5702887 0.959418728222735
35 9227465 0.959418728222748
36 14930352 0.959418728222743
37 24157817 0.959418728222745
Clojure
(defn entropy [s]
(let [len (count s), log-2 (Math/log 2)]
(->> (frequencies s)
(map (fn [[_ v]]
(let [rf (/ v len)]
(-> (Math/log rf) (/ log-2) (* rf) Math/abs))))
(reduce +))))
(defn fibonacci [cat a b]
(lazy-seq
(cons a (fibonacci b (cat a b)))))
; you could also say (fibonacci + 0 1) or (fibonacci concat '(0) '(1))
(printf "%2s %10s %17s %s%n" "N" "Length" "Entropy" "Fibword")
(doseq [i (range 1 38)
w (take 37 (fibonacci str "1" "0"))]
(printf "%2d %10d %.15f %s%n" i (count w) (entropy w) (if (<= i 8) w "..."))))
Output
N Length Entropy Fibword
1 1 0,000000000000000 1
2 1 0,000000000000000 0
3 2 1,000000000000000 01
4 3 0,918295834054490 010
5 5 0,970950594454669 01001
6 8 0,954434002924965 01001010
7 13 0,961236604722876 0100101001001
8 21 0,958711882977132 010010100100101001010
9 34 0,959686893774217 ...
10 55 0,959316032054378 ...
11 89 0,959457915838670 ...
12 144 0,959403754221023 ...
13 233 0,959424446955987 ...
14 377 0,959416543740441 ...
15 610 0,959419562603144 ...
16 987 0,959418409515224 ...
17 1597 0,959418849957810 ...
18 2584 0,959418681724032 ...
19 4181 0,959418745983664 ...
20 6765 0,959418721438676 ...
21 10946 0,959418730814028 ...
22 17711 0,959418727232962 ...
23 28657 0,959418728600807 ...
24 46368 0,959418728078337 ...
25 75025 0,959418728277903 ...
26 121393 0,959418728201676 ...
27 196418 0,959418728230792 ...
28 317811 0,959418728219670 ...
29 514229 0,959418728223918 ...
30 832040 0,959418728222296 ...
31 1346269 0,959418728222916 ...
32 2178309 0,959418728222679 ...
33 3524578 0,959418728222769 ...
34 5702887 0,959418728222735 ...
35 9227465 0,959418728222748 ...
36 14930352 0,959418728222743 ...
37 24157817 0,959418728222745 ...
Common Lisp
(defun make-fibwords (array)
(loop for i from 0 below 37
for j = "0" then (concatenate 'string j k)
and k = "1" then j
do (setf (aref array i) k))
array)
(defvar *fib* (make-fibwords (make-array 37)))
(defun entropy (string)
(let ((table (make-hash-table :test 'eql))
(entropy 0d0)
(n (length string)))
(mapc (lambda (c)
(setf (gethash c table) (+ (gethash c table 0) 1)))
(coerce string 'list))
(maphash (lambda (k v)
(declare (ignore k))
(decf entropy (* (/ v n) (log (/ v n) 2))))
table)
entropy))
(defun string-or-dots (string)
(if (> (length string) 40)
"..."
string))
(format t "~2A ~10A ~17A ~A~%" "N" "Length" "Entropy" "Fibword")
(loop for i below 37
for n = (aref *fib* i) do
(format t "~2D ~10D ~17,15F ~A~%"
(1+ i) (length n) (entropy n) (string-or-dots n)))
D
import std.stdio, std.algorithm, std.math, std.string, std.range;
real entropy(T)(T[] s) pure nothrow
if (__traits(compiles, s.sort())) {
immutable sLen = s.length;
return s
.sort()
.group
.map!(g => g[1] / real(sLen))
.map!(p => -p * p.log2)
.sum;
}
void main() {
enum uint nMax = 37;
" N Length Entropy Fibword".writeln;
uint n = 1;
foreach (s; recurrence!q{a[n - 1] ~ a[n - 2]}("1", "0").take(nMax))
writefln("%3d %10d %2.19f %s", n++, s.length,
s.dup.representation.entropy.abs,
s.length < 25 ? s : "<too long>");
}
{{out}}
N Length Entropy Fibword
1 1 0.0000000000000000000 1
2 1 0.0000000000000000000 0
3 2 1.0000000000000000000 01
4 3 0.9182958340544895148 010
5 5 0.9709505944546686389 01001
6 8 0.9544340029249649645 01001010
7 13 0.9612366047228758727 0100101001001
8 21 0.9587118829771318087 010010100100101001010
9 34 0.9596868937742169332 <too long>
10 55 0.9593160320543776778 <too long>
11 89 0.9594579158386694616 <too long>
12 144 0.9594037542210229294 <too long>
13 233 0.9594244469559867586 <too long>
14 377 0.9594165437404407387 <too long>
15 610 0.9594195626031441501 <too long>
16 987 0.9594184095152243127 <too long>
17 1597 0.9594188499578098556 <too long>
18 2584 0.9594186817240321066 <too long>
19 4181 0.9594187459836638143 <too long>
20 6765 0.9594187214386754146 <too long>
21 10946 0.9594187308140277232 <too long>
22 17711 0.9594187272329619428 <too long>
23 28657 0.9594187286008073761 <too long>
24 46368 0.9594187280783369149 <too long>
25 75025 0.9594187282779028735 <too long>
26 121393 0.9594187282016754604 <too long>
27 196418 0.9594187282307917413 <too long>
28 317811 0.9594187282196703115 <too long>
29 514229 0.9594187282239183197 <too long>
30 832040 0.9594187282222957250 <too long>
31 1346269 0.9594187282229155010 <too long>
32 2178309 0.9594187282226787676 <too long>
33 3524578 0.9594187282227691918 <too long>
34 5702887 0.9594187282227346529 <too long>
35 9227465 0.9594187282227478455 <too long>
36 14930352 0.9594187282227428063 <too long>
37 24157817 0.9594187282227447312 <too long>
EchoLisp
(lib 'struct)
(struct FW ( count0 count1 length string)) ;; a fibonacci word
(define (F-word n) ;; generator
(define a (F-word (1- n)))
(define b (F-word (- n 2)))
(FW
(+ (FW-count0 a) (FW-count0 b))
(+ (FW-count1 a) (FW-count1 b))
(+ (FW-length a) (FW-length b))
(if (> n 9) "..." (string-append (FW-string a) (FW-string b)))))
(remember 'F-word (vector 0 (FW 0 1 1 "1") (FW 1 0 1 "0")))
(define (entropy fw)
(define p (// (FW-count0 fw) (FW-length fw)))
(cond
((= p 0) 0)
((= p 1) 0)
(else (- 0 (* p (log2 p)) (* (- 1 p) (log2 (- 1 p)))))))
(define (task (n 38) (fw))
(for ((i (in-range 1 n)))
(set! fw (F-word i))
(printf "%3d %10d %24d %a"
i (FW-length fw) (entropy fw) (FW-string fw))))
{{out}}
1 1 0 1
2 1 0 0
3 2 1 01
4 3 0.9182958340544896 010
5 5 0.9709505944546686 01001
6 8 0.9544340029249649 01001010
7 13 0.961236604722876 0100101001001
8 21 0.9587118829771318 010010100100101001010
9 34 0.9596868937742169 0100101001001010010100100101001001
10 55 0.9593160320543777 ...
11 89 0.9594579158386696 ...
12 144 0.959403754221023 ...
13 233 0.9594244469559867 ...
14 377 0.9594165437404408 ...
15 610 0.9594195626031441 ...
16 987 0.9594184095152243 ...
17 1597 0.9594188499578099 ...
18 2584 0.9594186817240321 ...
19 4181 0.9594187459836638 ...
20 6765 0.9594187214386756 ...
21 10946 0.9594187308140278 ...
22 17711 0.959418727232962 ...
23 28657 0.9594187286008073 ...
24 46368 0.9594187280783368 ...
25 75025 0.9594187282779029 ...
26 121393 0.9594187282016755 ...
27 196418 0.9594187282307918 ...
28 317811 0.9594187282196702 ...
29 514229 0.9594187282239184 ...
30 832040 0.9594187282222959 ...
31 1346269 0.9594187282229156 ...
32 2178309 0.9594187282226788 ...
33 3524578 0.9594187282227693 ...
34 5702887 0.9594187282227347 ...
35 9227465 0.9594187282227479 ...
36 14930352 0.9594187282227429 ...
37 24157817 0.9594187282227449 ...
Elixir
{{works with|Elixir|1.3}} {{works with|Erlang/OTP|18}}
defmodule RC do
def entropy(str) do
leng = String.length(str)
String.to_charlist(str)
|> Enum.reduce(Map.new, fn c,acc -> Map.update(acc, c, 1, &(&1+1)) end)
|> Map.values
|> Enum.reduce(0, fn count, entropy ->
freq = count / leng
entropy - freq * :math.log2(freq) # log2 was added with Erlang/OTP 18
end)
end
end
fibonacci_word = Stream.unfold({"1","0"}, fn{a,b} -> {a, {b, b<>a}} end)
IO.puts " N Length Entropy Fibword"
fibonacci_word |> Enum.take(37) |> Enum.with_index
|> Enum.each(fn {word,i} ->
len = String.length(word)
str = if len < 60, do: word, else: "<too long>"
:io.format "~3w ~8w ~17.15f ~s~n", [i+1, len, RC.entropy(word), str]
end)
{{out}}
N Length Entropy Fibword
1 1 0.000000000000000 1
2 1 0.000000000000000 0
3 2 1.000000000000000 01
4 3 0.918295834054490 010
5 5 0.970950594454669 01001
6 8 0.954434002924965 01001010
7 13 0.961236604722876 0100101001001
8 21 0.958711882977132 010010100100101001010
9 34 0.959686893774217 0100101001001010010100100101001001
10 55 0.959316032054378 0100101001001010010100100101001001010010100100101001010
11 89 0.959457915838670 <too long>
12 144 0.959403754221023 <too long>
13 233 0.959424446955987 <too long>
14 377 0.959416543740441 <too long>
15 610 0.959419562603144 <too long>
16 987 0.959418409515225 <too long>
17 1597 0.959418849957810 <too long>
18 2584 0.959418681724032 <too long>
19 4181 0.959418745983664 <too long>
20 6765 0.959418721438676 <too long>
21 10946 0.959418730814028 <too long>
22 17711 0.959418727232962 <too long>
23 28657 0.959418728600807 <too long>
24 46368 0.959418728078337 <too long>
25 75025 0.959418728277903 <too long>
26 121393 0.959418728201676 <too long>
27 196418 0.959418728230792 <too long>
28 317811 0.959418728219670 <too long>
29 514229 0.959418728223918 <too long>
30 832040 0.959418728222296 <too long>
31 1346269 0.959418728222916 <too long>
32 2178309 0.959418728222679 <too long>
33 3524578 0.959418728222769 <too long>
34 5702887 0.959418728222735 <too long>
35 9227465 0.959418728222748 <too long>
36 14930352 0.959418728222743 <too long>
37 24157817 0.959418728222745 <too long>
=={{header|F_Sharp|F#}}==
// include the code from /wiki/Entropy#F.23 for the entropy function
let fiboword =
Seq.unfold
(fun (state : string * string) ->
Some (fst state, (snd state, (snd state) + (fst state)))) ("1", "0")
printfn "%3s %10s %10s %s" "#" "Length" "Entropy" "Word (if length < 40)"
Seq.iteri (fun i (s : string) ->
printfn "%3i %10i %10.7g %s" (i+1) s.Length (entropy s) (if s.Length < 40 then s else ""))
(Seq.take 37 fiboword)
{{out}}
# Length Entropy Word (if length < 40)
1 1 0 1
2 1 0 0
3 2 1 01
4 3 0.9182958 010
5 5 0.9709506 01001
6 8 0.954434 01001010
7 13 0.9612366 0100101001001
8 21 0.9587119 010010100100101001010
9 34 0.9596869 0100101001001010010100100101001001
10 55 0.959316
11 89 0.9594579
12 144 0.9594038
13 233 0.9594244
14 377 0.9594165
15 610 0.9594196
16 987 0.9594184
17 1597 0.9594188
18 2584 0.9594187
19 4181 0.9594187
20 6765 0.9594187
21 10946 0.9594187
22 17711 0.9594187
23 28657 0.9594187
24 46368 0.9594187
25 75025 0.9594187
26 121393 0.9594187
27 196418 0.9594187
28 317811 0.9594187
29 514229 0.9594187
30 832040 0.9594187
31 1346269 0.9594187
32 2178309 0.9594187
33 3524578 0.9594187
34 5702887 0.9594187
35 9227465 0.9594187
36 14930352 0.9594187
37 24157817 0.9594187
Factor
It is not necessary to calculate each fibonacci word, since every fibonacci word less than 37 is contained in the 37th fibonacci word. In order to obtain the nth fibonacci word ( <= 37 ), we start with the 37th fibonacci word and take the subsequence from index 0 to the nth fibonacci number, as in the standard fibonacci sequence.
