⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
[[Category:Palindromes]]
{{task}} ;Task:
- Find and show (in decimal) the first six numbers (non-negative integers) that are [[Palindrome detection|palindromes]] in ''both'': :::* base 2 :::* base 3
- Display '''0''' (zero) as the first number found, even though some other definitions ignore it.
- Optionally, show the decimal number found in its binary and ternary form.
- Show all output here.
It's permissible to assume the first two numbers and simply list them.
;See also
- [[oeis:A060792|Sequence A60792]], numbers that are palindromic in bases 2 and 3 on ''The On-Line Encyclopedia of Integer Sequences''.
Ada
===Simple Technique (Brute Force)===
with Ada.Text_IO, Base_Conversion;
procedure Brute is
type Long is range 0 .. 2**63-1;
package BC is new Base_Conversion(Long);
function Palindrome (S : String) return Boolean is
(if S'Length < 2 then True
elsif S(S'First) /= S(S'Last) then False
else Palindrome(S(S'First+1 .. S'Last-1)));
function Palindrome(N: Long; Base: Natural) return Boolean is
(Palindrome(BC.Image(N, Base =>Base)));
package IIO is new Ada.Text_IO.Integer_IO(Long);
begin
for I in Long(1) .. 10**8 loop
if Palindrome(I, 3) and then Palindrome(I, 2) then
IIO.Put(I, Width => 12); -- prints I (Base 10)
Ada.Text_IO.Put_Line(": " & BC.Image(I, Base => 2) & "(2)" &
", " & BC.Image(I, Base => 3) & "(3)");
-- prints I (Base 2 and Base 3)
end if;
end loop;
end Brute;
{{out}}
0: 0(2), 0(3)
1: 1(2), 1(3)
6643: 1100111110011(2), 100010001(3)
1422773: 101011011010110110101(2), 2200021200022(3)
5415589: 10100101010001010100101(2), 101012010210101(3)
For larger numbers, this is a bit slow.
Advanced Technique
To speed this up, we directly generate palindromes to the base 3 and then check if these are also palindromes to the base 2. We use the fact that these palindromes (to the base 3) must have an odd number of digits (to the base 2 and 3) and that the number in the middle is a 1 (to the base 3). We use unsigned 64 bits integers that we consider as array of 64 bits thanks to a function Int_To_Bits (an instantiation of a generic conversion function) that goes from one type to the other immediately. We can now access the i'th bit of an Int in a very efficient way (since it is chosen by the compiler itself). This trick gives us a very efficient function to test if a number is a base-2 palindrome.
The code is then very fast and also very much readable than if we had done the bit manipulations by hand.
with Ada.Text_IO, Ada.Unchecked_Conversion;use Ada.Text_IO;
procedure Palindromic is
type Int is mod 2**64; -- the size of the unsigned values we will test doesn't exceed 64 bits
type Bits is array (0..63) of Boolean;
for Bits'Component_Size use 1;
-- This function allows us to get the i'th bit of an Int k by writing Int_To_Bits(k)(i)
function Int_To_Bits is new Ada.Unchecked_Conversion(Int,Bits);
-- an inline function to test if k is palindromic in a very efficient way since we leave the loop
-- as soon as two bits are not symmetric). Number_Of_Digits is the number of digits (in base 2) of k minus 1
function Is_Pal2 (k : Int;Number_Of_Digits : Natural) return Boolean is
(for all i in 0..Number_Of_Digits=>Int_To_Bits(k)(i)=Int_To_Bits(k)(Number_Of_Digits-i));
function Reverse_Number (k : Int) return Int is --returns the symmetric representation of k (base-3)
n : Int := 0;
p : Int := k;
begin
while 0<p loop
n := n * 3 + p mod 3;
p := p / 3;
end loop;
return n;
end reverse_number;
procedure Print (n : Int) is
package BC is new Ada.Text_IO.Modular_IO (Int); use BC; -- allows us to express a variable of modular type in a given base
begin
Put (n, Base=>2, Width=>65); Put (n, Base=>3, Width=>45); put_line (" " & n'Img);
end Print;
p3, n, bound, count_pal: Int := 1;
begin
Print (0); -- because 0 is the special case asked to be treated, that is why count_pal=1
Process_Each_Power_Of_4 : for p in 0..31 loop -- because 4^p < 2^64
-- adjust the 3-power of the number to test so that the palindrome built with it has an odd number of digits in base-2
while (3*p3+1)*p3 < 2**(2*p) loop p3 := 3*p3;end loop;
bound := 2**(2*p)/(3*p3);
for k in Int range Int'Max(p3/3, bound) .. Int'Min (2*bound,p3-1) loop
n := (3*k+1)*p3 + Reverse_Number (k); -- n is a 2p+1 digits number in base 2 and is a palindrome in base 3.
if Is_Pal2 (n, 2*p) then
Print (n);
count_pal := count_pal + 1;
exit Process_Each_Power_Of_4 when count_pal = 7;
end if;
end loop;
end loop Process_Each_Power_Of_4;
end Palindromic;
{{out}} On a modern machine, (core i5 for example), this code, compiled with the -O3 and -gnatp options, takes less than 5 seconds to give the seven first palindromes smaller than 2^64.
2#0# 3#0# 0
2#1# 3#1# 1
2#1100111110011# 3#100010001# 6643
2#101011011010110110101# 3#2200021200022# 1422773
2#10100101010001010100101# 3#101012010210101# 5415589
2#1010100001100000100010000011000010101# 3#22122022220102222022122# 90396755477
2#10101001100110110110001110011011001110001101101100110010101# 3#2112200222001222121212221002220022112# 381920985378904469
C
Per the observations made by the Ruby code (which are correct), the numbers must have odd number of digits in base 3 with a 1 at the middle, and must have odd number of digits in base 2.
#include <stdio.h>
typedef unsigned long long xint;
int is_palin2(xint n)
{
xint x = 0;
if (!(n&1)) return !n;
while (x < n) x = x<<1 | (n&1), n >>= 1;
return n == x || n == x>>1;
}
xint reverse3(xint n)
{
xint x = 0;
while (n) x = x*3 + (n%3), n /= 3;
return x;
}
void print(xint n, xint base)
{
putchar(' ');
// printing digits backwards, but hey, it's a palindrome
do { putchar('0' + (n%base)), n /= base; } while(n);
printf("(%lld)", base);
}
void show(xint n)
{
printf("%llu", n);
print(n, 2);
print(n, 3);
putchar('\n');
}
xint min(xint a, xint b) { return a < b ? a : b; }
xint max(xint a, xint b) { return a > b ? a : b; }
int main(void)
{
xint lo, hi, lo2, hi2, lo3, hi3, pow2, pow3, i, n;
int cnt;
show(0);
cnt = 1;
lo = 0;
hi = pow2 = pow3 = 1;
while (1) {
for (i = lo; i < hi; i++) {
n = (i * 3 + 1) * pow3 + reverse3(i);
if (!is_palin2(n)) continue;
show(n);
if (++cnt >= 7) return 0;
}
if (i == pow3)
pow3 *= 3;
else
pow2 *= 4;
while (1) {
while (pow2 <= pow3) pow2 *= 4;
lo2 = (pow2 / pow3 - 1) / 3;
hi2 = (pow2 * 2 / pow3 - 1) / 3 + 1;
lo3 = pow3 / 3;
hi3 = pow3;
if (lo2 >= hi3)
pow3 *= 3;
else if (lo3 >= hi2)
pow2 *= 4;
else {
lo = max(lo2, lo3);
hi = min(hi2, hi3);
break;
}
}
}
return 0;
}
{{out}}
0 0(2) 0(3)
1 1(2) 1(3)
6643 1100111110011(2) 100010001(3)
1422773 101011011010110110101(2) 2200021200022(3)
5415589 10100101010001010100101(2) 101012010210101(3)
90396755477 1010100001100000100010000011000010101(2) 22122022220102222022122(3)
381920985378904469 10101001100110110110001110011011001110001101101100110010101(2) 2112200222001222121212221002220022112(3)
C#
{{works with|C sharp|3}}
No strings involved. Ternary numbers (only of odd length and with a 1 in the middle) are generated by permutating powers of 3
and then checked to see if they are palindromic in binary.
The first 6 numbers take about 1/10th of a second. The 7th number takes about 3 and a half minutes.
