⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Programming environment operations}} {{omit from|Brlcad}} {{omit from|E}} {{omit from|JavaScript}} {{omit from|Maxima}} {{omit from|ML/I}} {{omit from|Openscad}} {{omit from|TPP}} {{omit from|Unlambda}}
Print the [[wp:Word_size#Word_size_choice|word size]] and [[wp:Endianness|endianness]] of the host machine.
See also: [[Variable size/Get]]
Ada
with Ada.Text_IO; use Ada.Text_IO;
with System; use System;
procedure Host_Introspection is
begin
Put_Line ("Word size" & Integer'Image (Word_Size));
Put_Line ("Endianness " & Bit_Order'Image (Default_Bit_Order));
end Host_Introspection;
{{out|Sample output on a Pentium machine}}
Word size 32
Endianness LOW_ORDER_FIRST
ALGOL 68
{{works with|ALGOL 68|Revision 1 - no extensions to language used}}
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}} {{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of FORMATted transput}}
INT max abs bit = ABS(BIN 1 SHL 1)-1;
INT bits per char = ENTIER (ln(max abs char+1)/ln(max abs bit+1));
INT bits per int = ENTIER (1+ln(max int+1.0)/ln(max abs bit+1));
printf(($"states per bit: "dl$,max abs bit+1));
printf(($"bits per char: "z-dl$,bits per char));
printf(($"bits per int: "z-dl$,bits per int));
printf(($"chars per int: "z-dl$,bits per int OVER bits per char));
printf(($"bits width: "z-dl$, bits width));
STRING abcds = "ABCD";
FILE abcdf;
INT abcdi;
INT errno := open(abcdf, "abcd.dat",stand back channel);
put(abcdf,abcds); # output alphabetically #
reset(abcdf);
get bin(abcdf,abcdi); # input in word byte order #
STRING int byte order := "";
FOR shift FROM 0 BY bits per char TO bits per int - bits per char DO
int byte order +:= REPR(abcdi OVER (max abs bit+1) ** shift MOD (max abs char+1))
OD;
printf(($"int byte order: "g,", Hex:",16r8dl$,int byte order, BIN abcdi))
{{out}} (Intel i686):
states per bit: 2
bits per char: 8
bits per int: 32
chars per int: 4
bits width: 32
int byte order: ABCD, Hex:44434241
On older CPUs the results would vary: {|border="1" align="center" |style="text-align: center;"| ALGOL 68R |colspan="2" style="text-align: center;"| ALGOL 68RS |- || ~
bits per char: 6
bits per int: 24
chars per int: 4
|| [[wp:ICL 2900|ICL 2900]]
bits per char: 8
bits per int: 32
chars per int: 4
|| [[wp:Multics|Multics]]
bits per char: 6
bits per int: 36
chars per int: 6
|}
Applesoft BASIC
1 DATA248,169,153,24,105,1,48
2 DATA6,24,251,144,2,251,56
3 DATA216,105,0,133,251,96
4 FOR I = 768 TO 787
5 READ B: POKE I,B: NEXT
6 CALL 768:M = PEEK (251)
7 PRINT " WORD SIZE: ";
8 IF NOT M THEN PRINT 8
9 M$ = "HYBRID 8/16"
10 IF M THEN PRINT M$
11 PRINT "ENDIANNESS: ";
12 PRINT "LITTLE-ENDIAN"
Babel
main :
{ "Word size: " << msize 3 shl %d << " bits" cr <<
"Endianness: " << { endian } { "little" } { "big" } ifte cr << }
BBC BASIC
DIM P% 8
!P% = -1
I% = 0 : REPEAT I% += 1 : UNTIL P%?I%=0
PRINT "Word size = " ; I% " bytes"
!P% = 1
IF P%?0 = 1 THEN PRINT "Little-endian"
IF P%?(I%-1) = 1 THEN PRINT "Big-endian"
The 'word size' is reported as the number of bytes accessed by the ! indirection operator, which is 4 in all current versions of BBC BASIC.
C
#include <stdio.h>
#include <stddef.h> /* for size_t */
#include <limits.h> /* for CHAR_BIT */
int main() {
int one = 1;
/*
* Best bet: size_t typically is exactly one word.
*/
printf("word size = %d bits\n", (int)(CHAR_BIT * sizeof(size_t)));
/*
* Check if the least significant bit is located
* in the lowest-address byte.