USING: assocs combinators formatting kernel math math.functions
math.ranges math.statistics namespaces pair-rocket sequences ;
IN: rosetta-code.fibonacci-word
SYMBOL: 37th-fib-word
: fib ( n -- m )
{
1 => [ 1 ]
2 => [ 1 ]
[ [ 1 - fib ] [ 2 - fib ] bi + ]
} case ;
: fib-word ( n -- seq )
{
1 => [ "1" ]
2 => [ "0" ]
[ [ 1 - fib-word ] [ 2 - fib-word ] bi append ]
} case ;
: nth-fib-word ( n -- seq )
dup 1 =
[ drop "1" ] [ 37th-fib-word get swap fib head ] if ;
: entropy ( seq -- entropy )
[ length ] [ histogram >alist [ second ] map ] bi
[ swap / ] with map
[ dup log 2 log / * ] map-sum
dup 0. = [ neg ] unless ;
37 fib-word 37th-fib-word set
"N" "Length" "Entropy" "%2s %8s %10s\n" printf
37 [1,b] [
dup nth-fib-word [ length ] [ entropy ] bi
"%2d %8d %.8f\n" printf
] each
{{out}}
N Length Entropy
1 1 0.00000000
2 1 0.00000000
3 2 1.00000000
4 3 0.91829583
5 5 0.97095059
6 8 0.95443400
7 13 0.96123660
8 21 0.95871188
9 34 0.95968689
10 55 0.95931603
11 89 0.95945792
12 144 0.95940375
13 233 0.95942445
14 377 0.95941654
15 610 0.95941956
16 987 0.95941841
17 1597 0.95941885
18 2584 0.95941868
19 4181 0.95941875
20 6765 0.95941872
21 10946 0.95941873
22 17711 0.95941873
23 28657 0.95941873
24 46368 0.95941873
25 75025 0.95941873
26 121393 0.95941873
27 196418 0.95941873
28 317811 0.95941873
29 514229 0.95941873
30 832040 0.95941873
31 1346269 0.95941873
32 2178309 0.95941873
33 3524578 0.95941873
34 5702887 0.95941873
35 9227465 0.95941873
36 14930352 0.95941873
37 24157817 0.95941873
FreeBASIC
' version 25-06-2015
' compile with: fbc -s console
Function calc_entropy(source As String, base_ As Integer) As Double
Dim As Integer i, sourcelen = Len(source), totalchar(255)
Dim As Double prop, entropy
For i = 0 To sourcelen -1
totalchar(source[i]) += 1
Next
For i = 0 To 255
If totalchar(i) = 0 Then Continue For
prop = totalchar(i) / sourcelen
entropy = entropy - (prop * Log (prop) / Log(base_))
Next
Return entropy
End Function
' ------=< MAIN >=------
Dim As String fw1 = "1" , fw2 = "0", fw3
Dim As Integer i, n
Print" N Length Entropy Word"
n = 1
Print Using " ###";n; : Print Using " ###########"; Len(fw1);
Print Using " ##.############### "; calc_entropy(fw1,2);
Print fw1
n = 2
Print Using " ###";n ;: Print Using " ###########"; Len(fw2);
Print Using " ##.############### "; calc_entropy(fw2,2);
Print fw2
For n = 1 To 35
fw1 = "1" : fw2 = "0" ' construct string
For i = 1 To n
fw3 = fw2 + fw1
Swap fw1, fw2 ' swap pointers of fw1 and fw2
Swap fw2, fw3 ' swap pointers of fw2 and fw3
Next
fw1 = "" : fw3 = "" ' free up memory
Print Using " ### ########### ##.############### "; n +2; Len(fw2);_
calc_entropy(fw2, 2);
If Len(fw2) < 55 Then Print fw2 Else Print
Next
Print
' empty keyboard buffer
While InKey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
{{out}}
N Length Entropy Word
1 1 0.000000000000000 1
2 1 0.000000000000000 0
3 2 1.000000000000000 01
4 3 0.918295834054490 010
5 5 0.970950594454669 01001
6 8 0.954434002924965 01001010
7 13 0.961236604722876 0100101001001
8 21 0.958711882977132 010010100100101001010
9 34 0.959686893774217 0100101001001010010100100101001001
10 55 0.959316032054378
11 89 0.959457915838670
12 144 0.959403754221023
13 233 0.959424446955987
14 377 0.959416543740441
15 610 0.959419562603144
16 987 0.959418409515224
17 1597 0.959418849957810
18 2584 0.959418681724032
19 4181 0.959418745983664
20 6765 0.959418721438676
21 10946 0.959418730814028
22 17711 0.959418727232962
23 28657 0.959418728600807
24 46368 0.959418728078337
25 75025 0.959418728277903
26 121393 0.959418728201675
27 196418 0.959418728230792
28 317811 0.959418728219670
29 514229 0.959418728223918
30 832040 0.959418728222296
31 1346269 0.959418728222916
32 2178309 0.959418728222679
33 3524578 0.959418728222769
34 5702887 0.959418728222735
35 9227465 0.959418728222748
36 14930352 0.959418728222743
37 24157817 0.959418728222745
Go
package main
import (
"fmt"
"math"
)
// From http://rosettacode.org/wiki/Entropy#Go
func entropy(s string) float64 {
m := map[rune]float64{}
for _, r := range s {
m[r]++
}
hm := 0.
for _, c := range m {
hm += c * math.Log2(c)
}
l := float64(len(s))
return math.Log2(l) - hm/l
}
const F_Word1 = "1"
const F_Word2 = "0"
func FibonacciWord(n int) string {
a, b := F_Word1, F_Word2
for ; n > 1; n-- {
a, b = b, b+a
}
return a
}
func FibonacciWordGen() <-chan string {
ch := make(chan string)
go func() {
a, b := F_Word1, F_Word2
for {
ch <- a
a, b = b, b+a
}
}()
return ch
}
func main() {
fibWords := FibonacciWordGen()
fmt.Printf("%3s %9s %-18s %s\n", "N", "Length", "Entropy", "Word")
n := 1
for ; n < 10; n++ {
s := <-fibWords
// Just to show the function and generator do the same thing:
if s2 := FibonacciWord(n); s != s2 {
fmt.Printf("For %d, generator produced %q, function produced %q\n", n, s, s2)
}
fmt.Printf("%3d %9d %.16f %s\n", n, len(s), entropy(s), s)
}
for ; n <= 37; n++ {
s := <-fibWords
fmt.Printf("%3d %9d %.16f\n", n, len(s), entropy(s))
}
}
{{out}} [http://play.golang.org/p/e1whcGGOU1 Run in the Go Playground.]
N Length Entropy Word
1 1 0.0000000000000000 1
2 1 0.0000000000000000 0
[...]
37 24157817 0.9594187282227438
Haskell
module Main where
import Control.Monad
import Data.List
import Data.Monoid
import Text.Printf
entropy :: (Ord a) => [a] -> Double
entropy = sum
. map (\c -> (c *) . logBase 2 $ 1.0 / c)
. (\cs -> let { sc = sum cs } in map (/ sc) cs)
. map (fromIntegral . length)
. group
. sort
fibonacci :: (Monoid m) => m -> m -> [m]
fibonacci a b = unfoldr (\(a,b) -> Just (a, (b, a <> b))) (a,b)
main :: IO ()
main = do
printf "%2s %10s %17s %s\n" "N" "length" "entropy" "word"
zipWithM_ (\i v -> let { l = length v } in printf "%2d %10d %.15f %s\n"
i l (entropy v) (if l > 40 then "..." else v))
[1..38::Int]
(take 37 $ fibonacci "1" "0")
=={{header|Icon}} and {{header|Unicon}}==
The following solution works in both Icon and Unicon. The first eight Fibonacci words are shown, while the Fibonacci word length and [[Entropy]] are shown for all 37.
procedure main(A)
n := integer(A[1]) | 37
write(right("N",4)," ",right("length",15)," ",left("Entrophy",15)," ",
" Fibword")
every w := fword(i := 1 to n) do {
writes(right(i,4)," ",right(*w,15)," ",left(H(w),15))
if i <= 8 then write(": ",w) else write()
}
end
procedure fword(n)
static fcache
initial fcache := table()
/fcache[n] := case n of {
1: "1"
2: "0"
default: fword(n-1)||fword(n-2)
}
return fcache[n]
end
procedure H(s)
P := table(0.0)
every P[!s] +:= 1.0/*s
every (h := 0.0) -:= P[c := key(P)] * log(P[c],2)
return h
end
Sample run:
->fw
N length Entrophy Fibword
1 1 0.0 : 1
2 1 0.0 : 0
3 2 1.0 : 01
4 3 0.9182958340544: 010
5 5 0.9709505944546: 01001
6 8 0.9544340029249: 01001010
7 13 0.9612366047228: 0100101001001
8 21 0.9587118829771: 010010100100101001010
9 34 0.9596868937742
10 55 0.9593160320543
11 89 0.9594579158386
12 144 0.9594037542210
13 233 0.9594244469559
14 377 0.9594165437404
15 610 0.9594195626031
16 987 0.9594184095152
17 1597 0.9594188499578
18 2584 0.9594186817240
19 4181 0.9594187459836
20 6765 0.9594187214387
21 10946 0.9594187308140
22 17711 0.9594187272330
23 28657 0.9594187286009
24 46368 0.9594187280783
25 75025 0.9594187282781
26 121393 0.9594187282015
27 196418 0.9594187282313
28 317811 0.9594187282195
29 514229 0.9594187282251
30 832040 0.9594187282196
31 1346269 0.9594187282169
32 2178309 0.9594187282191
33 3524578 0.9594187282130
34 5702887 0.9594187282322
35 9227465 0.9594187281818
36 14930352 0.9594187282743
37 24157817 0.9594187282928
->
J
Implementation:
F_Words=: (,<@;@:{~&_1 _2)@]^:(2-~[)&('1';'0')
Also, from the [[Entropy#J|entropy]] page we need:
entropy=: +/@:-@(* 2&^.)@(#/.~ % #)
Task example:
(,.~#\)(#,entropy)@> F_Words 37
1 1 0
2 1 0
3 2 1
4 3 0.918296
5 5 0.970951
6 8 0.954434
7 13 0.961237
8 21 0.958712
9 34 0.959687
10 55 0.959316
11 89 0.959458
12 144 0.959404
13 233 0.959424
14 377 0.959417
15 610 0.95942
16 987 0.959418
17 1597 0.959419
18 2584 0.959419
19 4181 0.959419
20 6765 0.959419
21 10946 0.959419
22 17711 0.959419
23 28657 0.959419
24 46368 0.959419
25 75025 0.959419
26 121393 0.959419
27 196418 0.959419
28 317811 0.959419
29 514229 0.959419
30 832040 0.959419
31 1.34627e6 0.959419
32 2.17831e6 0.959419
33 3.52458e6 0.959419
34 5.70289e6 0.959419
35 9.22747e6 0.959419
36 1.49304e7 0.959419
37 2.41578e7 0.959419
Java
import java.util.*;
public class FWord {
private /*v*/ String fWord0 = "";
private /*v*/ String fWord1 = "";
private String nextFWord () {
final String result;
if ( "".equals ( fWord1 ) ) result = "1";
else if ( "".equals ( fWord0 ) ) result = "0";
else result = fWord1 + fWord0;
fWord0 = fWord1;
fWord1 = result;
return result;
}
public static double entropy ( final String source ) {
final int length = source.length ();
final Map < Character, Integer > counts = new HashMap < Character, Integer > ();
/*v*/ double result = 0.0;
for ( int i = 0; i < length; i++ ) {
final char c = source.charAt ( i );
if ( counts.containsKey ( c ) ) counts.put ( c, counts.get ( c ) + 1 );
else counts.put ( c, 1 );
}
for ( final int count : counts.values () ) {
final double proportion = ( double ) count / length;
result -= proportion * ( Math.log ( proportion ) / Math.log ( 2 ) );
}
return result;
}
public static void main ( final String [] args ) {
final FWord fWord = new FWord ();
for ( int i = 0; i < 37; ) {
final String word = fWord.nextFWord ();
System.out.printf ( "%3d %10d %s %n", ++i, word.length (), entropy ( word ) );
}
}
}
Output:
1 1 0.0
2 1 0.0
3 2 1.0
4 3 0.9182958340544896
5 5 0.9709505944546686
6 8 0.9544340029249649
7 13 0.961236604722876
8 21 0.9587118829771318
9 34 0.9596868937742169
10 55 0.9593160320543777
11 89 0.9594579158386696
12 144 0.959403754221023
13 233 0.9594244469559867
14 377 0.9594165437404407
15 610 0.9594195626031441
16 987 0.9594184095152245
17 1597 0.9594188499578099
18 2584 0.9594186817240321
19 4181 0.9594187459836638
20 6765 0.9594187214386756
21 10946 0.9594187308140278
22 17711 0.959418727232962
23 28657 0.9594187286008073
24 46368 0.9594187280783371
25 75025 0.9594187282779029
26 121393 0.9594187282016755
27 196418 0.9594187282307918
28 317811 0.9594187282196702
29 514229 0.9594187282239184
30 832040 0.9594187282222959
31 1346269 0.9594187282229156
32 2178309 0.9594187282226789
33 3524578 0.9594187282227691
34 5702887 0.9594187282227347
35 9227465 0.9594187282227479
36 14930352 0.9594187282227429
37 24157817 0.9594187282227448
JavaScript
//makes outputting a table possible in environments
//that don't support console.table()
function console_table(xs) {
function pad(n,s) {
var res = s;
for (var i = s.length; i < n; i++)
res += " ";
return res;
}
if (xs.length === 0)
console.log("No data");
else {
var widths = [];
var cells = [];
for (var i = 0; i <= xs.length; i++)
cells.push([]);
for (var s in xs[0]) {
var len = s.length;
cells[0].push(s);
for (var i = 0; i < xs.length; i++) {
var ss = "" + xs[i][s];
len = Math.max(len, ss.length);
cells[i+1].push(ss);
}
widths.push(len);
}
var s = "";
for (var x = 0; x < cells.length; x++) {
for (var y = 0; y < widths.length; y++)
s += "|" + pad(widths[y], cells[x][y]);
s += "|\n";
}
console.log(s);
}
}
//returns the entropy of a string as a number
function entropy(s) {
//create an object containing each individual char
//and the amount of iterations per char
function prob(s) {
var h = Object.create(null);
s.split('').forEach(function(c) {
h[c] && h[c]++ || (h[c] = 1);
});
return h;
}
s = s.toString(); //just in case
var e = 0, l = s.length, h = prob(s);
for (var i in h ) {
var p = h[i]/l;
e -= p * Math.log(p) / Math.log(2);
}
return e;
}
//creates Fibonacci Word to n as described on Rosetta Code
//see rosettacode.org/wiki/Fibonacci_word
function fibWord(n) {
var wOne = "1", wTwo = "0", wNth = [wOne, wTwo], w = "", o = [];
for (var i = 0; i < n; i++) {
if (i === 0 || i === 1) {
w = wNth[i];
} else {
w = wNth[i - 1] + wNth[i - 2];
wNth.push(w);
}
var l = w.length;
var e = entropy(w);
if (l <= 21) {
o.push({
N: i + 1,
Length: l,
Entropy: e,
Word: w
});
} else {
o.push({
N: i + 1,
Length: l,
Entropy: e,
Word: "..."
