⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}} Find the first perfect square in a given base '''N''' that has at least '''N''' digits and exactly '''N''' ''significant unique'' digits when expressed in base '''N'''.
E.G. In base '''10''', the first perfect square with at least '''10''' unique digits is '''1026753849''' ('''32043²''').
You may use analytical methods to reduce the search space, but the code must do a search. Do not use magic numbers or just feed the code the answer to verify it is correct.
;Task
-
Find and display here, on this page, the first perfect square in base '''N''', with '''N''' significant unique digits when expressed in base '''N''', for each of base '''2''' through '''12'''. Display each number in the base '''N''' for which it was calculated.
-
(optional) Do the same for bases '''13''' through '''16'''.
-
(stretch goal) Continue on for bases '''17''' - '''??''' (Big Integer math)
;See also: ::* [[oeis:A260182|OEIS A260182: smallest square that is pandigital in base n]].
;Related task [[Casting out nines]]
C++
{{trans|C#}} A stripped down version of the C#, using unsigned longs instead of BigIntegers, and shifted bits instead of a HashSet accumulator.
#include <string>
#include <iostream>
#include <cstdlib>
#include <math.h>
#include <chrono>
#include <iomanip>
using namespace std;
const int maxBase = 16; // maximum base tabulated
int base, bmo, tc; // globals: base, base minus one, test count
const string chars = "0123456789ABCDEF"; // characters to use for the different bases
unsigned long long full; // for allIn() testing
// converts base 10 to string representation of the current base
string toStr(const unsigned long long ull) {
unsigned long long u = ull; string res = ""; while (u > 0) {
lldiv_t result1 = lldiv(u, base); res = chars[(int)result1.rem] + res;
u = (unsigned long long)result1.quot;
} return res;
}
// converts string to base 10
unsigned long long to10(string s) {
unsigned long long res = 0; for (char i : s) res = res * base + chars.find(i); return res;
}
// determines whether all characters are present
bool allIn(const unsigned long long ull) {
unsigned long long u, found; u = ull; found = 0; while (u > 0) {
lldiv_t result1 = lldiv(u, base); found |= (unsigned long long)1 << result1.rem;
u = result1.quot;
} return found == full;
}
// returns the minimum value string, optionally inserting extra digit
string fixup(int n) {
string res = chars.substr(0, base); if (n > 0) res = res.insert(n, chars.substr(n, 1));
return "10" + res.substr(2);
}
// perform the calculations for one base
void doOne() {
bmo = base - 1; tc = 0; unsigned long long sq, rt, dn, d;
int id = 0, dr = (base & 1) == 1 ? base >> 1 : 0, inc = 1, sdr[maxBase] = { 0 };
full = ((unsigned long long)1 << base) - 1;
int rc = 0; for (int i = 0; i < bmo; i++) {
sdr[i] = (i * i) % bmo; if (sdr[i] == dr) rc++; if (sdr[i] == 0) sdr[i] += bmo;
}
if (dr > 0) {
id = base; for (int i = 1; i <= dr; i++)
if (sdr[i] >= dr) if (id > sdr[i]) id = sdr[i]; id -= dr;
}
sq = to10(fixup(id)); rt = (unsigned long long)sqrt(sq) + 1; sq = rt * rt;
dn = (rt << 1) + 1; d = 1; if (base > 3 && rc > 0) {
while (sq % bmo != dr) { rt += 1; sq += dn; dn += 2; } // alligns sq to dr
inc = bmo / rc; if (inc > 1) { dn += rt * (inc - 2) - 1; d = inc * inc; }
dn += dn + d;
} d <<= 1;
do { if (allIn(sq)) break; sq += dn; dn += d; tc++; } while (true);
rt += tc * inc;
cout << setw(4) << base << setw(3) << inc << " " << setw(2)
<< (id > 0 ? chars.substr(id, 1) : " ") << setw(10) << toStr(rt) << " "
<< setw(20) << left << toStr(sq) << right << setw(12) << tc << endl;
}
int main() {
cout << "base inc id root sqr test count" << endl;
auto st = chrono::system_clock::now();
for (base = 2; base <= maxBase; base++) doOne();
chrono::duration<double> et = chrono::system_clock::now() - st;
cout << "\nComputation time was " << et.count() * 1000 << " milliseconds" << endl;
return 0;
}
{{out}}
base inc id root sqr test count
2 1 10 100 0
3 1 22 2101 4
4 3 33 3201 2
5 1 2 243 132304 14
6 5 523 452013 20
7 6 1431 2450361 34
8 7 3344 13675420 41
9 4 11642 136802574 289
10 3 32043 1026753849 17
11 10 111453 1240A536789 1498
12 11 3966B9 124A7B538609 6883
13 1 3 3828943 10254773CA86B9 8242
14 13 3A9DB7C 10269B8C57D3A4 1330
15 14 1012B857 102597BACE836D4 4216
16 15 404A9D9B 1025648CFEA37BD9 18457
Computation time was 25.9016 milliseconds
=={{header|C#|Csharp}}== {{libheader|System.Numerics}} {{trans|Visual Basic .NET}} Based on the Visual Basic .NET version, plus it shortcuts some of the ''allIn()'' checks. When the numbers checked are below a threshold, not every digit needs to be checked, saving a little time.
using System;
using System.Collections.Generic;
using System.Numerics;
static class Program
{
static byte Base, bmo, blim, ic; static DateTime st0; static BigInteger bllim, threshold;
static HashSet<byte> hs = new HashSet<byte>(), o = new HashSet<byte>();
static string chars = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz|";
static List<BigInteger> limits;
static string ms;
// convert BigInteger to string using current base
static string toStr(BigInteger b) {
string res = ""; BigInteger re; while (b > 0) {
b = BigInteger.DivRem(b, Base, out re); res = chars[(byte)re] + res;
} return res;
}
// check for a portion of digits, bailing if uneven
static bool allInQS(BigInteger b) {
BigInteger re; int c = ic; hs.Clear(); hs.UnionWith(o); while (b > bllim) {
b = BigInteger.DivRem(b, Base, out re);
hs.Add((byte)re); c += 1; if (c > hs.Count) return false;
} return true;
}
// check for a portion of digits, all the way to the end
static bool allInS(BigInteger b) {
BigInteger re; hs.Clear(); hs.UnionWith(o); while (b > bllim) {
b = BigInteger.DivRem(b, Base, out re); hs.Add((byte)re);
} return hs.Count == Base;
}
// check for all digits, bailing if uneven
static bool allInQ(BigInteger b) {
BigInteger re; int c = 0; hs.Clear(); while (b > 0) {
b = BigInteger.DivRem(b, Base, out re);
hs.Add((byte)re); c += 1; if (c > hs.Count) return false;
} return true;
}
// check for all digits, all the way to the end
static bool allIn(BigInteger b) {
BigInteger re; hs.Clear(); while (b > 0) {
b = BigInteger.DivRem(b, Base, out re); hs.Add((byte)re);
} return hs.Count == Base;
}
// parse a string into a BigInteger, using current base
static BigInteger to10(string s) {
BigInteger res = 0; foreach (char i in s) res = res * Base + chars.IndexOf(i);
return res;
}
// returns the minimum value string, optionally inserting extra digit
static string fixup(int n) {
string res = chars.Substring(0, Base); if (n > 0) res = res.Insert(n, n.ToString());
return "10" + res.Substring(2);
}
// checks the square against the threshold, advances various limits when needed
static void check(BigInteger sq) {
if (sq > threshold) {
o.Remove((byte)chars.IndexOf(ms[blim])); blim -= 1; ic -= 1;
threshold = limits[bmo - blim - 1]; bllim = to10(ms.Substring(0, blim + 1));
}
}
// performs all the caclulations for the current base
static void doOne() {
limits = new List<BigInteger>();
bmo = (byte)(Base - 1); byte dr = 0; if ((Base & 1) == 1) dr = (byte)(Base >> 1);
o.Clear(); blim = 0;
byte id = 0; int inc = 1; long i = 0; DateTime st = DateTime.Now; if (Base == 2) st0 = st;
byte[] sdr = new byte[bmo]; byte rc = 0; for (i = 0; i < bmo; i++) {
sdr[i] = (byte)((i * i) % bmo); rc += sdr[i] == dr ? (byte)1 : (byte)0;
sdr[i] += sdr[i] == 0 ? bmo : (byte)0;
} i = 0; if (dr > 0) {
id = Base;
for (i = 1; i <= dr; i++) if (sdr[i] >= dr) if (id > sdr[i]) id = sdr[i]; id -= dr;
i = 0;
} ms = fixup(id);
BigInteger sq = to10(ms); BigInteger rt = new BigInteger(Math.Sqrt((double)sq) + 1);
sq = rt * rt; if (Base > 9) {
for (int j = 1; j < Base; j++)
limits.Add(to10(ms.Substring(0, j) + new string(chars[bmo], Base - j + (rc > 0 ? 0 : 1))));
limits.Reverse(); while (sq < limits[0]) { rt++; sq = rt * rt; }
}
BigInteger dn = (rt << 1) + 1; BigInteger d = 1; if (Base > 3 && rc > 0) {
while (sq % bmo != dr) { rt += 1; sq += dn; dn += 2; } // alligns sq to dr
inc = bmo / rc;
if (inc > 1) { dn += rt * (inc - 2) - 1; d = inc * inc; }
dn += dn + d;
}
d <<= 1; if (Base > 9) {
blim = 0; while (sq < limits[bmo - blim - 1]) blim++; ic = (byte)(blim + 1);
threshold = limits[bmo - blim - 1];
if (blim > 0) for (byte j = 0; j <= blim; j++) o.Add((byte)chars.IndexOf(ms[j]));
if (blim > 0) bllim = to10(ms.Substring(0, blim + 1)); else bllim = 0;
if (Base > 5 && rc > 0)
do { if (allInQS(sq)) break; sq += dn; dn += d; i += 1; check(sq); } while (true);
else
do { if (allInS(sq)) break; sq += dn; dn += d; i += 1; check(sq); } while (true);
} else {
if (Base > 5 && rc > 0)
do { if (allInQ(sq)) break; sq += dn; dn += d; i += 1; } while (true);
else
do { if (allIn(sq)) break; sq += dn; dn += d; i += 1; } while (true);
} rt += i * inc;
Console.WriteLine("{0,3} {1,2} {2,2} {3,20} -> {4,-40} {5,10} {6,9:0.0000}s {7,9:0.0000}s",
Base, inc, (id > 0 ? chars.Substring(id, 1) : " "), toStr(rt), toStr(sq), i,
(DateTime.Now - st).TotalSeconds, (DateTime.Now - st0).TotalSeconds);
}
static void Main(string[] args) {
Console.WriteLine("base inc id root square" +
" test count time total");
for (Base = 2; Base <= 28; Base++) doOne();
Console.WriteLine("Elasped time was {0,8:0.00} minutes", (DateTime.Now - st0).TotalMinutes);
}
}
{{out}}
base inc id root square test count time total
2 1 10 -> 100 0 0.0050s 0.0050s
3 1 22 -> 2101 4 0.0000s 0.0050s
4 3 33 -> 3201 2 0.0010s 0.0060s
5 1 2 243 -> 132304 14 0.0000s 0.0060s
6 5 523 -> 452013 20 0.0000s 0.0060s
7 6 1431 -> 2450361 34 0.0000s 0.0060s
8 7 3344 -> 13675420 41 0.0000s 0.0060s
9 4 11642 -> 136802574 289 0.0010s 0.0070s
10 3 32043 -> 1026753849 17 0.0050s 0.0120s
11 10 111453 -> 1240A536789 1498 0.0010s 0.0130s
12 11 3966B9 -> 124A7B538609 6883 0.0040s 0.0170s
13 1 3 3828943 -> 10254773CA86B9 8242 0.0439s 0.0609s
14 13 3A9DB7C -> 10269B8C57D3A4 1330 0.0010s 0.0619s
15 14 1012B857 -> 102597BACE836D4 4216 0.0020s 0.0638s
16 15 404A9D9B -> 1025648CFEA37BD9 18457 0.0100s 0.0738s
17 1 1 423F82GA9 -> 101246A89CGFB357ED 195112 0.2783s 0.3521s
18 17 44B482CAD -> 10236B5F8EG4AD9CH7 30440 0.0199s 0.3720s
19 6 1011B55E9A -> 10234DHBG7CI8F6A9E5 93021 0.0589s 0.4309s
20 19 49DGIH5D3G -> 1024E7CDI3HB695FJA8G 11310604 6.9833s 7.4142s
21 1 6 4C9HE5FE27F -> 1023457DG9HI8J6B6KCEAF 601843 1.0871s 8.5013s
22 21 4F94788GJ0F -> 102369FBGDEJ48CHI7LKA5 27804949 18.3290s 26.8302s
23 22 1011D3EL56MC -> 10234ACEDKG9HM8FBJIL756 17710217 11.4105s 38.2407s
24 23 4LJ0HDGF0HD3 -> 102345B87HFECKJNIGMDLA69 4266555 2.4763s 40.7171s
25 12 1011E145FHGHM -> 102345DOECKJ6GFB8LIAM7NH9 78092124 52.6831s 93.4012s
26 5 52K8N53BDM99K -> 1023458LO6IEMKG79FPCHNJDBA 402922568 287.9058s 381.3080s
27 26 1011F11E37OBJJ -> 1023458ELOMDHBIJFGKP7CQ9N6A 457555293 326.1714s 707.4794s
28 9 58A3CKP3N4CQD7 -> 1023456CGJBIRQEDHP98KMOAN7FL 749592976 508.4498s 1215.9292s
Elasped time was 20.27 minutes
=={{header|F_Sharp|F#}}==
The Task
// Nigel Galloway: May 21st., 2019
let fN g=let g=int64(sqrt(float(pown g (int(g-1L)))))+1L in (Seq.unfold(fun(n,g)->Some(n,(n+g,g+2L))))(g*g,g*2L+1L)
let fG n g=Array.unfold(fun n->if n=0L then None else let n,g=System.Math.DivRem(n,g) in Some(g,n)) n
let fL g=let n=set[0L..g-1L] in Seq.find(fun x->set(fG x g)=n) (fN g)
let toS n g=let a=Array.concat [[|'0'..'9'|];[|'a'..'f'|]] in System.String(Array.rev(fG n g)|>Array.map(fun n->a.[(int n)]))
[2L..16L]|>List.iter(fun n->let g=fL n in printfn "Base %d: %s² -> %s" n (toS (int64(sqrt(float g))) n) (toS g n))
{{out}}
Base 2: 10² -> 100
Base 3: 22² -> 2101
Base 4: 33² -> 3201
Base 5: 243² -> 132304
Base 6: 523² -> 452013
Base 7: 1431² -> 2450361
Base 8: 3344² -> 13675420
Base 9: 11642² -> 136802574
Base 10: 32043² -> 1026753849
Base 11: 111453² -> 1240a536789
Base 12: 3966b9² -> 124a7b538609
Base 13: 3828943² -> 10254773ca86b9
Base 14: 3a9db7c² -> 10269b8c57d3a4
Base 15: 1012b857² -> 102597bace836d4
Base 16: 404a9d9b² -> 1025648cfea37bd9
===Using [[Factorial base numbers indexing permutations of a collection]]=== On the discussion page for [[Factorial base numbers indexing permutations of a collection]] an anonymous contributor queries the value of [[Factorial base numbers indexing permutations of a collection]]. Well let's see him use an inverse Knuth shuffle to partially solve this task. This solution only applies to bases that do not require an extra digit. Still I think it's short and interesting. Note that the minimal candidate is 1.0....0 as a factorial base number.
// Nigel Galloway: May 30th., 2019
let fN n g=let g=n|>Array.rev|>Array.mapi(fun i n->(int64 n)*(pown g i))|>Array.sum
let n=int64(sqrt (float g)) in g=(n*n)
let fG g=lN([|yield 1; yield! Array.zeroCreate(g-2)|])|>Seq.map(fun n->lN2p n [|0..(g-1)|]) |> Seq.filter(fun n->fN n (int64 g))
printfn "%A" (fG 12|>Seq.head) // -> [|1; 2; 4; 10; 7; 11; 5; 3; 8; 6; 0; 9|]
printfn "%A" (fG 14|>Seq.head) // -> [|1; 0; 2; 6; 9; 11; 8; 12; 5; 7; 13; 3; 10; 4|]
Go
This takes advantage of major optimizations described by Nigel Galloway and Thundergnat (inspired by initial pattern analysis by Hout) in the Discussion page and a minor optimization contributed by myself.
package main
import (
"fmt"
"math/big"
"strconv"
"time"
)
const maxBase = 27
const minSq36 = "1023456789abcdefghijklmnopqrstuvwxyz"
const minSq36x = "10123456789abcdefghijklmnopqrstuvwxyz"
var bigZero = new(big.Int)
var bigOne = new(big.Int).SetUint64(1)
func containsAll(sq string, base int) bool {
var found [maxBase]byte
le := len(sq)
reps := 0
for _, r := range sq {
d := r - 48
if d > 38 {
d -= 39
}
found[d]++
if found[d] > 1 {
reps++
if le-reps < base {
return false
}
}
}
return true
}
func sumDigits(n, base *big.Int) *big.Int {
q := new(big.Int).Set(n)
r := new(big.Int)
sum := new(big.Int).Set(bigZero)
for q.Cmp(bigZero) == 1 {
q.QuoRem(q, base, r)
sum.Add(sum, r)
}
return sum
}
func digitalRoot(n *big.Int, base int) int {
root := new(big.Int)
b := big.NewInt(int64(base))
for i := new(big.Int).Set(n); i.Cmp(b) >= 0; i.Set(root) {
root.Set(sumDigits(i, b))
}
return int(root.Int64())
}
func minStart(base int) (string, uint64, int) {
nn := new(big.Int)
ms := minSq36[:base]
nn.SetString(ms, base)
bdr := digitalRoot(nn, base)
var drs []int
var ixs []uint64
for n := uint64(1); n < uint64(2*base); n++ {
nn.SetUint64(n * n)
dr := digitalRoot(nn, base)
if dr == 0 {
dr = int(n * n)
}
if dr == bdr {
ixs = append(ixs, n)
}
if n < uint64(base) && dr >= bdr {
drs = append(drs, dr)
}
}
inc := uint64(1)
if len(ixs) >= 2 && base != 3 {
inc = ixs[1] - ixs[0]
}
if len(drs) == 0 {
return ms, inc, bdr
}
min := drs[0]
for _, dr := range drs[1:] {
if dr < min {
min = dr
}
}
rd := min - bdr
if rd == 0 {
return ms, inc, bdr
}
if rd == 1 {
return minSq36x[:base+1], 1, bdr
}
ins := string(minSq36[rd])
return (minSq36[:rd] + ins + minSq36[rd:])[:base+1], inc, bdr
}
func main() {
start := time.Now()
var nb, nn big.Int
for n, k, base := uint64(2), uint64(1), 2; ; n += k {
if base > 2 && n%uint64(base) == 0 {
continue
}
nb.SetUint64(n)
sq := nb.Mul(&nb, &nb).Text(base)
if !containsAll(sq, base) {
continue
}
ns := strconv.FormatUint(n, base)
tt := time.Since(start).Seconds()
fmt.Printf("Base %2d:%15s² = %-27s in %8.3fs\n", base, ns, sq, tt)
if base == maxBase {
break
}
base++
ms, inc, bdr := minStart(base)
k = inc
nn.SetString(ms, base)
nb.Sqrt(&nn)
if nb.Uint64() < n+1 {
nb.SetUint64(n + 1)
}
if k != 1 {
for {
nn.Mul(&nb, &nb)
dr := digitalRoot(&nn, base)
if dr == bdr {
n = nb.Uint64() - k
break
}
nb.Add(&nb, bigOne)
}
} else {
n = nb.Uint64() - k
}
}
}
{{out}} Timings (in seconds) are for my Intel Core i7-8565U laptop using Go 1.12.9 on Ubuntu 18.04.