*/
if (*(char *)&one)
printf("little endian\n");
else
printf("big endian\n");
return 0;
}
On POSIX-compatible systems, the following also tests the endianness (this makes use of the fact that network order is big endian):
#include <stdio.h>
#include <arpa/inet.h>
int main()
{
if (htonl(1) == 1)
printf("big endian\n");
else
printf("little endian\n");
}
C#
static void Main()
{
Console.WriteLine("Word size = {0} bytes,",sizeof(int));
if (BitConverter.IsLittleEndian)
Console.WriteLine("Little-endian.");
else
Console.WriteLine("Big-endian.");
}
=={{header|Caché ObjectScript}}==
USER>Write "Word Size: "_$Case($System.Version.Is64Bits(), 1: 64, : 32)
Word Size: 32
USER>Write "Endianness: "_$Case($System.Version.IsBigEndian(), 1: "Big", : "Little")
Endianness: Little
Clojure
(println "word size: " (System/getProperty "sun.arch.data.model"))
(println "endianness: " (System/getProperty "sun.cpu.endian"))
Common Lisp
Common Lisp doesn't provide a native way to reliably determine this (though some unlike other languages, you rarely, if ever, need this information).
The [http://www.lispworks.com/documentation/HyperSpec/Body/c_enviro.htm Environment] has some implementation-specific functions that might provide a good hint, e.g.,
(machine-type) ;; => "X86-64" on SBCL here
The [http://www.cliki.net/features features] list also provides useful information, e.g., some compilers declare :LITTLE-ENDIAN there.
The [http://www.cliki.net/trivial-features cl-trivial-features] library standardizes this, so you will always get either :LITTLE-ENDIAN or :BIG-ENDIAN. It also adds the CPU (:X86, :X86-64, :PPC, :PPC64, etc.), from which you can probably derive the word size, but it's not (yet) available as a separate flag.
D
void main() {
import std.stdio, std.system;
writeln("Word size = ", size_t.sizeof * 8, " bits.");
writeln(endian == Endian.littleEndian ? "Little" : "Big", " endian.");
}
{{out}}
Word size = 64 bits.
Little endian.
Delphi
program HostIntrospection ;
{$APPTYPE CONSOLE}
uses SysUtils;
begin
Writeln('word size: ', SizeOf(Integer));
Writeln('endianness: little endian'); // Windows is always little endian
end.
Erlang
To find the word size:
erlang:system_info(wordsize).
4
In the case of endianness, Erlang's bit syntax by default has a 'native' option which lets you use what is supported natively. As such, there is no function to find endianness. However, one could write one by using bit syntax, setting endianness and then comparing to the native format:
<<1:4/native-unit:8>>.
<<1,0,0,0>>
2> <<1:4/big-unit:8>>
<<0,0,0,1>>
3> <<1:4/little-unit:8>>.
<<1,0,0,0>>
And so the following function would output endianness:
endianness() when <<1:4/native-unit:8>> =:= <<1:4/big-unit:8>> -> big;
endianness() -> little.
Factor
USING: alien.c-types alien.data io layouts ;
"Word size: " write cell 8 * .
"Endianness: " write little-endian? "little" "big" ? print
Forth
: endian
cr 1 cells . ." address units per cell"
s" ADDRESS-UNIT-BITS" environment? if cr . ." bits per address unit" then
cr 1 here ! here c@ if ." little" else ." big" then ." endian" ;
This relies on '''c@''' being a byte fetch (4 chars = 1 cells). Although it is on most architectures, ANS Forth only guarantees that 1 chars <= 1 cells. Some Forths like OpenFirmware have explicitly sized fetches, like b@.
Fortran
{{works with|Fortran|90 and later}}
integer :: i
character(len=1) :: c(20)
equivalence (c, i)
WRITE(*,*) bit_size(1) ! number of bits in the default integer type
! which may (or may not!) equal the word size
i = 1
IF (ichar(c(1)) == 0) THEN
WRITE(*,*) "Big Endian"
ELSE
WRITE(*,*) "Little Endian"
END IF
FreeBASIC
' FB 1.05.0 Win64 (so little endian, 8 byte word size, expected)
' uses intrinsic defines, set by the compiler
#Ifdef __FB_64BIT__
Print "Host has an 8 byte word size"
#Else
Print "Host has a 4 byte word size"
#EndIf
#Ifdef __FB_BIGENDIAN__
Print "Host is big endian"
#Else
Print "Host is little endian"
#EndIf
Sleep
{{out}}
Host has an 8 byte word size
Host is little endian
Frink
println["Word size: " + callJava["java.lang.System", "getProperty", "sun.arch.data.model"]]
println["Endianness: " + callJava["java.lang.System", "getProperty", "sun.cpu.endian"]]
=={{header|F_Sharp|F#}}== A lot of research before I finally came up with an answer to this that isn't dependent on the machine it was compiled on. Works on Win32 machines only (obviously, due to the interop). I think that strictly speaking, I should be double checking the OS version before making the call to wow64Process, but I'm not worrying about it.