using System;
using System.Collections.Generic;
using System.Linq;
public class FindPalindromicNumbers
{
static void Main(string[] args)
{
var query =
PalindromicTernaries()
.Where(IsPalindromicBinary)
.Take(6);
foreach (var x in query) {
Console.WriteLine("Decimal: " + x);
Console.WriteLine("Ternary: " + ToTernary(x));
Console.WriteLine("Binary: " + Convert.ToString(x, 2));
Console.WriteLine();
}
}
public static IEnumerable<long> PalindromicTernaries() {
yield return 0;
yield return 1;
yield return 13;
yield return 23;
var f = new List<long> {0};
long fMiddle = 9;
while (true) {
for (long edge = 1; edge < 3; edge++) {
int i;
do {
//construct the result
long result = fMiddle;
long fLeft = fMiddle * 3;
long fRight = fMiddle / 3;
for (int j = f.Count - 1; j >= 0; j--) {
result += (fLeft + fRight) * f[j];
fLeft *= 3;
fRight /= 3;
}
result += (fLeft + fRight) * edge;
yield return result;
//next permutation
for (i = f.Count - 1; i >= 0; i--) {
if (f[i] == 2) {
f[i] = 0;
} else {
f[i]++;
break;
}
}
} while (i >= 0);
}
f.Add(0);
fMiddle *= 3;
}
}
public static bool IsPalindromicBinary(long number) {
long n = number;
long reverse = 0;
while (n != 0) {
reverse <<= 1;
if ((n & 1) == 1) reverse++;
n >>= 1;
}
return reverse == number;
}
public static string ToTernary(long n)
{
if (n == 0) return "0";
string result = "";
while (n > 0) { {
result = (n % 3) + result;
n /= 3;
}
return result;
}
}
{{out}}
Decimal: 0 Ternary: 0 Binary: 0 Decimal: 1 Ternary: 1 Binary: 1 Decimal: 6643 Ternary: 100010001 Binary: 1100111110011 Decimal: 1422773 Ternary: 2200021200022 Binary: 101011011010110110101 Decimal: 5415589 Ternary: 101012010210101 Binary: 10100101010001010100101 Decimal: 90396755477 Ternary: 22122022220102222022122 Binary: 1010100001100000100010000011000010101 ``` ## Common Lisp Unoptimized version ```lisp (defun palindromep (str) (string-equal str (reverse str)) ) (loop for i from 0 with results = 0 until (>= results 6) do (when (and (palindromep (format nil "~B" i)) (palindromep (format nil "~3R" i)) ) (format t "n:~a~:* [2]:~B~:* [3]:~3R~%" i) (incf results) )) ``` {{out}} ```txt n:0 [2]:0 [3]:0 n:1 [2]:1 [3]:1 n:6643 [2]:1100111110011 [3]:100010001 n:1422773 [2]:101011011010110110101 [3]:2200021200022 n:5415589 [2]:10100101010001010100101 [3]:101012010210101 n:90396755477 [2]:1010100001100000100010000011000010101 [3]:22122022220102222022122 n:381920985378904469 [2]:10101001100110110110001110011011001110001101101100110010101 [3]:2112200222001222121212221002220022112 ``` ## D {{trans|C}} ```d import core.stdc.stdio, std.ascii; bool isPalindrome2(ulong n) pure nothrow @nogc @safe { ulong x = 0; if (!(n & 1)) return !n; while (x < n) { x = (x << 1) | (n & 1); n >>= 1; } return n == x || n == (x >> 1); } ulong reverse3(ulong n) pure nothrow @nogc @safe { ulong x = 0; while (n) { x = x * 3 + (n % 3); n /= 3; } return x; } void printReversed(ubyte base)(ulong n) nothrow @nogc { ' '.putchar; do { digits[n % base].putchar; n /= base; } while(n); printf("(%d)", base); } void main() nothrow @nogc { ulong top = 1, mul = 1, even = 0; uint count = 0; for (ulong i = 0; true; i++) { if (i == top) { if (even ^= 1) top *= 3; else { i = mul; mul = top; } } immutable n = i * mul + reverse3(even ? i / 3 : i); if (isPalindrome2(n)) { printf("%llu", n); printReversed!3(n); printReversed!2(n); '\n'.putchar; if (++count >= 6) // Print first 6. break; } } } ``` {{out}} ```txt 0 0(3) 0(2) 1 1(3) 1(2) 6643 100010001(3) 1100111110011(2) 1422773 2200021200022(3) 101011011010110110101(2) 5415589 101012010210101(3) 10100101010001010100101(2) 90396755477 22122022220102222022122(3) 1010100001100000100010000011000010101(2) ``` ## Elixir {{trans|Ruby}} {{works with|Elixir|1.3}} ```elixir defmodule Palindromic do import Integer, only: [is_odd: 1] def number23 do Stream.concat([0,1], Stream.unfold(1, &number23/1)) end def number23(i) do n3 = Integer.to_string(i,3) n = (n3 <> "1" <> String.reverse(n3)) |> String.to_integer(3) n2 = Integer.to_string(n,2) if is_odd(String.length(n2)) and n2 == String.reverse(n2), do: {n, i+1}, else: number23(i+1) end def task do IO.puts " decimal ternary binary" number23() |> Enum.take(6) |> Enum.each(fn n -> n3 = Integer.to_charlist(n,3) |> :string.centre(25) n2 = Integer.to_charlist(n,2) |> :string.centre(39) :io.format "~12w ~s ~s~n", [n, n3, n2] end) end end Palindromic.task ``` {{out}} ```txt decimal ternary binary 0 0 0 1 1 1 6643 100010001 1100111110011 1422773 2200021200022 101011011010110110101 5415589 101012010210101 10100101010001010100101 90396755477 22122022220102222022122 1010100001100000100010000011000010101 ``` =={{header|F_Sharp|F#}}== ```fsharp // Find palindromic numbers in both binary and ternary bases. December 19th., 2018 let fG(n,g)=(Seq.unfold(fun(g,e)->if e<1L then None else Some((g%3L)*e,(g/3L,e/3L)))(n,g/3L)|>Seq.sum)+g+n*g*3L Seq.concat[seq[0L;1L;2L];Seq.unfold(fun(i,e)->Some (fG(i,e),(i+1L,if i=e-1L then e*3L else e)))(1L,3L)] |>Seq.filter(fun n->let n=System.Convert.ToString(n,2).ToCharArray() in n=Array.rev n)|>Seq.take 6|>Seq.iter (printfn "%d") ``` {{out}} Finding 6 takes no time. ```txt 0 1 6643 1422773 5415589 90396755477 Real: 00:00:00.482, CPU: 00:00:00.490, GC gen0: 77, gen1: 0 ``` Finding 7 takes a little longer. ```txt 0 1 6643 1422773 5415589 90396755477 381920985378904469 Real: 00:23:09.114, CPU: 00:23:26.430, GC gen0: 209577, gen1: 1 ``` ## Factor This implementation uses the methods for reducing the search space discussed in the Ruby example. ```factor USING: combinators.short-circuit formatting io kernel lists lists.lazy literals math math.parser sequences tools.time ; IN: rosetta-code.2-3-palindromes CONSTANT: info $[ "The first 6 numbers which are palindromic in both binary " "and ternary:" append ] : expand ( n -- m ) 3 >base dup"1" glue 3 base> ; : 2-3-pal? ( n -- ? ) expand >bin { [ length odd? ] [ dup sequence= ] } 1&& ; : first6 ( -- seq ) 4 0 lfrom [ 2-3-pal? ] lfilter ltake list>array [ expand ] map { 0 1 } prepend ; : main ( -- ) info print nl first6 [ dup [ >bin ] [ 3 >base ] bi "Decimal : %d\nBinary : %s\nTernary : %s\n\n" printf ] each ; [ main ] time ``` {{out}} ```txt The first 6 numbers which are palindromic in both binary and ternary: Decimal : 0 Binary : 0 Ternary : 0 Decimal : 1 Binary : 1 Ternary : 1 Decimal : 6643 Binary : 1100111110011 Ternary : 100010001 Decimal : 1422773 Binary : 101011011010110110101 Ternary : 2200021200022 Decimal : 5415589 Binary : 10100101010001010100101 Ternary : 101012010210101 Decimal : 90396755477 Binary : 1010100001100000100010000011000010101 Ternary : 22122022220102222022122 Running time: 0.555949118 seconds ``` ## FreeBASIC As using a brute force approach will be too slow for this task we instead create ternary palindromes and check if they are also binary palindromes using the optimizations which have been noted in some of the other language solutions : ```freebasic ' FB 1.05.0 Win64 'converts decimal "n" to its ternary equivalent Function Ter(n As UInteger) As String If n = 0 Then Return "0" Dim result As String = "" While n > 0 result = (n Mod 3) & result n \= 3 Wend Return result End Function ' check if a binary or ternary numeric string "s" is palindromic Function isPalindromic(s As String) As Boolean ' we can assume "s" will have an odd number of digits, so can ignore the middle digit Dim As UInteger length = Len(s) For i As UInteger = 0 To length \ 2 - 1 If s[i] <> s[length - 1 - i] Then Return False Next Return True End Function ' print a number which is both a binary and ternary palindrome in all three bases Sub printPalindrome(n As UInteger) Print "Decimal : "; Str(n) Print "Binary : "; bin(n) Print "Ternary : "; ter(n) Print End Sub ' create a ternary palindrome whose left part is the ternary equivalent of "n" and return its decimal equivalent Function createPalindrome3(n As UInteger) As UInteger Dim As String ternary = Ter(n) Dim As UInteger power3 = 1, sum = 0, length = Len(ternary) For i As Integer = 0 To Length - 1 ''right part of palindrome is mirror image of left part If ternary[i] > 48 Then '' i.e. non-zero sum += (ternary[i] - 48) * power3 End If power3 *= 3 Next sum += power3 '' middle digit must be 1 power3 *= 3 sum += n * power3 '' value of left part is simply "n" multiplied by appropriate power of 3 Return sum End Function Dim t As Double = timer Dim As UInteger i = 1, p3, count = 2 Dim As String binStr Print "The first 6 numbers which are palindromic in both binary and ternary are :" Print ' we can assume the first two palindromic numbers as per the task description printPalindrome(0) '' 0 is a palindrome in all 3 bases printPalindrome(1) '' 1 is a palindrome in all 3 bases Do p3 = createPalindrome3(i) If p3 Mod 2 > 0 Then ' cannot be even as binary equivalent would end in zero binStr = Bin(p3) '' Bin function is built into FB If Len(binStr) Mod 2 = 1 Then '' binary palindrome must have an odd number of digits If isPalindromic(binStr) Then printPalindrome(p3) count += 1 End If End If End If i += 1 Loop Until count = 6 Print "Took "; Print Using "#.