Base 2: 10² = 100 in 0.000s
Base 3: 22² = 2101 in 0.000s
Base 4: 33² = 3201 in 0.000s
Base 5: 243² = 132304 in 0.000s
Base 6: 523² = 452013 in 0.000s
Base 7: 1431² = 2450361 in 0.000s
Base 8: 3344² = 13675420 in 0.000s
Base 9: 11642² = 136802574 in 0.000s
Base 10: 32043² = 1026753849 in 0.000s
Base 11: 111453² = 1240a536789 in 0.001s
Base 12: 3966b9² = 124a7b538609 in 0.002s
Base 13: 3828943² = 10254773ca86b9 in 0.004s
Base 14: 3a9db7c² = 10269b8c57d3a4 in 0.005s
Base 15: 1012b857² = 102597bace836d4 in 0.006s
Base 16: 404a9d9b² = 1025648cfea37bd9 in 0.008s
Base 17: 423f82ga9² = 101246a89cgfb357ed in 0.074s
Base 18: 44b482cad² = 10236b5f8eg4ad9ch7 in 0.084s
Base 19: 1011b55e9a² = 10234dhbg7ci8f6a9e5 in 0.116s
Base 20: 49dgih5d3g² = 1024e7cdi3hb695fja8g in 3.953s
Base 21: 4c9he5fe27f² = 1023457dg9hi8j6b6kceaf in 4.174s
Base 22: 4f94788gj0f² = 102369fbgdej48chi7lka5 in 14.084s
Base 23: 1011d3el56mc² = 10234acedkg9hm8fbjil756 in 20.563s
Base 24: 4lj0hdgf0hd3² = 102345b87hfeckjnigmdla69 in 22.169s
Base 25: 1011e145fhghm² = 102345doeckj6gfb8liam7nh9 in 52.082s
Base 26: 52k8n53bdm99k² = 1023458lo6iemkg79fpchnjdba in 209.808s
Base 27: 1011f11e37objj² = 1023458elomdhbijfgkp7cq9n6a in 401.503s
It's possible to go beyond base 27 by using big.Int (rather than uint64) for N as well as N² though this takes about 15% longer to reach base 27 itself.
For example, to reach base 28 (the largest base shown in the OEIS table) we have:
package main
import (
"fmt"
"math/big"
"time"
)
const maxBase = 28
// etc
func main() {
start := time.Now()
var n, k, b, t, nn big.Int
n.SetUint64(2)
k.SetUint64(1)
b.SetUint64(2)
for base := 2; ; n.Add(&n, &k) {
if base > 2 && t.Rem(&n, &b).Cmp(bigZero) == 0 {
continue
}
sq := nn.Mul(&n, &n).Text(base)
if !containsAll(sq, base) {
continue
}
ns := n.Text(base)
tt := time.Since(start).Seconds()
fmt.Printf("Base %2d:%15s² = %-28s in %8.3fs\n", base, ns, sq, tt)
if base == maxBase {
break
}
base++
b.SetUint64(uint64(base))
ms, inc, bdr := minStart(base)
k.SetUint64(inc)
nn.SetString(ms, base)
n.Sqrt(&nn)
t.Add(&n, bigOne)
if n.Cmp(&t) == -1 {
n.Set(&t)
}
if inc != 1 {
for {
nn.Mul(&n, &n)
dr := digitalRoot(&nn, base)
if dr == bdr {
n.Sub(&n, &k)
break
}
n.Add(&n, bigOne)
}
} else {
n.Sub(&n, &k)
}
}
}
{{out}}
Base 2: 10² = 100 in 0.000s
Base 3: 22² = 2101 in 0.000s
Base 4: 33² = 3201 in 0.000s
Base 5: 243² = 132304 in 0.000s
Base 6: 523² = 452013 in 0.000s
Base 7: 1431² = 2450361 in 0.000s
Base 8: 3344² = 13675420 in 0.000s
Base 9: 11642² = 136802574 in 0.000s
Base 10: 32043² = 1026753849 in 0.000s
Base 11: 111453² = 1240a536789 in 0.001s
Base 12: 3966b9² = 124a7b538609 in 0.003s
Base 13: 3828943² = 10254773ca86b9 in 0.005s
Base 14: 3a9db7c² = 10269b8c57d3a4 in 0.006s
Base 15: 1012b857² = 102597bace836d4 in 0.007s
Base 16: 404a9d9b² = 1025648cfea37bd9 in 0.010s
Base 17: 423f82ga9² = 101246a89cgfb357ed in 0.088s
Base 18: 44b482cad² = 10236b5f8eg4ad9ch7 in 0.100s
Base 19: 1011b55e9a² = 10234dhbg7ci8f6a9e5 in 0.138s
Base 20: 49dgih5d3g² = 1024e7cdi3hb695fja8g in 4.632s
Base 21: 4c9he5fe27f² = 1023457dg9hi8j6b6kceaf in 4.894s
Base 22: 4f94788gj0f² = 102369fbgdej48chi7lka5 in 16.282s
Base 23: 1011d3el56mc² = 10234acedkg9hm8fbjil756 in 23.697s
Base 24: 4lj0hdgf0hd3² = 102345b87hfeckjnigmdla69 in 25.525s
Base 25: 1011e145fhghm² = 102345doeckj6gfb8liam7nh9 in 59.592s
Base 26: 52k8n53bdm99k² = 1023458lo6iemkg79fpchnjdba in 239.850s
Base 27: 1011f11e37objj² = 1023458elomdhbijfgkp7cq9n6a in 461.305s
Base 28: 58a3ckp3n4cqd7² = 1023456cgjbirqedhp98kmoan7fl in 911.059s
JavaScript
{{Trans|Python}}
(() => {
'use strict';
// allDigitSquare :: Int -> Int
const allDigitSquare = base => {
const bools = replicate(base, false);
return untilSucc(
allDigitsUsedAtBase(base, bools),
ceil(sqrt(parseInt(
'10' + '0123456789abcdef'.slice(2, base),
base
)))
);
};
// allDigitsUsedAtBase :: Int -> [Bool] -> Int -> Bool
const allDigitsUsedAtBase = (base, bools) => n => {
// Fusion of representing the square of integer N at a given base
// with checking whether all digits of that base contribute to N^2.
// Sets the bool at a digit position to True when used.
// True if all digit positions have been used.
const ds = bools.slice(0);
let x = n * n;
while (x) {
ds[x % base] = true;
x = floor(x / base);
}
return ds.every(x => x)
};
// showBaseSquare :: Int -> String
const showBaseSquare = b => {
const q = allDigitSquare(b);
return justifyRight(2, ' ', str(b)) + ' -> ' +
justifyRight(8, ' ', showIntAtBase(b, digit, q, '')) +
' -> ' + showIntAtBase(b, digit, q * q, '');
};
// TEST -----------------------------------------------
const main = () => {
// 1-12 only - by 15 the squares are truncated by
// JS integer limits.
// Returning values through console.log –
// in separate events to avoid asynchronous disorder.
print('Smallest perfect squares using all digits in bases 2-12:\n')
print('Base Root Square')
print(showBaseSquare(2));
print(showBaseSquare(3));
print(showBaseSquare(4));
print(showBaseSquare(5));
print(showBaseSquare(6));
print(showBaseSquare(7));
print(showBaseSquare(8));
print(showBaseSquare(9));
print(showBaseSquare(10));
print(showBaseSquare(11));
print(showBaseSquare(12));
};
// GENERIC FUNCTIONS ----------------------------------
const
ceil = Math.ceil,
floor = Math.floor,
sqrt = Math.sqrt;
// Tuple (,) :: a -> b -> (a, b)
const Tuple = (a, b) => ({
type: 'Tuple',
'0': a,
'1': b,
length: 2
});
// digit :: Int -> Char
const digit = n =>
// Digit character for given integer.
'0123456789abcdef' [n];
// enumFromTo :: (Int, Int) -> [Int]
const enumFromTo = (m, n) =>
Array.from({
length: 1 + n - m
}, (_, i) => m + i);
// justifyRight :: Int -> Char -> String -> String
const justifyRight = (n, cFiller, s) =>
n > s.length ? (
s.padStart(n, cFiller)
) : s;
// print :: a -> IO ()
const print = x => console.log(x)
// quotRem :: Int -> Int -> (Int, Int)
const quotRem = (m, n) =>
Tuple(Math.floor(m / n), m % n);
// replicate :: Int -> a -> [a]
const replicate = (n, x) =>
Array.from({
length: n
}, () => x);
// showIntAtBase :: Int -> (Int -> Char) -> Int -> String -> String
const showIntAtBase = (base, toChr, n, rs) => {
const go = ([n, d], r) => {
const r_ = toChr(d) + r;
return 0 !== n ? (
go(Array.from(quotRem(n, base)), r_)
) : r_;
};
return 1 >= base ? (
'error: showIntAtBase applied to unsupported base'
) : 0 > n ? (
'error: showIntAtBase applied to negative number'
) : go(Array.from(quotRem(n, base)), rs);
};
// Abbreviation for quick testing - any 2nd arg interpreted as indent size
// sj :: a -> String
function sj() {
const args = Array.from(arguments);
return JSON.stringify.apply(
null,
1 < args.length && !isNaN(args[0]) ? [
args[1], null, args[0]
] : [args[0], null, 2]
);
}
// str :: a -> String
const str = x => x.toString();
// untilSucc :: (Int -> Bool) -> Int -> Int
const untilSucc = (p, x) => {
// The first in a chain of successive integers
// for which p(x) returns true.
let v = x;
while (!p(v)) v = 1 + v;
return v;
};
// MAIN ---
return main();
})();
{{Out}}
Smallest perfect squares using all digits in bases 2-12:
Base Root Square
2 -> 10 -> 100
3 -> 22 -> 2101
4 -> 33 -> 3201
5 -> 243 -> 132304
6 -> 523 -> 452013
7 -> 1431 -> 2450361
8 -> 3344 -> 13675420
9 -> 11642 -> 136802574
10 -> 32043 -> 1026753849
11 -> 111453 -> 1240a536789
12 -> 3966b9 -> 124a7b538609
Julia
Runs in about 4 seconds with using occursin().
const num = "0123456789abcdef"
hasallin(n, nums, b) = (s = string(n, base=b); all(x -> occursin(x, s), nums))
function squaresearch(base)
basenumerals = [c for c in num[1:base]]
highest = parse(Int, "10" * num[3:base], base=base)
for n in Int(trunc(sqrt(highest))):highest
if hasallin(n * n, basenumerals, base)
return n
end
end
end
println("Base Root N")
for b in 2:16
n = squaresearch(b)
println(lpad(b, 3), lpad(string(n, base=b), 10), " ", string(n * n, base=b))
end
{{out}}
Base Root N
2 10 100
3 22 2101
4 33 3201
5 243 132304
6 523 452013
7 1431 2450361
8 3344 13675420
9 11642 136802574
10 32043 1026753849
11 111453 1240a536789
12 3966b9 124a7b538609
13 3828943 10254773ca86b9
14 3a9db7c 10269b8c57d3a4
15 1012b857 102597bace836d4
16 404a9d9b 1025648cfea37bd9
Pascal
Using an array of digits to base n, to get rid of base conversions.
Starting value equals squareroot of smallest value containing all digits to base.
Than brute force.
[https://tio.run/##zVdtU9tGEP6uX7EfMmMJZCMBIYmNmYGAGzcJThOntM0wGb0c9lH5ZKQTlMnkr5fu3p3ebDfTtM1M/AHkvX27Z59dr9LwmkWyuwzyKEi6V8vo4WGZpbMsWAD@pzN/YO3sjLiIQc4Z5IsgSVguQRSLkGUgQKYQBjmD0IU8RZ0Az7YEcBElRcxyQH10EPMZlzmkV0bZ@vRoPDo9G8HozfPPnx69npyewenZqzcvxvjt7Px0PPpsFTnLLYD8Pi8kT/KBFaUilxZE8yB7xyT0Iciy4P6D1@vtHVySbzqBYcfzd/f2Hx88efrs@OQ5BvnhxfjHl69en0/e/PT23fT9zxe//PpbZwBgyfslwwjyvFjI9IQSG0LGojSLAcUrHyHDj/GsHdbv7qvA4b1kg80mkZDu5hNEAtDbBYZbs2UCZbdBhnJMjhzkN9nuCT3ELJEBCsm2znywFgKvYF0VIpI8FfCaC46l@yhswr9/Hkh@y95zIZ0@/T3Ypyp3wPfWkev1eh2TCseQtenAOmEzLlCesbxIEJmhqi6msrMDwe8BdHyvg8fjka76EewSiYQGd5Rm5HBIQs2hrg9xapCoXeqnLVLY5oNWNJnh/WxERtpa6Gx7vWf0cSo8LAUlWEjniMVFxuB5Km53kb82Xop43G@gKEo4VmEqq3FTpBj6/VhjpiBpIAIVJOpmnk53yQKprqWNh9g1Mb/VWCk5xu8Zen3gl0qjS7pbtYogKcn0V2wvmzv0XAhsDjw20UpXSDuy4E0ZEa6skUVFihKGEBTLJXay7lCrURdOdZnz2dyuASrTdLBSpkfWk8dE1kCfFOTEVi28AnqFbU2vcZNdd1zOyUSTo5Q2EvWfdM2VFYPuBObt1QnCXcYlszvQcQZtw41WLSMzaz7UF7xUTuh@m7g1FhHe64TPFLmCOPbb7DJcGStG7ewsM5axm4LnGCvH71QaHJnoSA3bYMFc1e6tvivRcnM3dCMcRvebcQvpipRCWfxBi5fG0ny7m/OEIY2OSgxqnPOWH43CtrLeRgMc3RBqXCuPkyy286NhaPBWDvIu2F2tcXyOJuZsxa/SbDDedMoq6TX8NOHKzLXnw69K/1tkvTlHnICVCXXmITUXTsK2s7pn/4ZXG0mlsutX9V/nVR820EpfezjU9DpUKk1i/StKffel@O@FOI7jZiFc/LPbnmX/qKvJ9ohsXeUGDjUu2ySqxqFu7q@sRrutq1Hn0TAn773m0CNIwi@Xp7L5tuUyAxVKPjVTXaUWTvz/i1m4qGRskd4y2uL4FeRHoV5RwnsIuezKOx7HCRez728kTHENb25z48aWgrMTzCKjaM/da5f09dq86TdW/dopb49Vqmr6trdGJa@WJ72P4qrvrp/RytqQVxsrDfRiQSLTRuWJWz4ofTPsqkPfaVFjdavCPSbFLQjwfSGu1xiA6sLGRHfDtaoMJd/70s9/w7h8nLwF24d8njTMqdjXl05daKOsMwZVZmOk4BiWzupa4@fk7dnxSzOh6D6C/SExSEEjQ79oqQMDmka@hdg6ZrvO5kXxKkj09ldvKhjB1SpmSVNeVTJGoCIqjQviSSJs3vf3ncYGpGk39fowPQ0km/KFCqLW/r6o@EZXLOfN1FN8SO8GJf/Qb0dZrL0tlQ8aE1s4UFcJK6gXO6quDmjeKfyDsp5VrzjNYDYG7049Z@vpwb7n9X2vv6fOy3fTi/H56eTi3eeMBXEiBtWLKd659/DwZ3SVBLP8oTvZ@ws Try it online!]
program project1;
//Find the smallest number n to base b, so that n*n includes all
//digits of base b
{$IFDEF FPC}{$MODE DELPHI}{$ENDIF}
uses
sysutils;
const
charSet : array[0..36] of char ='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ';
type
tNumtoBase = record
ntb_dgt : array[0..31-4] of byte;
ntb_cnt,
ntb_bas : Word;
end;
var
Num,
sqr2B,
deltaNum : tNumtoBase;
function Minimal_n(base:NativeUint):Uint64;
//' 1023456789ABCDEFGHIJ...'
var
i : NativeUint;
Begin
result := base; // aka '10'
IF base > 2 then
For i := 2 to base-1 do
result := result*base+i;
result := trunc(sqrt(result)+0.99999);
end;
procedure Conv2num(var num:tNumtoBase;n:Uint64;base:NativeUint);
var
quot :UInt64;
i :NativeUint;
Begin
i := 0;
repeat
quot := n div base;
Num.ntb_dgt[i] := n-quot*base;
n := quot;
inc(i);
until n = 0;
Num.ntb_cnt := i;
Num.ntb_bas := base;
//clear upper digits
For i := i to high(tNumtoBase.ntb_dgt) do
Num.ntb_dgt[i] := 0;
end;
procedure OutNum(const num:tNumtoBase);
var
i : NativeInt;
Begin
with num do
Begin
For i := 17-ntb_cnt-1 downto 0 do
write(' ');
For i := ntb_cnt-1 downto 0 do
write(charSet[ntb_dgt[i]]);
end;
end;
procedure IncNumBig(var add1:tNumtoBase;n:NativeUInt);
//prerequisites
//bases are the same,delta : NativeUint
var
i,s,b,carry : NativeInt;
Begin
b := add1.ntb_bas;
i := 0;
carry := 0;
while n > 0 do
Begin
s := add1.ntb_dgt[i]+carry+ n MOD b;
carry := Ord(s>=b);
s := s- (-carry AND b);
add1.ntb_dgt[i] := s;
n := n div b;
inc(i);
end;
while carry <> 0 do
Begin
s := add1.ntb_dgt[i]+carry;
carry := Ord(s>=b);
s := s- (-carry AND b);
add1.ntb_dgt[i] := s;
inc(i);
end;
IF add1.ntb_cnt < i then
add1.ntb_cnt := i;
end;
procedure IncNum(var add1:tNumtoBase;carry:NativeInt);
//prerequisites: bases are the same, carry==delta < base
var
i,s,b : NativeInt;
Begin
b := add1.ntb_bas;
i := 0;
while carry <> 0 do
Begin
s := add1.ntb_dgt[i]+carry;
carry := Ord(s>=b);
s := s- (-carry AND b);
add1.ntb_dgt[i] := s;
inc(i);
end;
IF add1.ntb_cnt < i then
add1.ntb_cnt := i;
end;
procedure AddNum(var add1,add2:tNumtoBase);
//prerequisites
//bases are the same,add1>add2, add1 <= add1+add2;
var
i,carry,s,b : NativeInt;
Begin
b := add1.ntb_bas;
carry := 0;
For i := 0 to add2.ntb_cnt-1 do
begin
s := add1.ntb_dgt[i]+add2.ntb_dgt[i]+carry;
carry := Ord(s>=b);
s := s- (-carry AND b);
add1.ntb_dgt[i] := s;
end;
i := add2.ntb_cnt;
while carry = 1 do
Begin
s := add1.ntb_dgt[i]+carry;
carry := Ord(s>=b);
// remove of if s>b then by bit-twiddling
s := s- (-carry AND b);
add1.ntb_dgt[i] := s;
inc(i);
end;
IF add1.ntb_cnt < i then
add1.ntb_cnt := i;
end;
procedure Test(base:NativeInt);
var
n : Uint64;
i,j,TestSet : NativeInt;
Begin
write(base:5);
n := Minimal_n(base);
Conv2num(sqr2B,n*n,base);
Conv2num(Num,n,base);
deltaNum := num;
AddNum(deltaNum,deltaNum);
IncNum(deltaNum,1);
i := 0;
repeat
//count used digits
TestSet := 0;
For j := sqr2B.ntb_cnt-1 downto 0 do
TestSet := TestSet OR (1 shl sqr2B.ntb_dgt[j]);
inc(TestSet);
IF (1 shl base)=TestSet then
BREAK;
//next square number
AddNum(sqr2B,deltaNum);
IncNum(deltaNum,2);
inc(i);
until false;
IncNumBig(num,i);
OutNum(Num);
OutNum(sqr2B);
Writeln(i:14);
end;
var
T0: TDateTime;
base :nativeInt;
begin
T0 := now;
writeln('base n square(n) Testcnt');
For base := 2 to 16 do
Test(base);
writeln((now-T0)*86400:10:3);
{$IFDEF WINDOWS}readln;{$ENDIF}
end.
{{out}}
base n square(n) Testcnt
2 10 100 0
3 22 2101 4
4 33 3201 6
5 243 132304 46
6 523 452013 103
7 1431 2450361 209
8 3344 13675420 288
9 11642 136802574 1156
10 32043 1026753849 51
11 111453 1240A536789 14983
12 3966B9 124A7B538609 75713
13 3828943 10254773CA86B9 12668112
14 3A9DB7C 10269B8C57D3A4 17291
15 1012B857 102597BACE836D4 59026
16 404A9D9B 1025648CFEA37BD9 276865
0.401
===Inserted nearly all optimizations found by [[User:Hout|Hout]] and [[User:Nigel Galloway|Nigel Galloway]]===
I use now gmp to calculate the start values.Check Chai Wah Wu list on oeis.org/A260182
Now multithreaded at bases < 20 .Inserted StartOffset to run later on.For bases> 28 an intermediate stage of the minimal advanced thread is saved every minute.This is the candidate to start with again.