open System
open System.Runtime.InteropServices
open System.Diagnostics
[<DllImport("kernel32.dll", SetLastError = true, CallingConvention = CallingConvention.Winapi)>]
extern bool IsWow64Process(nativeint hProcess, bool &wow64Process);
let answerHostInfo =
let Is64Bit() =
let mutable f64Bit = false;
IsWow64Process(Process.GetCurrentProcess().Handle, &f64Bit) |> ignore
f64Bit
let IsLittleEndian() = BitConverter.IsLittleEndian
(IsLittleEndian(), Is64Bit())
Go
package main
import (
"fmt"
"io/ioutil"
"runtime"
"strconv"
"strings"
"unsafe"
)
func main() {
fmt.Println(runtime.Version(), runtime.GOOS, runtime.GOARCH)
// Inspect a uint32 variable to determine endianness.
x := uint32(0x01020304)
switch *(*byte)(unsafe.Pointer(&x)) {
case 0x01:
fmt.Println("big endian")
case 0x04:
fmt.Println("little endian")
default:
fmt.Println("mixed endian?")
}
// Usually one cares about the size the executible was compiled for
// rather than the actual underlying host's size.
// There are several ways of determining the size of an int/uint.
fmt.Println(" strconv.IntSize =", strconv.IntSize)
// That uses the following definition we can also be done by hand
intSize := 32 << uint(^uint(0)>>63)
fmt.Println("32 << uint(^uint(0)>>63) =", intSize)
// With Go 1.0, 64-bit architectures had 32-bit int and 64-bit
// uintptr. This was changed in Go 1.1. In general it would
// still be possible that int and uintptr (the type large enough
// to hold the bit pattern of any pointer) are of different sizes.
const bitsPerByte = 8
fmt.Println(" sizeof(int) in bits:", unsafe.Sizeof(int(0))*bitsPerByte)
fmt.Println(" sizeof(uintptr) in bits:", unsafe.Sizeof(uintptr(0))*bitsPerByte)
// If we really want to know the architecture size the executable was
// compiled for and not the size of int it safest to take the max of those.
archSize := unsafe.Sizeof(int(0))
if psize := unsafe.Sizeof(uintptr(0)); psize > archSize {
archSize = psize
}
fmt.Println(" compiled with word size:", archSize*bitsPerByte)
// There are some *very* unportable ways to attempt to get the actual
// underlying hosts' word size.
// Inspect cpuinfo to determine word size (some unix-like OS' only).
c, err := ioutil.ReadFile("/proc/cpuinfo")
if err != nil {
fmt.Println(err)
return
}
ls := strings.Split(string(c), "\n")
for _, l := range ls {
if strings.HasPrefix(l, "flags") {
for _, f := range strings.Fields(l) {
if f == "lm" { // "long mode"
fmt.Println("64 bit word size")
return
}
}
fmt.Println("32 bit word size")
return
}
}
}
{{out}}
go1.3.1 freebsd amd64
little endian
strconv.IntSize = 64
32 << uint(^uint(0)>>63) = 64
sizeof(int) in bits: 64
sizeof(uintptr) in bits: 64
compiled with word size: 64
open /proc/cpuinfo: no such file or directory
go1.3.1 freebsd 386
little endian
strconv.IntSize = 32
32 << uint(^uint(0)>>63) = 32
sizeof(int) in bits: 32
sizeof(uintptr) in bits: 32
compiled with word size: 32
open /proc/cpuinfo: no such file or directory
go1.3.1 nacl amd64p32
little endian
strconv.IntSize = 32
32 << uint(^uint(0)>>63) = 32
sizeof(int) in bits: 32
sizeof(uintptr) in bits: 32
compiled with word size: 32
open /proc/cpuinfo: No such file or directory
Alternative technique:
package main
import (
"debug/elf"
"fmt"
"os"
)
func main() {
f, err := elf.Open(os.Args[0])
if err != nil {
fmt.Println(" ", err)
return
}
fmt.Println(f.FileHeader.ByteOrder)
f.Close()
}
{{out}}
LittleEndian
Groovy
Solution follows [[Java]]:
println "word size: ${System.getProperty('sun.arch.data.model')}"
println "endianness: ${System.getProperty('sun.cpu.endian')}"
{{out}}
word size: 64
endianness: little
Haskell
import Data.Bits
import ADNS.Endian -- http://hackage.haskell.org/package/hsdns
main = do
putStrLn $ "Word size: " ++ bitsize
putStrLn $ "Endianness: " ++ show endian
where
bitsize = show $ bitSize (undefined :: Int)
=={{header|Icon}} and {{header|Unicon}}==
procedure main()
write(if 0 = ishift(1,-1) then "little" else "big"," endian")
if match("flags",line := !open("/proc/cpuinfo")) then # Unix-like only
write(if find(" lm ",line) then 64 else 32," bits per word")
else write("Cannot determine word size.")