###"; timer - t; Print " seconds on i3 @ 2.13 GHz" Print "Press any key to quit" Sleep ``` {{out}} ```txt The first 6 numbers which are palindromic in both binary and ternary are : Decimal : 0 Binary : 0 Ternary : 0 Decimal : 1 Binary : 1 Ternary : 1 Decimal : 6643 Binary : 1100111110011 Ternary : 100010001 Decimal : 1422773 Binary : 101011011010110110101 Ternary : 2200021200022 Decimal : 5415589 Binary : 10100101010001010100101 Ternary : 101012010210101 Decimal : 90396755477 Binary : 1010100001100000100010000011000010101 Ternary : 22122022220102222022122 Took 0.761 seconds on i3 @ 2.13 GHz ``` ## Go {{trans|C}} On my modest machine (Intel Celeron @1.6ghz) this takes about 30 seconds to produce the 7th palindrome. Curiously, the C version (GCC 5.4.0, -O3) takes about 55 seconds on the same machine. As it's a faithful translation, I have no idea why. ```go package main import ( "fmt" "strconv" "time" ) func isPalindrome2(n uint64) bool { x := uint64(0) if (n & 1) == 0 { return n == 0 } for x < n { x = (x << 1) | (n & 1) n >>= 1 } return n == x || n == (x>>1) } func reverse3(n uint64) uint64 { x := uint64(0) for n != 0 { x = x*3 + (n % 3) n /= 3 } return x } func show(n uint64) { fmt.Println("Decimal :", n) fmt.Println("Binary :", strconv.FormatUint(n, 2)) fmt.Println("Ternary :", strconv.FormatUint(n, 3)) fmt.Println("Time :", time.Since(start)) fmt.Println() } func min(a, b uint64) uint64 { if a < b { return a } return b } func max(a, b uint64) uint64 { if a > b { return a } return b } var start time.Time func main() { start = time.Now() fmt.Println("The first 7 numbers which are palindromic in both binary and ternary are :\n") show(0) cnt := 1 var lo, hi, pow2, pow3 uint64 = 0, 1, 1, 1 for { i := lo for ; i < hi; i++ { n := (i*3+1)*pow3 + reverse3(i) if !isPalindrome2(n) { continue } show(n) cnt++ if cnt >= 7 { return } } if i == pow3 { pow3 *= 3 } else { pow2 *= 4 } for { for pow2 <= pow3 { pow2 *= 4 } lo2 := (pow2/pow3 - 1) / 3 hi2 := (pow2*2/pow3-1)/3 + 1 lo3 := pow3 / 3 hi3 := pow3 if lo2 >= hi3 { pow3 *= 3 } else if lo3 >= hi2 { pow2 *= 4 } else { lo = max(lo2, lo3) hi = min(hi2, hi3) break } } } } ``` {{out}} Sample run: ```txt The first 7 numbers which are palindromic in both binary and ternary are : Decimal : 0 Binary : 0 Ternary : 0 Time : 1.626245ms Decimal : 1 Binary : 1 Ternary : 1 Time : 3.076839ms Decimal : 6643 Binary : 1100111110011 Ternary : 100010001 Time : 4.026575ms Decimal : 1422773 Binary : 101011011010110110101 Ternary : 2200021200022 Time : 5.014413ms Decimal : 5415589 Binary : 10100101010001010100101 Ternary : 101012010210101 Time : 5.949399ms Decimal : 90396755477 Binary : 1010100001100000100010000011000010101 Ternary : 22122022220102222022122 Time : 24.878073ms Decimal : 381920985378904469 Binary : 10101001100110110110001110011011001110001101101100110010101 Ternary : 2112200222001222121212221002220022112 Time : 30.090048188s ``` ## Haskell ```haskell import Data.List (transpose, unwords) import Numeric (showIntAtBase, readInt) import Data.Char (intToDigit, isDigit, digitToInt) -- Member of ternary palindrome series. base3Palindrome :: Integer -> String base3Palindrome n = let s = showBase 3 n in s ++ ('1' : reverse s) -- Test for binary palindrome. isBinPal :: Integer -> Bool isBinPal n = let s = showIntAtBase 2 intToDigit n [] (q, r) = quotRem (length s) 2 in (r == 1) && drop (succ q) s == reverse (take q s) -- Integer value of ternary string. readBase3 :: String -> Integer readBase3 = fst . head . readInt 3 isDigit digitToInt showBase :: Integer -> Integer -> String showBase base n = showIntAtBase base intToDigit n [] solutions :: [Integer] solutions = 0 : 1 : take 4 (filter isBinPal ((readBase3 . base3Palindrome) <$> [1 ..])) main :: IO () main = mapM_ putStrLn (unwords <$> transpose ((fmap =<< flip justifyLeft ' ' . succ . maximum . fmap length) <$> transpose (["Decimal", "Ternary", "Binary"] : fmap ((<*>) [show, showBase 3, showBase 2] . return) solutions))) where justifyLeft n c s = take n (s ++ replicate n c) ``` {{Out}} ```txt Decimal Ternary Binary 0 0 0 1 1 1 6643 100010001 1100111110011 1422773 2200021200022 101011011010110110101 5415589 101012010210101 10100101010001010100101 90396755477 22122022220102222022122 1010100001100000100010000011000010101 ``` ## J '''Solution:''' ```j isPalin=: -: |. NB. check if palindrome toBase=: #.inv"0 NB. convert to base(s) in left arg filterPalinBase=: ] #~ isPalin@toBase/ NB. palindromes for base(s) find23Palindromes=: 3 filterPalinBase 2 filterPalinBase ] NB. palindromes in both base 2 and base 3 showBases=: [: ;:inv@|: <@({&'0123456789ABCDEFGH')@toBase/ NB. display numbers in bases NB.*getfirst a Adverb to get first y items returned by verb u getfirst=: adverb define 100000x u getfirst y : res=. 0$0 start=. 0 blk=. i.x whilst. y > #res do. tmp=. u start + blk start=. start + x res=. res, tmp end. y{.res ) ``` '''Usage:''' ```j find23Palindromes i. 2e6 NB. binary & ternary palindromes less than 2,000,000 0 1 6643 1422773 10 2 3 showBases find23Palindromes getfirst 6 NB. first 6 binary & ternary palindomes 0 0 0 1 1 1 6643 1100111110011 100010001 1422773 101011011010110110101 2200021200022 5415589 10100101010001010100101 101012010210101 90396755477 1010100001100000100010000011000010101 22122022220102222022122 ``` ## Java This takes a while to get to the 6th one (I didn't time it precisely, but it was less than 2 hours on an i7) ```java public class Pali23 { public static boolean isPali(String x){ return x.equals(new StringBuilder(x).reverse().toString()); } public static void main(String[] args){ for(long i = 0, count = 0; count < 6;i++){ if((i & 1) == 0 && (i != 0)) continue; //skip non-zero evens, nothing that ends in 0 in binary can be in this sequence //maybe speed things up through short-circuit evaluation by putting toString in the if //testing up to 10M, base 2 has slightly fewer palindromes so do that one first if(isPali(Long.toBinaryString(i)) && isPali(Long.toString(i, 3))){ System.out.println(i + ", " + Long.toBinaryString(i) + ", " + Long.toString(i, 3)); count++; } } } } ``` {{out}} ```txt 0, 0, 0 1, 1, 1 6643, 1100111110011, 100010001 1422773, 101011011010110110101, 2200021200022 5415589, 10100101010001010100101, 101012010210101 90396755477, 1010100001100000100010000011000010101, 22122022220102222022122 ``` ## JavaScript ### ES6 {{Trans|Haskell}} ```JavaScript (() => { 'use strict'; // GENERIC FUNCTIONS // range :: Int -> Int -> [Int] const range = (m, n) => Array.from({ length: Math.floor(n - m) + 1 }, (_, i) => m + i); // compose :: (b -> c) -> (a -> b) -> (a -> c) const compose = (f, g) => x => f(g(x)); // listApply :: [(a -> b)] -> [a] -> [b] const listApply = (fs, xs) => [].concat.apply([], fs.map(f => [].concat.apply([], xs.map(x => [f(x)])))); // pure :: a -> [a] const pure = x => [x]; // curry :: Function -> Function const curry = (f, ...args) => { const go = xs => xs.length >= f.length ? (f.apply(null, xs)) : function () { return go(xs.concat([].slice.apply(arguments))); }; return go([].slice.call(args, 1)); }; // transpose :: [[a]] -> [[a]] const transpose = xs => xs[0].map((_, iCol) => xs.map(row => row[iCol])); // reverse :: [a] -> [a] const reverse = xs => typeof xs === 'string' ? ( xs.split('') .reverse() .join('') ) : xs.slice(0) .reverse(); // take :: Int -> [a] -> [a] const take = (n, xs) => xs.slice(0, n); // drop :: Int -> [a] -> [a] const drop = (n, xs) => xs.slice(n); // maximum :: [a] -> a const maximum = xs => xs.reduce((a, x) => (x > a || a === undefined ? x : a), undefined); // quotRem :: Integral a => a -> a -> (a, a) const quotRem = (m, n) => [Math.floor(m / n), m % n]; // length :: [a] -> Int const length = xs => xs.length; // justifyLeft :: Int -> Char -> Text -> Text const justifyLeft = (n, cFiller, strText) => n > strText.length ? ( (strText + cFiller.repeat(n)) .substr(0, n) ) : strText; // unwords :: [String] -> String const unwords = xs => xs.join(' '); // unlines :: [String] -> String const unlines = xs => xs.join('\n'); // BASES AND PALINDROMES // show, showBinary, showTernary :: Int -> String const show = n => n.toString(10); const showBinary = n => n.toString(2); const showTernary = n => n.toString(3); // readBase3 :: String -> Int const readBase3 = s => parseInt(s, 3); // base3Palindrome :: Int -> String const base3Palindrome = n => { const s = showTernary(n); return s + '1' + reverse(s); }; // isBinPal :: Int -> Bool const isBinPal = n => { const s = showBinary(n), [q, r] = quotRem(s.length, 2); return (r !