GetThreadCount needs improvement for Linux
Now 2..28 finishes on [https://tio.run/##7Txrd9tGrt/9K@Z0e65Jm7Iedm1XitO1LKvRXb9u7DTdm@P6UBJl0aZIhaT8aE/@@s0FMA/ODCkl3pvu3Q/rNraIwWBmMAAGwIBKhnfBKK/N/WzkR7XJfPT58zxNblN/xuAvtjU7a/V6P4zHLJ8GLJv5URRkOYsXs2GQspjlCRv6WcCGHssSwPGhbSNmYTyKFuMgY4APBMbhbZhnLJkIZObf@2zuxwT3o7U/vh/0e8d91r84@rTG2B/fn573jlnv@OTizYADzud5OAt/9/Mwidn5mXd4cvKpXr8Igvk0iQIvDW4f/NQ7ujz2Di9P4Q/vdQRkDk8GP5/hckYHzV3v6Pzs8up0cHaw3fKgxyyM4RNQipJkftD02CRJ2dvn34MY5nQcSTqHFxdXf784Ztj7/ASA0HjWG/Q/rS2yICMUvoB3Z4Nfscson6aBP848ahO4jN3O5l69jkwDfo8WkZ8DT3M/zdmDHy2I0uVz9i4Po6yztpY/zwOA5G@DW1j17g47YI2trd3tDgIvk@gyyAmYBTmyVuFR@6mf3VOrn6b@8wfVeI2ogzgXaHOF95voAgMD/Gwx6z7nwWD8xEd1dndqDbfW7IhGbOAtb8LbqaPhu6w3@IVdhr8HycQ5gw17CN6Fce5ST5gMYBaz4pRoTgIVpqZmkCddEJcDlgajJB0DUP7E@fBmfJvDp7ak2bGacTENzwJegewC17w4796MF7PZM/TXxzWxR3FuEwDx9cpYw7wERa4gQ2CAIfwpSAfxmK@vd5u/TZL88mMK7Jj7o/tgrC90nGY3J2GWtys3sKCJeLCk8wkIRLsQi6IRpty28RG1BDqKcxsKc2wdjsc2@CwIxtl5HJwmadBDFQaEBNTQjxFHrfAomQ3DOOgnKeBekUIwYzNHk/wm@5i2hp56HAdR7p8FT8gXC9rWZKKjmkbJIs6ByyhjctkI5@MNemqDQ7nBResbsEBRUMao12ECAdq8hP3QbNHqi7kIueHbAgoAGLVmbXvDQZk/nzjFLN2aAGlq4Br7R7xibM7n042S0T2pYgXruFYvojxkFRoBP7ObSzQlySQT7NhudWwMzq3qdprLKImzfA1Z0GTZNGINj21tefzz7jZatsOz3g23FO3Cyjhr3/fNn2PPhvRKkG4JsufZhI77NlKvBOmWIHt9m9Bx30bqlSDdEmSvbxMCOhZSrwTpliB7fZsQ0jGReiVItwTZ69uEiI6B1CtBuiXIXt8mxOnoSL0SpFuC7PVtQoKOhtQrQbolyF7fJiTpFEi9EqRbguz1bUKKjkLqlSDdEmSvbxMq6EikXgnSLUH2@jYhjY5A6pUg3RJkr28T0ulwpF4J0i1B9vo2IYMOIfVKkG4Jste3CZl0EKlXgnRLkL2@TciiA0i9EqRbglh0@mvkboymfgqnoWard7fJ/B7GWXgEjeyADOB6o9na3vlhd2//x8PuEfhxP78Z/OffTk7Pzi/@6@3l1btf3v/69//2h6NxMLmdhnf30SxO5h/TLF88PD49/7613tFcwKOLd7s76OyhbWyCrf5@v2H@16HGp26YHzDuzWkuokYGHNMqMnr37abRHXxLRkdEq4mekTwtnNlNMpmAm9je7czEYeq0vH0P/rnEqepO8jyhbnR0tHcI/f3h4Orm9BKwmvt7P3TgtABeB3B2BQ9B@sye2Cxj4YRNwjjMpuDXbGy3AHe3Aa4qHDBj9HPBnQ/6/gjAgli92Wg06oDTAWoOCxkcNLA@5qKbuQZL@8s3/AFyg3i@kH438zNGJ58f5zi5k@QEoo0cRqYj8k2oHvdxdnAss@1WDXYAt4nN/CcNZbuFzs@oH0bBmT8LALKObudN66a1v5U/5etAYb0@Dh7qZ@9OTugphqGDOOOtdPgyiCvYFPz/lAcSYXzL2QABAm7K@SQD3kPfHEjTzmxc5sH8fTjOp7grzcb2/v5OY3tvf3t3v/OtmYceC8RTwXiRBgz8Q3B4HAimmD8eNw0vjTMV4S0d7nYwznr0U3QUoSOPsShO4zKvuUOZ0F6KcJa4RWZncH@yaZLml3kKbMN2GBjCU3A0ux4zHExW6ViiZ47Nbd1Jx4Yr7wr8oStY41UPQrcrEGEE3w4jPpcj3Aj0WvtC8HU/a4LKBeOSbzxZxCMKZX8Ocq2vHY0MweePyURJs/AeQvHkMfskHbe3QQb6ytoHSOloviAyHdHl@IQHsCZiC8RGRwZpCzMWJzl7TNJ7lLRFPIbg/iSMF0/sp59@ktSkiZIOfiED5wuxChRCJ2yPk8UwCjpXU4wp@JJwRZkUUU8I8YSsM0WjZFe4LDB250FgrmIzFZplXjZps0tzc7uKR1mewtj77ZaXuaIDrjfbXGdIbl3AlJ5AW42muKFgHIUGB3XjT6jtd/SM8QB1qDXZOBGMHUwI/7UhtB/urreK6CSfBrHytAXx5egdtRg1rQ3otKnzrLkLrDAXmU3442Ma5kEUO5IH8nmiuNKPFtnU4d0r9xL1mWtuvJgZ2oFanhlbYOzbvAubNu@qYDG0trCQ58cQNgCoSz4WLZzKAfurCPI/NK5lmBIiXMTcG@XQSqI9TsH2ApUP4TUazWKrIHoNRk6oEAd9IPkK91XfoFDbe0YJIYKEQOcxBgkwCArmC0/jAw2q5qvET4ieiPbg/MQ9UTvEnyYeZyiAV@6MsEUFw2iUdTRyMI7YPbR4hhKso/0r2rkxtESko0TF7VTJiDJatwEZxuVy4lr7/nL5kDKwmG3ZcrBKdAorV95AUl9JkGdtWI019d0cxCOHk/C4/ChRKQiLT7NkzByREkIyrrHF5c078qNRcZo4mAfVrb2hRkfTe81tNTM/VoYHUClvszpJFHrsrpzpukC/xMoZFcxUfIuSR4cP4yIHKd8nnyu2gDeh7um7wJckoB@uLX2Yoxujt9Aey3O4apR6naePcz9iIovMUuAtczKQDD8SUJVzdvmG4cda0xVERHoMBx6qpBJDz/V8PHZ4N8M0iEyZ7ABjPLCWaA2iLKhCbJAg0Pyxi@wKItNRa8FsMJqt0ZRhWpMWQvn2jwsfZAe3HZ5E0v0xhNUNwZGeBZUiLskbdk9kE8UGOCHbYCHnib7yej0L/HQ0RScAiWZJtECNXzNWdRSv0rCq4YGj@gwOFH8M7ur7S734JYJD0uGxwm5LVS3m41oJVrkcGBgdmwmcq3SDEbNS7lJbW6kNF6UtWluzWFG5h7Yicz0T6UY0kUtdEp9EW5DJxXK7ycU75KJkANuUm9k9vDw2mVrF2C8yV0dQmgs2pISEu6AU3mrVNkIcqs3iOQ3mgZ@vGYsLYUw2R6NkL6G8AC07TYezOXT37fHh33SQMRc@bX3F4HWFEYz/2tCGwndaDyFAS3O2rjNK0Vxq8@FsfLhZhDeguKbBx0wzW4Qqa42WHw9wM0j6moPz3Ys8K1PGpvLmhg8oD1pXlzt5@FrmfKmLJk9Ey6SqGxmyPjylkU1TtuduOK0fdmtqwdZNDaJzHjlNl5LQ3Lw0dVxxluvzE2ADBhK2AHfvtenvmaJl@n4VYsq9SkACUrb1JEkKRSMeDXZjtdgtQmaMaS4pNBuKe6UDmkuteV3qyb1VeQtn@shss8mWCfASCW6dVYpvhchyIMQHs/nvN6ZLk8/mAtx5qUBjL4in85ssyB2go9zWl0rzmeZMGvIspPnshc7mP1vWTeG0RFMJJjEZpO/mI5ge4hejX0N9WFsWuSRi19Fsrvo1XGbp1ArxWyK2XyeTlj9IE4nAFcF5LImGKBz@BdN3RxBIQwBV6VKDb0Wt5ECBJ4uHS1F4IF2q75oNTABvbW11yUFk360ptwxCpRy1BjqROuA5ELM4eET5m/n5libl2QPeZ3rw14OPPt6cajJ/77HxMIJTy7xxrBR2J3twOzYEibvCndS14iYLHTk03@Z6HZb0HY8QyoGHpAEWUfrYW1/wZnS554vAHTV6i@NY95A4Irk8q9yie@UWVTmP9uGPK58tIpTSgt/64i1c2IYq3PtqnxE@lh36JVNu4ZTFIv/fJqzNR0zlX4WPSqnXDHbaDknByvKszTl//Yy/ar7m@ae0ChUeeskeVhptnewOO6f7FHAIZTrelaUDIkO7u4PVPltjiNVgjZM0CHiVFawt4NlWTPFze8@SOHoWqeKycvM1wGrUWHScbLfUkPAcTnIWBfBLo4CsagVPc9ld/FEdTSZpGHwmjlqaiS94Q/yBR60RBtTYjf@kpTH8CE8k5KWFsxpFor5s7viJUBpVgYvN0sECZCTPShmt46c89UciiQ2HisM/naVagoq5epWJ5XAb2VzZ@brKa6CCFxR5Vf1SzjFZuWCzosXwAuxiFq3RDEvUUo/wou5CHYEygVeZvqMDKoyjMA5WRSNURNZWxWRfyu3xNK6WhjO8sLjkgxFZatOKT3hTqljGuwlXSqgs5YEhqjtgO1U7Qclgb8ctPCpJjEakZO5m4/qabiJ540rU5tejtr4edbsCVVkuipqNiMZwC6sIVo6s58VFMPyqUe13geOIxX7h7ZIrv1hqyeoAFhTcw6rRkZ@mz8udf9IUHGRLeNudNdsVJgplb151Mtx5EomYWFalm9KvvWabgu4mYFOgpzRODneegilE4Rq6ZsIfjjCnxtHQaSyalY@eKe@YRJcHi@pWQvPMi5OJz5xTffXV0/9TJl09QRBFxXIRB7yCfVKC2dUmaiPqAYPeVkQNTkUlnRU2VIrqJVYsr7iftqVPBA3zNEiDj4swg0M/k1wnJ6OQ6SUi/WJZXiWvupz/K0vAny8AXw4by/t/Cg4QRHjo4OD2x@beF/k3w1KBE20XBBQchkbS2MJxkfm9WG6qhzWTsavv2SJcZnCAZ@9CYnezlJlisrQiprhRbYeAAsiEG6mn1tdcR2HxA8aE1Xe9lMwZx9lHGCbKy9W3cVWwjRGzUWNBDmq8AcRNRgJd4qSs3Nb2io8pWSiXyycCvwW8OIcEPttQfYyNEVkd2poWIuE/WtOSzMIFnKF@KupLMiefisIOdR1flDSIZVMNP16aYJZBlP4zn1jqwb/NovBha4sAimit6RbVB4JWMOdZJ4gRimKF4QKjcd5J61Gvi9T0LhV/7WJtL3g78KG5w5q7ZgYOpwN/uIMNH4xaGPnM2rjRV9pGEzjTquj26HpRLyHmRWOyekyeCB6/8TL9wMIM8BkZUiBnR9YGPyiwIVMY62rPJpJqFXLSZ0VpFOhYs9oi9Y1kYrE9RSzaNWJRZHyY636/anpfCgjC61WBuAoEcHjJgY6FIOrcjUwxM9VY7HCpjF4BvLIALcsp1OvYm4oGRI4sjJkuqOogUCesGL6KtNDhZbKnpyX7pQCFurgHjdWXhSo@V5eW4tZv3UhkGGGgnfGxLnH1eVeqivvlZIcuNEJJDmS1Zce6FwayZ4WxKvK@/xbNf4vmNxHN4rj7P5Zv8hpVxs4aFEvO6I6j9FN7zfYbrNHA3/x/@iw6O3pn99fztyYZ6NyQfRoN9Zl3dpZ0dvlFi@jcaBad6bOc9pKfjXttZHZfdAY4dOYH6RwY1vTwd4u15@abQ7gJR@hAe7F375027FDgtOmF1htnUnNBuHS/96BwBQvdRgQRQohj9/jXwZX2GhEn0qogIlFpEkCjmDe/oOJF4A09PkGG8toVyr1gMZFz2uD5OLJGh9pQHcGZFkYyqqGIZIhros2McnS2KRuiJTHq9TE8xOBPAVYazKJnBvqDrkh8G8yCmO5fRCBNM/ht87SxqUhu0si/iQgFwhbCEdphDOzEJDy8st5lKFPCAvMgvQZkHQewUO5OudDBH3b55i1e7d2LYI6Ggw6xOaSsDysSLbLmQFYIVfIUdrSYpB4gFFJhJHwUG5omG6Q1@MoVv2zN5VXzdRfXizYX@NqLyYhtF2JM3i9iM340FWulgs3X6k6x0pEzbhw7a5WX6oeaqq0oJBXhm3NoRauv8WYUWeJISbYwqO7UqKOgjbewinGQP0sakSfwR3Kn2nxfhrN5FLzQiBd5XTCKOPp/kFEjKcOIlITxFbX8ubbvhRbpn2yQigeUfkOjDDNV2CdpsL5kpwojBWqm26mX2KVV6onqG3coMHyJPttmUk8Or7Zvtk37CvNVuXN/qlVbxYBNZNE3tWp/8AQIvhgFi/JH02CsmzJd66vt2aGdDutUNLzErimPcIN9Ms2KngTBm5S3i/hqOnbmfurPgjxI22yeAJ0gNRJmofny9Ry6dKP7tvFSs1XczVEo7WkEI5oRUIO6eiWO6PlbZS5tVXmM/jZaOdFWqhjEHaMYg@pveZhhhQzC5hbvsJfeXy9FGVoX8zUkBVlaoGNFWrXQrNwpXerJWUFwohVkKBYcrCqCG@AWnyT4jQQwiZSslyO7LptRuLSqjB3HY77LTmNJxg2FzajfsSvii9SbIWtY1@69ywJBPzPfK1py/XhFhVlx8shpVNYRuVobJ8ewk7wR1/JiWkpKZbFkyrL8qpkpGXqIaiJLk2K8rNRUeXaHyoNfsx2XTmrMFDqrK3nc6lIe8d0ukzAtvtSF16GPfHrPg5ehm2XgpIlwXKZ5VhTnF@6SqlHWXxMB2u41ah62Ar1VSQedLRi2K24YkW/F@3x2gfgS5raqMwsGrzmH8b0OSqcbzOXV4JpaFT03qjBx2Ro9w/JUbbCak5FCQU4Y6@B5Ez2nYVwZ8RJJqfCFabzTPmuqg1DzRUYlbZSfesVahsmwuoqpW6lzXTVLEy1eTFsn5qzzKh6PrTN6HYS/SwzQInu@rpLrB9CgUbfepBJFOqy9blfvfNuRSuNoORylq1VJo6H76nVjiU6KoOMOWK6PS5ru6BbcXVYnVa5Iuftils8qItGPRsQWBvyvhVvgsQvuDDh3rmcUqHjWSwI7GzuNH3eXpfPwnLsrp6tKEnan3qNZedCDXzXkxrG1b6pa11q1eqV2cPZJA7/3w7yfpHzkqwC/IgpPBYOdDf66ps4zT7zG7hoj6G/gkrpHQTB3qlHl67VfTP39ozOs6XY0tNwL4JszIBnbbrq2fyBEW3/Hd0O8wO9V6rh@EFtFxoYbpvb0H10T0xZlSUIv0AXr5VqxZEorp0BWO0oyYQFLyAZiKL6Iy1GOlMsqXFPTit9VqhFn7R0zi7@K86BU32a5c3QohBvaXm5KjE69jkpPRwL/sjK62kxSMGcxL6G27mPxpLor5fGvmobbpUy1rHpbNy2rDbay4@/V4eEA4RrLwRpusP3dnUajzX5ss2007hk5lvIbota9uzZr7sDU1H1gu7nvmvS@LTWNnxurKK9rfjF3eUvvW6xJ8ZS01TdMUN/DLAtvYwQBS8wmsHM1blcO55iYEG/1AnjzE4/RB4ng9iurlOyRb5Jb/pYD/oUDlrdQXHQczRfsSHHK6kvksiCPgvg2nxo67rEyLn7xgiY6WDIsb8zk93TQa6n8o1BoFVHQYFc8MZA81q7cDWK@Md1RgnFZDgqGXxPgsas2a8it4V9YwjdI81isLst6kC0gBq5YcsPVvz8GjqPe@fvLT5Rf8sdRbHzDC@zf1tra58//M5pE/m32uXa@/bl2@fC/ Try it online!]