end
Sample run:
->hi
little endian
64 bits per word
->
J
IF64 {32 64
64
This returns 32
in 32 bit J.
Note that this mechanism is testing the interpreter, and not the OS or Hardware. (Though, of course, you cannot run a 64 bit interpreter on a machine that does not support it.)
That said, this does not deal with endianness. For the most part, J programs do not need to know their own endianness. When converting to and from binary format you can specify "native", "little endian" and "big endian", and it's rare that you have an interface which would need anything else. That said, you can inspect the binary representation of a simple constant:
":&> (|: 32 64 ;"0 big`little) {"_1~ 2 2 #: 16b_e0 + a. i. 0 { 3!:1 ''
64
little
Java
Java conceals the byte order of its integers, but reports the native byte order through java.nio.ByteOrder.nativeOrder().
{{works with|Java|1.4}}
import java.nio.ByteOrder;
public class ShowByteOrder {
public static void main(String[] args) {
// Print "BIG_ENDIAN" or "LITTLE_ENDIAN".
System.out.println(ByteOrder.nativeOrder());
}
}
Some JVMs also have system properties for the word size and byte order.
System.out.println("word size: "+System.getProperty("sun.arch.data.model"));
System.out.println("endianness: "+System.getProperty("sun.cpu.endian"));
Julia
Julia
creates ENDIAN_BOM
a 32 bit unsigned integer out of an array of 4 8 bit unsigned integers to serve as an endianness marker.
print("This host's word size is ", WORD_SIZE, ".")
if ENDIAN_BOM == 0x04030201
println("And it is a little-endian machine.")
elseif ENDIAN_BOM == 0x01020304
println("And it is a big-endian machine.")
else
println("ENDIAN_BOM = ", ENDIAN_BOM, ", which is confusing")
end
{{out}}
This host's word size is 64.And it is a little-endian machine.
Kotlin
The following is not guaranteed to work on all JVMs but is working fine on my x64 Windows 10 machine:
// version 1.0.6
fun main(args: Array<String>) {
println("Word size : ${System.getProperty("sun.arch.data.model")} bits")
println("Endianness: ${System.getProperty("sun.cpu.endian")}-endian")
}
{{out}}
Word size : 64 bits
Endianness: little-endian
M2000 Interpreter
Module CheckIt {
\\ Always run in Little-endian, 32 bits (in Wow64 in 64 bit os)
Module EndiannessAndSize {
Buffer Check as Long
Return Check, 0:=1
if eval(Check, 0 as byte)=1 then {
Print "Little-endian"
}
\\ 4 bytes
Print "Word size:"; Len(Check)*8;" bits"
}
EndiannessAndSize
\\ Access to internal com object clsOsInfo
Declare OsInfo Information
Print Type$(OsInfo) ="clsOSInfo"
\\ Build is a read only property
With OsInfo, "Build" as Build, "OSName" as OSName$, "IsElevated" as IsElevated
Print OsName$
Print "Build=";Build
\\ IsWow64 is a function
Method OsInfo, "IsWow64" as IsWow64
If IsWow64 Then {
Print "64 bit Os"
} Else {
Print "32 bit OS"
}
Print "IsElevated:";IsElevated
}
Checkit
=={{header|Mathematica}} / {{header|Wolfram Language}}==
If[$ByteOrdering > 0, Print["Big endian"], Print["Little endian" ]]
$SystemWordLength "bits"
{{out}} x86
Little endian
32 bits
=={{header|MATLAB}} / {{header|Octave}}==
The concept of "word size" is not meaningful in Matlab and Octave, uint64 is also available on 32bit-platforms, and there are no pointers. Endianity can be tested with the function below:
function [endian]=endian()
fid=tmpfile();
fwrite(fid,1:8,'uint8');
fseek(fid,0,'bof');
t=fread(fid,8,'int8');
i8=sprintf('%02X',t);
fseek(fid,0,'bof');
t=fread(fid,4,'int16');
i16=sprintf('%04X',t);
fclose(fid);
if strcmp(i8,i16) endian='big';
else endian='little';
end;
{{out}}
octave:128> computer
x86_64-unknown-linux-gnu
octave:129> endian
endian = little
=={{header|Modula-3}}==
MODULE Host EXPORTS Main;
IMPORT IO, Fmt, Word, Swap;
BEGIN
IO.Put("Word Size: " & Fmt.Int(Word.Size) & "\n");
IF Swap.endian = Swap.Endian.Big THEN
IO.Put("Endianness: Big\n");
ELSE
IO.Put("Endianness: Little\n");
END;
END Host.