== 0) && drop(q + 1, s) === reverse(take(q, s)); }; // solutions :: [Int] const solutions = [0, 1].concat(range(1, 10E5) .map(compose(readBase3, base3Palindrome)) .filter(isBinPal)); // TABULATION // cols :: [[Int]] const cols = transpose( [ ['Decimal', 'Ternary', 'Binary'] ].concat( solutions.map( compose( xs => listApply([show, showTernary, showBinary], xs), pure ) ) ) ); return unlines( transpose(cols.map(col => col.map( curry(justifyLeft)(maximum(col.map(length)) + 1, ' ') ))) .map(unwords)); })(); ``` {{Out}} ```txt Decimal Ternary Binary 0 0 0 1 1 1 6643 100010001 1100111110011 1422773 2200021200022 101011011010110110101 5415589 101012010210101 10100101010001010100101 90396755477 22122022220102222022122 1010100001100000100010000011000010101 ``` ## Julia {{trans|C}} ```julia ispalindrome(n, bas) = (s = string(n, base=bas); s == reverse(s)) prin3online(n) = println(lpad(n, 15), lpad(string(n, base=2), 40), lpad(string(n, base=3), 30)) reversebase3(n) = (x = 0; while n != 0 x = 3x + (n %3); n = div(n, 3); end; x) function printpalindromes(N) lo, hi, pow2, pow3, count, i = 0, 1, 1, 1, 1, 0 println(lpad("Number", 15), lpad("Base 2", 40), lpad("Base 3", 30)) prin3online(0) while true for j in lo:hi-1 i = j n = (3 * j + 1) * pow3 + reversebase3(j) if ispalindrome(n, 2) prin3online(n) count += 1 if count >= N return end end end if i == pow3 pow3 *= 3 else pow2 *= 4 end while true while pow2 <= pow3 pow2 *= 4 end lo2 = div(div(pow2, pow3) - 1, 3) hi2 = div(div(pow2 * 2, pow3), 3) + 1 lo3 = div(pow3, 3) hi3 = pow3 if lo2 >= hi3 pow3 *= 3 elseif lo3 >= hi2 pow2 *= 4 else lo = max(lo2, lo3) hi = min(hi2, hi3) break end end end end printpalindromes(6) ``` {{out}} ```txt Number Base 2 Base 3 0 0 0 1 1 1 6643 1100111110011 100010001 1422773 101011011010110110101 2200021200022 5415589 10100101010001010100101 101012010210101 90396755477 1010100001100000100010000011000010101 22122022220102222022122 ``` ## Kotlin {{trans|FreeBASIC}} ```scala // version 1.0.5-2 /** converts decimal 'n' to its ternary equivalent */ fun Long.toTernaryString(): String = when { this < 0L -> throw IllegalArgumentException("negative numbers not allowed") this == 0L -> "0" else -> { var result = "" var n = this while (n > 0) { result += n % 3 n /= 3 } result.reversed() } } /** wraps java.lang.Long.toBinaryString in a Kotlin extension function */ fun Long.toBinaryString(): String = java.lang.Long.toBinaryString(this) /** check if a binary or ternary numeric string 's' is palindromic */ fun isPalindromic(s: String): Boolean = (s == s.reversed()) /** print a number which is both a binary and ternary palindrome in all three bases */ fun printPalindrome(n: Long) { println("Decimal : $n") println("Binary : ${n.toBinaryString()}") println("Ternary : ${n.toTernaryString()}") println() } /** create a ternary palindrome whose left part is the ternary equivalent of 'n' and return its decimal equivalent */ fun createPalindrome3(n: Long): Long { val ternary = n.toTernaryString() var power3 = 1L var sum = 0L val length = ternary.length for (i in 0 until length) { // right part of palindrome is mirror image of left part if (ternary[i] > '0') sum += (ternary[i].toInt() - 48) * power3 power3 *= 3L } sum += power3 // middle digit must be 1 power3 *= 3L sum += n * power3 // value of left part is simply 'n' multiplied by appropriate power of 3 return sum } fun main(args: Array ) { var i = 1L var p3: Long var count = 2 var binStr: String println("The first 6 numbers which are palindromic in both binary and ternary are:\n") // we can assume the first two palindromic numbers as per the task description printPalindrome(0L) // 0 is a palindrome in all 3 bases printPalindrome(1L) // 1 is a palindrome in all 3 bases do { p3 = createPalindrome3(i) if (p3 % 2 > 0L) { // cannot be even as binary equivalent would end in zero binStr = p3.toBinaryString() if (binStr.length % 2 == 1) { // binary palindrome must have an odd number of digits if (isPalindromic(binStr)) { printPalindrome(p3) count++ } } } i++ } while (count < 6) } ``` {{out}} ```txt The first 6 numbers which are palindromic in both binary and ternary are: Decimal : 0 Binary : 0 Ternary : 0 Decimal : 1 Binary : 1 Ternary : 1 Decimal : 6643 Binary : 1100111110011 Ternary : 100010001 Decimal : 1422773 Binary : 101011011010110110101 Ternary : 2200021200022 Decimal : 5415589 Binary : 10100101010001010100101 Ternary : 101012010210101 Decimal : 90396755477 Binary : 1010100001100000100010000011000010101 Ternary : 22122022220102222022122 ``` ## Mathematica ```Mathematica palindromify3[n_] := Block[{digits}, If[Divisible[n, 3], {}, digits = IntegerDigits[n, 3]; FromDigits[#, 3] & /@ {Join[Reverse[digits], digits], Join[Reverse[Rest[digits]], {First[digits]}, Rest[digits]]} ] ]; base2PalindromeQ[n_] := IntegerDigits[n, 2] === Reverse[IntegerDigits[n, 2]]; Select[Flatten[palindromify3 /@ Range[1000000]], base2PalindromeQ] ``` {{out}} ```txt {1, 6643, 1422773, 5415589, 90396755477} ``` ## PARI/GP ```parigp check(n)={ \\ Check for 2n+1-digit palindromes in base 3 my(N=3^n); forstep(i=N+1,2*N,[1,2], my(base2,base3=digits(i,3),k); base3=concat(Vecrev(base3[2..n+1]), base3); k=subst(Pol(base3),'x,3); base2=binary(k); if(base2==Vecrev(base2), print1(", "k)) ) }; print1("0, 1"); for(i=1,11,check(i)) ``` {{out}} ```txt 0, 1, 6643, 1422773, 5415589, 90396755477 ``` ## Perl {{libheader|ntheory}} ```perl use ntheory qw/fromdigits todigitstring/; print "0 0 0\n"; # Hard code the 0 result for (0..2e5) { # Generate middle-1-palindrome in base 3. my $pal = todigitstring($_, 3); my $b3 = $pal . "1" . reverse($pal); # Convert base 3 number to base 2 my $b2 = todigitstring(fromdigits($b3, 3), 2); # Print results (including base 10) if base-2 palindrome print fromdigits($b2,2)," $b3 $b2\n" if $b2 eq reverse($b2); } ``` {{out}} ```txt 0 0 0 1 1 1 6643 100010001 1100111110011 1422773 2200021200022 101011011010110110101 5415589 101012010210101 10100101010001010100101 90396755477 22122022220102222022122 1010100001100000100010000011000010101 ``` ## Perl 6 Instead of searching for numbers that are palindromes in one base then checking the other, generate palindromic trinary numbers directly, then check to see if they are also binary palindromes (with additional simplifying constraints as noted in other entries). Outputs the list in decimal, binary and trinary. ```perl6 constant palindromes = 0, 1, |gather for 1 .. * -> $p { my $pal = $p.base(3); my $n = :3($pal ~ '1' ~ $pal.flip); next if $n %% 2; my $b2 = $n.base(2); next if $b2.chars %% 2; next unless $b2 eq $b2.flip; take $n; } printf "%d, %s, %s\n", $_, .base(2), .base(3) for palindromes[^6]; ``` {{out}} ```txt 0, 0, 0 1, 1, 1 6643, 1100111110011, 100010001 1422773, 101011011010110110101, 2200021200022 5415589, 10100101010001010100101, 101012010210101 90396755477, 1010100001100000100010000011000010101, 22122022220102222022122 ``` ## Phix Alternative approach. Works by finding the next palindrome, in either base, in an attempt to skip fairly large chunks of the search space. Prints the first 6 palindromes (the limit on 32 bit) in about a second, but the 7th (on 64 bit only) takes just over half an hour. Theoretically it could be made a fair bit faster by replacing the string handling (which I hope you will find very easy to follow) with maths/bit-fiddling, however my attempts at that turned out noticeably slower. ```Phix -- widths and limits for 32/64 bit running (see output below): constant {dsize,w3,w2,limit} = iff(machine_bits()=32?{12,23,37,6} :{18,37,59,7}), -- [atoms on 32-bit have only 53 bits of precision, but 7th ^^^^ requires 59] dfmt = sprintf("%%%dd",dsize), -- ie "%12d" or "%18d" esc = #1B function center(string s, integer l) l = max(0,floor((l-length(s))/2)) string pad = repeat(' ',l) s = pad & s & pad return s end function integer count = 1 procedure show(atom n, string p2, p3) if count=1 then printf(1," %s %s %s\n",{pad_head("decimal",dsize),center("ternary",w3),center(" binary",w2)}) end if string ns = sprintf(dfmt,n) printf(1,"%2d: %s %s %s\n",{count, ns, center(p3,w3), center(p2,w2)}) count += 1 end procedure procedure progress(string e, p2, p3) e = pad_head(e,dsize) printf(1,"--: %s %s %s\r",{e, center(p3,w3), center(p2,w2)}) end procedure function to_base(atom i, integer base) string s = "" while i>0 do s = append(s,remainder(i,base)+'0') i = floor(i/base) end while s = reverse(s) if s="" then s = "0" end if return s end function function from_base(string s, integer base) atom res = 0 for i=1 to length(s) do res = res*base+s[i]-'0' end for return res end function function sn(string s, integer f, base) -- helper function, return s mirrored (if f!=0) -- and as a (decimal) number (if base!=0) -- all returns from next_palindrome() get fed through here. if f then s[f+2..$] = reverse(s[1..f]) end if atom n = iff(base?from_base(s,base):0) return {s,n} end function function next_palindrome(integer base, object s) -- -- base is 2 or 3 -- s is not usually a palindrome, but derived from one in <5-base> -- -- all done with very obvious string manipulations, plus a few -- less obvious optimisations (odd length, middle 1 in base 3). -- -- example: next_palindrome(2,"10001000100") -> "10001010001" -- if not string(s) then s = to_base(s,base) end if integer l = length(s), f = floor(l/2), m = f+1, c if mod(l,2) then -- optimisation: palindromes must be odd-length -- 1) is a plain mirror greater? (as in the example just given) {string r} = sn(s,f,0) -- optimisation: base 3 palindromes have '1' in the middle if base=3 and r[m]!