});
}
}
try {
console.table(o);
} catch (err) {
console_table(o);
}
}
fibWord(37);
Output:
|N |Length |Entropy |Word |
|1 |1 |0 |1 |
|2 |1 |0 |0 |
|3 |2 |1 |01 |
|4 |3 |0.9182958340544896|010 |
|5 |5 |0.9709505944546688|01001 |
|6 |8 |0.954434002924965 |01001010 |
|7 |13 |0.961236604722876 |0100101001001 |
|8 |21 |0.9587118829771318|010010100100101001010|
|9 |34 |0.9596868937742169|... |
|10|55 |0.9593160320543777|... |
|11|89 |0.9594579158386696|... |
|12|144 |0.959403754221023 |... |
|13|233 |0.9594244469559867|... |
|14|377 |0.9594165437404407|... |
|15|610 |0.9594195626031441|... |
|16|987 |0.9594184095152245|... |
|17|1597 |0.9594188499578098|... |
|18|2584 |0.9594186817240322|... |
|19|4181 |0.9594187459836638|... |
|20|6765 |0.9594187214386755|... |
|21|10946 |0.9594187308140276|... |
|22|17711 |0.959418727232962 |... |
|23|28657 |0.9594187286008075|... |
|24|46368 |0.959418728078337 |... |
|25|75025 |0.959418728277903 |... |
|26|121393 |0.9594187282016755|... |
|27|196418 |0.9594187282307918|... |
|28|317811 |0.9594187282196702|... |
|29|514229 |0.9594187282239184|... |
|30|832040 |0.9594187282222958|... |
|31|1346269 |0.9594187282229155|... |
|32|2178309 |0.9594187282226788|... |
|33|3524578 |0.9594187282227693|... |
|34|5702887 |0.9594187282227347|... |
|35|9227465 |0.9594187282227479|... |
|36|14930352|0.9594187282227428|... |
|37|24157817|0.9594187282227447|... |
jq
'''Entropy''':
# Input: an array of strings.
# Output: an object with the strings as keys,
# the values of which are the corresponding frequencies.
def counter:
reduce .[] as $item ( {}; .[$item] += 1 ) ;
# entropy in bits of the input string
def entropy:
(explode | map( [.] | implode ) | counter | [ .[] | . * (.|log) ] | add) as $sum
| ((length|log) - ($sum / length)) / (2|log) ;
'''Pretty printing''':
# truncate n places after the decimal point;
# return a string since it can readily be converted back to a number
def precision(n):
tostring as $s | $s | index(".")
| if . then $s[0:.+n+1] else $s end ;
# Right-justify but do not truncate
def rjustify(n):
tostring | length as $length
| if n <= $length then . else " " * (n-$length) + . end;
# Attempt to align decimals so integer part is in a field of width n
def align(n):
tostring | index(".") as $ix
| if n < $ix then .
elif $ix then (.[0:$ix]|rjustify(n)) +.[$ix:]
else rjustify(n)
end ;
'''The task''':
# Generate the first n terms of the Fibonacci word sequence
# as a stream of arrays of the form [index, word]
def fibonacci_words(n):
# input: [f(i-2), f(i-1), countdown, counter]
def fib:
if .[2] == 1 then [.[3], .[0]]
else
(.[1] + .[0]) as $sum
| [ .[3], .[0]], ([ .[1], $sum, (.[2] - 1), (.[3] + 1) ] | fib)
end;
if n <= 0 then empty
else (["1", "0", n, 1] | fib)
end;
def task(n):
fibonacci_words(n)
| .[0] as $i
| (.[1]|length) as $len
| (.[1]|entropy) as $e
| "\($i|rjustify(3)) \($len|rjustify(10)) \($e|precision(6))"
;
task(37)
{{Out}} (head and tail)
$ jq -n -r -f fibonacci_word.rc
1 1 0
2 1 0
3 2 1
4 3 0.918295
5 5 0.970950
6 8 0.954434
7 13 0.961236
8 21 0.958711
9 34 0.959686
10 55 0.959316
11 89 0.959457
12 144 0.959403
13 233 0.959424
14 377 0.959416
15 610 0.959419
16 987 0.959418
...
36 14930352 0.959418
37 24157817 0.959418
Julia
{{works with|Julia|0.6}}
using DataStructures
entropy(s::AbstractString) = -sum(x -> x / length(s) * log2(x / length(s)), values(counter(s)))
function fibboword(n::Int64)
# Initialize the result
r = Array{String}(n)
# First element
r[1] = "0"
# If more than 2, set the second element
if n ≥ 2 r[2] = "1" end
# Recursively create elements > 3
for i in 3:n
r[i] = r[i - 1] * r[i - 2]
end
return r
end
function testfibbo(n::Integer)
fib = fibboword(n)
for i in 1:length(fib)
@printf("%3d%9d%12.6f\n", i, length(fib[i]), entropy(fib[i]))
end
return 0
end
println(" n\tlength\tentropy")
testfibbo(37)
{{out}}
n length entropy
1 1 -0.000000
2 1 -0.000000
3 2 1.000000
4 3 0.918296
5 5 0.970951
6 8 0.954434
7 13 0.961237
8 21 0.958712
9 34 0.959687
10 55 0.959316
11 89 0.959458
12 144 0.959404
13 233 0.959424
14 377 0.959417
15 610 0.959420
16 987 0.959418
17 1597 0.959419
18 2584 0.959419
19 4181 0.959419
20 6765 0.959419
21 10946 0.959419
22 17711 0.959419
23 28657 0.959419
24 46368 0.959419
25 75025 0.959419
26 121393 0.959419
27 196418 0.959419
28 317811 0.959419
29 514229 0.959419
30 832040 0.959419
31 1346269 0.959419
32 2178309 0.959419
33 3524578 0.959419
34 5702887 0.959419
35 9227465 0.959419
36 14930352 0.959419
37 24157817 0.959419
Kotlin
// version 1.0.6
fun fibWord(n: Int): String {
if (n < 1) throw IllegalArgumentException("Argument can't be less than 1")
if (n == 1) return "1"
val words = Array(n){ "" }
words[0] = "1"
words[1] = "0"
for (i in 2 until n) words[i] = words[i - 1] + words[i - 2]
return words[n - 1]
}
fun log2(d: Double) = Math.log(d) / Math.log(2.0)
fun shannon(s: String): Double {
if (s.length <= 1) return 0.0
val count0 = s.count { it == '0' }
val count1 = s.length - count0
val nn = s.length.toDouble()
return -(count0 / nn * log2(count0 / nn) + count1 / nn * log2(count1 / nn))
}
fun main(args: Array<String>) {
println("N Length Entropy Word")
println("-- -------- ------------------ ----------------------------------")
for (i in 1..37) {
val s = fibWord(i)
print(String.format("%2d %8d %18.16f", i, s.length, shannon(s)))
if (i < 10) println(" $s")
else println()
}
}
{{out}}
N Length Entropy Word
-- -------- ------------------ ----------------------------------
1 1 0.0000000000000000 1
2 1 0.0000000000000000 0
3 2 1.0000000000000000 01
4 3 0.9182958340544896 010
5 5 0.9709505944546686 01001
6 8 0.9544340029249649 01001010
7 13 0.9612366047228760 0100101001001
8 21 0.9587118829771318 010010100100101001010
9 34 0.9596868937742169 0100101001001010010100100101001001
10 55 0.9593160320543777
11 89 0.9594579158386696
12 144 0.9594037542210230
13 233 0.9594244469559867
14 377 0.9594165437404407
15 610 0.9594195626031441
16 987 0.9594184095152245
17 1597 0.9594188499578099
18 2584 0.9594186817240321
19 4181 0.9594187459836638
20 6765 0.9594187214386756
21 10946 0.9594187308140278
22 17711 0.9594187272329620
23 28657 0.9594187286008073
24 46368 0.9594187280783371
25 75025 0.9594187282779029
26 121393 0.9594187282016755
27 196418 0.9594187282307918
28 317811 0.9594187282196702
29 514229 0.9594187282239184
30 832040 0.9594187282222959
31 1346269 0.9594187282229156
32 2178309 0.9594187282226789
33 3524578 0.9594187282227691
34 5702887 0.9594187282227347
35 9227465 0.9594187282227479
36 14930352 0.9594187282227429
37 24157817 0.9594187282227448
Lua
-- Return the base two logarithm of x
function log2 (x) return math.log(x) / math.log(2) end
-- Return the Shannon entropy of X
function entropy (X)
local N, count, sum, i = X:len(), {}, 0
for char = 1, N do
i = X:sub(char, char)
if count[i] then
count[i] = count[i] + 1
else
count[i] = 1
end
end
for n_i, count_i in pairs(count) do
sum = sum + count_i / N * log2(count_i / N)
end
return -sum
end
-- Return a table of the first n Fibonacci words
function fibWords (n)
local fw = {1, 0}
while #fw < n do fw[#fw + 1] = fw[#fw] .. fw[#fw - 1] end
return fw
end
-- Main procedure
print("n\tWord length\tEntropy")
for k, v in pairs(fibWords(37)) do
v = tostring(v)
io.write(k .. "\t" .. #v)
if string.len(#v) < 8 then io.write("\t") end
print("\t" .. entropy(v))
end
{{out}}
n Word length Entropy
1 1 -0
2 1 -0
3 2 1
4 3 0.91829583405449
5 5 0.97095059445467
6 8 0.95443400292496
7 13 0.96123660472288
8 21 0.95871188297713
9 34 0.95968689377422
10 55 0.95931603205438
11 89 0.95945791583867
12 144 0.95940375422102
13 233 0.95942444695599
14 377 0.95941654374044
15 610 0.95941956260314
16 987 0.95941840951522
17 1597 0.95941884995781
18 2584 0.95941868172403
19 4181 0.95941874598366
20 6765 0.95941872143868
21 10946 0.95941873081403
22 17711 0.95941872723296
23 28657 0.95941872860081
24 46368 0.95941872807834
25 75025 0.9594187282779
26 121393 0.95941872820168
27 196418 0.95941872823079
28 317811 0.95941872821967
29 514229 0.95941872822392
30 832040 0.9594187282223
31 1346269 0.95941872822292
32 2178309 0.95941872822268
33 3524578 0.95941872822277
34 5702887 0.95941872822273
35 9227465 0.95941872822275
36 14930352 0.95941872822274
37 24157817 0.95941872822274
=={{header|Mathematica}} / {{header|Wolfram Language}}==
entropy = (p - 1) Log[2, 1 - p] - p Log[2, p];
TableForm[
Table[{k, Fibonacci[k],
Quiet@Check[N[entropy /. {p -> Fibonacci[k - 1]/Fibonacci[k]}, 15],
0]}, {k, 37}],
TableHeadings -> {None, {"N", "Length", "Entropy"}}]
{{out}}
N Length Entropy
1 1 0
2 1 0
3 2 1.00000000000000
4 3 0.918295834054490
5 5 0.970950594454669
6 8 0.954434002924965
7 13 0.961236604722876
8 21 0.958711882977132
9 34 0.959686893774217
10 55 0.959316032054378
11 89 0.959457915838669
12 144 0.959403754221023
13 233 0.959424446955987
14 377 0.959416543740441
15 610 0.959419562603144
16 987 0.959418409515224
17 1597 0.959418849957810
18 2584 0.959418681724032
19 4181 0.959418745983664
20 6765 0.959418721438675
21 10946 0.959418730814028
22 17711 0.959418727232962
23 28657 0.959418728600807
24 46368 0.959418728078337
25 75025 0.959418728277903
26 121393 0.959418728201675
27 196418 0.959418728230792
28 317811 0.959418728219670
29 514229 0.959418728223918
30 832040 0.959418728222296
31 1346269 0.959418728222916
32 2178309 0.959418728222679
33 3524578 0.959418728222769
34 5702887 0.959418728222735
35 9227465 0.959418728222748
36 14930352 0.959418728222743
37 24157817 0.959418728222745
Objeck
use Collection;
class FibonacciWord {
function : native : GetEntropy(result : String) ~ Float {
frequencies := IntMap->New();
each(i : result) {
c := result->Get(i);
if(frequencies->Has(c)) {
count := frequencies->Find(c)->As(IntHolder);
count->Set(count->Get() + 1);
}
else {
frequencies->Insert(c, IntHolder->New(1));
};
};
length := result->Size();
entropy := 0.0;
counts := frequencies->GetValues();
each(i : counts) {
count := counts->Get(i)->As(IntHolder)->Get();
freq := count->As(Float) / length;
entropy += freq * (freq->Log() / 2.0->Log());
};
return -1 * entropy;
}
function : native : PrintLine(n : Int, result : String) ~ Nil {
n->Print();
'\t'->Print();
result->Size()->Print();
"\t\t"->Print();