{{out}} (on an x86):
Word Size: 32
Endianness: Little
Neko
NekoVM can include shared library functions that adhere to an API of passing Neko values and library file naming. A small C helper is included here to get at the Host wordsize. NekoVM link library search path (.ndll files), includes looking in current directory. The endianess test is a BUILTIN (accessible with leading $ identifier).
C support file, host-introspection.c
/* Return wordsize to Neko */
/* From Rosetta Code, C entry, with Neko marshalling */
#include <stdio.h>
#include <stddef.h> /* for size_t */
#include <limits.h> /* for CHAR_BIT */
#include <neko.h>
value wordsize(void) {
/*
* Best bet: size_t typically is exactly one word.
*/
return alloc_int((int)(CHAR_BIT * sizeof(size_t)));
}
/* Expose symbol to Neko loader */
DEFINE_PRIM(wordsize, 0);
Neko caller, host-introspection.neko
/**
Host introspection, in Neko
*/
/* higher order byte first? Intel being little ended. */
$print("isbigendian: ", $isbigendian(), "\n")
/*
Getting at word size is a little more difficult in Neko source.
Neko is a fixed bit-width VM, Int is 31 bits, 30 signed, etc.
There is no builtin native sizeof, but a few lines of
C data marshalling wrapper, a small change to tectonics, and...
*/
var wordsize = $loader.loadprim("native@wordsize", 0)
$print("wordsize: ", wordsize(), " bits\n")
{{out}}
prompt$ gcc -shared -fPIC host-introspection.c -o native.ndll
prompt$ nekoc host-introspection.neko
prompt$ neko host-introspection.n
isbigendian: false
wordsize: 64 bits
NetRexx
{{trans|Java}} NetRexx can access this information from the [[Java]] virtual machine in the same way as the [[#Java|Java]] sample above.
/* NetRexx */
options replace format comments java crossref savelog symbols nobinary
wordSize = System.getProperty('sun.arch.data.model')
endian = System.getProperty('sun.cpu.endian')
say ' word size:' wordSize
say 'endianness:' endian
Nim
import math
echo cpuEndian
echo round(log2(float(int.high))) + 1
=={{header|Objective-C}}== Endianness:
switch (NSHostByteOrder()) {
case NS_BigEndian:
NSLog(@"%@", @"Big Endian");
break;
case NS_LittleEndian:
NSLog(@"%@", @"Little Endian");
break;
case NS_UnknownByteOrder:
NSLog(@"%@", @"endianness unknown");
break;
}
Architecture: (works on Mac OS X 10.6+)
switch ([NSRunningApplication currentApplication].executableArchitecture) {
case NSBundleExecutableArchitectureI386:
NSLog(@"%@", @"i386 32-bit");
break;
case NSBundleExecutableArchitectureX86_64:
NSLog(@"%@", @"x86_64 64-bit");
break;
case NSBundleExecutableArchitecturePPC:
NSLog(@"%@", @"PPC 32-bit");
break;
case NSBundleExecutableArchitecturePPC64:
NSLog(@"%@", @"PPC64 64-bit");
break;
default:
NSLog(@"%@", @"Unknown");
break;
}
OCaml
Printf.printf "%d\n" Sys.word_size; (* Print word size *)
Printf.printf "%s\n" Sys.os_type; (* Print operating system *)
{{works with|OCaml|4.00+}}
(* Print endianness *)
Printf.printf "%s\n" (if Sys.big_endian then "big endian" else "little endian");
On OCaml 3 and below, there are tricks to get endianness. For example in Linux or Unix variants, one may use the [http://unixhelp.ed.ac.uk/CGI/man-cgi?uname uname] shell command :
let uname arg =
let arg = if arg = "" then "-" else arg in
let ic = Unix.open_process_in ("uname -" ^ arg) in
(input_line ic)
;;
# uname "sm";;
- : string = "Linux i686"
In most cases, endianness can be infered from informations given by uname.