The runtime is on my 6-Core PC AMD Ryzen 5 1600 ( 3.4 Ghz on all cores Linux64 with SMT= on)
program project1;
//Find the smallest number n to base b, so that n*n includes all
//digits of base b aka pandigital
{$IFDEF FPC}
{$MODE DELPHI}
{$Optimization ON,ALL}//Peephole,regvar,CSE,ASMCSE}
{$CODEALIGN proc=16,CONSTMIN=32,varmin=32}//loop=1, for Ryzen
{$ElSE}
{$APPTYPE CONSOLE}
{$ENDIF}
uses
{$IFDEF UNIX}
cthreads,
{$ENDIF}
gmp,// to calculate start values
SysUtils;
type
tRegion64 = 0..63;
tSolSet64 = set of tRegion64;
tMask64 = array[tRegion64] of Int64;
tpMask64 = ^tMask64;
tNumByteIdx = 0..(64-0)-1;
tNumIdx = 0..High(tNumByteIdx) DIV Sizeof(NativeUint);
tarrNum = array[tNumIdx] of NativeUInt;
tNumtoBase= record
ntb_dgt : tarrNum;
ntb_Mask0,
ntb_TestSet,ntB_dummy : NativeUInt;
ntb_cnt,
ntb_bas,
ntb_cntbts,
ntb_HighByte : byte;
end;
tDgtRootSqr = packed record
drs_List: array[tRegion64] of byte;
drs_SetOfSol: tSolSet64;
drs_bas: byte;
drs_Sol: byte;
drs_SolCnt: byte;
drs_Dgt2Add: byte;
drs_NeedsOneMoreDigit: boolean;
end;
tCombineForOneThread = record
cft_sqr2b,
cft_deltaNextSqr,
cft_delta: tNumtoBase;
cft_count : Uint64;
cft_ThreadID: NativeUint;
cft_ThreadHandle: NativeUint;
//extend to 512 byte
cft_dummy : array[0..512-1-3*(SizeOf(tNumtoBase)-SizeOf(NativeUint))] of byte;
end;
pThreadBlock = ^tCombineForOneThread;
tMulti = record
m_Startofs : Uint32;
m_count : Uint32;
end;
const
//1 shl 0, ..,1 shl 63
cAND_Mask64: tMask64 =(
$FFFFFFFFFFFFFFFE,$FFFFFFFFFFFFFFFD,$FFFFFFFFFFFFFFFB,$FFFFFFFFFFFFFFF7,
$FFFFFFFFFFFFFFEF,$FFFFFFFFFFFFFFDF,$FFFFFFFFFFFFFFBF,$FFFFFFFFFFFFFF7F,
$FFFFFFFFFFFFFEFF,$FFFFFFFFFFFFFDFF,$FFFFFFFFFFFFFBFF,$FFFFFFFFFFFFF7FF,
$FFFFFFFFFFFFEFFF,$FFFFFFFFFFFFDFFF,$FFFFFFFFFFFFBFFF,$FFFFFFFFFFFF7FFF,
$FFFFFFFFFFFEFFFF,$FFFFFFFFFFFDFFFF,$FFFFFFFFFFFBFFFF,$FFFFFFFFFFF7FFFF,
$FFFFFFFFFFEFFFFF,$FFFFFFFFFFDFFFFF,$FFFFFFFFFFBFFFFF,$FFFFFFFFFF7FFFFF,
$FFFFFFFFFEFFFFFF,$FFFFFFFFFDFFFFFF,$FFFFFFFFFBFFFFFF,$FFFFFFFFF7FFFFFF,
$FFFFFFFFEFFFFFFF,$FFFFFFFFDFFFFFFF,$FFFFFFFFBFFFFFFF,$FFFFFFFF7FFFFFFF,
$FFFFFFFEFFFFFFFF,$FFFFFFFDFFFFFFFF,$FFFFFFFBFFFFFFFF,$FFFFFFF7FFFFFFFF,
$FFFFFFEFFFFFFFFF,$FFFFFFDFFFFFFFFF,$FFFFFFBFFFFFFFFF,$FFFFFF7FFFFFFFFF,
$FFFFFEFFFFFFFFFF,$FFFFFDFFFFFFFFFF,$FFFFFBFFFFFFFFFF,$FFFFF7FFFFFFFFFF,
$FFFFEFFFFFFFFFFF,$FFFFDFFFFFFFFFFF,$FFFFBFFFFFFFFFFF,$FFFF7FFFFFFFFFFF,
$FFFEFFFFFFFFFFFF,$FFFDFFFFFFFFFFFF,$FFFBFFFFFFFFFFFF,$FFF7FFFFFFFFFFFF,
$FFEFFFFFFFFFFFFF,$FFDFFFFFFFFFFFFF,$FFBFFFFFFFFFFFFF,$FF7FFFFFFFFFFFFF,
$FEFFFFFFFFFFFFFF,$FDFFFFFFFFFFFFFF,$FBFFFFFFFFFFFFFF,$F7FFFFFFFFFFFFFF,
$EFFFFFFFFFFFFFFF,$DFFFFFFFFFFFFFFF,$BFFFFFFFFFFFFFFF,$7FFFFFFFFFFFFFFF
);
charSet: array[0..63] of AnsiChar =
'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz.';
{$IFDEF CPU64}
Mask1 = $8080808080808080;
MaxBit= 63;
{$ENDIF}
{$IFDEF CPU32}
Mask1 = $80808080;
MaxBit= 31;
{$ENDIF}
// Multi21 : tMulti = (m_offset:6;m_delta:(2,8,2,8));
Multi21 : tMulti = (m_Startofs:6;m_count:4);
WAIT_MS = 1875; // check every x ms if finished *32 = 60 seconds
timeFac = WAIT_MS/1000/60 ;// ( i AND 31 ) = 0
//############################################################################
//Input values as constants
LoLimit = 2;
HiLimit = 28;// For 32-Bit CPU max HiLimit = 32
cFileName = 'Test_2_28.txt';//'/dev/NULL';//'nonsens.txt';
// use hyperthreading = 0
StartOfs= 1;//testcount*StepWidth = 11038840378368;
//############################################################################
procedure AddNum(var add1: tNumtoBase; const add2: tNumtoBase); forward;
var
{$ALIGN 32}
ThreadBlocks: array of tCombineForOneThread;
{$ALIGN 32}
s :shortString;
Num, sqr2B, deltaNextSqr, delta: tNumtoBase;
DgtRtSqr: tDgtRootSqr;
T,T0, T1: TDateTime;
gblThreadCount,
Finished: Uint32;
f : text;
function GetThreadCount: NativeUInt;
begin
{$IFDEF Windows}
Result := GetCpuCount;
{$ELSE}
Result := 12;//GetCpuCount;// is not working under Linux ???
{$ENDIF}
end;
procedure OutThreadStep(i:double;ThCnt:NativeInt;stepWidth,StartOffSet: Int64);
var
j,min : NativeInt;
s,sf: ShortString;
Begin
str(i:8:2,s);
s := s+' min ';
stepWidth := -ThCnt*stepWidth;
min := 0;
For j := 0 to ThCnt-1 do
If min > ThreadBlocks[j].cft_count then
min := ThreadBlocks[j].cft_count;
str(stepWidth*min+StartOffSet:16,sf);
s := s+sf;
writeln(s);
writeln(f,s);
Flush(f);
end;
procedure OutNum(const num: tNumtoBase;var s: ShortString);
var
pB : pByte;
i: NativeInt;
begin
with num do
begin
pB := @ntb_dgt[0];
i := ntb_cnt*SizeOf(NativeUint);
while pB[i] = 0 do
dec(i);
IF i < 0 then
i := 0;
for i := i downto 0 do
s := s+charSet[pB[i]];
s := s+' ';
end;
Write(s);
Write(f,String(s));
end;
procedure OutNumSqr;
begin
s := ' Num ';OutNum(Num,s);
s := ' sqr ';OutNum(sqr2B,s);
writeln;writeln(f);Flush(f);
end;
function getDgtRtNum(const num: tNumtoBase): NativeInt;
var
pB : pByte;
i: NativeInt;
begin
pB := @num.ntb_dgt[0];
with num do
begin
Result := 0;
for i := 0 to num.ntb_cntbts - 1 do
Inc(Result, pB[i]);
Result := Result mod (ntb_bas - 1);
end;
end;
procedure CalcDgtRootSqr(base: NativeUInt);
var
ChkSet: array[tRegion64] of tSolSet64;
ChkCnt: array[tRegion64] of byte;
i, j: NativeUInt;
PTest: tSolSet64;
begin
for i := low(ChkCnt) to High(ChkCnt) do
begin
ChkCnt[i] := 0;
ChkSet[i] := [];
end;
ptest := [];
with DgtRtSqr do
begin
//pandigtal digital root (sum all digits of base) mod (base-1)
drs_bas := base;
if Odd(base) then
drs_Sol := base div 2
else
drs_Sol := 0;
base := base - 1;
//calc which dgt root the square of the number will become
for i := 0 to base - 1 do
drs_List[i] := (i * i) mod base;
//searching for solution
drs_SolCnt := 0;
for i := 0 to base - 1 do
if drs_List[i] = drs_Sol then
begin
include(ptest, i);
Inc(drs_SolCnt);
end;
//if not found then NeedsOneMoreDigit
drs_NeedsOneMoreDigit := drs_SolCnt = 0;
if drs_NeedsOneMoreDigit then
begin
for j := 1 to Base do
for i := 0 to Base do
if drs_List[j] = (drs_Sol + i) mod BASE then
begin
include(ptest, i);
include(ChkSet[i], j);
Inc(ChkCnt[i]);
end;
i := 1;
repeat
if i in pTest then
begin
drs_Dgt2Add := i;
BREAK;
end;
Inc(i);
until i > base;
writeln('insert ', i);
end;
end;
end;
procedure conv_ui_num(base: NativeUint; ui: Uint64; var Num: tNumtoBase);
var
pB : pByte;
i: NativeUInt;
begin
with num do
begin
for i := 0 to high(tNumtoBase.ntb_dgt) do
ntb_dgt[i] := 0;
pB := @ntb_dgt[0];
ntb_bas := base;
ntb_Mask0 := (Mask1 shr 7)*(256-Base);
ntb_TestSet := Uint64(1) shl base -1;
ntb_cntbts := 0;
ntb_cnt := 0;
if ui <> 0 then
begin
i := 0;
repeat
pB[i] := ui mod base;
ui := ui div base;
Inc(i);
until ui = 0;
ntb_cntbts := i;
ntb_HighByte := pB[i-1];
ntb_cnt := i DIV SizeOf(NativeUint) +1 ;
end;
end;
end;
procedure conv2Num(base: NativeUint; var Num: tNumtoBase; var s: mpz_t);
var
tmp: mpz_t;
pB : pByte;
i: NativeUInt;
begin
mpz_init_set(tmp,s);
for i := 0 to high(tNumtoBase.ntb_dgt) do
Num.ntb_dgt[i] := 0;
pB := @Num.ntb_dgt[0];
with num do
begin
ntb_bas := base;
ntb_Mask0 := (Mask1 shr 7)*(256-Base);
ntb_TestSet := Uint64(1) shl base -1;
i := 0;
repeat
pB[i] := mpz_tdiv_q_ui(tmp, tmp, base);
Inc(i);
until mpz_cmp_ui(tmp, 0) = 0;
ntb_HighByte := pB[i-1];
ntb_cntbts := i;
ntb_cnt := i DIV SizeOf(NativeUint) +1;
end;
mpz_clear(tmp);
end;
procedure StartValueCreate(base: NativeUInt);
//create the lowest pandigital number "102345...Base-1 "
//calc sqrt +1 and convert n new format.
var
sv_sqr, sv,sv_add: mpz_t;
k, dblDgt: NativeUint;
begin
mpz_init(sv);
mpz_init(sv_sqr);
mpz_init_set_si(sv_sqr, base);//"10"
CalcDgtRootSqr(base);
if DgtRtSqr.drs_NeedsOneMoreDigit then
begin
dblDgt := DgtRtSqr.drs_Dgt2Add;
if dblDgt = 1 then
begin
for k := 1 to base - 1 do
begin
mpz_mul_ui(sv_sqr, sv_sqr, base);
mpz_add_ui(sv_sqr, sv_sqr, k);
end;
end
else
begin
for k := 2 to dblDgt do
begin
mpz_mul_ui(sv_sqr, sv_sqr, base);
mpz_add_ui(sv_sqr, sv_sqr, k);
end;
for k := dblDgt to base - 1 do
begin
mpz_mul_ui(sv_sqr, sv_sqr, base);
mpz_add_ui(sv_sqr, sv_sqr, k);
end;
end;
end
else
begin
for k := 2 to base - 1 do
begin
mpz_mul_ui(sv_sqr, sv_sqr, base);
mpz_add_ui(sv_sqr, sv_sqr, k);
end;
end;
mpz_sqrt(sv, sv_sqr);
writeln('Start Offset ',StartOfs);
//Windows64 gmp.dll or freepascal does not use Uint64 only Uint32
mpz_init_set_ui(sv_add,StartOfs shr 32);
// shift left 32
mpz_mul_2exp(sv_add,sv_add,32);
mpz_add_ui(sv_add,sv_add,Uint32(StartOfs));
mpz_add(sv, sv, sv_add);
mpz_mul(sv_sqr, sv, sv);
conv2Num(base, Num, sv);
conv2Num(base, sqr2B, sv_sqr);
mpz_clear(sv_add);
mpz_clear(sv_sqr);
mpz_clear(sv);
OutNumSqr;
end;
function ExtractThreadVal(ThreadNr: NativeInt ): Uint64;
begin
with ThreadBlocks[ThreadNr] do
begin
sqr2b := cft_sqr2b;
Result := cft_count;
cft_ThreadID := 0;
cft_ThreadHandle := 0;
end;
end;
function CheckPandigital(const n: tNumtoBase): NativeUint;inline;
var
pB : pByte;
pMask: tpMask64;
i: NativeInt;
begin
i := n.ntb_cntbts;
pB := @n.ntb_dgt[0];
pMask := @cAND_Mask64;
result := n.ntb_TestSet;
while i >= 4 do
begin
dec(i,4);
result := pMask[pB[i+0]] AND result;
result := pMask[pB[i+1]] AND result;
result := pMask[pB[i+2]] AND result;
result := pMask[pB[i+3]] AND result;
end;
if i > 0 then
repeat
result := pMask[pB[i]] AND result;
dec(i);
until i<0;
end;
procedure IncNumBig(var add1: tNumtoBase; n: Uint64);
var
pB : pByte;
i, s, b, carry: NativeUInt;
begin
b := add1.ntb_bas;
i := 0;
carry := 0;
pB := @add1.ntb_dgt[0];
while n > 0 do
begin
s := pB[i] + carry + n mod b;
carry := Ord(s >= b);
s := s - (-carry and b);
pB[i] := s;
n := n div b;
Inc(i);
end;
while carry <> 0 do
begin
s := pB[i] + carry;
carry := Ord(s >= b);
s := s - (-carry and b);
pB[i] := s;
Inc(i);
end;
if add1.ntb_cntbts < i then
Begin
add1.ntb_cntbts := i;
add1.ntb_cnt := i DIV (SizeOf(NativeUint))+1;
end;
end;
procedure IncSmallNum(var add1: tNumtoBase; carry: NativeUInt);
//prerequisites carry < base
var
pB : pByte;
i, s, b: NativeUInt;
begin
b := add1.ntb_bas;
pB := @add1.ntb_dgt[0];
i := 0;
while carry <> 0 do
begin
s := pB[i] + carry;
carry := Ord(s >= b);
s := s - (-carry and b);
pB[i] := s;
Inc(i);
end;
if add1.ntb_cntbts < i then
Begin
add1.ntb_cntbts := i;
add1.ntb_cnt := i DIV SizeOf(NativeUint) +1;
end;
end;
procedure Mul_num_ui(var n: tNumtoBase; ui: Uint64);
var
dbl: tNumtoBase;
begin
dbl := n;
conv_ui_num(n.ntb_bas, 0, n);
while ui > 0 do
begin
if Ui and 1 <> 0 then
AddNum(n, dbl);
AddNum(dbl, dbl);
ui := ui div 2;
end;
end;
procedure CalcDeltaSqr(const num: tNumtoBase; var dnsq, dlt: tNumtoBase;
n: NativeUInt);
//calc deltaNextSqr //n*num
begin
dnsq := num;
Mul_num_ui(dnsq, n);
AddNum(dnsq, dnsq);
IncNumBig(dnsq, n * n);
conv_ui_num(num.ntb_bas, 2 * n * n, dlt);
end;
procedure PrepareThreads(thdCount,stepWidth:NativeInt);
//starting the threads at num,num+stepWidth,..,num+(thdCount-1)*stepWidth
//stepwith not stepWidth but thdCount*stepWidth
//insert 6
// 6 : 4 6 14 16
var
tmpnum,tmpsqr2B,tmpdeltaNextSqr,tmpdelta :tNumToBase;
deltas: array[0..7] of Uint32;
Multi : tMulti;
i,base : NativeInt;
Begin
tmpnum := num;
tmpsqr2B := sqr2B;
tmpdeltaNextSqr := deltaNextSqr;
tmpdelta := delta;
IF StepWidth <> 1 then
Begin
For i := 0 to thdCount-1 do
Begin
//init ThreadBlock
With ThreadBlocks[i] do
begin
cft_sqr2b := tmpsqr2B;
cft_count := 0;
CalcDeltaSqr(tmpnum,cft_deltaNextSqr,cft_delta,thdCount*stepWidth);
end;
//Next sqr number in stepWidth
IncSmallNum(tmpnum,stepWidth);
AddNum(tmpsqr2B,tmpdeltaNextSqr);
IF CheckPandigital(sqr2B)=0 then
begin
writeln(' solution found ');
OutNumSqr;
end
else
AddNum(tmpdeltaNextSqr,tmpdelta);
end;
end
else
Begin
Multi := Multi21;
base := tmpNum.ntb_bas-1;
For i := 0 to thdCount-1 do
Begin
//init ThreadBlock
With ThreadBlocks[i] do
begin
cft_sqr2b := tmpsqr2B;
cft_count := 0;
CalcDeltaSqr(tmpnum,cft_deltaNextSqr,cft_delta,thdCount*stepWidth);
end;
//Next sqr number in stepWidth
IncSmallNum(tmpnum,stepWidth);
AddNum(tmpsqr2B,tmpdeltaNextSqr);
IF CheckPandigital(sqr2B)=0 then
begin
writeln(' solution found ');
OutNumSqr;
end
else
AddNum(tmpdeltaNextSqr,tmpdelta);
end;
end;
end;
procedure AddNum(var add1: tNumtoBase; const add2: tNumtoBase);
// N0 AND mask1 -> 80 00 80 80 80 00 80
// (N0 AND mask1)XOR mask1 -> 00 80 00 00 00 80 00
// ((N0 AND mask1)XOR mask1) shr 7 -> 00 01 00 00 00 01 00
// *k -> 00 k 00 00 00 k 00
var
pAdd1,pAdd2 :pNativeUint;
NextCarry,n,k,M0: NativeUInt;
M1,i : NativeUInt;
Begin
IF add1.ntb_cnt= 0 then
Begin
add1 := add2;
EXIT;
end;
IF add2.ntb_cnt= 0 then
EXIT;
M1 :=NativeUint(Mask1);
M0:= add1.ntb_mask0;
k := byte(M0);
i := Add2.ntb_cnt;
pAdd2:= @Add2.ntb_dgt[0];
pAdd1:= @Add1.ntb_dgt[0];
NextCarry := 0;
repeat
//depends extremly on arrangement.
n := pAdd2^+M0+NextCarry+pAdd1^;
inc(pAdd2);
NextCarry := (n shr MaxBit) XOR 1;
n := n-M0+(((n AND M1)XOR M1) SHR 7)*k;
pAdd1^ :=n;
inc(pAdd1);
dec(i);
until i = 0;
i := Add2.ntb_cnt;
IF NextCarry <> 0 then
Begin
repeat
n := pAdd1^+M0+NextCarry;
NextCarry := (n shr MaxBit) XOR 1;
n := n-M0+(((n AND M1)XOR M1) SHR 7)*k;
pAdd1^ :=n;
inc(i);
inc(pAdd1);
until NextCarry = 0;
end;
with Add1 do
Begin
IF i > ntb_cnt then
Begin
ntb_cnt := i;
ntb_cntbts := Add1.ntb_cnt*SizeOf(NativeUint);
while (Add1.ntb_cntbts > 0) AND (ntb_dgt[Add1.ntb_cntbts] = 0) do
dec(Add1.ntb_cntbts);
inc(Add1.ntb_cntbts);
end;
end;
end;
procedure AddNumSimple(var add1: tNumtoBase; const add2: tNumtoBase);inline;
// Add1&Add2 <> 0 and Add2< Add1
var
pAdd1,pAdd2 :pNativeUint;
NextCarry,n,k,M0: NativeUInt;
M1,i : NativeUInt;
Begin
M1 :=NativeUint(Mask1);
M0:= add1.ntb_mask0;
k := byte(M0);
i := Add2.ntb_cnt;
pAdd2:= @Add2.ntb_dgt[0];
pAdd1:= @Add1.ntb_dgt[0];
NextCarry := NextCarry XOR NextCarry;
repeat
// extremly depends on arrangement.