GetEntropy(result)->PrintLine();
}
function : Main(args : String[]) ~ Nil {
firstString := "1";
n := 1;
PrintLine( n, firstString );
secondString := "0";
n += 1;
PrintLine( n, secondString );
while(n < 37) {
resultString := "{$secondString}{$firstString}";
firstString := secondString;
secondString := resultString;
n += 1;
PrintLine( n, resultString );
};
}
}
Output:
1 1 -0
2 1 -0
3 2 1
4 3 0.918295834
5 5 0.970950594
6 8 0.954434003
7 13 0.961236605
8 21 0.958711883
9 34 0.959686894
10 55 0.959316032
11 89 0.959457916
12 144 0.959403754
13 233 0.959424447
14 377 0.959416544
15 610 0.959419563
16 987 0.95941841
17 1597 0.95941885
18 2584 0.959418682
19 4181 0.959418746
20 6765 0.959418721
21 10946 0.959418731
22 17711 0.959418727
23 28657 0.959418729
24 46368 0.959418728
25 75025 0.959418728
26 121393 0.959418728
27 196418 0.959418728
28 317811 0.959418728
29 514229 0.959418728
30 832040 0.959418728
31 1346269 0.959418728
32 2178309 0.959418728
33 3524578 0.959418728
34 5702887 0.959418728
35 9227465 0.959418728
36 14930352 0.959418728
37 24157817 0.959418728
Oforth
: entropy(s) -- f
| freq sz |
s size dup ifZero: [ return ] asFloat ->sz
ListBuffer initValue(255, 0) ->freq
s apply( #[ dup freq at 1+ freq put ] )
0.0 freq applyIf( #[ 0 <> ], #[ sz / dup ln * - ] ) Ln2 / ;
: FWords(n)
| ws i |
ListBuffer new dup add("1") dup add("0") dup ->ws
3 n for: i [ i 1- ws at i 2 - ws at + ws add ]
dup map(#[ dup size swap entropy Pair new]) apply(#println) ;
{{out}}
FWords(37)
[1, 0]
[1, 0]
[2, 1]
[3, 0.918295834054489]
[5, 0.970950594454669]
[8, 0.954434002924965]
[13, 0.961236604722876]
[21, 0.958711882977132]
[34, 0.959686893774217]
[55, 0.959316032054378]
[89, 0.95945791583867]
[144, 0.959403754221023]
[233, 0.959424446955987]
[377, 0.959416543740441]
[610, 0.959419562603144]
[987, 0.959418409515225]
[1597, 0.95941884995781]
[2584, 0.959418681724032]
[4181, 0.959418745983664]
[6765, 0.959418721438675]
[10946, 0.959418730814028]
[17711, 0.959418727232962]
[28657, 0.959418728600807]
[46368, 0.959418728078337]
[75025, 0.959418728277903]
[121393, 0.959418728201676]
[196418, 0.959418728230792]
[317811, 0.95941872821967]
[514229, 0.959418728223918]
[832040, 0.959418728222296]
[1346269, 0.959418728222916]
[2178309, 0.959418728222679]
[3524578, 0.959418728222769]
[5702887, 0.959418728222735]
[9227465, 0.959418728222748]
[14930352, 0.959418728222743]
[24157817, 0.959418728222745]
ooRexx
{{trans|REXX}}
/* REXX ---------------------------------------------------------------
* 09.08.2014 Walter Pachl 'copied' from REXX
* lists the # of chars in fibonacci words and the words' entropy
* as well as (part of) the Fibonacci word and the number of 0's and 1's
* Note: ooRexx allows for computing up to 47 Fibonacci words
*--------------------------------------------------------------------*/
Numeric Digits 20 /* use more precision, default=9.*/
Parse Arg n fw.1 fw.2 . /* get optional args from the C.L.*/
If n=='' Then n=50 /* Not specified? Then use default*/
If fw.1=='' Then fw.1=1 /* " " " " " */
If fw.2=='' Then fw.2=0 /* " " " " " */
hdr1=' N length Entropy Fibonacci word ',
'# of zeroes # of ones'
hdr2='-- ---------- ---------------------- --------------------',
'--------- ---------'
Say hdr1
Say hdr2
Do j=1 For n /* display N fibonacci words. */
j1=j-1
j2=j-2
If j>2 Then /* calculate FIBword if we need to*/
fw.j=fw.j1||fw.j2
If length(fw.j)<20 Then
fwd=left(fw.j,20) /* display the Fibonacci word */
Else
fwd=left(fw.j,5)'...'right(fw.j,12) /* display parts thereof */
Say right(j,2)' 'right(length(fw.j),9)' 'entropy(fw.j)' 'fwd,
right(aa.0,9) right(aa.1,9)
End
Say hdr2
Say hdr1
Exit
entropy: Procedure Expose aa.
Parse Arg dd
l=length(dd)
d=digits()
aa.0=l-length(space(translate(dd,,0),0)) /*fast way to count zeroes*/
aa.1=l-aa.0 /* and figure the number of ones. */
If l==1 Then
Return left(0,d+2) /* handle special case of one char*/
s=0 /* [?] calc entropy for each char */
do i=1 for 2
_=i-1 /* construct a chr from the ether.*/
p=aa._/l /* 'probability of aa-_ in fw */
s=s-p*rxmlog(p,d,2) /* add (negatively) the entropies.*/
End
If s=1 Then
Return left(1,d+2) /* return a left-justified "1". */
Return format(s,,d) /* normalize the number (sum or S)*/
::requires rxm.cls
{{out}}
N length Entropy Fibonacci word # of zeroes # of ones
-- ---------- ---------------------- -------------------- --------- ---------
1 1 0 1 0 1
2 1 0 0 1 0
3 2 1 01 1 1
4 3 0.91829583405448951479 010 2 1
5 5 0.97095059445466863901 01001 3 2
6 8 0.95443400292496496456 01001010 5 3
7 13 0.96123660472287587273 0100101001001 8 5
8 21 0.95871188297713180865 01001...100101001010 13 8
9 34 0.95968689377421693318 01001...100101001001 21 13
10 55 0.95931603205437767776 01001...100101001010 34 21
11 89 0.95945791583866946165 01001...100101001001 55 34
12 144 0.95940375422102292948 01001...100101001010 89 55
13 233 0.95942444695598675866 01001...100101001001 144 89
14 377 0.95941654374044073871 01001...100101001010 233 144
15 610 0.95941956260314415022 01001...100101001001 377 233
16 987 0.95941840951522431271 01001...100101001010 610 377
17 1597 0.95941884995780985566 01001...100101001001 987 610
18 2584 0.95941868172403210666 01001...100101001010 1597 987
19 4181 0.95941874598366381432 01001...100101001001 2584 1597
20 6765 0.95941872143867541462 01001...100101001010 4181 2584
21 10946 0.95941873081402772314 01001...100101001001 6765 4181
22 17711 0.95941872723296194268 01001...100101001010 10946 6765
23 28657 0.95941872860080737603 01001...100101001001 17711 10946
24 46368 0.95941872807833691493 01001...100101001010 28657 17711
25 75025 0.95941872827790287342 01001...100101001001 46368 28657
26 121393 0.95941872820167546032 01001...100101001010 75025 46368
27 196418 0.95941872823079174125 01001...100101001001 121393 75025
28 317811 0.95941872821967031157 01001...100101001010 196418 121393
29 514229 0.95941872822391831971 01001...100101001001 317811 196418
30 832040 0.95941872822229572500 01001...100101001010 514229 317811
31 1346269 0.95941872822291550102 01001...100101001001 832040 514229
32 2178309 0.95941872822267876765 01001...100101001010 1346269 832040
33 3524578 0.95941872822276919174 01001...100101001001 2178309 1346269
34 5702887 0.95941872822273465282 01001...100101001010 3524578 2178309
35 9227465 0.95941872822274784553 01001...100101001001 5702887 3524578
36 14930352 0.95941872822274280637 01001...100101001010 9227465 5702887
37 24157817 0.95941872822274473113 01001...100101001001 14930352 9227465
38 39088169 0.95941872822274399592 01001...100101001010 24157817 14930352
39 63245986 0.95941872822274427677 01001...100101001001 39088169 24157817
40 102334155 0.95941872822274416950 01001...100101001010 63245986 39088169
41 165580141 0.95941872822274421049 01001...100101001001 102334155 63245986
42 267914296 0.95941872822274419481 01001...100101001010 165580141 102334155
43 433494437 0.95941872822274420081 01001...100101001001 267914296 165580141
44 701408733 0.95941872822274419851 01001...100101001010 433494437 267914296
45 134903170 0.95941872822274419940 01001...100101001001 701408733 433494437
46 836311903 0.95941872822274419905 01001...100101001010 134903170 701408733
47 971215073 0.95941872822274419920 01001...100101001001 836311903 134903170
22 *-* fw.j=fw.j1||fw.j2
Error 5 running D:\fwoo.rex line 22: System resources exhausted
PARI/GP
ent(a,b)=[a,b]=[a,b]/(a+b);(a*log(if(a,a,1))+b*log(if(b,b,1)))/log(1/2)
allocatemem(75<<20) \\ Allocate 75 MB stack space
F=vector(37);F[1]="1";F[2]="0";for(n=3,37,F[n]=Str(F[n-1],F[n-2]))
for(n=1,37,print(n" "fibonacci(n)" "ent(fibonacci(n-1),fibonacci(n-2))))
For those output fascists:
1 1 0.E-9
2 1 0.E-9
3 2 1.00000000
4 3 0.918295834
5 5 0.970950594
6 8 0.954434003
7 13 0.961236604
8 21 0.958711883
9 34 0.959686894
10 55 0.959316032
11 89 0.959457916
12 144 0.959403754
13 233 0.959424447
14 377 0.959416544
15 610 0.959419563
16 987 0.959418409
17 1597 0.959418850
18 2584 0.959418682
19 4181 0.959418746
20 6765 0.959418721
21 10946 0.959418731
22 17711 0.959418727
23 28657 0.959418728
24 46368 0.959418728
25 75025 0.959418728
26 121393 0.959418728
27 196418 0.959418728
28 317811 0.959418728
29 514229 0.959418728
30 832040 0.959418728
31 1346269 0.959418728
32 2178309 0.959418728
33 3524578 0.959418728
34 5702887 0.959418728
35 9227465 0.959418728
36 14930352 0.959418728
37 24157817 0.959418728
Pascal
{{works with|Freepascal propably Delphi/Turbo-Pascal}} As in Algol68 statet, you needn't to create the long string.
program FibWord;
{$IFDEF DELPHI}
{$APPTYPE CONSOLE}
{$ENDIF}
const
FibSMaxLen = 35;
type
tFibString = string[2*FibSMaxLen];//Ansistring;
tFibCnt = longWord;
tFib = record
ZeroCnt,
OneCnt : tFibCnt;
// fibS : tFibString;//didn't work :-(
end;
var
FibSCheck : boolean;
Fib0,Fib1 : tFib;
FibS0,FibS1: tFibString;
procedure FibInit;
Begin
with Fib0 do
begin
ZeroCnt := 1;
OneCnt := 0;
end;
with Fib1 do
begin
ZeroCnt := 0;
OneCnt := 1;
end;
FibS0 := '1';
FibS1 := '0';
FibSCheck := true;
end;
Function FibLength(const F:Tfib):tFibCnt;
begin
FibLength := F.ZeroCnt+F.OneCnt;
end;
function FibEntropy(const F:Tfib):extended;
const
rcpLn2 = 1.0/ln(2);
var
entrp,
ratio: extended;
begin
entrp := 0.0;
ratio := F.ZeroCnt/FibLength(F);
if Ratio <> 0.0 then
entrp := -ratio*ln(ratio)*rcpLn2;
ratio := F.OneCnt/FibLength(F);
if Ratio <> 0.0 then
entrp := entrp-ratio*ln(ratio)*rcpLn2;
FibEntropy:=entrp
end;
procedure FibSExtend;
var
tmpS : tFibString;
begin
IF FibSCheck then
begin
tmpS := FibS0+FibS1;
FibS0 := FibS1;
FibS1 := tmpS;
FibSCheck := (length(FibS1) < FibSMaxLen);
end;
end;
procedure FibNext;
var
tmpFib : tFib;
Begin
tmpFib.ZeroCnt := Fib0.ZeroCnt+Fib1.ZeroCnt;
tmpFib.OneCnt := Fib0.OneCnt +Fib1.OneCnt;
Fib0 := Fib1;
Fib1 := tmpFib;
IF FibSCheck then
FibSExtend;
end;
procedure FibWrite(const F:Tfib);
begin
// With F do
// write(ZeroCnt:10,OneCnt:10,FibLength(F):10,FibEntropy(f):17:14);
write(FibLength(F):10,FibEntropy(F):17:14);
IF FibSCheck then
writeln(' ',FibS1)
else
writeln(' ....');
end;
var
i : integer;
BEGIN
FibInit;
writeln('No. Length Entropy Word');
write(1:4);FibWrite(Fib0);
write(2:4);FibWrite(Fib1);
For i := 3 to 37 do
begin
FibNext;
write(i:4);
FibWrite(Fib1);
end;
END.