One may also read files in the /proc directory in order to get informations about the host, only under linux :
(* Reading all the lines from a file.
If the loop is implemented by a recursive auxiliary function, the try...with breaks
tail recursion if not written carefully *)
let lines name =
let f = open_in name
and r = ref []
in
(try
while true do
r := (input_line f)::!r
done
with End_of_file -> close_in f);
(List.rev !r)
;;
# lines "/proc/meminfo";;
- : string list =
["MemTotal: 2075240 kB"; "MemFree: 469964 kB";
"Buffers: 34512 kB"; "Cached: 1296380 kB";
"SwapCached: 96 kB"; "Active: 317484 kB";
"Inactive: 1233500 kB"; "HighTotal: 1178432 kB";
"HighFree: 45508 kB"; "LowTotal: 896808 kB";
"LowFree: 424456 kB"; "SwapTotal: 2650684 kB";
"SwapFree: 2650588 kB"; "Dirty: 228 kB";
"Writeback: 0 kB"; "AnonPages: 220036 kB";
"Mapped: 67160 kB"; "Slab: 41540 kB";
"SReclaimable: 34872 kB"; "SUnreclaim: 6668 kB";
"PageTables: 1880 kB"; "NFS_Unstable: 0 kB";
"Bounce: 0 kB"; "WritebackTmp: 0 kB";
"CommitLimit: 3688304 kB"; "Committed_AS: 549912 kB";
"VmallocTotal: 114680 kB"; "VmallocUsed: 5172 kB";
"VmallocChunk: 109320 kB"; "HugePages_Total: 0";
"HugePages_Free: 0"; "HugePages_Rsvd: 0";
"HugePages_Surp: 0"; "Hugepagesize: 4096 kB"]
Same methods can be used to get the results of commands lshw, dmidecode...
Pascal
program HostIntrospection(output);
begin
writeln('Pointer size: ', SizeOf(Pointer), ' byte, i.e. ', SizeOf(Pointer)*8, ' bit.');
{ NtoBE converts from native endianess to big endianess }
if 23453 = NtoBE(23453) then
writeln('This host is big endian.')
else
writeln('This host is little endian.');
end.
{{out}}
>: ./HostIntrospection
Pointer size: 4 byte, i.e. 32 bit.
This host is little endian.
Perl
Most basic example:
use Config;
print "UV size: $Config{uvsize}, byte order: $Config{byteorder}\n";
{{out}}
UV size: 4, byte order: 1234
More verbose example:
use 5.010;
use Config;
my ($size, $order, $end) = @Config{qw(uvsize byteorder)};
given ($order) {
when (join '', sort split '') { $end = 'little' }
when (join '', reverse sort split '') { $end = 'big' }
default { $end = 'mixed' }
}
say "UV size: $size, byte order: $order ($end-endian)";
{{out}}
UV size: 4, byte order: 1234 (little-endian)
UV size: 4, byte order: 3412 (mixed-endian)
UV size: 8, byte order: 87654321 (big-endian)
Perl 6
Endian detection translated from C. {{works with|Rakudo|2018.03}}
use NativeCall;
say $*VM.config<ptr_size>;
my $bytes = nativecast(CArray[uint8], CArray[uint16].new(1));
say $bytes[0] ?? "little-endian" !! "big-endian";
{{out}}
8
little-endian
Note: Rakudo 2018.12 is introducing the endian-sensitiveread-int16
method,
which makes endian detection a little easier:
say blob8.new(1,0).read-int16(0) == 1 ?? "little-endian" !! "big-endian"
Phix
Note that machine_word() and machine_bits() test the interpreter or compiled executable, rather than the OS or hardware.
Also, all known implementations of Phix are currently little-endian. See also platform(), which yields WINDOWS or LINUX.
function endianness()
atom m4 = allocate(4)
poke4(m4,#01020304)
integer b1 = peek1s(m4)
free(m4)
if b1=#01 then
return "big-endian"
elsif b1=#04 then
return "little-endian"
else
return "???"
end if
end function
printf(1,"Endianness: %s\n",{endianness()})
printf(1,"Word size: %d bytes/%d bits\n",{machine_word(),machine_bits()})
{{out}}
Endianness: little-endian
Word size: 4 bytes/32 bits
or
Endianness: little-endian
Word size: 8 bytes/64 bits
PicoLisp
We inspect the ELF header of the executable file (the 'cmd' function returns the path to the command that invoked the interpreter). Note that this (like most other contributions to this task) only tells how the binary was compiled/assembled/linked, not necessarily the nature of the underlying system.