n := pAdd2^+NextCarry+M0+pAdd1^;
NextCarry := (n shr MaxBit) XOR 1;
n := (((n AND M1)XOR M1) SHR 7)*k-M0+n;
// n := n-M0+(((n AND M1)XOR M1) SHR 7)*k;
inc(pAdd2);
dec(i);
pAdd1^ :=n;
inc(pAdd1);
until i = 0;
IF NextCarry <> 0 then
Begin
i := Add2.ntb_cnt;
repeat
n := pAdd1^+M0+NextCarry;
NextCarry := (n shr MaxBit) XOR 1;
n := (((n AND M1)XOR M1) SHR 7)*k+n-M0;
pAdd1^ :=n;
inc(i);
inc(pAdd1);
until NextCarry = 0;
{ //never reached
IF i > Add1.ntb_cnt then
Begin
Add1.ntb_cnt := i;
Add1.ntb_cntbts := Add1.ntb_cnt*SizeOf(NativeUint);
end;
* }
end;
end;
procedure TestRunThd(parameter: pointer);
var
i: Uint64;
pThdBlk: pThreadBlock;
begin
pThdBlk := @ThreadBlocks[NativeUint(parameter)];
with pThdBlk^ do
begin
i := 0;
repeat
if finished <> 0 then
BREAK;
//next square number
AddNumSimple(cft_sqr2b, cft_deltaNextSqr);
AddNumSimple(cft_deltaNextSqr, cft_delta);
Inc(i);
cft_count := -i;
until CheckPandigital(cft_sqr2b)=0;
if finished = 0 then
begin
InterLockedIncrement(finished);
cft_count := i;
end;
end;
EndThread(0);
end;
procedure Test(base: NativeInt);
var
stepWidth: Uint64;
i, j,UsedThreads,StartOffSet: NativeInt;
begin
T0 := now;
StartValueCreate(base);
StartOffSet := StartOfs;
deltaNextSqr := num;
AddNum(deltaNextSqr, deltaNextSqr);
IncSmallNum(deltaNextSqr, 1);
stepWidth := 1;
if (Base > 4) and not (DgtRtSqr.drs_NeedsOneMoreDigit) then
begin
//Find first number which can get the solution
with dgtrtsqr do
while drs_List[getDgtRtNum(num)] <> drs_sol do
begin
IncSmallNum(num, 1);
AddNum(sqr2B, deltaNextSqr);
IncSmallNum(deltaNextSqr, 2);
end;
stepWidth := (Base - 1) div DgtRtSqr.drs_SolCnt;
if stepWidth * DgtRtSqr.drs_SolCnt <> (Base - 1) then
stepWidth := 1;
end;
CalcDeltaSqr(num,deltaNextSqr,delta,stepWidth);
i := 0;
finished := 0;
j := 0;
UsedThreads := gblThreadCount;
if base < 20 then
UsedThreads := 1;
PrepareThreads(UsedThreads,stepWidth);
writeln(f,'Base ', base, ' test every ', stepWidth,' threads = ',UsedThreads);
Write(f,'Start :');
writeln('Base ', base, ' test every ', stepWidth,' threads = ',UsedThreads);
Write('Start :');
OutNumSqr;
if (CheckPandigital(sqr2b)<>0) then
begin
while (j < UsedThreads) and (finished = 0) do
begin
with ThreadBlocks[j] do
begin
cft_ThreadHandle :=
BeginThread(@TestRunThd, Pointer(j), cft_ThreadID,
4*4096);
end;
Inc(j);
end;
UsedThreads := j;
i := 0;
repeat
IF base > 28 then
Begin
{$IFDEF WIN}
WaitForThreadTerminate(ThreadBlocks[0].cft_ThreadHandle,WAIT_MS)
{$ELSE}
sleep(WAIT_MS)
{$ENDIF}
end
else
WaitForThreadTerminate(ThreadBlocks[0].cft_ThreadHandle,-1);
inc(i);
IF (I and 31) = 0 then
OutThreadStep(i*timeFac,UsedThreads,stepWidth,StartOffSet);
until finished <> 0;
WaitForThreadTerminate(ThreadBlocks[0].cft_ThreadHandle, -1);
repeat
Dec(j);
with ThreadBlocks[j] do
begin
WaitForThreadTerminate(cft_ThreadHandle, -1);
CloseThread(cft_ThreadHandle);
if Int64(cft_count) > 0 then
finished := j;
end;
until j = 0;
end;
i := ExtractThreadVal(finished);
j := i*UsedThreads+finished;//TestCount starts at original num
IncNumBig(num,j*stepWidth);
T1 := now;
Write(f,'Result :');
Write('Result :');
OutNumSqr;
Writeln(f,(T1 - t0) * 86400: 9: 3, ' s Testcount : ',j: 14,j*StepWidth:18);
Writeln((T1 - t0) * 86400: 9: 3, ' s Testcount : ',j: 14,j*StepWidth:18);
Writeln(UsedThreads*(T1 - t0) * 86400: 9: 3, ' s');
end;
var
base: NativeUint;
begin
Writeln(cFileName);
AssignFile(f,cFileName);
{$I-}
Append(f);
{$I+}
IF IoResult <> 0 then
rewrite(f);
gblThreadCount:= GetThreadCount;
writeln(' Cpu Count : ', gblThreadCount);
setlength(ThreadBlocks, gblThreadCount);
T := now;
for base := LoLimit to HiLimit do
Test(base);
T := (now-T)*86400;
writeln('completed in ', T: 0: 3, ' seconds');
writeln(f,'completed in ',T: 0: 3, ' seconds');
Close(f);
setlength(ThreadBlocks, 0);
{$IFDEF WINDOWS}
readln;
{$ENDIF}
end.
//{{out}}
program project1;
//Find the smallest number n to base b, so that n*n includes all
//digits of base b aka pandigital
{$IFDEF FPC}
{$MODE DELPHI}
{$Optimization ON,ALL}//Peephole,regvar,CSE,ASMCSE}
{$CODEALIGN proc=16,CONSTMIN=32,varmin=32}//loop=1, for Ryzen
{$ElSE}
{$APPTYPE CONSOLE}
{$ENDIF}
uses
{$IFDEF UNIX}
cthreads,
{$ENDIF}
gmp,// to calculate start values
SysUtils;
type
tRegion64 = 0..63;
tSolSet64 = set of tRegion64;
tMask64 = array[tRegion64] of Int64;
tpMask64 = ^tMask64;
tNumByteIdx = 0..(64-0)-1;
tNumIdx = 0..High(tNumByteIdx) DIV Sizeof(NativeUint);
tarrNum = array[tNumIdx] of NativeUInt;
tNumtoBase= record
ntb_dgt : tarrNum;
ntb_Mask0,
ntb_TestSet,ntB_dummy : NativeUInt;
ntb_cnt,
ntb_bas,
ntb_cntbts,
ntb_HighByte : byte;
end;
tDgtRootSqr = packed record
drs_List: array[tRegion64] of byte;
drs_SetOfSol: tSolSet64;
drs_bas: byte;
drs_Sol: byte;
drs_SolCnt: byte;
drs_Dgt2Add: byte;
drs_NeedsOneMoreDigit: boolean;
end;
tCombineForOneThread = record
cft_sqr2b,
cft_deltaNextSqr,
cft_delta: tNumtoBase;
cft_count : Uint64;
cft_ThreadID: NativeUint;
cft_ThreadHandle: NativeUint;
//extend to 512 byte
cft_dummy : array[0..512-1-3*(SizeOf(tNumtoBase)-SizeOf(NativeUint))] of byte;
end;
pThreadBlock = ^tCombineForOneThread;
tMulti = record
m_Startofs : Uint32;
m_count : Uint32;
end;
const
//1 shl 0, ..,1 shl 63
cAND_Mask64: tMask64 =(
$FFFFFFFFFFFFFFFE,$FFFFFFFFFFFFFFFD,$FFFFFFFFFFFFFFFB,$FFFFFFFFFFFFFFF7,
$FFFFFFFFFFFFFFEF,$FFFFFFFFFFFFFFDF,$FFFFFFFFFFFFFFBF,$FFFFFFFFFFFFFF7F,
$FFFFFFFFFFFFFEFF,$FFFFFFFFFFFFFDFF,$FFFFFFFFFFFFFBFF,$FFFFFFFFFFFFF7FF,
$FFFFFFFFFFFFEFFF,$FFFFFFFFFFFFDFFF,$FFFFFFFFFFFFBFFF,$FFFFFFFFFFFF7FFF,
$FFFFFFFFFFFEFFFF,$FFFFFFFFFFFDFFFF,$FFFFFFFFFFFBFFFF,$FFFFFFFFFFF7FFFF,
$FFFFFFFFFFEFFFFF,$FFFFFFFFFFDFFFFF,$FFFFFFFFFFBFFFFF,$FFFFFFFFFF7FFFFF,
$FFFFFFFFFEFFFFFF,$FFFFFFFFFDFFFFFF,$FFFFFFFFFBFFFFFF,$FFFFFFFFF7FFFFFF,
$FFFFFFFFEFFFFFFF,$FFFFFFFFDFFFFFFF,$FFFFFFFFBFFFFFFF,$FFFFFFFF7FFFFFFF,
$FFFFFFFEFFFFFFFF,$FFFFFFFDFFFFFFFF,$FFFFFFFBFFFFFFFF,$FFFFFFF7FFFFFFFF,
$FFFFFFEFFFFFFFFF,$FFFFFFDFFFFFFFFF,$FFFFFFBFFFFFFFFF,$FFFFFF7FFFFFFFFF,
$FFFFFEFFFFFFFFFF,$FFFFFDFFFFFFFFFF,$FFFFFBFFFFFFFFFF,$FFFFF7FFFFFFFFFF,
$FFFFEFFFFFFFFFFF,$FFFFDFFFFFFFFFFF,$FFFFBFFFFFFFFFFF,$FFFF7FFFFFFFFFFF,
$FFFEFFFFFFFFFFFF,$FFFDFFFFFFFFFFFF,$FFFBFFFFFFFFFFFF,$FFF7FFFFFFFFFFFF,
$FFEFFFFFFFFFFFFF,$FFDFFFFFFFFFFFFF,$FFBFFFFFFFFFFFFF,$FF7FFFFFFFFFFFFF,
$FEFFFFFFFFFFFFFF,$FDFFFFFFFFFFFFFF,$FBFFFFFFFFFFFFFF,$F7FFFFFFFFFFFFFF,
$EFFFFFFFFFFFFFFF,$DFFFFFFFFFFFFFFF,$BFFFFFFFFFFFFFFF,$7FFFFFFFFFFFFFFF
);
charSet: array[0..63] of AnsiChar =
'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz.';
{$IFDEF CPU64}
Mask1 = $8080808080808080;
MaxBit= 63;
{$ENDIF}
{$IFDEF CPU32}
Mask1 = $80808080;
MaxBit= 31;
{$ENDIF}
// Multi21 : tMulti = (m_offset:6;m_delta:(2,8,2,8));
Multi21 : tMulti = (m_Startofs:6;m_count:4);
WAIT_MS = 1875; // check every x ms if finished *32 = 60 seconds
timeFac = WAIT_MS/1000/60 ;// ( i AND 31 ) = 0
//############################################################################
//Input values as constants
LoLimit = 2;
HiLimit = 28;// For 32-Bit CPU max HiLimit = 32
cFileName = 'Test_2_28.txt';//'/dev/NULL';//'nonsens.txt';
// use hyperthreading = 0
StartOfs= 1;//testcount*StepWidth = 11038840378368;
//############################################################################
procedure AddNum(var add1: tNumtoBase; const add2: tNumtoBase); forward;
var
{$ALIGN 32}
ThreadBlocks: array of tCombineForOneThread;
{$ALIGN 32}
s :shortString;
Num, sqr2B, deltaNextSqr, delta: tNumtoBase;
DgtRtSqr: tDgtRootSqr;
T,T0, T1: TDateTime;
gblThreadCount,
Finished: Uint32;
f : text;
function GetThreadCount: NativeUInt;
begin
{$IFDEF Windows}
Result := GetCpuCount;
{$ELSE}
Result := 12;//GetCpuCount;// is not working under Linux ???
{$ENDIF}
end;
procedure OutThreadStep(i:double;ThCnt:NativeInt;stepWidth,StartOffSet: Int64);
var
j,min : NativeInt;
s,sf: ShortString;
Begin
str(i:8:2,s);
s := s+' min ';
stepWidth := -ThCnt*stepWidth;
min := 0;
For j := 0 to ThCnt-1 do
If min > ThreadBlocks[j].cft_count then
min := ThreadBlocks[j].cft_count;
str(stepWidth*min+StartOffSet:16,sf);
s := s+sf;
writeln(s);
writeln(f,s);
Flush(f);
end;
procedure OutNum(const num: tNumtoBase;var s: ShortString);
var
pB : pByte;
i: NativeInt;
begin
with num do
begin
pB := @ntb_dgt[0];
i := ntb_cnt*SizeOf(NativeUint);
while pB[i] = 0 do
dec(i);
IF i < 0 then
i := 0;
for i := i downto 0 do
s := s+charSet[pB[i]];
s := s+' ';
end;
Write(s);
Write(f,String(s));
end;
procedure OutNumSqr;
begin
s := ' Num ';OutNum(Num,s);
s := ' sqr ';OutNum(sqr2B,s);
writeln;writeln(f);Flush(f);
end;
function getDgtRtNum(const num: tNumtoBase): NativeInt;
var
pB : pByte;
i: NativeInt;
begin
pB := @num.ntb_dgt[0];
with num do
begin
Result := 0;
for i := 0 to num.ntb_cntbts - 1 do
Inc(Result, pB[i]);
Result := Result mod (ntb_bas - 1);
end;
end;
procedure CalcDgtRootSqr(base: NativeUInt);
var
ChkSet: array[tRegion64] of tSolSet64;
ChkCnt: array[tRegion64] of byte;
i, j: NativeUInt;
PTest: tSolSet64;
begin
for i := low(ChkCnt) to High(ChkCnt) do
begin
ChkCnt[i] := 0;
ChkSet[i] := [];
end;
ptest := [];
with DgtRtSqr do
begin
//pandigtal digital root (sum all digits of base) mod (base-1)
drs_bas := base;
if Odd(base) then
drs_Sol := base div 2
else
drs_Sol := 0;
base := base - 1;
//calc which dgt root the square of the number will become
for i := 0 to base - 1 do
drs_List[i] := (i * i) mod base;
//searching for solution
drs_SolCnt := 0;
for i := 0 to base - 1 do
if drs_List[i] = drs_Sol then
begin
include(ptest, i);
Inc(drs_SolCnt);
end;
//if not found then NeedsOneMoreDigit
drs_NeedsOneMoreDigit := drs_SolCnt = 0;
if drs_NeedsOneMoreDigit then
begin
for j := 1 to Base do
for i := 0 to Base do
if drs_List[j] = (drs_Sol + i) mod BASE then
begin
include(ptest, i);
include(ChkSet[i], j);
Inc(ChkCnt[i]);
end;
i := 1;
repeat
if i in pTest then
begin
drs_Dgt2Add := i;
BREAK;
end;
Inc(i);
until i > base;
writeln('insert ', i);
end;
end;
end;
procedure conv_ui_num(base: NativeUint; ui: Uint64; var Num: tNumtoBase);
var
pB : pByte;
i: NativeUInt;
begin
with num do
begin
for i := 0 to high(tNumtoBase.ntb_dgt) do
ntb_dgt[i] := 0;
pB := @ntb_dgt[0];
ntb_bas := base;
ntb_Mask0 := (Mask1 shr 7)*(256-Base);
ntb_TestSet := Uint64(1) shl base -1;
ntb_cntbts := 0;
ntb_cnt := 0;
if ui <> 0 then
begin
i := 0;
repeat
pB[i] := ui mod base;
ui := ui div base;
Inc(i);
until ui = 0;
ntb_cntbts := i;
ntb_HighByte := pB[i-1];
ntb_cnt := i DIV SizeOf(NativeUint) +1 ;
end;
end;
end;
procedure conv2Num(base: NativeUint; var Num: tNumtoBase; var s: mpz_t);
var
tmp: mpz_t;
pB : pByte;
i: NativeUInt;
begin
mpz_init_set(tmp,s);
for i := 0 to high(tNumtoBase.ntb_dgt) do
Num.ntb_dgt[i] := 0;
pB := @Num.ntb_dgt[0];
with num do
begin
ntb_bas := base;
ntb_Mask0 := (Mask1 shr 7)*(256-Base);
ntb_TestSet := Uint64(1) shl base -1;
i := 0;
repeat
pB[i] := mpz_tdiv_q_ui(tmp, tmp, base);
Inc(i);
until mpz_cmp_ui(tmp, 0) = 0;
ntb_HighByte := pB[i-1];
ntb_cntbts := i;
ntb_cnt := i DIV SizeOf(NativeUint) +1;
end;
mpz_clear(tmp);
end;
procedure StartValueCreate(base: NativeUInt);
//create the lowest pandigital number "102345...Base-1 "
//calc sqrt +1 and convert n new format.
var
sv_sqr, sv,sv_add: mpz_t;
k, dblDgt: NativeUint;
begin
mpz_init(sv);
mpz_init(sv_sqr);
mpz_init_set_si(sv_sqr, base);//"10"
CalcDgtRootSqr(base);
if DgtRtSqr.drs_NeedsOneMoreDigit then
begin
dblDgt := DgtRtSqr.drs_Dgt2Add;
if dblDgt = 1 then
begin
for k := 1 to base - 1 do
begin
mpz_mul_ui(sv_sqr, sv_sqr, base);
mpz_add_ui(sv_sqr, sv_sqr, k);
end;
end
else
begin
for k := 2 to dblDgt do
begin
mpz_mul_ui(sv_sqr, sv_sqr, base);
mpz_add_ui(sv_sqr, sv_sqr, k);
end;
for k := dblDgt to base - 1 do
begin
mpz_mul_ui(sv_sqr, sv_sqr, base);
mpz_add_ui(sv_sqr, sv_sqr, k);
end;
end;
end
else
begin
for k := 2 to base - 1 do
begin
mpz_mul_ui(sv_sqr, sv_sqr, base);
mpz_add_ui(sv_sqr, sv_sqr, k);
end;
end;
mpz_sqrt(sv, sv_sqr);
writeln('Start Offset ',StartOfs);
//Windows64 gmp.dll or freepascal does not use Uint64 only Uint32
mpz_init_set_ui(sv_add,StartOfs shr 32);
// shift left 32
mpz_mul_2exp(sv_add,sv_add,32);
mpz_add_ui(sv_add,sv_add,Uint32(StartOfs));
mpz_add(sv, sv, sv_add);
mpz_mul(sv_sqr, sv, sv);
conv2Num(base, Num, sv);
conv2Num(base, sqr2B, sv_sqr);
mpz_clear(sv_add);
mpz_clear(sv_sqr);
mpz_clear(sv);
OutNumSqr;
end;
function ExtractThreadVal(ThreadNr: NativeInt ): Uint64;
begin
with ThreadBlocks[ThreadNr] do
begin
sqr2b := cft_sqr2b;
Result := cft_count;
cft_ThreadID := 0;
cft_ThreadHandle := 0;
end;
end;
function CheckPandigital(const n: tNumtoBase): NativeUint;inline;
var
pB : pByte;
pMask: tpMask64;
i: NativeInt;
begin
i := n.ntb_cntbts;
pB := @n.ntb_dgt[0];
pMask := @cAND_Mask64;
result := n.ntb_TestSet;
while i >= 4 do
begin
dec(i,4);
result := pMask[pB[i+0]] AND result;
result := pMask[pB[i+1]] AND result;
result := pMask[pB[i+2]] AND result;
result := pMask[pB[i+3]] AND result;
end;
if i > 0 then
repeat
result := pMask[pB[i]] AND result;
dec(i);
until i<0;
end;
procedure IncNumBig(var add1: tNumtoBase; n: Uint64);
var
pB : pByte;
i, s, b, carry: NativeUInt;
begin
b := add1.ntb_bas;
i := 0;
carry := 0;
pB := @add1.ntb_dgt[0];
while n > 0 do
begin
s := pB[i] + carry + n mod b;
carry := Ord(s >= b);
s := s - (-carry and b);
pB[i] := s;
n := n div b;
Inc(i);
end;
while carry <> 0 do
begin
s := pB[i] + carry;
carry := Ord(s >= b);
s := s - (-carry and b);
pB[i] := s;
Inc(i);
end;
if add1.ntb_cntbts < i then
Begin
add1.ntb_cntbts := i;
add1.ntb_cnt := i DIV (SizeOf(NativeUint))+1;
end;
end;
procedure IncSmallNum(var add1: tNumtoBase; carry: NativeUInt);
//prerequisites carry < base
var
pB : pByte;
i, s, b: NativeUInt;
begin
b := add1.ntb_bas;
pB := @add1.ntb_dgt[0];
i := 0;
while carry <> 0 do
begin
s := pB[i] + carry;
carry := Ord(s >= b);
s := s - (-carry and b);
pB[i] := s;
Inc(i);
end;
if add1.ntb_cntbts < i then
Begin
add1.ntb_cntbts := i;
add1.ntb_cnt := i DIV SizeOf(NativeUint) +1;
end;
end;
procedure Mul_num_ui(var n: tNumtoBase; ui: Uint64);
var
dbl: tNumtoBase;
begin
dbl := n;
conv_ui_num(n.ntb_bas, 0, n);
while ui > 0 do
begin
if Ui and 1 <> 0 then
AddNum(n, dbl);
AddNum(dbl, dbl);
ui := ui div 2;
end;
end;
procedure CalcDeltaSqr(const num: tNumtoBase; var dnsq, dlt: tNumtoBase;
n: NativeUInt);
//calc deltaNextSqr //n*num
begin
dnsq := num;
Mul_num_ui(dnsq, n);
AddNum(dnsq, dnsq);
IncNumBig(dnsq, n * n);
conv_ui_num(num.ntb_bas, 2 * n * n, dlt);
end;
procedure PrepareThreads(thdCount,stepWidth:NativeInt);
//starting the threads at num,num+stepWidth,..,num+(thdCount-1)*stepWidth
//stepwith not stepWidth but thdCount*stepWidth
//insert 6
// 6 : 4 6 14 16
var
tmpnum,tmpsqr2B,tmpdeltaNextSqr,tmpdelta :tNumToBase;
deltas: array[0..7] of Uint32;
Multi : tMulti;
i,base : NativeInt;
Begin
tmpnum := num;
tmpsqr2B := sqr2B;
tmpdeltaNextSqr := deltaNextSqr;
tmpdelta := delta;
IF StepWidth <> 1 then
Begin
For i := 0 to thdCount-1 do
Begin
//init ThreadBlock
With ThreadBlocks[i] do
begin
cft_sqr2b := tmpsqr2B;
cft_count := 0;
CalcDeltaSqr(tmpnum,cft_deltaNextSqr,cft_delta,thdCount*stepWidth);
end;
//Next sqr number in stepWidth
IncSmallNum(tmpnum,stepWidth);
AddNum(tmpsqr2B,tmpdeltaNextSqr);
IF CheckPandigital(sqr2B)=0 then
begin
writeln(' solution found ');
OutNumSqr;
end
else
AddNum(tmpdeltaNextSqr,tmpdelta);
end;
end
else
Begin
Multi := Multi21;
base := tmpNum.ntb_bas-1;
For i := 0 to thdCount-1 do
Begin
//init ThreadBlock
With ThreadBlocks[i] do
begin
cft_sqr2b := tmpsqr2B;
cft_count := 0;
CalcDeltaSqr(tmpnum,cft_deltaNextSqr,cft_delta,thdCount*stepWidth);
end;
//Next sqr number in stepWidth
IncSmallNum(tmpnum,stepWidth);
AddNum(tmpsqr2B,tmpdeltaNextSqr);
IF CheckPandigital(sqr2B)=0 then
begin
writeln(' solution found ');
OutNumSqr;
end
else
AddNum(tmpdeltaNextSqr,tmpdelta);
end;
end;
end;
procedure AddNum(var add1: tNumtoBase; const add2: tNumtoBase);
// N0 AND mask1 -> 80 00 80 80 80 00 80
// (N0 AND mask1)XOR mask1 -> 00 80 00 00 00 80 00
// ((N0 AND mask1)XOR mask1) shr 7 -> 00 01 00 00 00 01 00
// *k -> 00 k 00 00 00 k 00
var
pAdd1,pAdd2 :pNativeUint;
NextCarry,n,k,M0: NativeUInt;
M1,i : NativeUInt;
Begin
IF add1.ntb_cnt= 0 then
Begin
add1 := add2;
EXIT;
end;
IF add2.ntb_cnt= 0 then
EXIT;
M1 :=NativeUint(Mask1);
M0:= add1.ntb_mask0;
k := byte(M0);
i := Add2.ntb_cnt;
pAdd2:= @Add2.ntb_dgt[0];
pAdd1:= @Add1.ntb_dgt[0];
NextCarry := 0;
repeat
//depends extremly on arrangement.