The same output:
No. Length Entropy Word
1 1-0.00000000000000 0
2 1 0.00000000000000 0
3 2 1.00000000000000 10
4 3 0.91829583405449 010
5 5 0.97095059445467 10010
6 8 0.95443400292496 01010010
7 13 0.96123660472288 1001001010010
8 21 0.95871188297713 010100101001001010010
9 34 0.95968689377422 1001001010010010100101001001010010
10 55 0.95931603205438 ....
11 89 0.95945791583867 ....
shortened
35 9227465 0.95941872822275 ....
36 14930352 0.95941872822274 ....
37 24157817 0.95941872822274 ....
Perl
sub fiboword;
{
my ($a, $b, $count) = (1, 0, 0);
sub fiboword {
$count++;
return $a if $count == 1;
return $b if $count == 2;
($a, $b) = ($b, "$b$a");
return $b;
}
}
sub entropy {
my %c;
$c{$_}++ for split //, my $str = shift;
my $e = 0;
for (values %c) {
my $p = $_ / length $str;
$e -= $p * log $p;
}
return $e / log 2;
}
my $count;
while ($count++ < 37) {
my $word = fiboword;
printf "%5d\t%10d\t%.8e\t%s\n",
$count,
length($word),
entropy($word),
$count > 9 ? '' : $word
}
Perl 6
constant @fib-word = 1, 0, { $^b ~ $^a } ... *;
sub entropy {
-log(2) R/
[+] map -> \p { p * log p },
$^string.comb.Bag.values »/» $string.chars
}
for @fib-word[^37] {
printf "%5d\t%10d\t%.8e\t%s\n",
(state $n)++, .chars, .&entropy, $n > 10 ?? '' !! $_;
}
That works, but is terribly slow due to all the string processing and bag creation, just to count 0's and 1's. By contrast, the following prints the table up to 100 almost instantly by tracking the values to calculate entropy in parallel with the actual strings. This works in Perl 6 because lazy lists are calculated on demand, so if we don't actually ask for the larger string forms, we don't calculate them. Which would be relatively difficult for a string containing 573147844013817084101 characters, unless you happen to have a computer with a zettabyte or so of memory sitting in your garage.
constant @fib-word = '1', '0', { $^b ~ $^a } ... *;
constant @fib-ones = 1, 0, * + * ... *;
constant @fib-chrs = 1, 1, * + * ... *;
multi entropy(0) { 0 }
multi entropy(1) { 0 }
multi entropy($n) {
my $chars = @fib-chrs[$n];
my $ones = @fib-ones[$n];
my $zeros = $chars - $ones;
-log(2) R/
[+] map -> \p { p * log p },
$ones / $chars, $zeros / $chars
}
for 0..100 -> $n {
printf "%5d\t%21d\t%.15e\t%s\n",
$n, @fib-chrs[$n], entropy($n), $n > 9 ?? '' !! @fib-word[$n];
}
{{out}}
0 1 0.000000000000000e+00 1
1 1 0.000000000000000e+00 0
2 2 1.000000000000000e+00 01
3 3 9.182958340544895e-01 010
4 5 9.709505944546688e-01 01001
5 8 9.544340029249650e-01 01001010
6 13 9.612366047228759e-01 0100101001001
7 21 9.587118829771317e-01 010010100100101001010
8 34 9.596868937742167e-01 0100101001001010010100100101001001
9 55 9.593160320543776e-01 0100101001001010010100100101001001010010100100101001010
10 89 9.594579158386695e-01
11 144 9.594037542210229e-01
12 233 9.594244469559866e-01
13 377 9.594165437404406e-01
14 610 9.594195626031441e-01
15 987 9.594184095152244e-01
16 1597 9.594188499578099e-01
17 2584 9.594186817240321e-01
18 4181 9.594187459836640e-01
19 6765 9.594187214386754e-01
20 10946 9.594187308140276e-01
21 17711 9.594187272329618e-01
22 28657 9.594187286008074e-01
23 46368 9.594187280783370e-01
24 75025 9.594187282779029e-01
25 121393 9.594187282016755e-01
26 196418 9.594187282307919e-01
27 317811 9.594187282196701e-01
28 514229 9.594187282239183e-01
29 832040 9.594187282222958e-01
30 1346269 9.594187282229156e-01
31 2178309 9.594187282226789e-01
32 3524578 9.594187282227692e-01
33 5702887 9.594187282227345e-01
34 9227465 9.594187282227477e-01
35 14930352 9.594187282227427e-01
36 24157817 9.594187282227447e-01
37 39088169 9.594187282227441e-01
38 63245986 9.594187282227441e-01
39 102334155 9.594187282227441e-01
40 165580141 9.594187282227441e-01
41 267914296 9.594187282227441e-01
42 433494437 9.594187282227441e-01
43 701408733 9.594187282227441e-01
44 1134903170 9.594187282227441e-01
45 1836311903 9.594187282227441e-01
46 2971215073 9.594187282227441e-01
47 4807526976 9.594187282227441e-01
48 7778742049 9.594187282227441e-01
49 12586269025 9.594187282227441e-01
50 20365011074 9.594187282227441e-01
51 32951280099 9.594187282227441e-01
52 53316291173 9.594187282227441e-01
53 86267571272 9.594187282227441e-01
54 139583862445 9.594187282227441e-01
55 225851433717 9.594187282227441e-01
56 365435296162 9.594187282227441e-01
57 591286729879 9.594187282227441e-01
58 956722026041 9.594187282227441e-01
59 1548008755920 9.594187282227441e-01
60 2504730781961 9.594187282227441e-01
61 4052739537881 9.594187282227441e-01
62 6557470319842 9.594187282227441e-01
63 10610209857723 9.594187282227441e-01
64 17167680177565 9.594187282227441e-01
65 27777890035288 9.594187282227441e-01
66 44945570212853 9.594187282227441e-01
67 72723460248141 9.594187282227441e-01
68 117669030460994 9.594187282227441e-01
69 190392490709135 9.594187282227441e-01
70 308061521170129 9.594187282227441e-01
71 498454011879264 9.594187282227441e-01
72 806515533049393 9.594187282227441e-01
73 1304969544928657 9.594187282227441e-01
74 2111485077978050 9.594187282227441e-01
75 3416454622906707 9.594187282227441e-01
76 5527939700884757 9.594187282227441e-01
77 8944394323791464 9.594187282227441e-01
78 14472334024676221 9.594187282227441e-01
79 23416728348467685 9.594187282227441e-01
80 37889062373143906 9.594187282227441e-01
81 61305790721611591 9.594187282227441e-01
82 99194853094755497 9.594187282227441e-01
83 160500643816367088 9.594187282227441e-01
84 259695496911122585 9.594187282227441e-01
85 420196140727489673 9.594187282227441e-01
86 679891637638612258 9.594187282227441e-01
87 1100087778366101931 9.594187282227441e-01
88 1779979416004714189 9.594187282227441e-01
89 2880067194370816120 9.594187282227441e-01
90 4660046610375530309 9.594187282227441e-01
91 7540113804746346429 9.594187282227441e-01
92 12200160415121876738 9.594187282227441e-01
93 19740274219868223167 9.594187282227441e-01
94 31940434634990099905 9.594187282227441e-01
95 51680708854858323072 9.594187282227441e-01
96 83621143489848422977 9.594187282227441e-01
97 135301852344706746049 9.594187282227441e-01
98 218922995834555169026 9.594187282227441e-01
99 354224848179261915075 9.594187282227441e-01
100 573147844013817084101 9.594187282227441e-01
Phix
function log2(atom v)
return log(v)/log(2)
end function
function entropy(sequence s)
sequence symbols = {},
counts = {}
integer N = length(s)
for i=1 to N do
object si = s[i]
integer k = find(si,symbols)
if k=0 then
symbols = append(symbols,si)
counts = append(counts,1)
else
counts[k] += 1
end if
end for
atom H = 0
integer n = length(counts)
for i=1 to n do
atom ci = counts[i]/N
H -= ci*log2(ci)
end for
return H
end function
sequence F_words = {"1","0"}
for i=3 to 37 do
F_words = append(F_words,F_words[i-1]&F_words[i-2])
end for
for i=1 to length(F_words) do
printf(1,"%2d: length %9d, entropy %f %s\n",
{i,length(F_words[i]),entropy(F_words[i]),
iff(i<10?F_words[i],"...")})
end for
{{out}}
1: length 1, entropy 0.000000 1
2: length 1, entropy 0.000000 0
3: length 2, entropy 1.000000 01
4: length 3, entropy 0.918296 010
5: length 5, entropy 0.970951 01001
6: length 8, entropy 0.954434 01001010
7: length 13, entropy 0.961237 0100101001001
8: length 21, entropy 0.958712 010010100100101001010
9: length 34, entropy 0.959687 0100101001001010010100100101001001
10: length 55, entropy 0.959316 ...
<shortened>
35: length 9227465, entropy 0.959419 ...
36: length 14930352, entropy 0.959419 ...
37: length 24157817, entropy 0.959419 ...
PL/I
fibword: procedure options (main); /* 9 October 2013 */
declare (fn, fnp1, fibword) bit (32000) varying;
declare (i, ln, lnp1, lfibword) fixed binary(31);
fn = '1'b; fnp1 = '0'b; ln, lnp1 = 1;
put skip edit (1, length(fn), fn) (f(2), f(10), x(1), b);
put skip edit (2, length(fnp1), fnp1) (f(2), f(10), x(1), b);
do i = 3 to 37;
lfibword = lnp1 + ln;
ln = lnp1;
lnp1 = lfibword;
if i <= 10 then
do;
fibword = fnp1 || fn;
put skip edit (i, length(fibword), fibword) (f(2), f(10), x(1), b);
fn = fnp1; fnp1 = fibword;
end;
else
do;
put skip edit (i, lfibword) (f(2), f(10));
end;
end;
end fibword;
1 1 1
2 1 0
3 2 01
4 3 010
5 5 01001
6 8 01001010
7 13 0100101001001
8 21 010010100100101001010
9 34 0100101001001010010100100101001001
10 55 0100101001001010010100100101001001010010100100101001010
11 89
12 144
13 233
14 377
15 610
16 987
17 1597
18 2584
19 4181
20 6765
21 10946
22 17711
23 28657
24 46368
25 75025
26 121393
27 196418
28 317811
29 514229
30 832040
31 1346269
32 2178309
33 3524578
34 5702887
35 9227465
36 14930352
37 24157817
PureBasic
EnableExplicit
Define fwx$, n.i
NewMap uchar.i()
Macro RowPrint(ns,ls,es,ws)
Print(RSet(ns,4," ")+RSet(ls,12," ")+" "+es+" ") : If Len(ws)<55 : PrintN(ws) : Else : PrintN("...") : EndIf
EndMacro
Procedure.d nlog2(x.d) : ProcedureReturn Log(x)/Log(2) : EndProcedure
Procedure countchar(s$, Map uchar())
If Len(s$)
uchar(Left(s$,1))=CountString(s$,Left(s$,1)) : s$=RemoveString(s$,Left(s$,1))
ProcedureReturn countchar(s$, uchar())
EndIf
EndProcedure
Procedure.d ce(fw$)
Define e.d
Shared uchar()
countchar(fw$,uchar())
ForEach uchar() : e-uchar()/Len(fw$)*nlog2(uchar()/Len(fw$)) : Next
ProcedureReturn e
EndProcedure
Procedure.s fw(n.i,a$="0",b$="1",m.i=2)
Select n : Case 1 : ProcedureReturn a$ : Case 2 : ProcedureReturn b$ : EndSelect
If m<n : ProcedureReturn fw(n,b$+a$,a$,m+1) : EndIf
ProcedureReturn Mid(a$,3)+ReverseString(Left(a$,2))
EndProcedure
OpenConsole()
PrintN(" N Length Entropy Word")
For n=1 To 37 : fwx$=fw(n) : RowPrint(Str(n),Str(Len(fwx$)),StrD(ce(fwx$),15),fwx$) : Next
Input()
N Length Entropy Word
1 1 0.000000000000000 0
2 1 0.000000000000000 1
3 2 1.000000000000000 01
4 3 0.918295834054490 010
5 5 0.970950594454669 01001
6 8 0.954434002924965 01001010
7 13 0.961236604722876 0100101001001
8 21 0.958711882977132 010010100100101001010
9 34 0.959686893774217 0100101001001010010100100101001001
10 55 0.959316032054378 ...
11 89 0.959457915838670 ...
12 144 0.959403754221023 ...
13 233 0.959424446955987 ...
14 377 0.959416543740441 ...
15 610 0.959419562603144 ...
16 987 0.959418409515225 ...
17 1597 0.959418849957810 ...
18 2584 0.959418681724032 ...
19 4181 0.959418745983664 ...
20 6765 0.959418721438676 ...
21 10946 0.959418730814028 ...
22 17711 0.959418727232962 ...
23 28657 0.959418728600807 ...
24 46368 0.959418728078337 ...
25 75025 0.959418728277903 ...
26 121393 0.959418728201676 ...
27 196418 0.959418728230792 ...
28 317811 0.959418728219670 ...
29 514229 0.959418728223918 ...
30 832040 0.959418728222296 ...
31 1346269 0.959418728222916 ...
32 2178309 0.959418728222679 ...
33 3524578 0.959418728222769 ...
34 5702887 0.959418728222735 ...
35 9227465 0.959418728222748 ...
36 14930352 0.959418728222743 ...
37 24157817 0.959418728222745 ...
Python
import math
>>> from collections import Counter
>>>
>>> def entropy(s):
... p, lns = Counter(s), float(len(s))
... return -sum( count/lns * math.log(count/lns, 2) for count in p.values())
...