(in (cmd) # Inspect ELF header
(rd 4) # Skip "7F" and 'E', 'L' and 'F'
(prinl
(case (rd 1) # Get EI_CLASS byte
(1 "32 bits")
(2 "64 bits")
(T "Bad EI_CLASS") ) )
(prinl
(case (rd 1) # Get EI_DATA byte
(1 "Little endian")
(2 "Big endian")
(T "Bad EI_DATA") ) ) )
{{out}}
64 bits
Little endian
PL/I
details: procedure options (main); /* 6 July 2012 */
declare x float, i fixed binary initial (1);
put skip list ('word size=', length(unspec(x)));
if unspec(i) = '0000000000000001'b then
put skip list ('Big endian');
else
put skip list ('Little endian');
end details;
{{out}}
word size= 32
Little endian
PowerShell
Write-Host Word Size: ((Get-WMIObject Win32_Processor).DataWidth)
Write-Host -NoNewLine "Endianness: "
if ([BitConverter]::IsLittleEndian) {
Write-Host Little-Endian
} else {
Write-Host Big-Endian
}
Note that endianness is essentially a moot point with PowerShell, as there is only a Windows implementation currently and current Windows versions don't run on big-endian systems. But in theory this check should work.
PureBasic
Enumeration
#LittleEndian
#BigEndian
EndEnumeration
ProcedureDLL EndianTest()
Protected Endian = #LittleEndian
Protected dummy.l= 'ABCD'
If "A"=Chr(PeekA(@dummy))
Endian=#BigEndian
EndIf
ProcedureReturn Endian
EndProcedure
;- *** Start of test code
If OpenConsole()
PrintN("Your word size is "+Str(SizeOf(Integer)) +" bytes,")
Select EndianTest()
Case #LittleEndian
PrintN("and you use Little Endian.")
Default
PrintN("and you use Big Endian.")
EndSelect
EndIf
Python
import platform, sys, socket
>>> platform.architecture()
('64bit', 'ELF')
>>> platform.machine()
'x86_64'
>>> platform.node()
'yourhostname'
>>> platform.system()
'Linux'
>>> sys.byteorder
little
>>> socket.gethostname()
'yourhostname'
>>>
R
Word size
8 * .Machine$sizeof.long # e.g. 32
Endianness
.Platform$endian # e.g. "little"
Racket
#lang racket/base
(printf "Word size: ~a\n" (system-type 'word))
(printf "Endianness: ~a\n" (if (system-big-endian?) 'big 'little))
Retro
These introspections are possible through the standard '''variations''' library.
Word Size
needs variations'
^variations'size
Returns the number of bits per cell. This is normally 32, though may be smaller or larger on embedded systems and under special cases.
Endianness
needs variations'
^variations'endian
Returns 0 for little endian, and 1 for big endian.
REXX
Since all variables in the REXX language are stored as characters, the wordsize is immaterial (REXX supports variable precision for numbers).
This also applies to the "endianness" of words or how they are stored.
The REXX language was designed for scripting and interfacing with the operating system.
However, there is a STORAGE built-in function that allows a program to look at (local) storage, and if there is an
indicator stored anywhere in the virtual address space, it can be examined.
/*REXX program to examine which operating system that REXX is running under. */
parse source opSys howInvoked pathName
/*where opSys will indicate which operating system REXX is running under, and */
/*from that, one could make assumptions what the wordsize is, etc. */
Ruby
# We assume that a Fixnum occupies one machine word.
# Fixnum#size returns bytes (1 byte = 8 bits).
word_size = 42.size * 8
puts "Word size: #{word_size} bits"
# Array#pack knows the native byte order. We pack 1 as a 16-bit integer,
# then unpack bytes: [0, 1] is big endian, [1, 0] is little endian.
bytes = [1].pack('S').unpack('C*')
byte_order = (bytes[0] == 0 ? 'big' : 'little') + ' endian'
puts "Byte order: #{byte_order}"
With [[MRI]], ri Fixnum
states, "A Fixnum holds Integer values that can be represented in a native machine word (minus 1 bit)." This bases our claim that a Fixnum occupies one machine word.
