⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{draft task}}
An IQ Puzzle is a triangle of 15 golf tee's.
This puzzle is typically seen at Cracker Barrel (a USA sales store) where one tee is missing and the remaining tees jump over each other (with removal of the jumped tee, like checkers) until one tee is left.
The fewer tees left, the higher the IQ score.
Peg #1 is the top centre through to the bottom row which are pegs 11 through to 15.
^
/ \
/ \
/ \
/ 1 \
/ 2 3 \
/ 4 5 6 \
/ 7 8 9 10 \
/11 12 13 14 15\
/_________________\
Reference picture: http://www.joenord.com/puzzles/peggame/
;Task: Print a solution to solve the puzzle leaving one peg not implemented variations.
Start with empty peg in '''X''' and solve with one peg in position '''Y'''.
D
{{trans|Ruby}}
import std.stdio, std.array, std.string, std.range, std.algorithm;
immutable N = [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1];
immutable G = [[0,1,3],[0,2,5],[1,3,6],[1,4,8],[2,4,7],[2,5,9],
[3,4,5],[3,6,10],[3,7,12],[4,7,11],[4,8,13],[5,8,12],
[5,9,14],[6,7,8],[7,8,9],[10,11,12],[11,12,13],[12,13,14]];
string b2s(in int[] n) pure @safe {
static immutable fmt = 6.iota
.map!(i => " ".replicate(5 - i) ~ "%d ".replicate(i))
.join('\n');
return fmt.format(n[0], n[1], n[2], n[3], n[4], n[5], n[6],
n[7], n[8], n[9], n[10], n[11], n[12], n[13], n[14]);
}
string solve(in int[] n, in int i, in int[] g) pure @safe {
if (i == N.length - 1)
return "\nSolved";
if (n[g[1]] == 0)
return null;
string s;
if (n[g[0]] == 0) {
if (n[g[2]] == 0)
return null;
s = "\n%d to %d\n".format(g[2], g[0]);
} else {
if (n[g[2]] == 1)
return null;
s = "\n%d to %d\n".format(g[0], g[2]);
}
auto a = n.dup;
foreach (const gi; g)
a[gi] = 1 - a[gi];
string l;
foreach (const gi; G) {
l = solve(a, i + 1, gi);
if (!l.empty)
break;
}
return l.empty ? l : (s ~ b2s(a) ~ l);
}
void main() @safe {
b2s(N).write;
string l;
foreach (const g; G) {
l = solve(N, 1, g);
if (!l.empty)
break;
}
writeln(l.empty ? "No solution found." : l);
}
{{out}}
0
1 1
1 1 1
1 1 1 1
1 1 1 1 1
3 to 0
1
0 1
0 1 1
1 1 1 1
1 1 1 1 1
8 to 1
1
1 1
0 0 1
1 1 0 1
1 1 1 1 1
10 to 3
1
1 1
1 0 1
0 1 0 1
0 1 1 1 1
1 to 6
1
0 1
0 0 1
1 1 0 1
0 1 1 1 1
11 to 4
1
0 1
0 1 1
1 0 0 1
0 0 1 1 1
2 to 7
1
0 0
0 0 1
1 1 0 1
0 0 1 1 1
9 to 2
1
0 1
0 0 0
1 1 0 0
0 0 1 1 1
0 to 5
0
0 0
0 0 1
1 1 0 0
0 0 1 1 1
6 to 8
0
0 0
0 0 1
0 0 1 0
0 0 1 1 1
13 to 11
0
0 0
0 0 1
0 0 1 0
0 1 0 0 1
5 to 12
0
0 0
0 0 0
0 0 0 0
0 1 1 0 1
11 to 13
0
0 0
0 0 0
0 0 0 0
0 0 0 1 1
14 to 12
0
0 0
0 0 0
0 0 0 0
0 0 1 0 0
Solved
Elixir
Inspired by Ruby
defmodule IQ_Puzzle do
def task(i \\ 0, n \\ 5) do
fmt = Enum.map_join(1..n, fn i ->
String.duplicate(" ", n-i) <> String.duplicate("~w ", i) <> "~n"
end)
pegs = Tuple.duplicate(1, div(n*(n+1),2)) |> put_elem(i, 0)
rest = tuple_size(pegs) - 1
next = next_list(n)
:io.format fmt, Tuple.to_list(pegs)
result = Enum.find_value(next, fn nxt -> solve(pegs, rest, nxt, next, fmt) end)
IO.puts if result, do: result, else: "No solution found"
end
defp solve(_,1,_,_,_), do: "Solved"
defp solve(pegs,rest,{g0,g1,g2},next,fmt) do
if s = jump(pegs, g0, g1, g2) do
peg2 = Enum.reduce([g0,g1,g2], pegs, fn g,acc ->
put_elem(acc, g, 1-elem(acc, g))
end)
result = Enum.find_value(next, fn g -> solve(peg2, rest-1, g, next, fmt) end)
if result do
[(:io_lib.format "~n~s~n", [s]), (:io_lib.format fmt, Tuple.to_list(peg2)) | result]
end
end
end
defp jump(pegs, _0, g1, _2) when elem(pegs,g1)==0, do: nil
defp jump(pegs, g0, _1, g2) when elem(pegs,g0)==0, do: if elem(pegs, g2)==1, do: "#{g2} to #{g0}"
defp jump(pegs, g0, _1, g2) , do: if elem(pegs, g2)==0, do: "#{g0} to #{g2}"
defp next_list(n) do
points = for x <- 1..n, y <- 1..x, do: {x,y}
board = points |> Enum.with_index |> Enum.into(Map.new)
Enum.flat_map(points, fn {x,y} ->
[ {board[{x,y}], board[{x, y+1}], board[{x, y+2}]},
{board[{x,y}], board[{x+1,y }], board[{x+2,y }]},
{board[{x,y}], board[{x+1,y+1}], board[{x+2,y+2}]} ]
end)
|> Enum.filter(fn {_,_,p} -> p end)
end
end
IQ_Puzzle.task
{{out}}
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 to 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 8 to 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 10 to 3 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 to 6 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 11 to 4 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 2 to 7 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 9 to 2 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 to 5 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 6 to 8 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 13 to 11 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 5 to 12 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 11 to 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 14 to 12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Solved ``` ## Go {{trans|Kotlin}} ```go package main import "fmt" type solution struct{ peg, over, land int } type move struct{ from, to int } var emptyStart = 1 var board [16]bool var jumpMoves = [16][]move{ {}, {{2, 4}, {3, 6}}, {{4, 7}, {5, 9}}, {{5, 8}, {6, 10}}, {{2, 1}, {5, 6}, {7, 11}, {8, 13}}, {{8, 12}, {9, 14}}, {{3, 1}, {5, 4}, {9, 13}, {10, 15}}, {{4, 2}, {8, 9}}, {{5, 3}, {9, 10}}, {{5, 2}, {8, 7}}, {{9, 8}}, {{12, 13}}, {{8, 5}, {13, 14}}, {{8, 4}, {9, 6}, {12, 11}, {14, 15}}, {{9, 5}, {13, 12}}, {{10, 6}, {14, 13}}, } var solutions []solution func initBoard() { for i := 1; i < 16; i++ { board[i] = true } board[emptyStart] = false } func (sol solution) split() (int, int, int) { return sol.peg, sol.over, sol.land } func (mv move) split() (int, int) { return mv.from, mv.to } func drawBoard() { var pegs [16]byte for i := 1; i < 16; i++ { if board[i] { pegs[i] = fmt.Sprintf("%X", i)[0] } else { pegs[i] = '-' } } fmt.Printf(" %c\n", pegs[1]) fmt.Printf(" %c %c\n", pegs[2], pegs[3]) fmt.Printf(" %c %c %c\n", pegs[4], pegs[5], pegs[6]) fmt.Printf(" %c %c %c %c\n", pegs[7], pegs[8], pegs[9], pegs[10]) fmt.Printf(" %c %c %c %c %c\n", pegs[11], pegs[12], pegs[13], pegs[14], pegs[15]) } func solved() bool { count := 0 for _, b := range board { if b { count++ } } return count == 1 // just one peg left } func solve() { if solved() { return } for peg := 1; peg < 16; peg++ { if board[peg] { for _, mv := range jumpMoves[peg] { over, land := mv.split() if board[over] && !board[land] { saveBoard := board board[peg] = false board[over] = false board[land] = true solutions = append(solutions, solution{peg, over, land}) solve() if solved() { return // otherwise back-track } board = saveBoard solutions = solutions[:len(solutions)-1] } } } } } func main() { initBoard() solve() initBoard() drawBoard() fmt.Printf("Starting with peg %X removed\n\n", emptyStart) for _, solution := range solutions { peg, over, land := solution.split() board[peg] = false board[over] = false board[land] = true drawBoard() fmt.Printf("Peg %X jumped over %X to land on %X\n\n", peg, over, land) } } ``` {{out}} ```txt Same as Kotlin entry ``` ## J ```J NB. This is a direct translation of the python program, NB. except for the display which by move is horizontal. PEGS =: >:i.15 move =: 4 : 0 NB. move should have been factored in the 2014-NOV-29 python version board =. x 'peg over land' =. y board =. board RemovePeg peg board =. board RemovePeg over board =. board AddPeg land ) NB.# Draw board triangle in ascii NB.# NB.def DrawBoard(board): NB. peg = [0,]*16 NB. for n in xrange(1,16): NB. peg[n] = '.' NB. if n in board: NB. peg[n] = "%X" % n NB. print " %s" % peg[1] NB. print " %s %s" % (peg[2],peg[3]) NB. print " %s %s %s" % (peg[4],peg[5],peg[6]) NB. print " %s %s %s %s" % (peg[7],peg[8],peg[9],peg[10]) NB. print " %s %s %s %s %s" % (peg[11],peg[12],peg[13],peg[14],peg[15]) HEXCHARS =: Num_j_ , Alpha_j_ DrawBoard =: 3 : 0 NB. observe 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 -: 2#.inv 26896 (== 6910 in base 16) board =. y < (-i._5) (|."0 1) 1j1 (#"1) (2#.inv 16b6910)[;.1 }. (board { HEXCHARS) board } 16 # '.' ) NB.# remove peg n from board NB.def RemovePeg(board,n): NB. board.remove(n) NB. return board RemovePeg =: i. ({. , (}.~ >:)~) [ NB.# Add peg n on board NB.def AddPeg(board,n): NB. board.append(n) NB. return board AddPeg =: , NB.# return true if peg N is on board else false is empty position NB.def IsPeg(board,n): NB. return n in board IsPeg =: e.~ NB.# A dictionary of valid jump moves index by jumping peg NB.# then a list of moves where move has jumpOver and LandAt positions NB.JumpMoves = { 1: [ (2,4),(3,6) ], # 1 can jump over 2 to land on 4, or jumper over 3 to land on 6 NB. 2: [ (4,7),(5,9) ], NB. 3: [ (5,8),(6,10) ], NB. ... NB. 14: [ (9,5),(13,12) ], NB. 15: [ (10,6),(14,13) ] NB. } JumpMoves =: a:,(<@:([\~ _2:)@:".;._2) 0 :0 NB. 1 can jump over 2 to land on 4, or jump over 3 to land on 6 (2,4),(3,6) (4,7),(5,9) (5,8),(6,10) (2,1),(5,6),(7,11),(8,13) (8,12),(9,14) (3,1),(5,4),(9,13),(10,15) (4,2),(8,9) (5,3),(9,10) (5,2),(8,7) (9,8) (12,13) (8,5),(13,14) (8,4),(9,6),(12,11),(14,15) (9,5),(13,12) (10,6),(14,13) ) NB.Solution = [] NB.# NB.# Recursively solve the problem NB.# NB.def Solve(board): NB. #DrawBoard(board) NB. if len(board) == 1: NB. return board # Solved one peg left NB. # try a move for each peg on the board NB. for peg in xrange(1,16): # try in numeric order not board order NB. if IsPeg(board,peg): NB. movelist = JumpMoves[peg] NB. for over,land in movelist: NB. if IsPeg(board,over) and not IsPeg(board,land): NB. saveboard = board[:] # for back tracking NB. board = RemovePeg(board,peg) NB. board = RemovePeg(board,over) NB. board = AddPeg(board,land) # board order changes! NB. Solution.append((peg,over,land)) NB. board = Solve(board) NB. if len(board) == 1: NB. return board NB. ## undo move and back track when stuck! NB. board = saveboard[:] # back track NB. del Solution[-1] # remove last move NB. return board Solution =: 0 3 $ 0 Solve =: 3 : 0 board =. y if. 1 = # board do. return. end. for_peg. PEGS do. if. board IsPeg peg do. movelist =: peg {:: JumpMoves for_OL. movelist do. 