>>>
>>> def fibword(nmax=37):
... fwords = ['1', '0']
... print('%-3s %10s %-10s %s' % tuple('N Length Entropy Fibword'.split()))
... def pr(n, fwords):
... while len(fwords) < n:
... fwords += [''.join(fwords[-2:][::-1])]
... v = fwords[n-1]
... print('%3i %10i %10.7g %s' % (n, len(v), entropy(v), v if len(v) < 20 else '<too long>'))
... for n in range(1, nmax+1): pr(n, fwords)
...
>>> fibword()
N Length Entropy Fibword
1 1 -0 1
2 1 -0 0
3 2 1 01
4 3 0.9182958 010
5 5 0.9709506 01001
6 8 0.954434 01001010
7 13 0.9612366 0100101001001
8 21 0.9587119 <too long>
9 34 0.9596869 <too long>
10 55 0.959316 <too long>
11 89 0.9594579 <too long>
12 144 0.9594038 <too long>
13 233 0.9594244 <too long>
14 377 0.9594165 <too long>
15 610 0.9594196 <too long>
16 987 0.9594184 <too long>
17 1597 0.9594188 <too long>
18 2584 0.9594187 <too long>
19 4181 0.9594187 <too long>
20 6765 0.9594187 <too long>
21 10946 0.9594187 <too long>
22 17711 0.9594187 <too long>
23 28657 0.9594187 <too long>
24 46368 0.9594187 <too long>
25 75025 0.9594187 <too long>
26 121393 0.9594187 <too long>
27 196418 0.9594187 <too long>
28 317811 0.9594187 <too long>
29 514229 0.9594187 <too long>
30 832040 0.9594187 <too long>
31 1346269 0.9594187 <too long>
32 2178309 0.9594187 <too long>
33 3524578 0.9594187 <too long>
34 5702887 0.9594187 <too long>
35 9227465 0.9594187 <too long>
36 14930352 0.9594187 <too long>
37 24157817 0.9594187 <too long>
>>>
R
With inspiration from [http://rosettacode.org/wiki/Entropy#R here] for the entropy function:
entropy <- function(s)
{
if (length(s) > 1)
return(sapply(s, entropy))
freq <- prop.table(table(strsplit(s, '')[1]))
ret <- -sum(freq * log(freq, base=2))
return(ret)
}
fibwords <- function(n)
{
if (n == 1)
fibwords <- "1"
else
fibwords <- c("1", "0")
if (n > 2)
{
for (i in 3:n)
fibwords <- c(fibwords, paste(fibwords[i-1L], fibwords[i-2L], sep=""))
}
str <- if (n > 7) replicate(n-7, "too long") else NULL
fibwords.print <- c(fibwords[1:min(n, 7)], str)
ret <- data.frame(Length=nchar(fibwords), Entropy=entropy(fibwords), Fibwords=fibwords.print)
rownames(ret) <- NULL
return(ret)
}
Output:
> fibwords(37)
Length Entropy Fibwords
1 1 0.0000000 1
2 1 0.0000000 0
3 2 1.0000000 01
4 3 0.9182958 010
5 5 0.9709506 01001
6 8 0.9544340 01001010
7 13 0.9612366 0100101001001
8 21 0.9587119 too long
9 34 0.9596869 too long
10 55 0.9593160 too long
11 89 0.9594579 too long
12 144 0.9594038 too long
13 233 0.9594244 too long
14 377 0.9594165 too long
15 610 0.9594196 too long
16 987 0.9594184 too long
17 1597 0.9594188 too long
18 2584 0.9594187 too long
19 4181 0.9594187 too long
20 6765 0.9594187 too long
21 10946 0.9594187 too long
22 17711 0.9594187 too long
23 28657 0.9594187 too long
24 46368 0.9594187 too long
25 75025 0.9594187 too long
26 121393 0.9594187 too long
27 196418 0.9594187 too long
28 317811 0.9594187 too long
29 514229 0.9594187 too long
30 832040 0.9594187 too long
31 1346269 0.9594187 too long
32 2178309 0.9594187 too long
33 3524578 0.9594187 too long
34 5702887 0.9594187 too long
35 9227465 0.9594187 too long
36 14930352 0.9594187 too long
37 24157817 0.9594187 too long
Racket
Uses [[Entropy]] Racket task implementation.
Not as minimal as is could be, since we might have needed scope for more interesting hooks for e.g. the [[Fibonacci word/fractal]].
So to start, a massively generalised version:
#lang racket
(provide F-Word gen-F-Word (struct-out f-word) f-word-max-length)
(require "entropy.rkt") ; save Entropy task implementation as "entropy.rkt"
(define f-word-max-length (make-parameter 80))
(define-struct f-word (str length count-0 count-1))
(define (string->f-word str)
(apply f-word str
(call-with-values
(λ ()
(for/fold
((l 0) (zeros 0) (ones 0))
((c str))
(match c
(#\0 (values (add1 l) (add1 zeros) ones))
(#\1 (values (add1 l) zeros (add1 ones))))))
list)))
(define F-Word# (make-hash))
(define (gen-F-Word n #:key-id key-id #:word-1 word-1 #:word-2 word-2 #:merge-fn merge-fn)
(define sub-F-Word (match-lambda (1 word-1) (2 word-2) ((? number? n) (merge-fn n))))
(hash-ref! F-Word# (list key-id (f-word-max-length) n) (λ () (sub-F-Word n))))
(define (F-Word n)
(define f-word-1 (string->f-word "1"))
(define f-word-2 (string->f-word "0"))
(define (f-word-merge>2 n)
(define f-1 (F-Word (- n 1)))
(define f-2 (F-Word (- n 2)))
(define length+ (+ (f-word-length f-1) (f-word-length f-2)))
(define count-0+ (+ (f-word-count-0 f-1) (f-word-count-0 f-2)))
(define count-1+ (+ (f-word-count-1 f-1) (f-word-count-1 f-2)))
(define str+
(if (and (f-word-max-length)
(> length+ (f-word-max-length)))
(format "<string too long (~a)>" length+)
(string-append (f-word-str f-1) (f-word-str f-2))))
(f-word str+ length+ count-0+ count-1+))
(gen-F-Word n
#:key-id 'words
#:word-1 f-word-1
#:word-2 f-word-2
#:merge-fn f-word-merge>2))
(module+ main
(parameterize ((f-word-max-length 80))
(for ((n (sequence-map add1 (in-range 37))))
(define W (F-Word n))
(define e (hash-entropy (hash 0 (f-word-count-0 W)
1 (f-word-count-1 W))))
(printf "~a ~a ~a ~a~%"
(~a n #:width 3 #:align 'right)
(~a (f-word-length W) #:width 9 #:align 'right)
(real->decimal-string e 12)
(~a (f-word-str W))))))
(module+ test
(require rackunit)
(check-match (F-Word 4) (f-word "010" _ _ _))
(check-match (F-Word 5) (f-word "01001" _ _ _))
(check-match (F-Word 8) (f-word "010010100100101001010" _ _ _)))
Output:
1 1 0.000000000000 1
2 1 0.000000000000 0
3 2 1.000000000000 01
4 3 0.918295834054 010
5 5 0.970950594455 01001
6 8 0.954434002925 01001010
7 13 0.961236604723 0100101001001
8 21 0.958711882977 010010100100101001010
9 34 0.959686893774 0100101001001010010100100101001001
10 55 0.959316032054 0100101001001010010100100101001001010010100100101001010
11 89 0.959457915839 <string too long (89)>
12 144 0.959403754221 <string too long (144)>
13 233 0.959424446956 <string too long (233)>
14 377 0.959416543740 <string too long (377)>
15 610 0.959419562603 <string too long (610)>
16 987 0.959418409515 <string too long (987)>
17 1597 0.959418849958 <string too long (1597)>
18 2584 0.959418681724 <string too long (2584)>
19 4181 0.959418745984 <string too long (4181)>
20 6765 0.959418721439 <string too long (6765)>
21 10946 0.959418730814 <string too long (10946)>
22 17711 0.959418727233 <string too long (17711)>
23 28657 0.959418728601 <string too long (28657)>
24 46368 0.959418728078 <string too long (46368)>
25 75025 0.959418728278 <string too long (75025)>
26 121393 0.959418728202 <string too long (121393)>
27 196418 0.959418728231 <string too long (196418)>
28 317811 0.959418728220 <string too long (317811)>
29 514229 0.959418728224 <string too long (514229)>
30 832040 0.959418728222 <string too long (832040)>
31 1346269 0.959418728223 <string too long (1346269)>
32 2178309 0.959418728223 <string too long (2178309)>
33 3524578 0.959418728223 <string too long (3524578)>
34 5702887 0.959418728223 <string too long (5702887)>
35 9227465 0.959418728223 <string too long (9227465)>
36 14930352 0.959418728223 <string too long (14930352)>
37 24157817 0.959418728223 <string too long (24157817)>
And a simpler implementation:
#lang racket
(define f-word-max-length (make-parameter 80))
(define-struct f-word (str length count-0 count-1))
(define F-Word# (make-hash))
(define (F-Word n)
(hash-ref!
F-Word#
(list (f-word-max-length) n)
(λ ()
(match n
(1 (f-word "1" 1 0 1))
(2 (f-word "0" 1 1 0))
((? number? n)
(define f-1 (F-Word (- n 1)))
(define f-2 (F-Word (- n 2)))
(define length+ (+ (f-word-length f-1) (f-word-length f-2)))
(define count-0+ (+ (f-word-count-0 f-1) (f-word-count-0 f-2)))
(define count-1+ (+ (f-word-count-1 f-1) (f-word-count-1 f-2)))
(define str+
(if (and (f-word-max-length)
(> length+ (f-word-max-length)))
(format "<string too long (~a)>" length+)
(string-append (f-word-str f-1) (f-word-str f-2))))
(f-word str+ length+ count-0+ count-1+))))))
(module+ test
(require rackunit)
(check-match (F-Word 4) (f-word "010" _ _ _))
(check-match (F-Word 5) (f-word "01001" _ _ _))
(check-match (F-Word 8) (f-word "010010100100101001010" _ _ _)))
REXX
Programming note: 32-bit Regina REXX (under Windows/XP) can execute this program with N='''42''' without exhausting system resources, the 64-bit version of Regina can calculate bigger Fibonacci words.
/*REXX program displays the number of chars in a fibonacci word, and the word's entropy.*/
d=20; de=d+6; numeric digits de /*use more precision (the default is 9)*/
parse arg N . /*get optional argument from the C.L. */
if N=='' | N=="," then N=42 /*Not specified? Then use the default.*/
say center('N', 5) center("length", 12) center('entropy', de) center("Fib word", 56)
say copies('─', 5) copies("─" , 12) copies('─' , de) copies("─" , 56)
c=1 /* [↓] display N fibonacci words. */
do j=1 for N; if j==2 then c=0 /*test for the case of J equals 2. */
if j==3 then parse value 1 0 with a b /* " " " " " " " 3. */
if j>2 then c=b || a; L=length(c) /*calculate the FIBword if we need to.*/
if L<56 then Fw= c
else Fw= '{the word is too wide to display, length is: ' L"}"
say right(j,4) right(L,12) ' ' entropy() " " Fw
a=b; b=c /*define the new values for A and B.*/
end /*j*/ /*display text msg; */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
entropy: if L==1 then return left(0, d+2) /*handle special case of one character.*/
!.0=length( space( translate(c,,1), 0)) /*efficient way to count the "zeroes".*/
!.1=L-!.0; $=0; do i=1 for 2; _=i-1 /*construct character from the ether. */
$=$ -!._/L*log2(!._/L) /*add (negatively) the entropies. */
end /*i*/
if $=1 then return left(1, d+2) /*return a left─justified "1" (one). */
return format($,,d) /*normalize the sum (S) number. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
log2: procedure; parse arg x 1 xx; ig=x>1.5; is=1-2*(ig\==1); numeric digits 5+digits()
e=2.71828182845904523536028747135266249775724709369995957496696762772407663035354759
m=0; do while ig & xx>1.5 | \ig&xx<.5; _=e; do j=-1; iz=xx* _ ** - is
if j>=0 then if ig & iz<1 | \ig&iz>.5 then leave; _=_*_; izz=iz; end /*j*/
xx=izz; m=m+is*2**j; end /*while*/; x=x* e** -m -1; z=0; _=-1; p=z
do k=1; _=-_*x; z=z+_/k; if z=p then leave; p=z; end /*k*/
r=z+m; if arg()==2 then return r; return r / log2(2,.)