n := pAdd2^+M0+NextCarry+pAdd1^;
inc(pAdd2);
NextCarry := (n shr MaxBit) XOR 1;
n := n-M0+(((n AND M1)XOR M1) SHR 7)*k;
pAdd1^ :=n;
inc(pAdd1);
dec(i);
until i = 0;
i := Add2.ntb_cnt;
IF NextCarry <> 0 then
Begin
repeat
n := pAdd1^+M0+NextCarry;
NextCarry := (n shr MaxBit) XOR 1;
n := n-M0+(((n AND M1)XOR M1) SHR 7)*k;
pAdd1^ :=n;
inc(i);
inc(pAdd1);
until NextCarry = 0;
end;
with Add1 do
Begin
IF i > ntb_cnt then
Begin
ntb_cnt := i;
ntb_cntbts := Add1.ntb_cnt*SizeOf(NativeUint);
while (Add1.ntb_cntbts > 0) AND (ntb_dgt[Add1.ntb_cntbts] = 0) do
dec(Add1.ntb_cntbts);
inc(Add1.ntb_cntbts);
end;
end;
end;
procedure AddNumSimple(var add1: tNumtoBase; const add2: tNumtoBase);inline;
// Add1&Add2 <> 0 and Add2< Add1
var
pAdd1,pAdd2 :pNativeUint;
NextCarry,n,k,M0: NativeUInt;
M1,i : NativeUInt;
Begin
M1 :=NativeUint(Mask1);
M0:= add1.ntb_mask0;
k := byte(M0);
i := Add2.ntb_cnt;
pAdd2:= @Add2.ntb_dgt[0];
pAdd1:= @Add1.ntb_dgt[0];
NextCarry := NextCarry XOR NextCarry;
repeat
// extremly depends on arrangement.
n := pAdd2^+NextCarry+M0+pAdd1^;
NextCarry := (n shr MaxBit) XOR 1;
n := (((n AND M1)XOR M1) SHR 7)*k-M0+n;
// n := n-M0+(((n AND M1)XOR M1) SHR 7)*k;
inc(pAdd2);
dec(i);
pAdd1^ :=n;
inc(pAdd1);
until i = 0;
IF NextCarry <> 0 then
Begin
i := Add2.ntb_cnt;
repeat
n := pAdd1^+M0+NextCarry;
NextCarry := (n shr MaxBit) XOR 1;
n := (((n AND M1)XOR M1) SHR 7)*k+n-M0;
pAdd1^ :=n;
inc(i);
inc(pAdd1);
until NextCarry = 0;
{ //never reached
IF i > Add1.ntb_cnt then
Begin
Add1.ntb_cnt := i;
Add1.ntb_cntbts := Add1.ntb_cnt*SizeOf(NativeUint);
end;
* }
end;
end;
procedure TestRunThd(parameter: pointer);
var
i: Uint64;
pThdBlk: pThreadBlock;
begin
pThdBlk := @ThreadBlocks[NativeUint(parameter)];
with pThdBlk^ do
begin
i := 0;
repeat
if finished <> 0 then
BREAK;
//next square number
AddNumSimple(cft_sqr2b, cft_deltaNextSqr);
AddNumSimple(cft_deltaNextSqr, cft_delta);
Inc(i);
cft_count := -i;
until CheckPandigital(cft_sqr2b)=0;
if finished = 0 then
begin
InterLockedIncrement(finished);
cft_count := i;
end;
end;
EndThread(0);
end;
procedure Test(base: NativeInt);
var
stepWidth: Uint64;
i, j,UsedThreads,StartOffSet: NativeInt;
begin
T0 := now;
StartValueCreate(base);
StartOffSet := StartOfs;
deltaNextSqr := num;
AddNum(deltaNextSqr, deltaNextSqr);
IncSmallNum(deltaNextSqr, 1);
stepWidth := 1;
if (Base > 4) and not (DgtRtSqr.drs_NeedsOneMoreDigit) then
begin
//Find first number which can get the solution
with dgtrtsqr do
while drs_List[getDgtRtNum(num)] <> drs_sol do
begin
IncSmallNum(num, 1);
AddNum(sqr2B, deltaNextSqr);
IncSmallNum(deltaNextSqr, 2);
end;
stepWidth := (Base - 1) div DgtRtSqr.drs_SolCnt;
if stepWidth * DgtRtSqr.drs_SolCnt <> (Base - 1) then
stepWidth := 1;
end;
CalcDeltaSqr(num,deltaNextSqr,delta,stepWidth);
i := 0;
finished := 0;
j := 0;
UsedThreads := gblThreadCount;
if base < 20 then
UsedThreads := 1;
PrepareThreads(UsedThreads,stepWidth);
writeln(f,'Base ', base, ' test every ', stepWidth,' threads = ',UsedThreads);
Write(f,'Start :');
writeln('Base ', base, ' test every ', stepWidth,' threads = ',UsedThreads);
Write('Start :');
OutNumSqr;
if (CheckPandigital(sqr2b)<>0) then
begin
while (j < UsedThreads) and (finished = 0) do
begin
with ThreadBlocks[j] do
begin
cft_ThreadHandle :=
BeginThread(@TestRunThd, Pointer(j), cft_ThreadID,
4*4096);
end;
Inc(j);
end;
UsedThreads := j;
i := 0;
repeat
IF base > 28 then
Begin
{$IFDEF WIN}
WaitForThreadTerminate(ThreadBlocks[0].cft_ThreadHandle,WAIT_MS)
{$ELSE}
sleep(WAIT_MS)
{$ENDIF}
end
else
WaitForThreadTerminate(ThreadBlocks[0].cft_ThreadHandle,-1);
inc(i);
IF (I and 31) = 0 then
OutThreadStep(i*timeFac,UsedThreads,stepWidth,StartOffSet);
until finished <> 0;
WaitForThreadTerminate(ThreadBlocks[0].cft_ThreadHandle, -1);
repeat
Dec(j);
with ThreadBlocks[j] do
begin
WaitForThreadTerminate(cft_ThreadHandle, -1);
CloseThread(cft_ThreadHandle);
if Int64(cft_count) > 0 then
finished := j;
end;
until j = 0;
end;
i := ExtractThreadVal(finished);
j := i*UsedThreads+finished;//TestCount starts at original num
IncNumBig(num,j*stepWidth);
T1 := now;
Write(f,'Result :');
Write('Result :');
OutNumSqr;
Writeln(f,(T1 - t0) * 86400: 9: 3, ' s Testcount : ',j: 14,j*StepWidth:18);
Writeln((T1 - t0) * 86400: 9: 3, ' s Testcount : ',j: 14,j*StepWidth:18);
Writeln(UsedThreads*(T1 - t0) * 86400: 9: 3, ' s');
end;
var
base: NativeUint;
begin
Writeln(cFileName);
AssignFile(f,cFileName);
{$I-}
Append(f);
{$I+}
IF IoResult <> 0 then
rewrite(f);
gblThreadCount:= GetThreadCount;
writeln(' Cpu Count : ', gblThreadCount);
setlength(ThreadBlocks, gblThreadCount);
T := now;
for base := LoLimit to HiLimit do
Test(base);
T := (now-T)*86400;
writeln('completed in ', T: 0: 3, ' seconds');
writeln(f,'completed in ',T: 0: 3, ' seconds');
Close(f);
setlength(ThreadBlocks, 0);
{$IFDEF WINDOWS}
readln;
{$ENDIF}
end.
//{{out}}
Num 10 sqr 100
Num 10 sqr 100
Base 2 test every 1 threads = 1
Start : Num 10 sqr 100
Result : Num 10 sqr 100
0.000 s Testcount : 0 0
Num 11 sqr 121
Num 11 sqr 121
Base 3 test every 1 threads = 1
Start : Num 11 sqr 121
Result : Num 11 sqr 121
0.000 s Testcount : 0 0
Num 21 sqr 1101
Base 4 test every 1 threads = 1
Start : Num 21 sqr 1101
Result : Num 33 sqr 3201
0.000 s Testcount : 6 6
Num 214 sqr 102411
Base 5 test every 1 threads = 1
Start : Num 214 sqr 102411
Result : Num 243 sqr 132304
0.000 s Testcount : 14 14
Num 232 sqr 103104
Base 6 test every 5 threads = 1
Start : Num 235 sqr 105441
Result : Num 523 sqr 452013
0.000 s Testcount : 20 100
Num 1012 sqr 1024144
Base 7 test every 6 threads = 1
Start : Num 1020 sqr 1040400
Result : Num 1431 sqr 2450361
0.000 s Testcount : 34 204
Num 2704 sqr 10237020
Base 8 test every 7 threads = 1
Start : Num 2705 sqr 10244631
Result : Num 3344 sqr 13675420
0.000 s Testcount : 41 287
Num 10117 sqr 102363814
Base 9 test every 4 threads = 1
Start : Num 10117 sqr 102363814
Result : Num 11642 sqr 136802574
0.000 s Testcount : 289 1156
Num 31992 sqr 1023488064
Base 10 test every 3 threads = 1
Start : Num 31992 sqr 1023488064
Result : Num 32043 sqr 1026753849
0.000 s Testcount : 17 51
Num 101172 sqr 10234761064
Base 11 test every 10 threads = 1
Start : Num 101175 sqr 10235267A63
Result : Num 111453 sqr 1240A536789
0.001 s Testcount : 1498 14980
Num 35A924 sqr 102345A32554
Base 12 test every 11 threads = 1
Start : Num 35A924 sqr 102345A32554
Result : Num 3966B9 sqr 124A7B538609
0.000 s Testcount : 6883 75713
Num 3824C73 sqr 10233460766739
Base 13 test every 1 threads = 1
Start : Num 3824C73 sqr 10233460766739
Result : Num 3828943 sqr 10254773CA86B9
0.000 s Testcount : 8242 8242
Num 3A9774B sqr 102345706AC8C9
Base 14 test every 13 threads = 1
Start : Num 3A9774C sqr 1023457801D984
Result : Num 3A9DB7C sqr 10269B8C57D3A4
0.000 s Testcount : 1330 17290
Num 10119106 sqr 10234567A153C26
Base 15 test every 14 threads = 1
Start : Num 10119108 sqr 1023456BA5BA144
Result : Num 1012B857 sqr 102597BACE836D4
0.000 s Testcount : 4216 59024
Num 4046641A sqr 10234567E55C52A4
Base 16 test every 15 threads = 1
Start : Num 40466424 sqr 1023456CEADC2510
Result : Num 404A9D9B sqr 1025648CFEA37BD9
0.000 s Testcount : 18457 276855
Num 423F5E486 sqr 101234567967G80FD2
Base 17 test every 1 threads = 1
Start : Num 423F5E486 sqr 101234567967G80FD2
Result : Num 423F82GA9 sqr 101246A89CGFB357ED
0.003 s Testcount : 195112 195112
Num 44B433H7D sqr 102345678F601E1FB7
Base 18 test every 17 threads = 1
Start : Num 44B433H7F sqr 102345679E6908HD69
Result : Num 44B482CAD sqr 10236B5F8EG4AD9CH7
0.001 s Testcount : 30440 517480
Num 1011B10785 sqr 102345678A30GF85556
Base 19 test every 6 threads = 1
Start : Num 1011B10789 sqr 102345678I39A8G87F5
Result : Num 1011B55E9A sqr 10234DHBG7CI8F6A9E5
0.001 s Testcount : 93021 558126
Num 49DDBE2J9C sqr 1023456789DHDH9DH834
Base 20 test every 19 threads = 12
Start : Num 49DDBE2JA0 sqr 102345678D5CCEH05000
Result : Num 49DGIH5D3G sqr 1024E7CDI3HB695FJA8G
0.021 s Testcount : 11310604 214901476
Num 4C9HE5CC2DB sqr 10234566789GK362F7BGIG
Base 21 test every 1 threads = 12
Start : Num 4C9HE5CC2DB sqr 10234566789GK362F7BGIG
Result : Num 4C9HE6GHFJF sqr 102345H7AC86GE9BKI6JDF
0.006 s Testcount : 4914193 4914193
Num 4F942523JK5 sqr 1023456789AF71694A3533
Base 22 test every 21 threads = 12
Start : Num 4F942523JL0 sqr 1023456789HL35DJ1I4100
Result : Num 4F94788GJ0F sqr 102369FBGDEJ48CHI7LKA5
0.054 s Testcount : 27804949 583903929
Num 1011D108L541 sqr 1023456789ABD6D2675E381
Base 23 test every 22 threads = 12
Start : Num 1011D108L54M sqr 1023456789C7F59L30C8ED1
Result : Num 1011D3EL56MC sqr 10234ACEDKG9HM8FBJIL756
0.038 s Testcount : 17710217 389624774
Num 4LJ0HD4763F4 sqr 1023456789ABE8FFN20B4E0G
Base 24 test every 23 threads = 12
Start : Num 4LJ0HD4763F6 sqr 1023456789AC9NJIL6HG54DC
Result : Num 4LJ0HDGF0HD3 sqr 102345B87HFECKJNIGMDLA69
0.008 s Testcount : 4266555 98130765
Num 1011E109GHMMM sqr 1023456789ABD5AHDHG370GC9
Base 25 test every 12 threads = 12
Start : Num 1011E109GHMMM sqr 1023456789ABD5AHDHG370GC9
Result : Num 1011E145FHGHM sqr 102345DOECKJ6GFB8LIAM7NH9
0.160 s Testcount : 78092125 937105500
Num 52K8N4MNP7AMA sqr 1023456789ABCMPE8HDDJL8P1M
Base 26 test every 5 threads = 12
Start : Num 52K8N4MNP7AME sqr 1023456789ABEBLL1L0F3FG7PE
Result : Num 52K8N53BDM99K sqr 1023458LO6IEMKG79FPCHNJDBA
0.884 s Testcount : 402922568 2014612840
Num 1011F10AB5HL6J sqr 1023456789ABCF787BM8395B5PA
Base 27 test every 26 threads = 12
Start : Num 1011F10AB5HL71 sqr 1023456789ABD6808CDF1LQ7AE1
Result : Num 1011F11E37OBJJ sqr 1023458ELOMDHBIJFGKP7CQ9N6A
1.049 s Testcount : 457555293 11896437618
Num 58A3CKOHN4IK4D sqr 1023456789ABCDIK29E6HB1R37Q1
Base 28 test every 9 threads = 12
Start : Num 58A3CKOHN4IK4L sqr 1023456789ABCGJDO8M4JG8HMMFL
Result : Num 58A3CKP3N4CQD7 sqr 1023456CGJBIRQEDHP98KMOAN7FL
1.672 s Testcount : 749593054 6746337486
completed in 3.898 seconds
Base 29 test every 1 threads = 12
Start : Num 5BAEFC5QHESPCLA sqr 10223456789ABCDKM4JI4S470KCSHD
1.00 min 24099604789
2.00 min 48201071089
3.00 min 72295381621
Result : Num 5BAEFC62RGS0KJF sqr 102234586REOSIGJD9PCF7HBLKANQM
230.632 s Testcount : 92238034003 92238034003
Num 5EF7R2P77FFPBMR sqr 1023456789ABCDEPPNIG6S4MJNB8C9
Base 30 test every 29 threads = 12
Start : Num 5EF7R2P77FFPBN5 sqr 1023456789ABCDHNHROTMC0MS6RGKP
Result : Num 5EF7R2POS9MQRN7 sqr 1023456DMAPECBQOLSITK9FR87GHNJ
35.626 s Testcount : 13343410738 386958911402
Num 1011H10BS64GFL6U sqr 1023456789ABCDEH3122BRSP7T7G6H1
Base 31 test every 30 threads = 12
Start : Num 1011H10BS64GFL76 sqr 1023456789ABCDF03FNNQ29H0ULION5
Result : Num 1011H10CDMAUP44O sqr 10234568ABQUJGCNFP7KEM9RHDLTSOI
41.251 s Testcount : 15152895679 454586870370
Num 5L6HID7BTGM6RU9L sqr 1023456789ABCDEFGQNN3264K1GRK97P
Base 32 test every 31 threads = 12
Start : Num 5L6HID7BTGM6RUAA sqr 1023456789ABCDEMULAP8DRPBULSA2B4
Result : Num 5L6HID7BVGE2CIEC sqr 102345678VS9CMJDRAIOPLHNFQETBUKG
5.626 s Testcount : 2207946558 68446343298
completed in 317.047 seconds
Num 1011I10CLMTDCMPC1 sqr 1023456789ABCDEFHSSWJ340NGCV8MTO1
Base 33 test every 8 threads = 12
Start : Num 1011I10CLMTDCMPC6 sqr 1023456789ABCDEFRT6F1D7S9EA03JJD3
Num 1011I10CLMTDCMPC1 sqr 1023456789ABCDEFHSSWJ340NGCV8MTO1
Base 33 test every 8 threads = 12
Start : Num 1011I10CLMTDCMPC6 sqr 1023456789ABCDEFRT6F1D7S9EA03JJD3
1.00 min 184621467265
2.00 min 369105711649
Result : Num 1011I10CLWWNS6SKS sqr 102345678THKFAERNWJGDOSQ9BCIUVMLP
140.634 s Testcount : 53808573863 430468590904
Num 5SEMXRII09S90UO6V sqr 1023456789ABCDEFGKNK3JK9NREFLEH5Q9
Base 34 test every 33 threads = 12
Start : Num 5SEMXRII09S90UO7P sqr 1023456789ABCDEFQ7HPX8WRC9L0GV31SD
1.00 min 747770289553
2.00 min 1495002801997
.. 8.00 min 5978195501257
9.00 min 6725222258833
Result : Num 5SEMXRII42NG8AKSL sqr 102345679JIESRPA8BLCVKDNMHUFTGOQWX
549.392 s Testcount : 205094427126 6768116095158
Num 1011J10DE6M9QOAY42 sqr 1023456789ABCDEFGHSOEHTX34IF9YB1CG4
Base 35 test every 34 threads = 12
Start : Num 1011J10DE6M9QOAY42 sqr 1023456789ABCDEFGHSOEHTX34IF9YB1CG4
1.00 min 749708230993
2.00 min 1496695534873
.. 27.00 min 20178502394905
28.00 min 20925398930617 //<== > solution, because finsich tested every 1.875 seconds
Result : Num 1011J10DEFW1QTVBXR sqr 102345678RUEPV9KGQIWFOBAXCNSLDMYJHT
1681.925 s Testcount : 614575698110 20895573735740
Num 6069962AODK1L20LTW sqr 1023456789ABCDEFGHSWJSDUGHWCR30SK5CG
Base 36 test every 35 threads = 12
Start : Num 6069962AODK1L20LUU sqr 1023456789ABCDEFGT58D9PASNXYM2SLPEP0
1.00 min 787213111441
2.00 min 1586599478101
..192.00 min 152890333403641
193.00 min 153686150046241
Result : Num 6069962APW1QG36EV8 sqr 102345678RGQKMOCBLZIYHN9WDJEUXFVPATS
11584.118 s Testcount : 4392178427722 153726244970270
completed in 11584.118 seconds
//Base 37 still missing :-(
Num 66FVHSMH0OXH39bH6LT sqr 1023456789ABCDEFGHIV4YWaF08URZ5H135NO5
Base 38 test every 37 threads = 12
Start : Num 66FVHSMH0OXH39bH6MN sqr 1023456789ABCDEFGHT7ZLWWKUXYO9YZW62QbZ
1.00 min 785788279813
2.00 min 1568354438749
.. 58.00 min 45309747953833
59.00 min 46095937872493
Result : Num 66FVHSMH0P60WK173YQ sqr 1023456789DRTAINWaFJCHLYMQPGEBZVOKXSbU
3547.633 s Testcount : 1242398966051 45968761743887
completed in 3547.634 seconds
Num 1011L10EZ7510RFTU2Ia sqr 1023456789ABCDEFGHIKb22ISU7MJC5GAPVLY39
Base 39 test every 38 threads = 12
Start : Num 1011L10EZ7510RFTU2J0 sqr 1023456789ABCDEFGHIQb8BRYWIcN3BKJ3F7A00
1.00 min 795117225457
2.00 min 1589942025409
..398.00 min 315778732951561
399.00 min 316570538706841
Result : Num 1011L10EZ76L0a5UAJOF sqr 1023456789DCFaKJPGLcEVSIBYZRTOMAbQHWXNU
23998.810 s Testcount : 8310508262457 315799313973366 // old version 68000s
Perl
{{libheader|ntheory}}
use strict;
use warnings;
use feature 'say';
use ntheory qw/fromdigits todigitstring/;
use utf8;
binmode('STDOUT', 'utf8');
sub first_square {
my $n = shift;
my $sr = substr('1023456789abcdef',0,$n);
my $r = int fromdigits($sr, $n) ** .5;
my @digits = reverse split '', $sr;
TRY: while (1) {
my $sq = $r * $r;
my $cnt = 0;
my $s = todigitstring($sq, $n);
my $i = scalar @digits;
for (@digits) {
$r++ and redo TRY if (-1 == index($s, $_)) || ($i-- + $cnt < $n);
last if $cnt++ == $n;
}
return sprintf "Base %2d: %10s² == %s", $n, todigitstring($r, $n),
todigitstring($sq, $n);
}
}
say "First perfect square with N unique digits in base N: ";
say first_square($_) for 2..16;
{{out}}
First perfect square with N unique digits in base N:
Base 2: 10² == 100
Base 3: 22² == 2101
Base 4: 33² == 3201
Base 5: 243² == 132304
Base 6: 523² == 452013
Base 7: 1431² == 2450361
Base 8: 3344² == 13675420
Base 9: 11642² == 136802574
Base 10: 32043² == 1026753849
Base 11: 111453² == 1240a536789
Base 12: 3966b9² == 124a7b538609
Base 13: 3828943² == 10254773ca86b9
Base 14: 3a9db7c² == 10269b8c57d3a4
Base 15: 1012b857² == 102597bace836d4
Base 16: 404a9d9b² == 1025648cfea37bd9
Alternative solution:
{{libheader|ntheory}}
use strict;
use warnings;
use ntheory qw(:all);
use List::Util qw(uniq);
sub first_square {
my ($base) = @_;
my $start = sqrtint(fromdigits([1, 0, 2 .. $base-1], $base));
for (my $k = $start ; ; ++$k) {
if (uniq(todigits($k * $k, $base)) == $base) {
return $k * $k;
}
}
}
foreach my $n (2 .. 16) {
my $s = first_square($n);
printf("Base %2d: %10s² == %s\n", $n,
todigitstring(sqrtint($s), $n), todigitstring($s, $n));
}
Perl 6
{{works with|Rakudo|2019.03}} As long as you have the patience, this will work for bases 2 through 36.