='1' then r[m] = '1' end if if r>s then return sn(r,0,base) end if -- 2) can we (just) increment the middle digit? c = s[m]-'0'+1 if base=2 or c=1 then if c s?) for i=f to 1 by -1 do if s[i] odd) end if -- 4) well then, next palindrome is longer, 1000..0001-style s = sprintf("1%s1",{repeat('0',l-2)}) -- optimisation: base 3 palindromes have '1' in the middle if base=3 then m = (l+1)/2 s[m] = '1' end if return sn(s,0,base) end function string p2 = "0", p3 = "0" -- palindromes as strings in base 2 and 3 atom n2 = 0, n3 = 0, -- decimal equivalents of the above. t0 = time(), t1 = time()+1 while count<=limit do if n2=n3 then show(n2,p2,p3) {p2,n2} = next_palindrome(2,p2) {p3,n3} = next_palindrome(3,p3) elsif n2 n3 then {p3,n3} = next_palindrome(3,n2-1) end if if time()>t1 then progress(elapsed_short(time()-t0),p2,p3) t1 = time()+1 if find(get_key(),{'q','Q',esc}) then exit end if end if end while ?elapsed(time()-t0) ``` {{out}} 32 bit: ```txt decimal ternary binary 1: 0 0 0 2: 1 1 1 3: 6643 100010001 1100111110011 4: 1422773 2200021200022 101011011010110110101 5: 5415589 101012010210101 10100101010001010100101 6: 90396755477 22122022220102222022122 1010100001100000100010000011000010101 "1.0s" ``` 64-bit: ```txt decimal ternary binary 1: 0 0 0 2: 1 1 1 3: 6643 100010001 1100111110011 4: 1422773 2200021200022 101011011010110110101 5: 5415589 101012010210101 10100101010001010100101 6: 90396755477 22122022220102222022122 1010100001100000100010000011000010101 --: 56s 2001210110001221221000110121002 1100000101111010101010010100101010101111010000011 7: 381920985378904469 2112200222001222121212221002220022112 10101001100110110110001110011011001110001101101100110010101 "33 minutes and 08s" ``` between 6 and 7 I have shown progress() in action, which is constantly overwritten, and mesmerising to watch. ### much simpler version (slightly but not alot faster) ```Phix function to_base(atom n, integer base) string result = "" while true do result &= remainder(n,base) n = floor(n/base) if n=0 then exit end if end while return result end function procedure show(integer count, atom n) string n2 = sq_add('0',to_base(n,2)), n3 = sq_add('0',to_base(n,3)), p2 = repeat(' ',(37-length(n2))/2), p3 = repeat(' ',(23-length(n3))/2) printf(1,"%2d: %12d %s%s%s %s%s\n",{count, n, p3,n3,p3, p2,n2}) end procedure function createpalindrome3(integer n) atom tot = 0, power3 = 1 string ternary = to_base(n,3) for i=length(ternary) to 1 by -1 do tot += ternary[i] * power3 power3 *= 3 end for return tot + power3 + n*power3*3 end function atom t0 = time() printf(1,"%16s %15s %30s\n",{"decimal","ternary","binary"}) show(0,0) show(1,1) integer count = 2, n = 1 while count<6 do atom n3 = createpalindrome3(n) if remainder(n3,2) then string n2 = to_base(n3,2) if n2[$]=1 and n2=reverse(n2) then show(count,n3) count += 1 end if end if n += 1 end while ?elapsed(time()-t0) ``` {{out}} ```txt decimal ternary binary 0: 0 0 0 1: 1 1 1 2: 6643 100010001 1100111110011 3: 1422773 2200021200022 101011011010110110101 4: 5415589 101012010210101 10100101010001010100101 5: 90396755477 22122022220102222022122 1010100001100000100010000011000010101 "0.6s" ``` ### much faster version Inspired by Scala 😏 ```Phix function to_base(string s, integer base) -- convert decimal string s to specified base string res = "" while length(s) do integer q, r = 0 for i=1 to length(s) do q = r*10+s[i]-'0' s[i] = floor(q/base)+'0' r = mod(q,base) end for res &= r+'0' while length(s) and s[1]='0' do s = s[2..$] end while end while return res end function procedure center(string s, integer l) l = max(0,floor((l-length(s))/2)) string pad = repeat(' ',l) puts(1,pad & s & pad & "\n") end procedure constant A = {"0","1","6643","1422773","5415589","90396755477", "381920985378904469","1922624336133018996235", "2004595370006815987563563", "8022581057533823761829436662099", "392629621582222667733213907054116073", "32456836304775204439912231201966254787", "428027336071597254024922793107218595973", "1597863243206403857787246920544522912361", "30412638162199251273509758127730300026189", "32345684491703244980406880704479906642045", "24014998963383302600955162866787153652444049"} for i=1 to length(A) do center(to_base(A[i],2),145) center(to_base(A[i],3),145) end for ``` {{out}} ```txt 0 0 1 1 1100111110011 100010001 101011011010110110101 2200021200022 10100101010001010100101 101012010210101 1010100001100000100010000011000010101 22122022220102222022122 10101001100110110110001110011011001110001101101100110010101 2112200222001222121212221002220022112 11010000011100111000101110001110011011001110001110100011100111000001011 122120102102011212112010211212110201201021221 110101000011111010101010100101111011110111011110111101001010101010111110000101011 221010112100202002120002212200021200202001211010122 1100101010000100101101110000011011011111111011000011100001101111111101101100000111011010010000101010011 21000020210011222122220212010000100001021202222122211001202000012 10010111001111000100010100010100000011011011000101011011100000111011010100011011011000000101000101000100011110011101001 122102120011102000101101000002010021111120010200000101101000201110021201221 11000011010101111010110010100010010011011010101001101000001000100010000010110010101011011001001000101001101011110101011000011 1222100201002211120110022121002012121101011212102001212200110211122001020012221 101000010000000110001000011111100101011110011100001110100011100010001110001011100001110011110101001111110000100011000000010000101 222001200110022102121001000200200202022111220202002002000100121201220011002100222 10010110010000110010100010001000111010010000111000010010100010111011101000101001000011100001001011100010001000101001100001001101001 10121021220121202021201220210001211020122122102011210001202210212020212102212012101 101100101011111111011010000110101101100101010100101101010000001000000000100000010101101001010101001101101011000010110111111110101001101 2112120210211212121000000011202022210210101010120122202021100000001212121120120212112 101111100001110001100000011101111000001111001000110100111001010101101101010100111001011000100111100000111101110000001100011100001111101 2200221111210202000010122020002221112212101012122111222000202210100002020121111220022 1000100111010110110111101001100011100110100000011011001010100101011001100011001101010010101001101100000010110011100011001011110110110101110010001 2202021211210100110100002202101000110000220121210220000110001012022000010110010121121202022 ``` ## PicoLisp ```PicoLisp (de ternary (N) (if (=0 N) (cons N) (make (while (gt0 N) (yoke (% (swap 'N (/ N 3)) 3)) ) ) ) ) (de p? (L1 L2) (and (= L1 (reverse L1)) (= L2 (reverse L2)) ) ) (zero N) (for (I 0 (> 6 I)) (let (B2 (chop (bin N)) B3 (ternary N)) (when (p? B2 B3) (println N (pack B2) (pack B3)) (inc 'I) ) (inc 'N) ) ) ``` {{out}} ```txt 0 "0" "0" 1 "1" "1" 6643 "1100111110011" "100010001" 1422773 "101011011010110110101" "2200021200022" 5415589 "10100101010001010100101" "101012010210101" 90396755477 "1010100001100000100010000011000010101" "22122022220102222022122" ``` =={{Header|Python}}== ### Imperative ```python from itertools import islice digits = "0123456789abcdefghijklmnopqrstuvwxyz" def baseN(num,b): if num == 0: return "0" result = "" while num != 0: num, d = divmod(num, b) result += digits[d] return result[::-1] # reverse def pal2(num): if num == 0 or num == 1: return True based = bin(num)[2:] return based == based[::-1] def pal_23(): yield 0 yield 1 n = 1 while True: n += 1 b = baseN(n, 3) revb = b[::-1] #if len(b) > 12: break for trial in ('{0}{1}'.format(b, revb), '{0}0{1}'.format(b, revb), '{0}1{1}'.format(b, revb), '{0}2{1}'.format(b, revb)): t = int(trial, 3) if pal2(t): yield t for pal23 in islice(pal_23(), 6): print(pal23, baseN(pal23, 3), baseN(pal23, 2)) ``` {{out}} ```txt 0 0 0 1 1 1 6643 100010001 1100111110011 1422773 2200021200022 101011011010110110101 5415589 101012010210101 10100101010001010100101 90396755477 22122022220102222022122 1010100001100000100010000011000010101 ``` ### Functional {{Works with|Python|3.7}} ```Python '''Numbers with palindromic digit strings in both binary and ternary''' from itertools import (islice) # palinBoth :: Generator [Int] def palinBoth(): '''Non finite stream of dually palindromic integers.''' yield (0, '0', '0') ibt = (1, '1', '1') yield ibt while True: ibt = until(isBoth)(psucc)(psucc(ibt)) yield (int(ibt[2], 3), ibt[1], ibt[2]) # isBoth :: (Int, String, String) -> Bool def isBoth(ibt): '''True if the binary string is palindromic (as the ternary string is already known to be). ''' b = ibt[1] return b == b[::-1] # psucc :: (Int, String, String) -> (Int, String, String) def psucc(ibt): '''The next triple of index, binary and (palindromic) ternary string ''' d = 1 + ibt[0] s = showBase3(d) pal = s + '1' + s[::-1] return (d, bin(int(pal, 3))[2:], pal) # showBase3 :: Int -> String def showBase3(n): '''Ternary digit string for integer n.''' return showIntAtBase(3)( lambda i: '012'[i] )(n)('') # TEST ---------------------------------------------------- def main(): '''Integers with palindromic digits in both binary and ternary''' xs = take(6)(palinBoth()) d, b, t = xs[-1] bw = len(b) tw = len(t) print( fTable( label('rjust')(('Decimal', len(str(d)))) + ''.join(map( label('center'), [('Binary', bw), ('Ternary', tw)] )) + '\n' )(compose(str)(fst))( lambda p: p[1].center(bw, ' ') + ' ' + p[2].center(tw, ' ') )(identity)(xs) ) # GENERIC ------------------------------------------------- # compose (<<<) :: (b -> c) -> (a -> b) -> a -> c def compose(g): '''Right to left function composition.''' return lambda f: lambda x: g(f(x)) # fst :: (a, b) -> a def fst(tpl): '''First member of a pair.''' return tpl[0] # identity :: a -> a def identity(x): '''The identity function.''' return x # showIntAtBase :: Int -> (Int -> String) -> Int -> String -> String def showIntAtBase(base): '''String representation of an integer in a given base, using a supplied function for the string representation of digits. ''' def wrap(toChr, n, rs): def go(nd, r): n, d = nd r_ = toChr(d) + r return go(divmod(n, base), r_) if 0 != n else r_ return 'unsupported base' if 1 >= base else ( 'negative number' if 0 > n else ( go(divmod(n, base), rs)) ) return lambda toChr: lambda n: lambda rs: ( wrap(toChr, n, rs) ) # take :: Int -> [a] -> [a] # take :: Int -> String -> String def take(n): '''The prefix of xs of length n, or xs itself if n > length xs. ''' return lambda xs: ( xs[0:n] if isinstance(xs, (list, tuple)) else list(islice(xs, n)) ) # until :: (a -> Bool) -> (a -> a) -> a -> a def until(p): '''The result of repeatedly applying f until p holds. The initial seed value is x. ''' def go(f, x): v = x while not p(v): v = f(v) return v return lambda f: lambda x: go(f, x) # FORMATTING ---------------------------------------------- # label :: Method String -> (String, Int) def label(k): '''Stringification, using the named justification method (ljust|centre|rjust) of the label, and the specified amount of white space. ''' def go(sw): s, w = sw return getattr(s, k)(w, ' ') + ' ' return lambda sw: go(sw) # fTable :: String -> (a -> String) -> # (b -> String) -> (a -> b) -> [a] -> String def fTable(s): '''Heading -> x display function -> fx display function -> f -> xs -> tabular string. ''' def go(xShow, fxShow, f, xs): ys = [xShow(x) for x in xs] w = max(map(len, ys)) return s + '\n' + '\n'.join(map( lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)), xs, ys )) return lambda xShow: lambda fxShow: lambda f: lambda xs: go( xShow, fxShow, f, xs ) # MAIN --- if __name__ == '__main__': main() ``` {{Out}} ```txt Decimal Binary Ternary 0 -> 0 0 1 -> 1 1 6643 -> 1100111110011 100010001 1422773 -> 101011011010110110101 2200021200022 5415589 -> 10100101010001010100101 101012010210101 90396755477 -> 1010100001100000100010000011000010101 22122022220102222022122 ``` ## Racket ```racket #lang racket (require racket/generator) (define (digital-reverse/base base N) (define (inr n r) (if (zero? n) r (inr (quotient n base) (+ (* r base) (modulo n base))))) (inr N 0)) (define (palindrome?/base base N) (define (inr? n m) (if (= n 0) (= m N) (inr? (quotient n base) (+ (* m base) (modulo n base))))) (inr? N 0)) (define (palindrome?/3 n) (palindrome?/base 3 n)) (define (b-palindromes-generator b) (generator () ;; it's a bit involved getting the initial palindroms, so we do them manually (for ((p (in-range b))) (yield p)) (let loop ((rhs 1) (mx-rhs b) (mid #f) (mx-rhs*b (* b b))) (cond [(= rhs mx-rhs) (cond [(not mid) (loop (quotient mx-rhs b) mx-rhs 0 mx-rhs*b)] [(zero? mid) (loop mx-rhs mx-rhs*b #f (* mx-rhs*b b))])] [else (define shr (digital-reverse/base b rhs)) (cond [(not mid) (yield (+ (* rhs mx-rhs) shr)) (loop (add1 rhs) mx-rhs #f mx-rhs*b)] [(= mid (- b 1)) (yield (+ (* rhs mx-rhs*b) (* mid mx-rhs) shr)) (loop (+ 1 rhs) mx-rhs 0 mx-rhs*b)] [else (yield (+ (* rhs mx-rhs*b) (* mid mx-rhs) shr)) (loop rhs mx-rhs (add1 mid) mx-rhs*b)])])))) (define (number->string/base n b) (define (inr acc n) (if (zero? n) acc (let-values (((q r) (quotient/remainder n b))) (inr (cons (number->string r) acc) q)))) (if (zero? n) "0" (apply string-append (inr null n)))) (module+ main (for ((n (sequence-filter palindrome?/3 (in-producer (b-palindromes-generator 2)))) (i (in-naturals)) #:final (= i 5)) (printf "~a: ~a_10 ~a_3 ~a_2~%" (~a #:align 'right #:min-width 3 (add1 i)) (~a #:align 'right #:min-width 11 n) (~a #:align 'right #:min-width 23 (number->string/base n 3)) (~a #:align 'right #:min-width 37 (number->string/base n 2))))) (module+ test (require rackunit) (check-true (palindrome?/base 2 #b0)) (check-true (palindrome?/base 2 #b10101)) (check-false (palindrome?/base 2 #b1010)) (define from-oeis:A060792 (list 0 1 6643 1422773 5415589 90396755477 381920985378904469 1922624336133018996235 2004595370006815987563563 8022581057533823761829436662099)) (check-match from-oeis:A060792 (list (? (curry palindrome?/base 2) (? (curry palindrome?/base 3))) ...)) (check-eq? (digital-reverse/base 2 #b0) #b0) (check-eq? (digital-reverse/base 2 #b1) #b1) (check-eq? (digital-reverse/base 2 #b10) #b01) (check-eq? (digital-reverse/base 2 #b1010) #b0101) (check-eq? (digital-reverse/base 10 #d0) #d0) (check-eq? (digital-reverse/base 10 #d1) #d1) (check-eq? (digital-reverse/base 10 #d10) #d01) (check-eq? (digital-reverse/base 10 #d1010) #d0101) (define pg ((b-palindromes-generator 2))) (check-match (map (curryr number->string 2) (for/list ((i 16) (p (in-producer (b-palindromes-generator 2)))) p)) (list "0" "1" "11" "101" "111" "1001" "1111" "10001" "10101" "11011" "11111" "100001" "101101" "110011" "111111" "1000001"))) ``` {{out}} ```txt 1: 0_10 0_3 0_2 2: 1_10 1_3 1_2 3: 6643_10 100010001_3 1100111110011_2 4: 1422773_10 2200021200022_3 101011011010110110101_2 5: 5415589_10 101012010210101_3 10100101010001010100101_2 6: 90396755477_10 22122022220102222022122_3 1010100001100000100010000011000010101_2 ``` ## REXX ### version 1 Programming note: This version is quite a bit faster than the previous REXX program that was entered. For this REXX program, a few deterministic assumptions were made: ::* for the requirement of binary palindromes, the number of binary digits have to be odd. ::* for the requirement of ternary palindromes, the numbers can't end in zero (in base 3). The method used is to (not find, but) ''construct'' a binary palindrome by: ::* using the binary version of a number (abcdef), which may end in binary zeroes, ::* flipping the binary digits (fedcba) [note that '''a''' is always '''1''' (one)], ::* constructing two binary palindromes: ::::* abcdef || '''0''' || fedcba and ::::* abcdef || '''1''' || fedcba ::* (the above two concatenation ( || ) steps ensures an odd number of binary digits), ::* ensure the decimal versions are not evenly divisible by 3, ::* convert the decimal numbers to base 3, ::* ensure that the numbers in base 3 are palindromic. ```rexx /*REXX program finds numbers that are palindromic in both binary and ternary. */ digs=50; numeric digits digs /*biggest known B2B3 palindrome: 44 dig*/ parse arg maxHits .; if maxHits=='' then maxHits=6 /*use six as a limit.*/ hits=0; #= 'fiat' /*the number of palindromes (so far). */ call show 0,0,0; call show 1,1,1 /*show the first two palindromes (fiat)*/ !.= /* [↓] build list of powers of three. */ do i=1 until !.i>10**digs; !.i=3**i; end /*compute powers of three for radix3.*/ p=1 /* [↓] primary search: bin palindromes*/ do #=digs /*use all numbers, however, DEC is odd.*/ binH=x2b( d2x(#) ) + 0 /*convert some decimal number to binary*/ binL=reverse(binH) /*reverse the binary digits (or bits).*/ dec=x2d( b2x( binH'0'binL) ); if dec//3\==0 then call radix3 dec=x2d( b2x( binH'1'binL) ); if dec//3\==0 then call radix3 end /*#*/ /* [↑] crunch 'til found 'nuff numbers*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ radix3: parse var dec x 1 $,q /* [↓] convert decimal # ──► ternary.*/ do j=p while !.j<=x; end /*find upper limit of power of three. */ p=j-1 /*use this power of three for next time*/ do k=p by -1 for p; _=!.k; d=x%_; q=q || d; x=x//_; end /*k*/ t=q || x /*handle residual of ternary conversion*/ if t\==reverse(t) then return /*is T ternary number not palindromic? */ call show $, t, strip(x2b(d2x($)), , 0) /*show number: decimal, ternary, binary*/ return /* [↑] RADIX3 subroutine is sluggish.*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ show: hits=hits+1; say /*bump the number of palindromes found.*/ say right('['hits"]", 5) right( arg(1), digs) '(decimal), ternary=' arg(2) say right('', 5+1+ digs) ' binary =' arg(3) if hits>2 then if hits//2 then #=#'0' if hits 7 }} ```txt [1] 0 (decimal), ternary= 0 binary = 0 [2] 1 (decimal), ternary= 1 binary = 1 [3] 6643 (decimal), ternary= 100010001 binary = 1100111110011 [4] 1422773 (decimal), ternary= 2200021200022 binary = 101011011010110110101 [5] 5415589 (decimal), ternary= 101012010210101 binary = 10100101010001010100101 [6] 90396755477 (decimal), ternary= 22122022220102222022122 binary = 1010100001100000100010000011000010101 [7] 381920985378904469 (decimal), ternary= 2112200222001222121212221002220022112 binary = 10101001100110110110001110011011001110001101101100110010101 ``` [Output note: the 6th number (above) took a couple of seconds to compute.] ### version 2 This REXX version takes advantage that the palindromic numbers (in both binary and ternary bases) ''seem'' to only have a modulus nine residue of 1, 5, 7, or 8. With this assumption, the following REXX program is about 25% faster. ```rexx /*REXX program finds numbers that are palindromic in both binary and ternary. */ digs=50; numeric digits digs /*biggest known B2B3 palindrome: 44 dig*/ parse arg maxHits .; if maxHits=='' then maxHits=6 /*use six as a limit.*/ hits=0; #= 'fiat' /*the number of palindromes (so far). */ call show 0,0,0; call show 1,1,1 /*show the first two palindromes (fiat)*/ #.=0; #.1=1; #.5=1; #.7=1; #.8=1 /*modulus nine results that are OK. */ !.= /* [↓] build list of powers of three. */ do i=1 until !.i>10**digs; !.i=3**i; end /*compute powers of three for radix3.*/ p=1 /* [↓] primary search: bin palindromes*/ do #=digs /*use all numbers, however, DEC is odd.*/ binH=x2b( d2x(#) ) + 0 /*convert some decimal number to binary*/ binL=reverse(binH) /*reverse the binary digits (or bits).*/ dec=x2d( b2x( binH'0'binL) ); _=dec//9; if #._ then if dec//3\==0 then call radix3 dec=x2d( b2x( binH'1'binL) ); _=dec//9; if #._ then if dec//3\==0 then call radix3 end /*#*/ /* [↑] crunch 'til found 'nuff numbers*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ radix3: parse var dec x 1 $,q /* [↓] convert decimal # ──► ternary.