'''output''' for the first 42 Fibonacci words:
N length entropy Fib word
───── ──────────── ────────────────────────── ────────────────────────────────────────────────────────
1 1 0 1
2 1 0 0
3 2 1 01
4 3 0.91829583405448951479 010
5 5 0.97095059445466863900 01001
6 8 0.95443400292496496454 01001010
7 13 0.96123660472287587275 0100101001001
8 21 0.95871188297713180865 010010100100101001010
9 34 0.95968689377421693320 0100101001001010010100100101001001
10 55 0.95931603205437767775 0100101001001010010100100101001001010010100100101001010
11 89 0.95945791583866946166 {the word is too wide to display, length is: 89}
12 144 0.95940375422102292947 {the word is too wide to display, length is: 144}
13 233 0.95942444695598675869 {the word is too wide to display, length is: 233}
14 377 0.95941654374044073872 {the word is too wide to display, length is: 377}
15 610 0.95941956260314415023 {the word is too wide to display, length is: 610}
16 987 0.95941840951522431271 {the word is too wide to display, length is: 987}
17 1597 0.95941884995780985568 {the word is too wide to display, length is: 1597}
18 2584 0.95941868172403210665 {the word is too wide to display, length is: 2584}
19 4181 0.95941874598366381433 {the word is too wide to display, length is: 4181}
20 6765 0.95941872143867541464 {the word is too wide to display, length is: 6765}
21 10946 0.95941873081402772313 {the word is too wide to display, length is: 10946}
22 17711 0.95941872723296194271 {the word is too wide to display, length is: 17711}
23 28657 0.95941872860080737603 {the word is too wide to display, length is: 28657}
24 46368 0.95941872807833691494 {the word is too wide to display, length is: 46368}
25 75025 0.95941872827790287341 {the word is too wide to display, length is: 75025}
26 121393 0.95941872820167546034 {the word is too wide to display, length is: 121393}
27 196418 0.95941872823079174127 {the word is too wide to display, length is: 196418}
28 317811 0.95941872821967031158 {the word is too wide to display, length is: 317811}
29 514229 0.95941872822391831972 {the word is too wide to display, length is: 514229}
30 832040 0.95941872822229572499 {the word is too wide to display, length is: 832040}
31 1346269 0.95941872822291550103 {the word is too wide to display, length is: 1346269}
32 2178309 0.95941872822267876765 {the word is too wide to display, length is: 2178309}
33 3524578 0.95941872822276919175 {the word is too wide to display, length is: 3524578}
34 5702887 0.95941872822273465282 {the word is too wide to display, length is: 5702887}
35 9227465 0.95941872822274784552 {the word is too wide to display, length is: 9227465}
36 14930352 0.95941872822274280635 {the word is too wide to display, length is: 14930352}
37 24157817 0.95941872822274473114 {the word is too wide to display, length is: 24157817}
38 39088169 0.95941872822274399594 {the word is too wide to display, length is: 39088169}
39 63245986 0.95941872822274427676 {the word is too wide to display, length is: 63245986}
40 102334155 0.95941872822274416950 {the word is too wide to display, length is: 102334155}
41 165580141 0.95941872822274421047 {the word is too wide to display, length is: 165580141}
42 267914296 0.95941872822274419482 {the word is too wide to display, length is: 267914296}
Ring
# Project : Fibonacci word
fw1 = "1"
fw2 = "0"
see "N Length Entropy Word" + nl
n = 1
see "" + n + " " + len(fw1) + " " + calcentropy(fw1,2) + " " + fw1 + nl
n = 2
see "" + n + " " + len(fw2) + " " + calcentropy(fw2,2) + " " + fw2 + nl
for n = 1 to 55
fw3 = fw2 + fw1
temp = fw2
fw2 = fw3
fw1 = temp
if len(fw3) < 55
see "" + (n+2) + " " + len(fw3) + " " + calcentropy(fw3,2) + " " + fw3 + nl
ok
next
func calcentropy(source,b)
decimals(11)
entropy = 0
countOfChar = list(255)
charCount =len( source)
usedChar =""
for i =1 to len( source)
ch =substr(source, i, 1)
if not(substr( usedChar, ch))
usedChar =usedChar +ch
ok
j =substr( usedChar, ch)
countOfChar[j] =countOfChar[j] +1
next
l =len(usedChar)
for i =1 to l
probability =countOfChar[i] /charCount
entropy =entropy - (probability *logBase(probability, 2))
next
return entropy
func swap(a, b)
temp = a
a = b
b = temp
return [a, b]
func logBase (x, b)
logBase =log( x) /log( 2)
return logBase
Output:
N Length Entropy Word
1 1 0.000000000000000 1
2 1 0.000000000000000 0
3 2 1.000000000000000 01
4 3 0.918295834054490 010
5 5 0.970950594454669 01001
6 8 0.954434002924965 01001010
7 13 0.961236604722876 0100101001001
8 21 0.958711882977132 010010100100101001010
9 34 0.959686893774217 0100101001001010010100100101001001
10 55 0.959316032054378
11 89 0.959457915838670
12 144 0.959403754221023
13 233 0.959424446955987
14 377 0.959416543740441
15 610 0.959419562603144
16 987 0.959418409515224
17 1597 0.959418849957810
18 2584 0.959418681724032
19 4181 0.959418745983664
20 6765 0.959418721438676
21 10946 0.959418730814028
22 17711 0.959418727232962
23 28657 0.959418728600807
24 46368 0.959418728078337
25 75025 0.959418728277903
26 121393 0.959418728201675
27 196418 0.959418728230792
28 317811 0.959418728219670
29 514229 0.959418728223918
30 832040 0.959418728222296
31 1346269 0.959418728222916
32 2178309 0.959418728222679
33 3524578 0.959418728222769
34 5702887 0.959418728222735
35 9227465 0.959418728222748
36 14930352 0.959418728222743
37 24157817 0.959418728222745
Ruby
Includes code for entropy from [[Entropy#Ruby|Entropy]] page.
#encoding: ASCII-8BIT
def entropy(s)
counts = Hash.new(0.0)
s.each_char { |c| counts[c] += 1 }
leng = s.length
counts.values.reduce(0) do |entropy, count|
freq = count / leng
entropy - freq * Math.log2(freq)
end
end
n_max = 37
words = ['1', '0']
for n in words.length ... n_max
words << words[-1] + words[-2]
end
puts '%3s %9s %15s %s' % %w[N Length Entropy Fibword]
words.each.with_index(1) do |word, i|
puts '%3i %9i %15.12f %s' % [i, word.length, entropy(word), word.length<60 ? word : '<too long>']
end
{{out}}
N Length Entropy Fibword
1 1 0.000000000000 1
2 1 0.000000000000 0
3 2 1.000000000000 01
4 3 0.918295834054 010
5 5 0.970950594455 01001
6 8 0.954434002925 01001010
7 13 0.961236604723 0100101001001
8 21 0.958711882977 010010100100101001010
9 34 0.959686893774 0100101001001010010100100101001001
10 55 0.959316032054 0100101001001010010100100101001001010010100100101001010
11 89 0.959457915839 <too long>
12 144 0.959403754221 <too long>
13 233 0.959424446956 <too long>
14 377 0.959416543740 <too long>
15 610 0.959419562603 <too long>
16 987 0.959418409515 <too long>
17 1597 0.959418849958 <too long>
18 2584 0.959418681724 <too long>
19 4181 0.959418745984 <too long>
20 6765 0.959418721439 <too long>
21 10946 0.959418730814 <too long>
22 17711 0.959418727233 <too long>
23 28657 0.959418728601 <too long>
24 46368 0.959418728078 <too long>
25 75025 0.959418728278 <too long>
26 121393 0.959418728202 <too long>
27 196418 0.959418728231 <too long>
28 317811 0.959418728220 <too long>
29 514229 0.959418728224 <too long>
30 832040 0.959418728222 <too long>
31 1346269 0.959418728223 <too long>
32 2178309 0.959418728223 <too long>
33 3524578 0.959418728223 <too long>
34 5702887 0.959418728223 <too long>
35 9227465 0.959418728223 <too long>
36 14930352 0.959418728223 <too long>
37 24157817 0.959418728223 <too long>
Rust
This is not implemented in any sort of generic way and is probably fairly inefficient.
{
curr: T,
next: T,
}
impl<T> Fib<T> {
fn new(curr: T, next: T) -> Self {
Fib { curr: curr, next: next, }
}
}
impl Iterator for Fib<String> {
type Item = String;
fn next(&mut self) -> Option<Self::Item> {
let ret = self.curr.clone();
self.curr = self.next.clone();
self.next = format!("{}{}", ret, self.next);
Some(ret)
}
}
fn get_entropy(s: &[u8]) -> f64 {
let mut entropy = 0.0;
let mut histogram = [0.0; 256];
for i in 0..s.len() {
histogram.get_mut(s[i] as usize).map(|v| *v += 1.0);
}
for i in 0..256 {
if histogram[i] > 0.0 {
let ratio = histogram[i] / s.len() as f64;
entropy -= ratio * ratio.log2();
}
}
entropy
}
fn main() {
let f = Fib::new("1".to_string(), "0".to_string());
println!("{:10} {:10} {:10} {:60}", "N", "Length", "Entropy", "Word");
for (i, s) in f.take(37).enumerate() {
let word = if s.len() > 60 {"Too long"} else {&*s};
println!("{:10} {:10} {:.10} {:60}", i + 1, s.len(), get_entropy(&s.bytes().collect::<Vec<_>>()), word);
}
}
{{out}}
N Length Entropy Word
1 1 0.0000000000 1
2 1 0.0000000000 0
3 2 1.0000000000 10
4 3 0.9182958341 010
5 5 0.9709505945 10010
6 8 0.9544340029 01010010
7 13 0.9612366047 1001001010010
8 21 0.9587118830 010100101001001010010
9 34 0.9596868938 1001001010010010100101001001010010
10 55 0.9593160321 0101001010010010100101001001010010010100101001001010010
11 89 0.9594579158 Too long
12 144 0.9594037542 Too long
13 233 0.9594244470 Too long
14 377 0.9594165437 Too long
15 610 0.9594195626 Too long
16 987 0.9594184095 Too long
17 1597 0.9594188500 Too long
18 2584 0.9594186817 Too long
19 4181 0.9594187460 Too long
20 6765 0.9594187214 Too long
21 10946 0.9594187308 Too long t
22 17711 0.9594187272 Too long
23 28657 0.9594187286 Too long
24 46368 0.9594187281 Too long
25 75025 0.9594187283 Too long
26 121393 0.9594187282 Too long
27 196418 0.9594187282 Too long
28 317811 0.9594187282 Too long
29 514229 0.9594187282 Too long
30 832040 0.9594187282 Too long
31 1346269 0.9594187282 Too long
32 2178309 0.9594187282 Too long
33 3524578 0.9594187282 Too long
34 5702887 0.9594187282 Too long
35 9227465 0.9594187282 Too long
36 14930352 0.9594187282 Too long
37 24157817 0.9594187282 Too long
Scala
//word iterator
def fibIt = Iterator.iterate(("1","0")){case (f1,f2) => (f2,f1+f2)}.map(_._1)
//entropy calculator
def entropy(src: String): Double = {
val xs = src.groupBy(identity).map(_._2.length)
var result = 0.0
xs.foreach{c =>
val p = c.toDouble / src.length
result -= p * (Math.log(p) / Math.log(2))
}
result
}
//printing (spaces inserted to get the tabs align properly)
val it = fibIt.zipWithIndex.map(w => (w._2, w._1.length, entropy(w._1)))
println(it.take(37).map{case (n,l,e) => s"$n).\t$l \t$e"}.mkString("\n"))
{{out}}
0). 1 0.0
1). 1 0.0
2). 2 1.0
3). 3 0.9182958340544896
4). 5 0.9709505944546686
5). 8 0.9544340029249649
6). 13 0.961236604722876
7). 21 0.9587118829771318
8). 34 0.9596868937742169
9). 55 0.9593160320543777
10). 89 0.9594579158386696
11). 144 0.959403754221023
12). 233 0.9594244469559867
13). 377 0.9594165437404407
14). 610 0.9594195626031441
15). 987 0.9594184095152245
16). 1597 0.9594188499578099
17). 2584 0.9594186817240321
18). 4181 0.9594187459836638
19). 6765 0.9594187214386756
20). 10946 0.9594187308140278
21). 17711 0.959418727232962
22). 28657 0.9594187286008073
23). 46368 0.9594187280783371
24). 75025 0.9594187282779029
25). 121393 0.9594187282016755
26). 196418 0.9594187282307918
27). 317811 0.9594187282196702
28). 514229 0.9594187282239184
29). 832040 0.9594187282222959
30). 1346269 0.9594187282229156
31). 2178309 0.9594187282226789
32). 3524578 0.9594187282227691
33). 5702887 0.9594187282227347
34). 9227465 0.9594187282227479
35). 14930352 0.9594187282227429
36). 24157817 0.9594187282227448
Scheme
(import (scheme base)
(scheme inexact)
(scheme write))
(define *words* (make-vector 38 ""))
(define (create-words)
(vector-set! *words* 1 "1")
(vector-set! *words* 2 "0")
(do ((i 3 (+ 1 i)))
((= i (vector-length *words*)) )
(vector-set! *words* i (string-append (vector-ref *words* (- i 1))
(vector-ref *words* (- i 2))))))
;; in this context, word only contains 1 or 0
(define (entropy word)
(let* ((N (string-length word))
(num-ones 0)
(num-zeros 0))
(string-for-each (lambda (c)
(if (char=? c #\1)
(set! num-ones (+ 1 num-ones))
(set! num-zeros (+ 1 num-zeros))))
word)
(if (or (zero? num-ones) (zero? num-zeros))
0
(- 0
(* (/ num-ones N) (log (/ num-ones N) 2))
(* (/ num-zeros N) (log (/ num-zeros N) 2))))))
;; display values
(create-words)
(do ((i 1 (+ 1 i)))
((= i (vector-length *words*)) )
(display (string-append (number->string i)
" "
(number->string
(string-length (vector-ref *words* i)))
" "
(number->string
(entropy (vector-ref *words* i)))
"\n")))
{{out}}
1 1 0
2 1 0
3 2 1.0
4 3 0.9182958340544896
5 5 0.9709505944546686
6 8 0.9544340029249649
7 13 0.961236604722876
8 21 0.9587118829771318
9 34 0.9596868937742169
10 55 0.9593160320543777
11 89 0.9594579158386696
12 144 0.959403754221023
13 233 0.9594244469559867
14 377 0.9594165437404407
15 610 0.9594195626031441
16 987 0.9594184095152245
17 1597 0.9594188499578099
18 2584 0.9594186817240321
19 4181 0.9594187459836638
20 6765 0.9594187214386756
21 10946 0.9594187308140278
22 17711 0.959418727232962
23 28657 0.9594187286008073
24 46368 0.9594187280783371
25 75025 0.9594187282779029
26 121393 0.9594187282016755
27 196418 0.9594187282307918
28 317811 0.9594187282196702
29 514229 0.9594187282239184
30 832040 0.9594187282222959
31 1346269 0.9594187282229156
32 2178309 0.9594187282226789
33 3524578 0.9594187282227691
34 5702887 0.9594187282227347
35 9227465 0.9594187282227479
36 14930352 0.9594187282227429
37 24157817 0.9594187282227448
Scilab
Two different approaches were implemented, and their execution times can be compared. Both examples use Scilab's [[Entropy#Scilab|entropy]] example. It is worth noting that the time spent executing entropy() is quite significant when using the iterative method, e.g. it usually takes 27 times longer to calculate the 37th word's entropy than it takes to generate it.