Bases 2 through 19 finish quickly, (about 10 seconds on my system), 20 takes a while, 21 is pretty fast, 22 is glacial. 23 through 26 takes several hours.
Use analytical start value filtering based on observations by [[User:Hout|Hout]]++ and [[User:Nigel Galloway|Nigel Galloway]]++ on the [[Talk:First_perfect_square_in_base_N_with_N_unique_digits#Space_compression_and_proof_.3F|discussion page]].
[https://tio.run/##dVTNbtpAEL7zFBPXBDuBlQ1SqkDz0x4i5VBeoGqQA@uwlVmb3XVThMi5fZ1ce@NR@iJ0Zm1jO1UtYS8zO9/8fDOTcZVcHA65FAZ0/gifP95PwXONWHEFV3AXJZr7k06HdLFQ2gz0Oo8UB@9eGnClD9sO4LPawK02kTJoFCeRgV7Y60MvwJc3BMYe6O7@N3uMNB/jGSHJTMR4hmsIA9jCO4hklGyMmGurLHFdlaYGEHchnoSJkgH990p37FsqZB/GhOtROBhsw/aW7mq09YaMoZqtosw727/awxh9tjDdGatwWpCwq0EpYhvQn5@/KvjtUVuFnMax5lSLlZBecYs9KY4uzzDbAsCHQXGatMyLvL6E5yXIV0Sp8F7@1dbGu07xrvhwKz4alWJZpDQfVKkxvUbFnItEyKfJkUhbFKqa4t853gfv4S17Rx/r@izTZ6IJP7WMGgllQcNCFec4VVWIjGFZ6iIiKJqw/WuLSpcCQtWRorY2rv@6Md4MsZkWkETaQC4TrjXasnkqTSSkxhxmNoAy1Ta9RfOfnpateWmPM@h2IZwFQUC/N5QXaZ7b3InVYwmqR0cbcKaoGANs3dlu/1okAx9cfQ3YiF5t6TOV5nLhsSAI/Z124KUFRY9DJtZp6y7wJMo0Xzht55aYBi91s9Aj@Q9j025WUNPwu7NaQoXs1IY6U0Ka2APnE7IB3eFiDN1wpCmvK@gORoF2@ui4T1CNoWryhwNQZ1atnJub8gjn8J@SwMkJ9HpI/65YS80RRmP7ERrmabbBKXbJHfVDUK2q4sZV8cWWWD3arbAdjy5wA/g7nIp8VUZJbx@elyLh1f0lThC1xaQGa02VNSmCQ9LBuaOtCRlXMZ/jji2257MwS5hiZ4p1zqGcNyHBBjsdAzJI1uy0tXOpY2m5kmdaqhAO@7g1FV/nQvEFisORFV@QOM2MSHGhkvi9FV@SWBvFzXzZmRwOfwE Try it online!]
#`[
Only search square numbers that have at least N digits;
smaller could not possibly match.
Only bother to use analytics for large N. Finesse takes longer than brute force for small N.
]
unit sub MAIN ($timer = False);
sub first-square (Int $n) {
my @start = flat '1', '0', (2 ..^ $n)».base: $n;
if $n > 10 { # analytics
my $root = digital-root( @start.join, :base($n) );
my @roots = (2..$n).map(*²).map: { digital-root($_.base($n), :base($n) ) };
if $root ∉ @roots {
my $offset = min(@roots.grep: * > $root ) - $root;
@start[1+$offset] = $offset ~ @start[1+$offset];
}
}
my $start = @start.join.parse-base($n).sqrt.ceiling;
my @digits = reverse (^$n)».base: $n;
my $sq;
my $now = now;
my $time = 0;
my $sr;
for $start .. * {
$sq = .²;
my $s = $sq.base($n);
my $f;
$f = 1 and last unless $s.contains: $_ for @digits;
if $timer && $n > 19 && $_ %% 1_000_000 {
$time += now - $now;
say "N $n: {$_}² = $sq <$s> : {(now - $now).round(.001)}s" ~
" : {$time.round(.001)} elapsed";
$now = now;
}
next if $f;
$sr = $_;
last
}
sprintf( "Base %2d: %13s² == %-30s", $n, $sr.base($n), $sq.base($n) ) ~
($timer ?? ($time + now - $now).round(.001) !! '');
}
sub digital-root ($root is copy, :$base = 10) {
$root = $root.comb.map({:36($_)}).sum.base($base) while $root.chars > 1;
$root.parse-base($base);
}
say "First perfect square with N unique digits in base N: ";
say .&first-square for flat
2 .. 12, # required
13 .. 16, # optional
17 .. 19, # stretch
20, # slow
21, # pretty fast
22, # very slow
23, # don't hold your breath
24, # slow but not too terrible
25, # very slow
26, # "
;
{{out}}
First perfect square with N unique digits in base N:
Base 2: 10² == 100
Base 3: 22² == 2101
Base 4: 33² == 3201
Base 5: 243² == 132304
Base 6: 523² == 452013
Base 7: 1431² == 2450361
Base 8: 3344² == 13675420
Base 9: 11642² == 136802574
Base 10: 32043² == 1026753849
Base 11: 111453² == 1240A536789
Base 12: 3966B9² == 124A7B538609
Base 13: 3828943² == 10254773CA86B9
Base 14: 3A9DB7C² == 10269B8C57D3A4
Base 15: 1012B857² == 102597BACE836D4
Base 16: 404A9D9B² == 1025648CFEA37BD9
Base 17: 423F82GA9² == 101246A89CGFB357ED
Base 18: 44B482CAD² == 10236B5F8EG4AD9CH7
Base 19: 1011B55E9A² == 10234DHBG7CI8F6A9E5
Base 20: 49DGIH5D3G² == 1024E7CDI3HB695FJA8G
Base 21: 4C9HE5FE27F² == 1023457DG9HI8J6B6KCEAF
Base 22: 4F94788GJ0F² == 102369FBGDEJ48CHI7LKA5
Base 23: 1011D3EL56MC² == 10234ACEDKG9HM8FBJIL756
Base 24: 4LJ0HDGF0HD3² == 102345B87HFECKJNIGMDLA69
Base 25: 1011E145FHGHM² == 102345DOECKJ6GFB8LIAM7NH9
Base 26: 52K8N53BDM99K² == 1023458LO6IEMKG79FPCHNJDBA
Phix
{{libheader|mpfr}} Partial translation of VB with bitmap idea from C++ and adopting the digit-array approach from pascal instead of base conversion.
-- demo\rosetta\PandigitalSquares.exw
include mpfr.e
atom t0 = time()
constant chars = "0123456789abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz|",
use_hll_code = true
function str_conv(sequence s, integer mode=+1)
-- mode of +1: eg {1,2,3} -> "123", mode of -1 the reverse.
-- note this doesn't really care what base s/res are in.
{sequence res,integer dcheck} = iff(mode=+1?{"",9}:{{},'9'})
for i=1 to length(s) do
integer d = s[i]
d += mode*iff(d>dcheck?'a'-10:'0')
res &= d
end for
return res
end function
procedure do_one(integer base)
-- tabulates one base
integer bm1 = base-1,
dr = iff(and_bits(base,1) ? floor(base/2) : 0),
id = 0,
rc = 0,
sdri
atom st = time()
sequence sdr = repeat(0,bm1)
for i=0 to bm1-1 do
sdri = mod(i*i,bm1)
rc += (sdri==dr)
sdr[i+1] = iff(sdri=0 ? bm1 : sdri)
end for
if dr>0 then
id = base
for i=1 to dr do
sdri = sdr[i+1]
if sdri>=dr
and id>sdri then
id = sdri
end if
end for
id -= dr
end if
string sq = chars[1..base]
if id>0 then sq = sq[1..id]&chars[id+1]&sq[id+1..$] end if
sq[1..2] = "10"
mpz sqz = mpz_init(),
rtz = mpz_init(),
dnz = mpz_init(),
tmp = mpz_init()
mpz_set_str(sqz,sq,base)
mpz_sqrt(rtz,sqz)
mpz_add_ui(rtz,rtz,1) -- rtz = sqrt(sqz)+1
mpz_mul_si(dnz,rtz,2)
mpz_add_si(dnz,dnz,1) -- dnz = rtz*2+1
mpz_mul(sqz,rtz,rtz) -- sqz = rtz * rtz
integer d = 1,
inc = 1
if base>3 and rc>0 then
while mpz_fdiv_ui(sqz,bm1)!=dr do
-- align sqz to dr
mpz_add_ui(rtz,rtz,1) -- rtz += 1
mpz_add(sqz,sqz,dnz) -- sqz += dnz
mpz_add_ui(dnz,dnz,2) -- dnz += 2
end while
inc = floor(bm1/rc)
if inc>1 then
mpz_mul_si(tmp,rtz,inc-2)
mpz_sub_ui(tmp,tmp,1)
mpz_add(dnz,dnz,tmp) -- dnz += rtz*(inc-2)-1
end if
d = inc * inc
mpz_add(dnz,dnz,dnz)
mpz_add_ui(dnz,dnz,d) -- dnz += dnz + d
end if
d *= 2
atom mask, fullmask = power(2,base)-1 -- ie 0b111..
integer icount = 0
mpz_set_si(tmp,d)
sequence sqi = str_conv(mpz_get_str(sqz,base), mode:=-1),
dni = str_conv(mpz_get_str(dnz,base), mode:=-1),
dti = str_conv(mpz_get_str(tmp,base), mode:=-1)
while true do
if use_hll_code then
mask = 0
for i=1 to length(sqi) do
mask = or_bits(mask,power(2,sqi[i]))
end for
else
?9/0 -- see below, inline part 1
end if
if mask=fullmask then exit end if
integer carry = 0, sidx, si
if use_hll_code then
for sidx=-1 to -length(dni) by -1 do
si = sqi[sidx]+dni[sidx]+carry
carry = si>=base
sqi[sidx] = si-carry*base
end for
sidx += length(sqi)+1
while carry and sidx do
si = sqi[sidx]+carry
carry = si>=base
sqi[sidx] = si-carry*base
sidx -= 1
end while
else
?9/0 --see below, inline part 2
end if
if carry then
sqi = carry&sqi
end if
carry = 0
for sidx=-1 to -length(dti) by -1 do
si = dni[sidx]+dti[sidx]+carry
carry = floor(si/base)
dni[sidx] = remainder(si,base)
end for
sidx += length(dni)+1
while carry and sidx do
si = dni[sidx]+carry
carry = si>=base
dni[sidx] = si-carry*base
sidx -= 1
end while
if carry then
dni = carry&dni
end if
icount += 1
end while
mpz_set_si(tmp,icount)
mpz_mul_si(tmp,tmp,inc)
mpz_add(rtz,rtz,tmp) -- rtz += icount * inc
sq = str_conv(sqi, mode:=+1)
string rt = mpz_get_str(rtz,base),
idstr = iff(id?sprintf("%d",id):" "),
ethis = elapsed_short(time()-st),
etotal = elapsed_short(time()-t0)
printf(1,"%3d %3d %s %18s -> %-28s %10d %8s %8s\n",
{base, inc, idstr, rt, sq, icount, ethis, etotal})
{sqz,rtz,dnz,tmp} = mpz_free({sqz,rtz,dnz,tmp})
end procedure
puts(1,"base inc id root -> square" &
" test count time total\n")
for base=2 to 19 do
--for base=2 to 25 do
--for base=2 to 28 do
do_one(base)
end for
printf(1,"completed in %s\n", {elapsed(time()-t0)})
{{out}}
base inc id root -> square test count time total
2 1 10 -> 100 0 0s 0s
3 1 22 -> 2101 4 0s 0s
4 3 33 -> 3201 2 0s 0s
5 1 2 243 -> 132304 14 0s 0s
6 5 523 -> 452013 20 0s 0s
7 6 1431 -> 2450361 34 0s 0s
8 7 3344 -> 13675420 41 0s 0s
9 4 11642 -> 136802574 289 0s 0s
10 3 32043 -> 1026753849 17 0s 0s
11 10 111453 -> 1240a536789 1498 0s 0s
12 11 3966b9 -> 124a7b538609 6883 0s 0s
13 1 3 3828943 -> 10254773ca86b9 8242 0s 0s
14 13 3a9db7c -> 10269b8c57d3a4 1330 0s 0s
15 14 1012b857 -> 102597bace836d4 4216 0s 0s
16 15 404a9d9b -> 1025648cfea37bd9 18457 0s 0s
17 1 1 423f82ga9 -> 101246a89cgfb357ed 195112 0s 0s
18 17 44b482cad -> 10236b5f8eg4ad9ch7 30440 0s 0s
19 6 1011b55e9a -> 10234dhbg7ci8f6a9e5 93021 0s 0s
completed in 0.5s
Performance drops significantly after that:
20 19 49dgih5d3g -> 1024e7cdi3hb695fja8g 11310604 9s 10s
21 1 6 4c9he5fe27f -> 1023457dg9hi8j6b6kceaf 601843 0s 10s
22 21 4f94788gj0f -> 102369fbgdej48chi7lka5 27804949 25s 36s
23 22 1011d3el56mc -> 10234acedkg9hm8fbjil756 17710217 17s 53s
24 23 4lj0hdgf0hd3 -> 102345b87hfeckjnigmdla69 4266555 4s 58s
25 12 1011e145fhghm -> 102345doeckj6gfb8liam7nh9 78092125 1:16 2:14
completed in 2 minutes and 15s
It takes a little over half an hour to get to 28. We can use "with profile_time" to identify
a couple of hotspots and replace them with inline assembly (setting use_hll_code to false).
[This is probably quite a good target for improving the quality of the generated code.]
Requires version 0.8.1+, not yet shipped, which will include demo\rosetta\PandigitalSquares.exw
64 bit code omitted for clarity, the code in PandigitalSquares.exw is twice as long.
-- ?9/0 -- see below, inline part 1
mask = length(sqi)
#ilASM{
mov esi,[sqi]
mov edx,[mask]
shl esi,2
xor eax,eax
@@:
mov edi,1
mov cl,[esi]
shl edi,cl
add esi,4
or eax,edi
sub edx,1
jnz @b
mov [mask],eax
}
--and
-- ?9/0 --see below, inline part 2
if length(dni)=length(sqi) then
sqi = 0&sqi
end if
#ilASM{
mov esi,[sqi]
mov edi,[dni]
mov ecx,[ebx+esi*4-12] -- length(sqi)
mov edx,[ebx+edi*4-12] -- length(dni)
lea esi,[esi+ecx-1]
lea edi,[edi+edx-1]
sub ecx,edx
xor eax,eax
lea esi,[ebx+esi*4] -- locate sqi[$]
lea edi,[ebx+edi*4] -- locate dni[$]
push ecx
mov ecx,[base]
@@:
add eax,[esi]
add eax,[edi]
div cl
mov [esi],ah
xor ah,ah
sub esi,4
sub edi,4
sub edx,1
jnz @b
pop edx
@@:
test eax,eax
jz @f
add eax,[esi]
div cl
mov [esi],ah
xor ah,ah
sub esi,4
sub edx,1
jnz @b
@@:
mov [carry],eax
}
{{output}}
20 19 49dgih5d3g -> 1024e7cdi3hb695fja8g 11310604 2s 3s
21 1 6 4c9he5fe27f -> 1023457dg9hi8j6b6kceaf 601843 0s 3s
22 21 4f94788gj0f -> 102369fbgdej48chi7lka5 27804949 7s 10s
23 22 1011d3el56mc -> 10234acedkg9hm8fbjil756 17710217 4s 14s
24 23 4lj0hdgf0hd3 -> 102345b87hfeckjnigmdla69 4266555 1s 15s
25 12 1011e145fhghm -> 102345doeckj6gfb8liam7nh9 78092125 18s 34s
completed in 34.3s
It takes 7 minutes and 20s to get to 28, still not quite up to the frankly astonishing 27s 12.3s of pascal, but getting there.