'over land' =. OL if. (board IsPeg over) (*. -.) (board IsPeg land) do. saveboard =. board NB. for back tracking board =. board move peg,over,land Solution =: Solution , peg, over, land board =. Solve board if. 1 = # board do. return. end. board =. saveboard Solution =: }: Solution end. end. end. end. board ) NB.# NB.# Remove one peg and start solving NB.# NB.def InitSolve(empty): NB. board = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] NB. RemovePeg(board,empty_start) NB. Solve(board) InitSolve =: [: Solve PEGS RemovePeg ] NB.# NB.empty_start = 1 NB.InitSolve(empty_start) InitSolve empty_start =: 1 NB.board = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] NB.RemovePeg(board,empty_start) NB.for peg,over,land in Solution: NB. RemovePeg(board,peg) NB. RemovePeg(board,over) NB. AddPeg(board,land) # board order changes! NB. DrawBoard(board) NB. print "Peg %X jumped over %X to land on %X\n" % (peg,over,land) (3 : 0) PEGS RemovePeg empty_start board =. y horizontal =. DrawBoard board for_POL. Solution do. 'peg over land' =. POL board =. board move POL horizontal =. horizontal , DrawBoard board smoutput 'Peg ',(":peg),' jumped over ',(":over),' to land on ',(":land) end. smoutput horizontal NB. Solution NB. return Solution however Solution is global. ) ``` Example linux session with program in file CrackerBarrel.ijs ```txt ubuntu$ ijconsole CrackerBarrel.ijs Peg 4 jumped over 2 to land on 1 Peg 6 jumped over 5 to land on 4 Peg 1 jumped over 3 to land on 6 Peg 7 jumped over 4 to land on 2 Peg 12 jumped over 8 to land on 5 Peg 14 jumped over 13 to land on 12 Peg 6 jumped over 9 to land on 13 Peg 2 jumped over 5 to land on 9 Peg 12 jumped over 13 to land on 14 Peg 15 jumped over 10 to land on 6 Peg 6 jumped over 9 to land on 13 Peg 14 jumped over 13 to land on 12 Peg 11 jumped over 12 to land on 13 ┌──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┐ │ . │ 1 │ 1 │ . │ . │ . │ . │ . │ . │ . │ . │ . │ . │ . │ │ 2 3 │ . 3 │ . 3 │ . . │ 2 . │ 2 . │ 2 . │ 2 . │ . . │ . . │ . . │ . . │ . . │ . . │ │ 4 5 6 │ . 5 6 │ 4 . . │ 4 . 6 │ . . 6 │ . 5 6 │ . 5 6 │ . 5 . │ . . . │ . . . │ . . 6 │ . . . │ . . . │ . . . │ │ 7 8 9 A │ 7 8 9 A │ 7 8 9 A │ 7 8 9 A │ . 8 9 A │ . . 9 A │ . . 9 A │ . . . A │ . . 9 A │ . . 9 A │ . . 9 . │ . . . . │ . . . . │ . . . . │ │B C D E F │B C D E F │B C D E F │B C D E F │B C D E F │B . D E F │B C . . F │B C D . F │B C D . F │B . . E F │B . . E . │B . D E . │B C . . . │. . D . . │ └──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┘ JVERSION Engine: j701/2011-01-10/11:25 Library: 8.02.12 Platform: Linux 64 Installer: unknown InstallPath: /usr/share/j/8.0.2 exit 0 ubuntu$ ``` ## Julia {{trans|Perl 6}} ```julia moves = [[1, 2, 4], [1, 3, 6], [2, 4, 7], [2, 5, 9], [3, 5, 8], [3, 6, 10], [4, 5, 6], [4, 7, 11], [4, 8, 13], [5, 8, 12], [5, 9, 14], [6, 9, 13], [6, 10, 15], [7, 8, 9], [8, 9, 10], [11, 12, 13], [12, 13, 14], [13, 14, 15]] triangletext(v) = join(map(i -> " "^([6,4,3,1,0][i]) * join(map(x -> rpad(x, 3), v[div(i*i-i+2,2):div(i*(i+1),2)]), ""), 1:5), "\n") const solutiontext = ["Starting board:\n" * triangletext([0; ones(Int, 14)]) * "\n"] function solve(mv, turns=1, bd=[0; ones(Int, 14)]) if turns + 1 == length(bd) return true elseif bd[mv[2]] == 0 || (bd[mv[1]] == 0 && bd[mv[3]] == 0) || (bd[mv[3]] == 1 && bd[mv[1]] == 1) return false else movetext = "\nmove " * (bd[mv[1]] == 0 ? "$(mv[3]) to $(mv[1])" : "$(mv[1]) to $(mv[3])") newboard = deepcopy(bd) map(i -> newboard[i] = 1 - newboard[i], mv) for move in moves if solve(move, turns + 1, newboard) push!(solutiontext, (movetext * "\n" * triangletext(newboard) * "\n")) return true end end end false end for (i, move) in enumerate(moves) if solve(move) println(join([solutiontext[1]; reverse(solutiontext[2:end])], "")) break elseif i == length(moves) println("No solution found.") end end ``` {{out}} ```txt Starting board: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 move 4 to 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 move 9 to 2 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 move 11 to 4 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 move 2 to 7 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 move 12 to 5 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 move 3 to 8 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 move 10 to 3 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 move 1 to 6 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 move 7 to 9 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 move 14 to 12 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 move 6 to 13 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 move 12 to 14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 move 15 to 13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ``` ## Kotlin {{trans|Python}} ```scala // version 