*/ do j=p while !.j<=x; end /*find upper limit of power of three. */ p=j-1 /*use this power of three for next time*/ do k=p by -1 for p; _=!.k; d=x%_; q=q || d; x=x//_; end /*k*/ t=q || x /*handle residual of ternary conversion*/ if t\==reverse(t) then return /*is T ternary number not palindromic? */ call show $, t, strip(x2b(d2x($)), , 0) /*show number: decimal, ternary, binary*/ return /* [↑] RADIX3 subroutine is sluggish.*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ show: hits=hits+1; say /*bump the number of palindromes found.*/ say right('['hits"]", 5) right( arg(1), digs) '(decimal), ternary=' arg(2) say right('', 5+1+ digs) ' binary =' arg(3) if hits>2 then if hits//2 then #=#'0' if hits st REXX version.}} ## Ring ```ring # Project: Find palindromic numbers in both binary and ternary bases max = 6 nr = 0 pal = 0 see "working..." + nl see "wait for done..." + nl while true binpal = basedigits(nr,2) terpal = basedigits(nr,3) bool1 = ispalindrome(binpal) bool2 = ispalindrome(terpal) if bool1 = 1 and bool2 = 1 pal = pal + 1 see string(nr) + " " + binpal + "(2) " + terpal + "(3)" + nl if pal = max exit ok ok nr = nr + 1 end see "done..." + nl func basedigits(n,base) if n = 0 return "0" ok result = "" while n > 0 result = string(n % base) + result n = floor(n/base) end return result func ispalindrome(astring) if astring = "0" return 1 ok bString = "" for i=len(aString) to 1 step -1 bString = bString + aString[i] next if aString = bString return 1 else return 0 ok ``` {{out}} ```txt working... wait for done... 0 0(2) 0(3) 1 1(2) 1(3) 6643 1100111110011(2) 100010001(3) 1422773 101011011010110110101(2) 2200021200022(3) 5415589 10100101010001010100101(2) 101012010210101(3) 90396755477 1010100001100000100010000011000010101(2) 22122022220102222022122(3) done... ``` ## Ruby This program is based on the fact that the double palindromic numbers in base 3 all have a "1" right in the middle. Also, both base 2 and base 3 representations have an odd number of digits. # 1 digit under the number of the palindromic doesn't become zero. # As for the N numbering-system, at the time of the multiple of N, 1 digit below becomes zero. # Palindromic by the even-number digit binary system is 3 multiples. # Palindromic by the even-number digit ternary-system is 4 multiples. # In palindromic by the ternary-system of the odd digit, the value of the center position is an even number in case of "0" or "2". This program constructs base 3 palindromes using the above "rules" and checks if they happen to be binary palindromes. ```ruby pal23 = Enumerator.new do |y| y << 0 y << 1 for i in 1 .. 1.0/0.0 # 1.step do |i| (Ruby 2.1+) n3 = i.to_s(3) n = (n3 + "1" + n3.reverse).to_i(3) n2 = n.to_s(2) y << n if n2.size.odd? and n2 == n2.reverse end end puts " decimal ternary binary" 6.times do |i| n = pal23.next puts "%2d: %12d %s %s" % [i, n, n.to_s(3).center(25), n.to_s(2).center(39)] end ``` {{out}} ```txt decimal ternary binary 0: 0 0 0 1: 1 1 1 2: 6643 100010001 1100111110011 3: 1422773 2200021200022 101011011010110110101 4: 5415589 101012010210101 10100101010001010100101 5: 90396755477 22122022220102222022122 1010100001100000100010000011000010101 ``` ## Scala ===Functional programmed, (tail) recursive=== {{Out}}Best seen running in your browser either by [https://scalafiddle.io/sf/ZYCqm7p/0 ScalaFiddle (ES aka JavaScript, non JVM)] or [https://scastie.scala-lang.org/WIL3oAwYSRy4Kl918u13CA Scastie (remote JVM)]. ```Scala import scala.annotation.tailrec import scala.compat.Platform.currentTime object Palindrome23 extends App { private val executionStartTime = currentTime private val st: Stream[(Int, Long)] = (0, 1L) #:: st.map(xs => nextPalin3(xs._1)) @tailrec private def nextPalin3(n: Int): (Int, Long) = { @inline def isPali2(i: BigInt): Boolean = { val s = i.toString(2) if ((s.length & 1) == 0) false else s == s.reverse } def palin3(i: BigInt): Long = { val n3 = i.toString(3) java.lang.Long.parseLong(n3 + "1" + n3.reverse, 3) } val actual: Long = palin3(n) if (isPali2(actual)) (n + 1, actual) else nextPalin3(n + 1) } println(f"${"Decimal"}%18s${"Binary"}%35s${"Ternary"}%51s") (Stream(0L) ++ st.map(_._2)).take(6).foreach(n => { val bigN = BigInt(n) val (bin, ter) = (bigN.toString(2), bigN.toString(3)) println(f"${n}%18d, ${ bin + " " * ((60 - bin.length) / 2)}%60s, ${ ter + " " * ((37 - ter.length) / 2)}%37s") }) println(s"Successfully completed without errors. [total ${currentTime - executionStartTime} ms]") } ``` ===Fastest and high yields (17) solution 😏=== {{Out}}Best seen running in your browser either by [https://scastie.scala-lang.org/en0ZiqDETCuWO6avhTi9YQ Scastie (remote JVM)]. ```Scala import scala.io.Source object FastPalindrome23 extends App { val rawText = Source.fromURL("http://oeis.org/A060792/b060792.txt") var count = 0 rawText.getLines().map(_.split(" ")) .foreach(s => { val n = BigInt(s(1)) val (bin, ter) = (n.toString(2), n.toString(3)) count += 1 println( f"Decimal : ${n}%-44d , Central binary digit: ${bin(bin.length / 2)}") println(f"Binary : ${bin}") println(f"Ternary : ${ter + " " * ((91 - ter.length) / 2)}%91s") println(f"Central : ${"^"}%46s%n---%n") }) println(s"${count} palindromes found.") } ``` {{Out}} ```txt Decimal : 0 , Central binary digit: 0 Binary : 0 Ternary : 0 Central : ^ --- Decimal : 1 , Central binary digit: 1 Binary : 1 Ternary : 1 Central : ^ --- Decimal : 6643 , Central binary digit: 1 Binary : 1100111110011 Ternary : 100010001 Central : ^ --- Decimal : 1422773 , Central binary digit: 1 Binary : 101011011010110110101 Ternary : 2200021200022 Central : ^ --- Decimal : 5415589 , Central binary digit: 0 Binary : 10100101010001010100101 Ternary : 101012010210101 Central : ^ --- Decimal : 90396755477 , Central binary digit: 0 Binary : 1010100001100000100010000011000010101 Ternary : 22122022220102222022122 Central : ^ --- Decimal : 381920985378904469 , Central binary digit: 0 Binary : 10101001100110110110001110011011001110001101101100110010101 Ternary : 2112200222001222121212221002220022112 Central : ^ --- Decimal : 1922624336133018996235 , Central binary digit: 0 Binary : 11010000011100111000101110001110011011001110001110100011100111000001011 Ternary : 122120102102011212112010211212110201201021221 Central : ^ --- Decimal : 2004595370006815987563563 , Central binary digit: 1 Binary : 110101000011111010101010100101111011110111011110111101001010101010111110000101011 Ternary : 221010112100202002120002212200021200202001211010122 Central : ^ --- Decimal : 8022581057533823761829436662099 , Central binary digit: 1 Binary : 1100101010000100101101110000011011011111111011000011100001101111111101101100000111011010010000101010011 Ternary : 21000020210011222122220212010000100001021202222122211001202000012 Central : ^ --- Decimal : 392629621582222667733213907054116073 , Central binary digit: 0 Binary : 10010111001111000100010100010100000011011011000101011011100000111011010100011011011000000101000101000100011110011101001 Ternary : 122102120011102000101101000002010021111120010200000101101000201110021201221 Central : ^ --- Decimal : 32456836304775204439912231201966254787 , Central binary digit: 1 Binary : 11000011010101111010110010100010010011011010101001101000001000100010000010110010101011011001001000101001101011110101011000011 Ternary : 1222100201002211120110022121002012121101011212102001212200110211122001020012221 Central : ^ --- Decimal : 428027336071597254024922793107218595973 , Central binary digit: 1 Binary : 101000010000000110001000011111100101011110011100001110100011100010001110001011100001110011110101001111110000100011000000010000101 Ternary : 222001200110022102121001000200200202022111220202002002000100121201220011002100222 Central : ^ --- Decimal : 1597863243206403857787246920544522912361 , Central binary digit: 0 Binary : 10010110010000110010100010001000111010010000111000010010100010111011101000101001000011100001001011100010001000101001100001001101001 Ternary : 10121021220121202021201220210001211020122122102011210001202210212020212102212012101 Central : ^ --- Decimal : 30412638162199251273509758127730300026189 , Central binary digit: 0 Binary : 101100101011111111011010000110101101100101010100101101010000001000000000100000010101101001010101001101101011000010110111111110101001101 Ternary : 2112120210211212121000000011202022210210101010120122202021100000001212121120120212112 Central : ^ --- Decimal : 32345684491703244980406880704479906642045 , Central binary digit: 0 Binary : 101111100001110001100000011101111000001111001000110100111001010101101101010100111001011000100111100000111101110000001100011100001111101 Ternary : 2200221111210202000010122020002221112212101012122111222000202210100002020121111220022 Central : ^ --- Decimal : 24014998963383302600955162866787153652444049 , Central binary digit: 0 Binary : 1000100111010110110111101001100011100110100000011011001010100101011001100011001101010010101001101100000010110011100011001011110110110101110010001 Ternary : 2202021211210100110100002202101000110000220121210220000110001012022000010110010121121202022 Central : ^ --- 17 palindromes found. ``` ## Scheme ```scheme (import (scheme base) (scheme write) (srfi 1 lists)) ; use 'fold' from SRFI 1 ;; convert number to a list of digits, in desired base (define (r-number->list n base) (let loop ((res '()) (num n)) (if (< num base) (cons num res) (loop (cons (remainder num