Some other implementations of Ruby are different. With [[JRuby]], a Fixnum is always 64 bits, because it is a Java long
[http://www.jruby.org/git?p=jruby.git;a=blob;f=src/org/jruby/RubyFixnum.java;h=ba8d076d58d28c30ecd8e378e6e2482486dba22d;hb=HEAD#l91 (1)]. JRuby uses the correct native byte order by calling java.nio.ByteOrder.nativeOrder() [http://www.jruby.org/git?p=jruby.git;a=blob;f=src/org/jruby/platform/Platform.java;h=d84b0b55b1aca381b2101297185d3b7f872c8cfd;hb=HEAD#l110 (2)].
Rust
#[derive(Copy, Clone, Debug)]
enum Endianness {
Big, Little,
}
impl Endianness {
fn target() -> Self {
#[cfg(target_endian = "big")]
{
Endianness::Big
}
#[cfg(not(target_endian = "big"))]
{
Endianness::Little
}
}
}
fn main() {
println!("Word size: {} bytes", std::mem::size_of::<usize>());
println!("Endianness: {:?}", Endianness::target());
}
{{out}}
Word size: 8 bytes
Endianness: Little
Scala
{{libheader|Scala}}
import java.nio.ByteOrder
object ShowByteOrder extends App {
println(ByteOrder.nativeOrder())
println(s"Word size: ${System.getProperty("sun.arch.data.model")}")
println(s"Endianness: ${System.getProperty("sun.cpu.endian")}")
}
Scheme
{{works with|Chicken Scheme}}
(define host-info
(begin
(display "Endianness: ")
(display (machine-byte-order))
(newline)
(display "Word Size: ")
(display (if (fixnum? (expt 2 33)) 64 32))
(newline)))
{{out}} Endianness: little-endian Word Size: 32
Seed7
The library [http://seed7.sourceforge.net/libraries/cc_conf.htm cc_conf.s7i] provides values that describe C compiler and runtime library. The example below assumes that the word size is the size of a pointer.
$ include "seed7_05.s7i";
include "cc_conf.s7i";
const proc: main is func
begin
writeln("Word size: " <& ccConf.POINTER_SIZE);
write("Endianness: ");
if ccConf.LITTLE_ENDIAN_INTTYPE then
writeln("Little endian");
else
writeln("Big endian");
end if;
end func;
{{out}}
Word size: 64
Endianness: Little endian
Slate
inform: 'Endianness: ' ; Platform current endianness.
inform: 'Word Size: ' ; (Platform current bytesPerWord * 8) printString.
{{out}}
Endianness: LittleEndian
Word Size: 32
Tcl
This is very straightforward in Tcl. The global array tcl_platform
contains these values. In an interactive tclsh
:
% parray tcl_platform
tcl_platform(byteOrder) = littleEndian
tcl_platform(machine) = intel
tcl_platform(os) = Windows NT
tcl_platform(osVersion) = 5.1
tcl_platform(platform) = windows
tcl_platform(pointerSize) = 4
tcl_platform(threaded) = 1
tcl_platform(user) = glennj
tcl_platform(wordSize) = 4
=={{header|TI-89 BASIC}}==
Disp "32-bit big-endian"
TXR
Interactive session:
Which word? Pointer size or size of int
? Let's get both:
This is the TXR Lisp interactive listener of TXR 177.
Use the :quit command or type Ctrl-D on empty line to exit.
1> (sizeof (ptr char))
8
2> (sizeof int)
4
Endianness: what we can do is put the integer 1 into a buffer as a uint32
, the 32 bit unsigned integer type in the local representation. We then retrieve it as a le-uint32
: little-endian uint32
:
3> (ffi-put 1 (ffi uint32))
#b'01000000'
4> (ffi-get *3 (ffi le-uint32))
1
The extracted value 1 matches, so the machine must be little endian. Here is a transcript from a big-endian PPC64 machine:
1> (ffi-put 1 (ffi uint32))
#b'00000001'
2> (ffi-get *1 (ffi le-uint32))
16777216
No match, so big endian.
XPL0
This is the result when running the 32-bit version of the language on Intel 386 (and later) processors. Other versions give 2 bytes per word, and the Motorola 68000 version would give 4 bytes per word and Big endian.
include c:\cxpl\codes; \intrinsic 'code' declarations
int A, B;
char C;
[IntOut(0, @B-@A); CrLf(0); \word size = integer size
A:= $1234;
C:= @A;
Text(0, if C(0)=$34 then "Little" else "Big");
Text(0, " endian
");
]
{{out}}
4
Little endian