Recursive function
function word=fiboword(n) word_1 = '1'; word_2 = '0'; select n case 1 word = word_1 case 2 word = word_2; case 3 word = strcat([word_2 word_1]); else word = strcat([fiboword(n-1) fiboword(n-2)]) end endfunction
final_length = 37;
N=[1:final_length]'; char_length = zeros(N); entropies = zeros(N); tic(); for i=1:final_length word = fiboword(i); char_length(i) = length(word); entropies(i) = entropy(word); end time = toc();
disp('EXECUTION TIME: '+string(time)+'s.'); disp(['N', 'LENGTH', 'ENTROPY'; string([N char_length entropies])]);
{{out}}
```txt
EXECUTION TIME: 442.87612s.
!N LENGTH ENTROPY !
! !
!1 1 0 !
! !
!2 1 0 !
! !
!3 2 1 !
! !
!4 3 0.9182958 !
! !
!5 5 0.9709506 !
! !
!6 8 0.954434 !
! !
!7 13 0.9612366 !
! !
!8 21 0.9587119 !
! !
!9 34 0.9596869 !
! !
!10 55 0.9593160 !
! !
!11 89 0.9594579 !
! !
!12 144 0.9594038 !
! !
!13 233 0.9594244 !
! !
!14 377 0.9594165 !
! !
!15 610 0.9594196 !
! !
!16 987 0.9594184 !
! !
!17 1597 0.9594188 !
! !
!18 2584 0.9594187 !
! !
!19 4181 0.9594187 !
! !
!20 6765 0.9594187 !
! !
!21 10946 0.9594187 !
! !
!22 17711 0.9594187 !
! !
!23 28657 0.9594187 !
! !
!24 46368 0.9594187 !
! !
!25 75025 0.9594187 !
! !
!26 121393 0.9594187 !
! !
!27 196418 0.9594187 !
! !
!28 317811 0.9594187 !
! !
!29 514229 0.9594187 !
! !
!30 832040 0.9594187 !
! !
!31 1346269 0.9594187 !
! !
!32 2178309 0.9594187 !
! !
!33 3524578 0.9594187 !
! !
!34 5702887 0.9594187 !
! !
!35 9227465 0.9594187 !
! !
!36 14930352 0.9594187 !
! !
!37 24157817 0.9594187 !
Iterative method
final_length = 37;
word_n = ''; word_n_1 = ''; word_n_2 = '';
N = [1:final_length]'; word_length = zeros(N); entropies = zeros(N);
tic(); for i = 1:final_length if i == 1 then word_n = '1'; elseif i == 2 word_n = '0'; elseif i == 3 word_n = '01'; word_n_1 = '0'; else word_n_2 = word_n_1; word_n_1 = word_n; word_n = word_n_1 + word_n_2; end word_length(i) = length(word_n); entropies(i) = entropy(word_n); end time = toc();
disp('EXECUTION TIME: '+string(time)+'s.'); disp(['N', 'LENGTH', 'ENTROPY'; string([N word_length entropies])]);
{{out}}
```txt
EXECUTION TIME: 37.962248s.
!N LENGTH ENTROPY !
! !
!1 1 0 !
! !
!2 1 0 !
! !
!3 2 1 !
! !
!4 3 0.9182958 !
! !
!5 5 0.9709506 !
! !
!6 8 0.954434 !
! !
!7 13 0.9612366 !
! !
!8 21 0.9587119 !
! !
!9 34 0.9596869 !
! !
!10 55 0.9593160 !
! !
!11 89 0.9594579 !
! !
!12 144 0.9594038 !
! !
!13 233 0.9594244 !
! !
!14 377 0.9594165 !
! !
!15 610 0.9594196 !
! !
!16 987 0.9594184 !
! !
!17 1597 0.9594188 !
! !
!18 2584 0.9594187 !
! !
!19 4181 0.9594187 !
! !
!20 6765 0.9594187 !
! !
!21 10946 0.9594187 !
! !
!22 17711 0.9594187 !
! !
!23 28657 0.9594187 !
! !
!24 46368 0.9594187 !
! !
!25 75025 0.9594187 !
! !
!26 121393 0.9594187 !
! !
!27 196418 0.9594187 !
! !
!28 317811 0.9594187 !
! !
!29 514229 0.9594187 !
! !
!30 832040 0.9594187 !
! !
!31 1346269 0.9594187 !
! !
!32 2178309 0.9594187 !
! !
!33 3524578 0.9594187 !
! !
!34 5702887 0.9594187 !
! !
!35 9227465 0.9594187 !
! !
!36 14930352 0.9594187 !
! !
!37 24157817 0.9594187 !
Seed7
$ include "seed7_05.s7i";
include "float.s7i";
include "math.s7i";
const func float: entropy (in string: stri) is func
result
var float: entropy is 0.0;
local
var hash [char] integer: count is (hash [char] integer).value;
var char: ch is ' ';
var float: p is 0.0;
begin
for ch range stri do
if ch in count then
incr(count[ch]);
else
count @:= [ch] 1;
end if;
end for;
for key ch range count do
p := flt(count[ch]) / flt(length(stri));
entropy -:= p * log(p) / log(2.0);
end for;
end func ;
const func string: fibWord (in integer: number) is func
result
var string: fibWord is "1";
local
var integer: i is 0;
var string: a is "1";
var string: c is "";
begin
if number >= 2 then
fibWord := "0";
for i range 3 to number do
c := a;
a := fibWord;
fibWord &:= c;
end for;
end if;
end func;
const proc: main is func
local
var integer: index is 0;
var string: fibWord is "";
begin
for index range 1 to 37 do
fibWord := fibWord(index);
writeln(index lpad 2 <& length(fibWord) lpad 10 <& " " <& entropy(fibWord) digits 15);
end for;
end func;
{{out}}
1 1 0.000000000000000
2 1 0.000000000000000
3 2 1.000000000000000
4 3 0.918295834054490
5 5 0.970950594454669
6 8 0.954434002924965
7 13 0.961236604722876
8 21 0.958711882977132
9 34 0.959686893774217
10 55 0.959316032054378
11 89 0.959457915838670
12 144 0.959403754221023
13 233 0.959424446955987
14 377 0.959416543740441
15 610 0.959419562603144
16 987 0.959418409515225
17 1597 0.959418849957810
18 2584 0.959418681724032
19 4181 0.959418745983664
20 6765 0.959418721438675
21 10946 0.959418730814028
22 17711 0.959418727232962
23 28657 0.959418728600807
24 46368 0.959418728078337
25 75025 0.959418728277903
26 121393 0.959418728201676
27 196418 0.959418728230792
28 317811 0.959418728219670
29 514229 0.959418728223918
30 832040 0.959418728222296
31 1346269 0.959418728222916
32 2178309 0.959418728222679
33 3524578 0.959418728222769
34 5702887 0.959418728222735
35 9227465 0.959418728222748
36 14930352 0.959418728222743
37 24157817 0.959418728222745
Sidef
{{trans|Ruby}}
func entropy(s) {
[0] + (s.chars.freq.values »/» s.len) -> reduce { |a,b|
a - b*b.log2
}
}
var n_max = 37
var words = ['1', '0']
{
words.append(words[-1] + words[-2])
} * (n_max - words.len)
say ('%3s %10s %15s %s' % <N Length Entropy Fibword>...)
for i in ^words {
var word = words[i]
say ('%3i %10i %15.12f %s' % (i+1,
word.len,
entropy(word),
word.len<30 ? word : '<too long>'))
}
Tcl
proc fibwords {n} {
set fw {1 0}
while {[llength $fw] < $n} {
lappend fw [lindex $fw end][lindex $fw end-1]
}
return $fw
}
proc fibwordinfo {num word} {
# Entropy calculator from Tcl solution of that task
set log2 [expr log(2)]
set len [string length $word]
foreach char [split $word ""] {dict incr counts $char}
set entropy 0.0
foreach count [dict values $counts] {
set freq [expr {$count / double($len)}]
set entropy [expr {$entropy - $freq * log($freq)/$log2}]
}
# Output formatting from Clojure solution
puts [format "%2d %10d %.15f %s" $num $len $entropy \
[if {$len < 35} {set word} {subst "<too long>"}]]
}
# Output formatting from Clojure solution
puts [format "%2s %10s %17s %s" N Length Entropy Fibword]
foreach word [fibwords 37] {
fibwordinfo [incr i] $word
}
{{out}}
N Length Entropy Fibword
1 1 0.000000000000000 1
2 1 0.000000000000000 0
3 2 1.000000000000000 01
4 3 0.918295834054490 010
5 5 0.970950594454669 01001
6 8 0.954434002924965 01001010
7 13 0.961236604722876 0100101001001
8 21 0.958711882977132 010010100100101001010
9 34 0.959686893774217 0100101001001010010100100101001001
10 55 0.959316032054378 <too long>
11 89 0.959457915838670 <too long>
12 144 0.959403754221023 <too long>
13 233 0.959424446955987 <too long>
14 377 0.959416543740441 <too long>
15 610 0.959419562603144 <too long>
16 987 0.959418409515225 <too long>
17 1597 0.959418849957810 <too long>
18 2584 0.959418681724032 <too long>
19 4181 0.959418745983664 <too long>
20 6765 0.959418721438675 <too long>
21 10946 0.959418730814028 <too long>
22 17711 0.959418727232962 <too long>
23 28657 0.959418728600807 <too long>
24 46368 0.959418728078337 <too long>
25 75025 0.959418728277903 <too long>
26 121393 0.959418728201676 <too long>
27 196418 0.959418728230792 <too long>
28 317811 0.959418728219670 <too long>
29 514229 0.959418728223918 <too long>
30 832040 0.959418728222296 <too long>
31 1346269 0.959418728222916 <too long>
32 2178309 0.959418728222679 <too long>
33 3524578 0.959418728222769 <too long>
34 5702887 0.959418728222735 <too long>
35 9227465 0.959418728222748 <too long>
36 14930352 0.959418728222743 <too long>
37 24157817 0.959418728222745 <too long>
zkl
{{trans|D}} {{trans|Python}}
fcn entropy(bs){ //binary String-->Float
len:=bs.len(); num1s:=(bs-"0").len();
T(num1s,len-num1s).filter().apply('wrap(p){ p=p.toFloat()/len; -p*p.log() })
.sum(0.0) / (2.0).log();
}
" N Length Entropy Fibword".println();
ws:=L("1","0");
foreach n in ([1..37]){
if(n>2) ws.append(ws[-1]+ws[-2]);
w:=ws[-1];
"%3d %10d %2.10f %s".fmt(n,w.len(),entropy(w),
w.len()<50 and w or "<too long>").println();
}
{{out}}
N Length Entropy Fibword
1 1 0.0000000000 0
2 1 0.0000000000 0
3 2 1.0000000000 01
4 3 0.9182958341 010
5 5 0.9709505945 01001
6 8 0.9544340029 01001010
7 13 0.9612366047 0100101001001
8 21 0.9587118830 010010100100101001010
9 34 0.9596868938 0100101001001010010100100101001001
10 55 0.9593160321 <too long>
...
36 14930352 0.9594187282 <too long>
37 24157817 0.9594187282 <too long>
ZX Spectrum Basic
{{trans|FreeBASIC}}
10 LET x$="1": LET y$="0": LET z$=""
20 PRINT "N, Length, Entropy, Word"
30 LET n=1
40 PRINT n;" ";LEN x$;" ";
50 LET s$=x$: LET base=2: GO SUB 1000
60 PRINT entropy
70 PRINT x$
80 LET n=2
90 PRINT n;" ";LEN y$;" ";
100 LET s$=y$: GO SUB 1000
110 PRINT entropy
120 PRINT y$
130 FOR n=1 TO 18
140 LET x$="1": LET y$="0"
150 FOR i=1 TO n
160 LET z$=y$+x$
170 LET p$=x$: LET x$=y$: LET y$=p$
180 LET p$=y$: LET y$=z$: LET z$=p$
190 NEXT i
200 LET x$="": LET z$=""
210 LET s$=y$: GO SUB 1000
220 PRINT n+2;" ";LEN y$;" ";entropy
230 PRINT y$ AND (LEN y$<32)
240 NEXT n
250 STOP
1000 REM Calculate entropy
1010 LET sourcelen=LEN s$: LET entropy=0
1020 DIM t(255)
1030 FOR j=1 TO sourcelen
1040 LET digit=VAL s$(j)+1: LET t(digit)=t(digit)+1
1050 NEXT j
1060 FOR j=1 TO 255
1070 IF t(j)>0 THEN LET prop=t(j)/sourcelen: LET entropy=entropy-(prop*LN (prop)/LN (base))
1080 NEXT j
1090 RETURN