base) res) (quotient num base))))) ;; convert number to string, in desired base (define (r-number->string n base) (apply string-append (map number->string (r-number->list n base)))) ;; test if a list of digits is a palindrome (define (palindrome? lst) (equal? lst (reverse lst))) ;; based on Perl/Ruby's insight ;; -- construct the ternary palindromes in order ;; using fact that their central number is always a 1 ;; -- convert into binary, and test if result is a palindrome too (define (get-series size) (let loop ((results '(1 0)) (i 1)) (if (= size (length results)) (reverse results) (let* ((n3 (r-number->list i 3)) (n3-list (append n3 (list 1) (reverse n3))) (n10 (fold (lambda (d t) (+ d (* 3 t))) 0 n3-list)) (n2 (r-number->list n10 2))) (loop (if (palindrome? n2) (cons n10 results) results) (+ 1 i)))))) ;; display final results, in bases 10, 2 and 3. (for-each (lambda (n) (display (string-append (number->string n) " in base 2: " (r-number->string n 2) " in base 3: " (r-number->string n 3))) (newline)) (get-series 6)) ``` {{out}} ```txt 0 in base 2: 0 in base 3: 0 1 in base 2: 1 in base 3: 1 6643 in base 2: 1100111110011 in base 3: 100010001 1422773 in base 2: 101011011010110110101 in base 3: 2200021200022 5415589 in base 2: 10100101010001010100101 in base 3: 101012010210101 90396755477 in base 2: 1010100001100000100010000011000010101 in base 3: 22122022220102222022122 ``` ## Sidef {{trans|Perl}} ```ruby var format = "%11s %24s %38s\n" format.printf("decimal", "ternary", "binary") format.printf(0, 0, 0) for n in (0 .. 2e5) { var pal = n.base(3)||'' var b3 = (pal + '1' + pal.flip) var b2 = Num(b3, 3).base(2) if (b2 == b2.flip) { format.printf(Num(b2, 2), b3, b2) } } ``` {{out}} ```txt decimal ternary binary 0 0 0 1 1 1 6643 100010001 1100111110011 1422773 2200021200022 101011011010110110101 5415589 101012010210101 10100101010001010100101 90396755477 22122022220102222022122 1010100001100000100010000011000010101 ``` ## Tcl We can use [format %b] to format a number as binary, but ternary requires a custom proc: ```Tcl proc format_%t {n} { while {$n} { append r [expr {$n % 3}] set n [expr {$n / 3}] } if {![info exists r]} {set r 0} string reverse $r } ``` Identifying palindromes is simple. This form is O(n) with a large constant factor, but good enough: ```Tcl proc pal? {s} {expr {$s eq [string reverse $s]}} ``` The naive approach turns out to be very slow: ```Tcl proc task {{find 6}} { for {set i 0} {$find} {incr i} { set b [format %b $i] set t [format_%t $i] if {[pal? $b] && [pal? $t]} { puts "Palindrome: $i ($b) ($t)" incr find -1 } } } puts [time {task 4}] ``` {{out}} ```txt Palindrome: 0 (0) (0) Palindrome: 1 (1) (1) Palindrome: 6643 (1100111110011) (100010001) Palindrome: 1422773 (101011011010110110101) (2200021200022) 21944474 microseconds per iteration ``` 22 seconds for only the first four elements .. not good enough! We can do much better than that by naively iterating the binary palindromes. This is nice to do in a coroutine: ```Tcl package require Tcl 8.5 ;# for coroutines proc 2pals {} { yield 0 yield 1 while 1 { incr i set a [format %b $i] set b [string reverse $a] yield ${a}$b yield ${a}0$b yield ${a}1$b } } ``` The binary strings emitted by this generator are not in increasing order, but for this particular task, that turns out to be unimportant. Our main loop needs only minor changes: ```Tcl proc task {{find 6}} { coroutine gen apply {{} {yield; 2pals}} while {$find} { set b [gen] set i [scan $b %b] set t [format_%t $i] if {[pal? $t]} { puts "Palindrome: $i ($b) ($t)" incr find -1 } } rename gen {} } puts [time task] ``` This version finds the first 6 in under 4 seconds, which is good enough for the task at hand: {{out}} ```txt Palindrome: 0 (0) (0) Palindrome: 1 (1) (1) Palindrome: 6643 (1100111110011) (100010001) Palindrome: 1422773 (101011011010110110101) (2200021200022) Palindrome: 5415589 (10100101010001010100101) (101012010210101) Palindrome: 90396755477 (1010100001100000100010000011000010101) (22122022220102222022122) 3643152 microseconds per iteration ``` Plenty more optimisations are possible! Exploiting the observations in Ruby's implementation should make the 7th element reachable in reasonable time ... ## VBA ```vb Public Declare Function GetTickCount Lib "kernel32.dll" () As Long 'palindromes both in base3 and base2 'using Decimal data type to find number 6 and 7, although slowly Private Function DecimalToBinary(DecimalNum As Long) As String Dim tmp As String Dim n As Long n = DecimalNum tmp = Trim(CStr(n Mod 2)) n = n \ 2 Do While n <> 0 tmp = Trim(CStr(n Mod 2)) & tmp n = n \ 2 Loop DecimalToBinary = tmp End Function Function Dec2Bin(ByVal DecimalIn As Variant, _ Optional NumberOfBits As Variant) As String Dec2Bin = "" DecimalIn = Int(CDec(DecimalIn)) Do While DecimalIn <> 0 Dec2Bin = Format$(DecimalIn - 2 * Int(DecimalIn / 2)) & Dec2Bin DecimalIn = Int(DecimalIn / 2) Loop If Not IsMissing(NumberOfBits) Then If Len(Dec2Bin) > NumberOfBits Then Dec2Bin = "Error - Number exceeds specified bit size" Else Dec2Bin = Right$(String$(NumberOfBits, _ "0") & Dec2Bin, NumberOfBits) End If End If End Function Public Sub base() 'count integer n from 0 upwards 'display representation in base 3 Time1 = GetTickCount Dim n As Long Dim three(19) As Integer Dim pow3(19) As Variant Dim full3 As Variant Dim trail As Variant Dim check As Long Dim len3 As Integer Dim carry As Boolean Dim i As Integer, j As Integer Dim s As String Dim t As String pow3(0) = CDec(1) For i = 1 To 19 pow3(i) = 3 * pow3(i - 1) Next i Debug.Print String$(5, " "); "iter"; String$(7, " "); "decimal"; String$(18, " "); "binary"; Debug.Print String$(30, " "); "ternary" n = 0: full3 = 0: t = "0": s = "0" Debug.Print String$(8 - Len(CStr(n)), " "); n; String$(12 - Len(CStr(full3)), " "); Debug.Print full3; String$((41 - Len(t)) / 2, " "); t; String$((41 - Len(t)) / 2, " "); Debug.Print String$((31 - Len(s)) / 2, " "); s n = 0: full3 = 1: t = "1": s = "1" Debug.Print String$(8 - Len(CStr(n)), " "); n; String$(12 - Len(CStr(full3)), " "); Debug.Print full3; String$((41 - Len(t)) / 2, " "); t; String$((41 - Len(t)) / 2, " "); Debug.Print String$((31 - Len(s)) / 2, " "); s number = 0 n = 1 len3 = 0 full3 = 3 Do 'For n = 1 To 200000 '20000000 takes 1000 seconds and number 7 not found yet three(0) = three(0) + 1 carry = False If three(0) = 3 Then three(0) = 0 carry = True j = 1 Do While carry three(j) = three(j) + 1 If three(j) = 3 Then three(j) = 0 j = j + 1 Else carry = False End If Loop If len3 < j Then trail = full3 - (n - 1) * pow3(len3 + 2) - pow3(len3 + 1) len3 = j full3 = n * pow3(len3 + 2) + pow3(len3 + 1) + 3 * trail For i = 0 To j - 1 full3 = full3 - 2 * pow3(len3 - i) Next i full3 = full3 + 1 'as j=len3 now and 1=pow3(len3 - j) Else full3 = full3 + pow3(len3 + 2) For i = 0 To j - 1 full3 = full3 - 2 * pow3(len3 - i) Next i full3 = full3 + pow3(len3 - j) End If Else full3 = full3 + pow3(len3 + 2) + pow3(len3) End If s = "" For i = 0 To len3 s = s & CStr(three(i)) Next i 'do we have a hit? t = Dec2Bin(full3) 'CStr(DecimalToBinary(full3)) If t = StrReverse(t) Then 'we have a hit number = number + 1 s = StrReverse(s) & "1" & s If n < 200000 Then Debug.Print String$(8 - Len(CStr(n)), " "); n; String$(12 - Len(CStr(full3)), " "); Debug.Print full3; String$((41 - Len(t)) / 2, " "); t; String$((41 - Len(t)) / 2, " "); Debug.Print String$((31 - Len(s)) / 2, " "); s If number = 4 Then Debug.Print "Completed in"; (GetTickCount - Time1) / 1000; "seconds" Time2 = GetTickCount Application.ScreenUpdating = False End If Else Debug.Print n, full3, Len(t), t, Len(s), s Debug.Print "Completed in"; (Time2 - Time1) / 1000; "seconds"; Time3 = GetTickCount End If End If n = n + 1 Loop Until number = 5 'Next n Debug.Print "Completed in"; (Time3 - Time1) / 1000; "seconds" Application.ScreenUpdating = True End Sub ``` {{out}} ```txt ' iter decimal binary ternary ' 0 0 0 0 ' 0 1 1 1 ' 27 6643 1100111110011 100010001 ' 650 1422773 101011011010110110101 2200021200022 ' 825 5415589 10100101010001010100101 101012010210101 ' 170097 90396755477 1010100001100000100010000011000010101 22122022220102222022122 'Completed in 5,14 seconds ' 328601606 381920985378904469 59 10101001100110110110001110011011001110001101101100110010101 37 2112200222001222121212221002220022112 Completed in 5,14 secondsCompleted in 16394,64 seconds ``` ## zkl {{trans|Ruby}} VERY slow after six but does find it. ```zkl fcn pal23W{ //--> iterator returning (index,palindromic number) Walker.tweak(fcn(ri,r){ // references to loop start and count of palindromes foreach i in ([ri.value..*]){ n3:=i.toString(3); n:=String(n3,"1",n3.reverse()).toInt(3); // create base 3 palindrome n2:= n.toString(2); if(n2.len().isOdd and n2==n2.reverse()){ // stop here, return answer ri.set(i+1); // continue loop from this value at next iteration return(r.inc(),n); } } }.fp(Ref(3),Ref(3))).push(T(1,0),T(2,1)) // seed with first two results } ``` ```zkl foreach idx,n in (pal23W().walk(6)){ println("%2d: %,d == %.3B(3) == %.2B(2)".fmt(idx,n,n,n)) } ``` {{out}} ```txt 1: 0 == 0(3) == 0(2) 2: 1 == 1(3) == 1(2) 3: 6,643 == 100010001(3) == 1100111110011(2) 4: 1,422,773 == 2200021200022(3) == 101011011010110110101(2) 5: 5,415,589 == 101012010210101(3) == 10100101010001010100101(2) 6: 90,396,755,477 == 22122022220102222022122(3) == 1010100001100000100010000011000010101(2) ```