1.1.3 data class Solution(val peg: Int, val over: Int, val land: Int) var board = BooleanArray(16) { if (it == 0) false else true } val jumpMoves = listOf( listOf(), listOf( 2 to 4, 3 to 6), listOf( 4 to 7, 5 to 9), listOf( 5 to 8, 6 to 10), listOf( 2 to 1, 5 to 6, 7 to 11, 8 to 13), listOf( 8 to 12, 9 to 14), listOf( 3 to 1, 5 to 4, 9 to 13, 10 to 15), listOf( 4 to 2, 8 to 9), listOf( 5 to 3, 9 to 10), listOf( 5 to 2, 8 to 7), listOf( 9 to 8), listOf(12 to 13), listOf( 8 to 5, 13 to 14), listOf( 8 to 4, 9 to 6, 12 to 11, 14 to 15), listOf( 9 to 5, 13 to 12), listOf(10 to 6, 14 to 13) ) val solutions = mutableListOf() fun drawBoard() { val pegs = CharArray(16) { '-' } for (i in 1..15) if (board[i]) pegs[i] = "%X".format(i)[0] println(" %c".format(pegs[1])) println(" %c %c".format(pegs[2], pegs[3])) println(" %c %c %c".format(pegs[4], pegs[5], pegs[6])) println(" %c %c %c %c".format(pegs[7], pegs[8], pegs[9], pegs[10])) println(" %c %c %c %c %c".format(pegs[11], pegs[12], pegs[13], pegs[14], pegs[15])) } val solved get() = board.count { it } == 1 // just one peg left fun solve() { if (solved) return for (peg in 1..15) { if (board[peg]) { for ((over, land) in jumpMoves[peg]) { if (board[over] && !board[land]) { val saveBoard = board.copyOf() board[peg] = false board[over] = false board[land] = true solutions.add(Solution(peg, over, land)) solve() if (solved) return // otherwise back-track board = saveBoard solutions.removeAt(solutions.lastIndex) } } } } } fun main(args: Array ) { val emptyStart = 1 board[emptyStart] = false solve() board = BooleanArray(16) { if (it == 0) false else true } board[emptyStart] = false drawBoard() println("Starting with peg %X removed\n".format(emptyStart)) for ((peg, over, land) in solutions) { board[peg] = false board[over] = false board[land] = true drawBoard() println("Peg %X jumped over %X to land on %X\n".format(peg, over, land)) } } ``` {{out}} ```txt - 2 3 4 5 6 7 8 9 A B C D E F Starting with peg 1 removed 1 - 3 - 5 6 7 8 9 A B C D E F Peg 4 jumped over 2 to land on 1 1 - 3 4 - - 7 8 9 A B C D E F Peg 6 jumped over 5 to land on 4 - - - 4 - 6 7 8 9 A B C D E F Peg 1 jumped over 3 to land on 6 - 2 - - - 6 - 8 9 A B C D E F Peg 7 jumped over 4 to land on 2 - 2 - - 5 6 - - 9 A B - D E F Peg C jumped over 8 to land on 5 - 2 - - 5 6 - - 9 A B C - - F Peg E jumped over D to land on C - 2 - - 5 - - - - A B C D - F Peg 6 jumped over 9 to land on D - - - - - - - - 9 A B C D - F Peg 2 jumped over 5 to land on 9 - - - - - - - - 9 A B - - E F Peg C jumped over D to land on E - - - - - 6 - - 9 - B - - E - Peg F jumped over A to land on 6 - - - - - - - - - - B - D E - Peg 6 jumped over 9 to land on D - - - - - - - - - - B C - - - Peg E jumped over D to land on C - - - - - - - - - - - - D - - Peg B jumped over C to land on D ``` ## Perl {{trans|Perl 6}} ```perl @start = qw< 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 >; @moves = ( [ 0, 1, 3], [ 0, 2, 5], [ 1, 3, 6], [ 1, 4, 8], [ 2, 4, 7], [ 2, 5, 9], [ 3, 4, 5], [ 3, 6,10], [ 3, 7,12], [ 4, 7,11], [ 4, 8,13], [ 5, 8,12], [ 5, 9,14], [ 6, 7, 8], [ 7, 8, 9], [10,11,12], [11,12,13], [12,13,14] ); $format .= (" " x (5-$_)) . ("%d " x $_) . "\n" for 1..5; sub solve { my ($move, $turns, @board) = @_; $turns = 1 unless $turns; return "\nSolved" if $turns + 1 == @board; return undef if $board[$$move[1]] == 0; my $valid = do { if ($board[$$move[0]] == 0) { return undef if $board[$$move[2]] == 0; "\nmove $$move[2] to $$move[0]\n"; } else { return undef if $board[$$move[2]] == 1; "\nmove $$move[0] to $$move[2]\n"; } }; my $new_result; my @new_layout = @board; @new_layout[$_] = 1 - @new_layout[$_] for @$move; for $this_move (@moves) { $new_result = solve(\@$this_move, $turns + 1, @new_layout); last if $new_result } $new_result ? "$valid\n" . sprintf($format, @new_layout) . $new_result : $new_result} $result = "Starting with\n\n" . sprintf($format, @start), "\n"; for $this_move (@moves) { $result .= solve(\@$this_move, 1, @start); last if $result } print $result ? $result : "No solution found"; ``` {{out}} Starting with 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 move 3 to 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 move 8 to 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 move 10 to 3 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 move 1 to 6 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 move 11 to 4 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 move 2 to 7 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 move 9 to 2 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 move 0 to 5 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 move 6 to 8 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 move 13 to 11 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 move 5 to 12 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 move 11 to 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 move 14 to 