Python
{{Works with|Python|3.7}}
'''Perfect squares using every digit in a given base.'''
from itertools import (count, dropwhile, repeat)
from math import (ceil, sqrt)
from time import time
# allDigitSquare :: Int -> Int -> Int
def allDigitSquare(base, above):
'''The lowest perfect square which
requires all digits in the given base.
'''
bools = list(repeat(True, base))
return next(dropwhile(missingDigitsAtBase(base, bools), count(
max(above, ceil(sqrt(int('10' + '0123456789abcdef'[2:base], base))))
)))
# missingDigitsAtBase :: Int -> [Bool] -> Int -> Bool
def missingDigitsAtBase(base, bools):
'''Fusion of representing the square of integer N at a given base
with checking whether all digits of that base contribute to N^2.
Clears the bool at a digit position to False when used.
True if any positions remain uncleared (unused).
'''
def go(x):
xs = bools.copy()
while x:
xs[x % base] = False
x //= base
return any(xs)
return lambda n: go(n * n)
# digit :: Int -> Char
def digit(n):
'''Digit character for given integer.'''
return '0123456789abcdef'[n]
# TEST ----------------------------------------------------
# main :: IO ()
def main():
'''Smallest perfect squares using all digits in bases 2-16'''
start = time()
print(main.__doc__ + ':\n\nBase Root Square')
q = 0
for b in enumFromTo(2)(16):
q = allDigitSquare(b, q)
print(
str(b).rjust(2, ' ') + ' -> ' +
showIntAtBase(b)(digit)(q)('').rjust(8, ' ') + ' -> ' +
showIntAtBase(b)(digit)(q * q)('')
)
print(
'\nc. ' + str(ceil(time() - start)) + ' seconds.'
)
# GENERIC -------------------------------------------------
# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: list(range(m, 1 + n))
# showIntAtBase :: Int -> (Int -> String) -> Int -> String -> String
def showIntAtBase(base):
'''String representation of an integer in a given base,
using a supplied function for the string representation
of digits.
'''
def wrap(toChr, n, rs):
def go(nd, r):
n, d = nd
r_ = toChr(d) + r
return go(divmod(n, base), r_) if 0 != n else r_
return 'unsupported base' if 1 >= base else (
'negative number' if 0 > n else (
go(divmod(n, base), rs))
)
return lambda toChr: lambda n: lambda rs: (
wrap(toChr, n, rs)
)
# MAIN ---
if __name__ == '__main__':
main()
{{Out}}
Smallest perfect squares using all digits in bases 2-16:
Base Root Square
2 -> 10 -> 100
3 -> 22 -> 2101
4 -> 33 -> 3201
5 -> 243 -> 132304
6 -> 523 -> 452013
7 -> 1431 -> 2450361
8 -> 3344 -> 13675420
9 -> 11642 -> 136802574
10 -> 32043 -> 1026753849
11 -> 111453 -> 1240a536789
12 -> 3966b9 -> 124a7b538609
13 -> 3828943 -> 10254773ca86b9
14 -> 3a9db7c -> 10269b8c57d3a4
15 -> 1012b857 -> 102597bace836d4
16 -> 404a9d9b -> 1025648cfea37bd9
c. 30 seconds.
REXX
The '''REXX''' language doesn't have a '''sqrt''' function, nor does it have a general purpose radix (base) convertor,
so RYO versions were included here.
These REXX versions can handle up to base '''36''', but could be extended.
slightly optimized
/*REXX program finds/displays the first perfect square with N unique digits in base N.*/
numeric digits 40 /*ensure enough decimal digits for a #.*/
parse arg n . /*obtain optional argument from the CL.*/
if n=='' | n=="," then n= 16 /*not specified? Then use the default.*/
@start= 1023456789abcdefghijklmnopqrstuvwxyz /*contains the start # (up to base 36).*/
w= length(n) /* [↓] find the smallest square with */
do j=2 to n; beg= left(@start, j) /* N unique digits in base N. */
do k=iSqrt( base(beg,10,j) ) until #==0 /*start each search from smallest sqrt.*/
$= base(k*k, j, 10) /*calculate square, convert to base J. */
$u= $; upper $u /*get an uppercase version fast count. */
#= verify(beg, $u) /*count differences between 2 numbers. */
end /*k*/
say 'base' right(j,w) " root=" right(base(k,j,10),max(5,n)) ' square=' $
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
base: procedure; arg x 1 #,toB,inB /*obtain: three arguments. */
@l= '0123456789abcdefghijklmnopqrstuvwxyz' /*lowercase (Latin or English) alphabet*/
@u= @l; upper @u /*uppercase " " " " */
if inb\==10 then /*only convert if not base 10. */
do; #= 0 /*result of converted X (in base 10).*/
do j=1 for length(x) /*convert X: base inB ──► base 10. */
#= # * inB + pos(substr(x,j,1), @u)-1 /*build a new number, digit by digit. */
end /*j*/ /* [↑] this also verifies digits. */
end
y= /*the value of X in base B (so far).*/
if tob==10 then return # /*if TOB is ten, then simply return #.*/
do while # >= toB /*convert #: base 10 ──► base toB.*/
y= substr(@l, (# // toB) + 1, 1)y /*construct the output number. */
#= # % toB /* ··· and whittle # down also. */
end /*while*/ /* [↑] algorithm may leave a residual.*/
return substr(@l, # + 1, 1)y /*prepend the residual, if any. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
iSqrt: procedure; parse arg x; r=0; q=1; do while q<=x; q=q*4; end
do while q>1; q=q%4; _=x-r-q; r=r%2; if _>=0 then do;x=_;r=r+q; end; end; return r
{{out|output|text= when using the default input:}}
base 2 root= 10 square= 100
base 3 root= 22 square= 2101
base 4 root= 33 square= 3201
base 5 root= 243 square= 132304
base 6 root= 523 square= 452013
base 7 root= 1431 square= 2450361
base 8 root= 3344 square= 13675420
base 9 root= 11642 square= 136802574
base 10 root= 32043 square= 1026753849
base 11 root= 111453 square= 1240a536789
base 12 root= 3966b9 square= 124a7b538609
base 13 root= 3828943 square= 10254773ca86b9
base 14 root= 3a9db7c square= 10269b8c57d3a4
base 15 root= 1012b857 square= 102597bace836d4
base 16 root= 404a9d9b square= 1025648cfea37bd9
more optimized
This REXX version uses a highly optimized '''base''' function since it was that particular function that was consuming the majority of the CPU time.
It is about '''10%''' faster.
/*REXX program finds/displays the first perfect square with N unique digits in base N.*/
numeric digits 40 /*ensure enough decimal digits for a #.*/
parse arg n . /*obtain optional argument from the CL.*/
if n=='' | n=="," then n= 16 /*not specified? Then use the default.*/
@start= 1023456789abcdefghijklmnopqrstuvwxyz /*contains the start # (up to base 36).*/
call base /*initialize 2 arrays for BASE function*/
/* [↓] find the smallest square with */
do j=2 to n; beg= left(@start, j) /* N unique digits in base N. */
do k=iSqrt( base(beg,10,j) ) until #==0 /*start each search from smallest sqrt.*/
$= base(k*k, j, 10) /*calculate square, convert to base J. */
#= verify(beg, $) /*count differences between 2 numbers. */
end /*k*/
say 'base' right(j, length(n) ) " root=" ,
lower( right( base(k, j, 10), max(5, n) ) ) ' square=' lower($)
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
base: procedure expose !. !!.; arg x 1 #,toB,inB /*obtain: three arguments. */
@= 0123456789abcdefghijklmnopqrstuvwxyz /*the characters for the Latin alphabet*/
if x=='' then do i=1 for length(@); _= substr(@, i, 1); m= i - 1; !._= m
!!.m= substr(@, i, 1)
if i==length(@) then return /*Done with shortcuts? Then go back. */
end /*i*/ /* [↑] assign shortcut radix values. */
if inb\==10 then /*only convert if not base 10. */
do; #= 0 /*result of converted X (in base 10).*/
do j=1 for length(x) /*convert X: base inB ──► base 10. */
_= substr(x, j, 1); #= # * inB + !._ /*build a new number, digit by digit. */
end /*j*/ /* [↑] this also verifies digits. */
end
y= /*the value of X in base B (so far).*/
if tob==10 then return # /*if TOB is ten, then simply return #.*/
do while # >= toB /*convert #: base 10 ──► base toB.*/
_= # // toB; y= !!._ || y /*construct the output number. */
#= # % toB /* ··· and whittle # down also. */
end /*while*/ /* [↑] algorithm may leave a residual.*/
return !!.# || y /*prepend the residual, if any. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
iSqrt: procedure; parse arg x; r=0; q=1; do while q<=x; q=q*4; end
do while q>1; q=q%4; _=x-r-q; r=r%2; if _>=0 then do;x=_;r=r+q; end; end; return r
/*──────────────────────────────────────────────────────────────────────────────────────*/
lower: @abc= 'abcdefghijklmnopqrstuvwxyz'; return translate(arg(1), @abc, translate(@abc))
{{out|output|text= is identical to the 1st REXX version.}}
Ruby
Takes about 15 seconds on my dated PC, most are spent calculating base 13.
DIGITS = "1023456789abcdefghijklmnopqrstuvwxyz"
2.upto(16) do |n|
start = Integer.sqrt( DIGITS[0,n].to_i(n) )
res = start.step.detect{|i| (i*i).digits(n).uniq.size == n }
puts "Base %2d:%10s² = %-14s" % [n, res.to_s(n), (res*res).to_s(n)]
end
{{out}}
Base 2: 10² = 100
Base 3: 22² = 2101
Base 4: 33² = 3201
Base 5: 243² = 132304
Base 6: 523² = 452013
Base 7: 1431² = 2450361
Base 8: 3344² = 13675420
Base 9: 11642² = 136802574
Base 10: 32043² = 1026753849
Base 11: 111453² = 1240a536789
Base 12: 3966b9² = 124a7b538609
Base 13: 3828943² = 10254773ca86b9
Base 14: 3a9db7c² = 10269b8c57d3a4
Base 15: 1012b857² = 102597bace836d4
Base 16: 404a9d9b² = 1025648cfea37bd9
Sidef
func first_square(b) {
var start = [1, 0, (2..^b)...].flip.map_kv{|k,v| v * b**k }.sum.isqrt
start..Inf -> first_by {|k|
k.sqr.digits(b).freq.len == b
}.sqr
}
for b in (2..16) {
var s = first_square(b)
printf("Base %2d: %10s² == %s\n", b, s.isqrt.base(b), s.base(b))
}
{{out}}
Base 2: 10² == 100
Base 3: 22² == 2101
Base 4: 33² == 3201
Base 5: 243² == 132304
Base 6: 523² == 452013
Base 7: 1431² == 2450361
Base 8: 3344² == 13675420
Base 9: 11642² == 136802574
Base 10: 32043² == 1026753849
Base 11: 111453² == 1240a536789
Base 12: 3966b9² == 124a7b538609
Base 13: 3828943² == 10254773ca86b9
Base 14: 3a9db7c² == 10269b8c57d3a4
Base 15: 1012b857² == 102597bace836d4
Base 16: 404a9d9b² == 1025648cfea37bd9
Visual Basic .NET
{{libheader|System.Numerics}}
This is faster than the Go version, but not as fast as the Pascal version. The Pascal version uses an array of integers to represent the square, as it's more efficient to increment and check that way.
This Visual Basic .NET version uses BigInteger variables for computation. It's quick enough for up to base19, tho.
Imports System.Numerics
Module Program
Dim base, bm1 As Byte, hs As New HashSet(Of Byte), st0 As DateTime
Const chars As String = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz|"
' converts base10 to string, using current base
Function toStr(ByVal b As BigInteger) As String
toStr = "" : Dim re As BigInteger : While b > 0
b = BigInteger.DivRem(b, base, re) : toStr = chars(CByte(re)) & toStr : End While
End Function
' checks for all digits present, checks every one (use when extra digit is present)
Function allIn(ByVal b As BigInteger) As Boolean
Dim re As BigInteger : hs.Clear() : While b > 0 : b = BigInteger.DivRem(b, base, re)
hs.Add(CByte(re)) : End While : Return hs.Count = base
End Function
' checks for all digits present, bailing when duplicates occur (can't use when extra digit is present)
Function allInQ(ByVal b As BigInteger) As Boolean
Dim re As BigInteger, c As Integer = 0 : hs.Clear() : While b > 0 : b = BigInteger.DivRem(b, base, re)
hs.Add(CByte(re)) : c += 1 : If c <> hs.Count Then Return False
End While : Return True
End Function
' converts string to base 10, using current base
Function to10(s As String) As BigInteger
to10 = 0 : For Each i As Char In s : to10 = to10 * base + chars.IndexOf(i) : Next
End Function
' returns minimum string representation, optionally inserting a digit
Function fixup(n As Integer) As String
fixup = chars.Substring(0, base)
If n > 0 Then fixup = fixup.Insert(n, n.ToString)
fixup = "10" & fixup.Substring(2)
End Function
' returns close approx.
Function IntSqRoot(v As BigInteger) As BigInteger
IntSqRoot = New BigInteger(Math.Sqrt(CDbl(v))) : Dim term As BigInteger
Do : term = v / IntSqRoot : If BigInteger.Abs(term - IntSqRoot) < 2 Then Exit Do
IntSqRoot = (IntSqRoot + term) / 2 : Loop Until False
End Function
' tabulates one base
Sub doOne()
bm1 = base - 1 : Dim dr As Byte = 0 : If (base And 1) = 1 Then dr = base >> 1
Dim id As Integer = 0, inc As Integer = 1, i As Long = 0, st As DateTime = DateTime.Now
Dim sdr(bm1 - 1) As Byte, rc As Byte = 0 : For i = 0 To bm1 - 1 : sdr(i) = (i * i) Mod bm1
rc += If(sdr(i) = dr, 1, 0) : sdr(i) += If(sdr(i) = 0, bm1, 0) : Next : i = 0
If dr > 0 Then
id = base : For i = 1 To dr : If sdr(i) >= dr Then If id > sdr(i) Then id = sdr(i)
Next : id -= dr : i = 0 : End If
Dim sq As BigInteger = to10(fixup(id)), rt As BigInteger = IntSqRoot(sq) + 0,
dn As BigInteger = (rt << 1) + 1, d As BigInteger = 1
sq = rt * rt : If base > 3 AndAlso rc > 0 Then
While sq Mod bm1 <> dr : rt += 1 : sq += dn : dn += 2 : End While ' alligns sq to dr
inc = bm1 \ rc : If inc > 1 Then dn += rt * (inc - 2) - 1 : d = inc * inc
dn += dn + d
End If : d <<= 1 : If base > 5 AndAlso rc > 0 Then : Do : If allInQ(sq) Then Exit Do
sq += dn : dn += d : i += 1 : Loop Until False : Else : Do : If allIn(sq) Then Exit Do
sq += dn : dn += d : i += 1 : Loop Until False : End If : rt += i * inc
Console.WriteLine("{0,3} {1,3} {2,2} {3,20} -> {4,-38} {5,10} {6,8:0.000}s {7,8:0.000}s",
base, inc, If(id = 0, " ", id.ToString), toStr(rt), toStr(sq), i,
(DateTime.Now - st).TotalSeconds, (DateTime.Now - st0).TotalSeconds)
End Sub
Sub Main(args As String())
st0 = DateTime.Now
Console.WriteLine("base inc id root square" & _
" test count time total")
For base = 2 To 28 : doOne() : Next
Console.WriteLine("Elasped time was {0,8:0.00} minutes", (DateTime.Now - st0).TotalMinutes)
End Sub
End Module
{{out}}This output is on a somewhat modern PC. For comparison, it takes TIO.run around 30 seconds to reach base20, so TIO.run is around 3 times slower there.
base inc id root square test count time total
2 1 10 -> 100 1 0.007s 0.057s
3 1 22 -> 2101 5 0.000s 0.057s
4 3 33 -> 3201 2 0.001s 0.058s
5 1 2 243 -> 132304 15 0.000s 0.058s
6 5 523 -> 452013 20 0.000s 0.059s
7 6 1431 -> 2450361 35 0.000s 0.059s
8 7 3344 -> 13675420 41 0.000s 0.059s
9 4 11642 -> 136802574 289 0.000s 0.059s
10 3 32043 -> 1026753849 17 0.000s 0.059s
11 10 111453 -> 1240A536789 1498 0.001s 0.060s
12 11 3966B9 -> 124A7B538609 6883 0.005s 0.065s
13 1 3 3828943 -> 10254773CA86B9 8243 0.013s 0.078s
14 13 3A9DB7C -> 10269B8C57D3A4 1330 0.000s 0.078s
15 14 1012B857 -> 102597BACE836D4 4216 0.003s 0.081s
16 15 404A9D9B -> 1025648CFEA37BD9 18457 0.012s 0.093s
17 1 1 423F82GA9 -> 101246A89CGFB357ED 195113 0.341s 0.434s
18 17 44B482CAD -> 10236B5F8EG4AD9CH7 30440 0.022s 0.456s
19 6 1011B55E9A -> 10234DHBG7CI8F6A9E5 93021 0.068s 0.524s
20 19 49DGIH5D3G -> 1024E7CDI3HB695FJA8G 11310604 8.637s 9.162s
21 1 6 4C9HE5FE27F -> 1023457DG9HI8J6B6KCEAF 601844 1.181s 10.342s
22 21 4F94788GJ0F -> 102369FBGDEJ48CHI7LKA5 27804949 21.677s 32.020s
23 22 1011D3EL56MC -> 10234ACEDKG9HM8FBJIL756 17710217 14.292s 46.312s
24 23 4LJ0HDGF0HD3 -> 102345B87HFECKJNIGMDLA69 4266555 3.558s 49.871s
25 12 1011E145FHGHM -> 102345DOECKJ6GFB8LIAM7NH9 78092125 69.914s 119.785s
26 5 52K8N53BDM99K -> 1023458LO6IEMKG79FPCHNJDBA 402922569 365.929s 485.714s
27 26 1011F11E37OBJJ -> 1023458ELOMDHBIJFGKP7CQ9N6A 457555293 420.607s 906.321s
28 9 58A3CKP3N4CQD7 -> 1023456CGJBIRQEDHP98KMOAN7FL 749593055 711.660s 1617.981s
Elasped time was 26.97 minutes
Base29 seems to take an order of magnitude longer. I'm looking into some shortcuts.
zkl
{{trans|Julia}}
fcn squareSearch(B){
basenumerals:=B.pump(String,T("toString",B)); // 13 --> "0123456789abc"
highest:=("10"+basenumerals[2,*]).toInt(B); // 13 --> "10" "23456789abc"
foreach n in ([highest.toFloat().sqrt().toInt() .. highest]){
ns:=(n*n).toString(B);
if(""==(basenumerals - ns) ) return(n.toString(B),ns);
}
Void
}
println("Base Root N");
foreach b in ([2..16])
{ println("%2d %10s %s".fmt(b,squareSearch(b).xplode())) }
{{out}}
Base Root N
2 10 100
3 22 2101
4 33 3201
5 243 132304
6 523 452013
7 1431 2450361
8 3344 13675420
9 11642 136802574
10 32043 1026753849
11 111453 1240a536789
12 3966b9 124a7b538609
13 3828943 10254773ca86b9
14 3a9db7c 10269b8c57d3a4
15 1012b857 102597bace836d4
16 404a9d9b 1025648cfea37bd9