12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Solved ``` ## Perl 6 {{works with|Rakudo|2017.05}} {{trans|Sidef}} ```perl6 constant @start = < 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 >».Int; constant @moves = [ 0, 1, 3],[ 0, 2, 5],[ 1, 3, 6], [ 1, 4, 8],[ 2, 4, 7],[ 2, 5, 9], [ 3, 4, 5],[ 3, 6,10],[ 3, 7,12], [ 4, 7,11],[ 4, 8,13],[ 5, 8,12], [ 5, 9,14],[ 6, 7, 8],[ 7, 8, 9], [10,11,12],[11,12,13],[12,13,14]; my $format = (1..5).map: {' ' x 5-$_, "%d " x $_, "\n"}; sub solve(@board, @move) { return " Solved" if @board.sum == 1; return Nil if @board[@move[1]] == 0; my $valid = do given @board[@move[0]] { when 0 { return Nil if @board[@move[2]] == 0; "move {@move[2]} to {@move[0]}\n "; } default { return Nil if @board[@move[2]] == 1; "move {@move[0]} to {@move[2]}\n "; } } my @new-layout = @board; @new-layout[$_] = 1 - @new-layout[$_] for @move; my $result; for @moves -> @this-move { $result = solve(@new-layout, @this-move); last if $result } $result ?? "$valid\n " ~ sprintf($format, |@new-layout) ~ $result !! $result } print "Starting with\n ", sprintf($format, |@start); my $result; for @moves -> @this-move { $result = solve(@start, @this-move); last if $result }; say $result ?? $result !! "No solution found"; ``` {{out}}Starting with 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 move 3 to 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 move 8 to 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 move 10 to 3 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 move 1 to 6 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 move 11 to 4 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 move 2 to 7 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 move 9 to 2 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 move 0 to 5 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 move 6 to 8 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 move 13 to 11 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 move 5 to 12 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 move 11 to 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 move 14 to 12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Solved ``` ## Phix Twee brute-force string-based solution. Backtracks a mere 366 times, whereas starting with the 5th peg missing backtracks 19388 times (all in 0s, obvs). ```Phix -- -- demo\rosetta\IQpuzzle.exw -- constant moves = {-11,-9,2,11,9,-2} function solve(string board, integer left) if left=1 then return "" end if for i=1 to length(board) do if board[i]='1' then for j=1 to length(moves) do integer mj = moves[j], over = i+mj, tgt = i+2*mj if tgt>=1 and tgt<=length(board) and board[tgt]='0' and board[over]='1' then {board[i],board[over],board[tgt]} = "001" string res = solve(board,left-1) if length(res)!=4 then return board&res end if {board[i],board[over],board[tgt]} = "110" end if end for end if end for return "oops" end function sequence start = """ ----0---- ---1-1--- --1-1-1-- -1-1-1-1- 1-1-1-1-1 """ puts(1,substitute(join_by(split(start&solve(start,14),'\n'),5,7),"-"," ")) ``` {{out}} ```txt 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 ``` Adapted to the English game: ```Phix constant moves = {-2,15,2,-15} function solve(string board, integer left) if left=1 then -- return "" -- (leaves it on the edge) if board[3*15+8]='.' then return "" end if return "oops" end if for i=1 to length(board) do if board[i]='.' then for j=1 to length(moves) do integer mj = moves[j], over = i+mj, tgt = i+2*mj if tgt>=1 and tgt<=length(board) and board[tgt]='o' and board[over]='.' then {board[i],board[over],board[tgt]} = "oo." string res = solve(board,left-1) if length(res)!=4 then return board&res end if {board[i],board[over],board[tgt]} = "..o" end if end for end if end for return "oops" end function sequence start = """ -----.-.-.---- -----.-.-.---- -.-.-.-.-.-.-. -.-.-.-o-.-.-. -.-.-.-.-.-.-. -----.-.-.---- -----.-.-.---- """ puts(1,substitute(join_by(split(start&solve(start,32),'\n'),7,8),"-"," ")) ``` {{out}} ```txt . . . . . . . . . o . . . o o . o o . o o . o . . . . . o . . o . o o . o o . o o . o o . o o o . . . . . . . . . . o . . . . o o . . . . . o . . . . . . o . . . . . . . o o . . . o o . o . . . o o . o o . . . . . o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o . . o . o o . o o . o o . o o . o o . o o . o o o . o o o o o o o o . o o . o o . o o . o . o o . o . o o o o o o . o o o o . o . o o o o . o . o o o o o o . o o o o o o . o o o o o o . o o o o o o o o o . . . . . . . . . o . . . . . . o . . . . o o . . . . . o o o . . . . o o . o o . . o o . o . o o o o . o o o o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o o o o o o o o o o o o o o o o o o o o o o o o . o o . o o o o o o o o o o o o o o o o o o o o o o o o . o o o o . o . o o o o o o . o o o o o o . o o o o o o . o o o o o o . o o o o o o . o o o o o o . o o o o . o o o o o o o o o o o o o . o o o o o o . o o o o o o . o o o o o o . o . o o o o . o . o o o o . o . o o . . . . . . . . . o . . . . . . o . . . . o o . . . . . o . o o . . . o . o o o . . o . o o . o o o . . o . o o . . . . . . . . . . . . . . . . . o . . o o . o . . . . . . . . . . . . . . . . . . . . . o . . o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o . o o o o o o . o o o o o o . o o o o o o . o o o o o o . o o o o o o o o o o o o o o o o o o o o o o o o o o o . o o o o o o . o o o o o o . o o o o o o . o o o o o o . o o o o o o o o o o o o o o o o o o o . o o o o . o o . o o o . o o . o o o . . o . o o o o o . . o o o o o o o . o o o o o . . o o o o . o o o o o o o o o o . . o . . o o . o o . o o . o o . o o . o o o o o . . . o o o o o o o o o o o o o o o o o o o o ``` ## Prolog Works with SWI-Prolog and module(lambda). ```Prolog :- use_module(library(lambda)). iq_puzzle :- iq_puzzle(Moves), display(Moves). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute solution % iq_puzzle(Moves) :- play([1], [2,3,4,5,6,7,8,9,10,11,12,13,14,15], [], Moves). play(_, [_], Lst, Moves) :- reverse(Lst, Moves). play(Free, Occupied, Lst, Moves) :- select(S, Occupied, Oc1), select(O, Oc1, Oc2), select(E, Free, F1), move(S, O, E), play([S, O | F1], [E | Oc2], [move(S,O,E) | Lst], Moves). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % allowed moves % move(S,2,E) :- member([S,E], [[1,4], [4,1]]). move(S,3,E) :- member([S,E], [[1,6], [6,1]]). move(S,4,E):- member([S,E], [[2,7], [7,2]]). move(S,5,E):- member([S,E], [[2,9], [9,2]]). move(S,5,E):- member([S,E], [[3,8], [8,3]]). move(S,6,E):- member([S,E], [[3,10], [10,3]]). move(S,5,E):- member([S,E], [[4,6], [6,4]]). move(S,7,E):- member([S,E], [[4,11], [11,4]]). move(S,8,E):- member([S,E], [[4,13], [13,4]]). move(S,8,E):- member([S,E], [[5,12], [12,5]]). move(S,9,E):- member([S,E], [[5,14], [14,5]]). move(S,9,E):- member([S,E], [[6,13], [13,6]]). move(S,10,E):- member([S,E], [[6,15], [15,6]]). move(S,8,E):- member([S,E], [[9,7], [7,9]]). move(S,9,E):- member([S,E], [[10,8], [8,10]]). move(S,12,E):- member([S,E], [[11,13], [13,11]]). move(S,13,E):- member([S,E], [[12,14], [14,12]]). move(S,14,E):- member([S,E], [[15,13], [13,15]]). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % display soluce % display(Sol) :- display(Sol, [1]). display([], Free) :- numlist(1,15, Lst), maplist(\X^I^(member(X, Free) -> I = 0; I = 1), Lst, [I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15]), format(' ~w ~n', [I1]), format(' ~w ~w ~n', [I2,I3]), format(' ~w ~w ~w ~n', [I4,I5,I6]), format(' ~w ~w ~w ~w ~n', [I7,I8,I9,I10]), format('~w ~w ~w ~w ~w~n', [I11,I12,I13,I14,I15]), writeln(solved). display([move(Start, Middle, End) | Tail], Free) :- numlist(1,15, Lst), maplist(\X^I^(member(X, Free) -> I = 0; I = 1), Lst, [I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15]), format(' ~w ~n', [I1]), format(' ~w ~w ~n', [I2,I3]), format(' ~w ~w ~w ~n', [I4,I5,I6]), format(' ~w ~w ~w ~w ~n', [I7,I8,I9,I10]), format('~w ~w ~w ~w ~w~n', [I11,I12,I13,I14,I15]), format('From ~w to ~w over ~w~n~n~n', [Start, End, Middle]), select(End, Free, F1), display(Tail, [Start, Middle | F1]). ``` Output : ```txt ?- iq_puzzle. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 From 4 to 1 over 2 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 From 6 to 4 over 5 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 From 1 to 6 over 3 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 From 7 to 2 over 4 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 From 10 to 3 over 6 0 1 1 0 0 0 0 1 1 0 1 1 1 1 1 From 12 to 5 over 8 0 1 1 0 1 0 0 0 1 0 1 0 1 1 1 From 13 to 6 over 9 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 From 3 to 10 over 6 0 1 0 0 1 0 0 0 0 1 1 0 0 1 1 From 2 to 9 over 5 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 From 15 to 6 over 10 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 From 6 to 13 over 9 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 From 14 to 12 over 13 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 From 11 to 13 over 12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 solved ``` Bonus : number of solutions : ```txt ?- setof(L, iq_puzzle(L), LL), length(LL, Len). LL = [[move(4, 2, 1), move(6, 5, 4), move(1, 3, 6), move(7, 4, 2), move(10, 6, 3), move(12, 8, 5), move(13, 9, 6), move(..., ..., ...)|...], [move(4, 2, 1), move(6, 5, 4), move(1, 3, 6), move(7, 4, 2), move(10, 6, 3), move(12, 8, 5), move(..., ..., ...)|...], [move(4, 2, 1), move(6, 5, 4), move(1, 3, 6), move(7, 4, 2), move(10, 6, 3), move(..., ..., ...)|...], [move(4, 2, 1), move(6, 5, 4), move(1, 3, 6), move(7, 4, 2), move(..., ..., ...)|...], [move(4, 2, 1), move(6, 5, 4), move(1, 3, 6), move(..., ..., ...)|...], [move(4, 2, 1), move(6, 5, 4), move(..., ..., ...)|...], [move(4, 2, 1), move(..., ..., ...)|...], [move(..., ..., ...)|...], [...|...]|...], Len = 29760. ``` ## Python ```Python # # Draw board triangle in ascii # def DrawBoard(board): peg = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] for n in xrange(1,16): peg[n] = '.' if n in board: peg[n] = "%X" % n print " %s" % peg[1] print " %s %s" % (peg[2],peg[3]) print " %s %s %s" % (peg[4],peg[5],peg[6]) print " %s %s %s %s" % (peg[7],peg[8],peg[9],peg[10]) print " %s %s %s %s %s" % (peg[11],peg[12],peg[13],peg[14],peg[15]) # # remove peg n from board def RemovePeg(board,n): board.remove(n) # Add peg n on board def AddPeg(board,n): board.append(n) # return true if peg N is on board else false is empty position def IsPeg(board,n): return n in board # A dictionary of valid jump moves index by jumping peg # then a list of moves where move has jumpOver and LandAt positions JumpMoves = { 1: [ (2,4),(3,6) ], # 1 can jump over 2 to land on 4, or jumper over 3 to land on 6 2: [ (4,7),(5,9) ], 3: [ (5,8),(6,10) ], 4: [ (2,1),(5,6),(7,11),(8,13) ], 5: [ (8,12),(9,14) ], 6: [ (3,1),(5,4),(9,13),(10,15) ], 7: [ (4,2),(8,9) ], 8: [ (5,3),(9,10) ], 9: [ (5,2),(8,7) ], 10: [ (9,8) ], 11: [ (12,13) ], 12: [ (8,5),(13,14) ], 13: [ (8,4),(9,6),(12,11),(14,15) ], 14: [ (9,5),(13,12) ], 15: [ (10,6),(14,13) ] } Solution = [] # # Recursively solve the problem # def Solve(board): #DrawBoard(board) if len(board) == 1: return board # Solved one peg left # try a move for each peg on the board for peg in xrange(1,16): # try in numeric order not board order if IsPeg(board,peg): movelist = JumpMoves[peg] for over,land in movelist: if IsPeg(board,over) and not IsPeg(board,land): saveboard = board[:] # for back tracking RemovePeg(board,peg) RemovePeg(board,over) AddPeg(board,land) # board order changes! Solution.append((peg,over,land)) board = Solve(board) if len(board) == 1: return board ## undo move and back track when stuck! board = saveboard[:] # back track del Solution[-1] # remove last move return board # # Remove one peg and start solving # def InitSolve(empty): board = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] RemovePeg(board,empty_start) Solve(board) # empty_start = 1 InitSolve(empty_start) board = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] RemovePeg(board,empty_start) for peg,over,land in Solution: RemovePeg(board,peg) RemovePeg(board,over) AddPeg(board,land) # board order changes! DrawBoard(board) print "Peg %X jumped over %X to land on %X\n" % (peg,over,land) ``` {{out}} ```txt 1 . 3 . 5 6 7 8 9 A B C D E F Peg 4 jumped over 2 to land on 1 1 . 3 4 . . 7 8 9 A B C D E F Peg 6 jumped over 5 to land on 4 . . . 4 . 6 7 8 9 A B C D E F Peg 1 jumped over 3 to land on 6 . 2 . . . 6 . 8 9 A B C D E F Peg 7 jumped over 4 to land on 2 . 2 . . 5 6 . . 9 A B . D E F Peg C jumped over 8 to land on 5 . 2 . . 5 6 . . 9 A B C . . F Peg E jumped over D to land on C . 2 . . 5 . . . . A B C D . F Peg 6 jumped over 9 to land on D . . . . . . . . 9 A B C D . F Peg 2 jumped over 5 to land on 9 . . . . . . . . 9 A B . . E F Peg C jumped over D to land on E . . . . . 6 . . 9 . B . . E . Peg F jumped over A to land on 6 . . . . . . . . . . B . D E . Peg 6 jumped over 9 to land on D . . . . . . . . . . B C . . . Peg E jumped over D to land on C . . . . . . . . . . . . D . . Peg B jumped over C to land on D ``` ## Racket {{incorrect|Racket|Should the output start 6 jumps 3, then 15 jumps 10 ... rather than 1 jumps 3, then 6 jumps 10 ... ?
Not so fast... The output is correct if one reads the statement differently. The first number is the arrival
position, the second number is the position where the peg is "jumped over" and is to be removed.
The position of where the peg jumps from is not indicated - but it can only be a single possibility in each case.}} * This includes the code to generate the list of available hops (other implementations seem to have the table built in) * It produces a full has containing all the possible results from all possible start positions (including ones without valid hops, and unusual starts). It takes no time... and once this is pre-calculated then some of the questions you might want answered about this puzzle can be more easily answered! Oh and there are some useful triangle numbers functions thrown in for free! ```racket #lang racket (define << arithmetic-shift) (define bwbs? bitwise-bit-set?) ;; 1,2,2,3,3,3,4,4,4,4,5,5,5,5,5 ;; OEIS: A002024: n appears n times (define (A002024 n) (exact-floor (+ 1/2 (sqrt (* n 2))))) ;; 1, 1, 2, 1, 2, 3, 1, 2, 3, 4 ;; OEIS: A002260: Triangle T(n,k) = k for k = 1..n. (define (A002260 n) (+ 1 (A002262 (sub1 n)))) ;; OEIS: A000217: Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n. (define (tri n) (* n (sub1 n) 1/2)) ;; OEIS: A002262: Triangle read by rows: T(n,k) (define (A002262 n) (define trinv (exact-floor (/ (+ 1 (sqrt (+ 1 (* n 8)))) 2))) (- n (/ (* trinv (- trinv 1)) 2))) (define row-number A002024) (define col-number A002260) (define (r.c->n r c) (and (<= 1 r 5) (<= 1 c r) (+ 1 (tri r) (- c 1)))) (define (available-jumps n) ; takes a peg number, and returns a list of (jumped-peg . landing-site) (define r (row-number n)) (define c (col-number n)) ;; Six possible directions - although noone gets all six: "J" - landing site, "j" jumped peg ;; Triangle Row/column (square edge) ;; A . B A.B ;; . a b .ab ;; C c X d D CcXdD ;; . . e f ..ef ;;. . E . F ..E.F (define (N+.n+ r+ c+) (cons (r.c->n (+ r (* 2 r+)) (+ c (* 2 c+))) (r.c->n (+ r r+) (+ c c+)))) (define-values (A.a B.b C.c D.d E.e F.f) (values (N+.n+ -1 -1) (N+.n+ -1 0) (N+.n+ 0 -1) (N+.n+ 0 1) (N+.n+ 1 0) (N+.n+ 1 1))) (filter car (list A.a B.b C.c D.d E.e F.f))) (define (available-jumps/bits n0) (for/list ((A.a (available-jumps (add1 n0)))) (match-define (cons (app sub1 A) (app sub1 a)) A.a) (list A a (bitwise-ior (<< 1 n0) (<< 1 A) (<< 1 a))))) ; on a hop, these three bits will flip (define avalable-jumps-list/bits (for/vector #:length 15 ((bit 15)) (available-jumps/bits bit))) ;; OK -- we'll be complete about this (so it might take a little longer) ;; ;; There are 2^15 possible start configurations; so we'll just systematically go though them, and ;; build an hash of what can go where. Bits are numbered from 0 - peg#1 to 14 - peg#15. ;; It's overkill for finding a single solution, but it seems that Joe Nord needs a lot of questions ;; answered (which should be herein). (define paths# (make-hash)) (for* ((board (in-range 0 (expt 2 15))) (peg (in-range 15)) #:when (bwbs? board peg) (Jjf (in-list (vector-ref avalable-jumps-list/bits peg))) #:when (bwbs? board (second Jjf)) ; need something to jump #:unless (bwbs? board (first Jjf))) ; need a clear landing space (define board- (bitwise-xor board (third Jjf))) (hash-update! paths# board (λ (old) (cons (cons board- Jjf) old)) null)) (define (find-path start end (acc null)) (if (= start end) (reverse acc) (for*/first ((hop (hash-ref paths# start null)) (inr (in-value (find-path (car hop) end (cons hop acc)))) #:when inr) inr))) (define (display-board board.Jjf) (match-define (list board (app add1 J) (app add1 j) _) board.Jjf) (printf "~a jumps ~a ->" J j) (for* ((r (in-range 1 6)) (c (in-range 1 (add1 r))) (n (in-value (r.c->n r c)))) (when (= c 1) (printf "~%~a" (make-string (quotient (* 5 (- 5 r)) 2) #\space))) (printf "[~a] " (~a #:width 2 #:pad-string " " #:align 'right (if (bwbs? board (sub1 n)) n "")))) (newline)) (define (flip-peg p b) (bitwise-xor (<< 1 (sub1 p)) b)) (define empty-board #b000000000000000) (define full-board #b111111111111111) ;; Solve #1 missing -> #13 left alone (for-each display-board (find-path (flip-peg 1 full-board) (flip-peg 13 empty-board))) ``` {{out}} ```txt 1 jumps 3 -> [ 1] [ 2] [ ] [ 4] [ 5] [ ] [ 7] [ 8] [ 9] [10] [11] [12] [13] [14] [15] 6 jumps 10 -> [ 1] [ 2] [ ] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [ ] [11] [12] [13] [14] [ ] 10 jumps 9 -> [ 1] [ 2] [ ] [ 4] [ 5] [ 6] [ 7] [ ] [ ] [10] [11] [12] [13] [14] [ ] 3 jumps 6 -> [ 1] [ 2] [ 3] [ 4] [ 5] [ ] [ 7] [ ] [ ] [ ] [11] [12] [13] [14] [ ] 9 jumps 5 -> [ 1] [ ] [ 3] [ 4] [ ] [ ] [ 7] [ ] [ 9] [ ] [11] [12] [13] [14] [ ] 5 jumps 9 -> [ 1] [ ] [ 3] [ 4] [ 5] [ ] [ 7] [ ] [ ] [ ] [11] [12] [13] [ ] [ ] 14 jumps 13 -> [ 1] [ ] [ 3] [ 4] [ 5] [ ] [ 7] [ ] [ ] [ ] [11] [ ] [ ] [14] [ ] 2 jumps 4 -> [ 1] [ 2] [ 3] [ ] [ 5] [ ] [ ] [ ] [ ] [ ] [11] [ ] [ ] [14] [ ] 8 jumps 5 -> [ 1] [ 2] [ ] [ ] [ ] [ ] [ ] [ 8] [ ] [ ] [11] [ ] [ ] [14] [ ] 4 jumps 2 -> [ ] [ ] [ ] [ 4] [ ] [ ] [ ] [ 8] [ ] [ ] [11] [ ] [ ] [14] [ ] 13 jumps 8 -> [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [11] [ ] [13] [14] [ ] 12 jumps 13 -> [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [11] [12] [ ] [ ] [ ] 13 jumps 12 -> [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [13] [ ] [ ] ``` ## Ruby ```ruby # Solitaire Like Puzzle Solver - Nigel Galloway: October 18th., 2014 G = [[0,1,3],[0,2,5],[1,3,6],[1,4,8],[2,4,7],[2,5,9],[3,4,5],[3,6,10],[3,7,12],[4,7,11],[4,8,13],[5,8,12],[5,9,14],[6,7,8],[7,8,9],[10,11,12],[11,12,13],[12,13,14], [3,1,0],[5,2,0],[6,3,1],[8,4,1],[7,4,2],[9,5,2],[5,4,3],[10,6,3],[12,7,3],[11,7,4],[13,8,4],[12,8,5],[14,9,5],[8,7,6],[9,8,7],[12,11,10],[13,12,11],[14,13,12]] FORMAT = (1..5).map{|i| " "*(5-i)+"%d "*i+"\n"}.join+"\n" def solve n,i,g return "Solved" if i == 1 return false unless n[g[0]]==0 and n[g[1]]==1 and n[g[2]]==1 e = n.clone; g.each{|n| e[n] = 1 - e[n]} l=false; G.each{|g| l=solve(e,i-1,g); break if l} return l ? "#{g[0]} to #{g[2]}\n" + FORMAT % e + l : l end puts FORMAT % (N=[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) l=false; G.each{|g| l=solve(N,N.inject(:+),g); break if l} puts l ? l : "No solution found" ``` {{out}}0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 to 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 8 to 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 10 to 3 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 to 6 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 11 to 4 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 2 to 7 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 9 to 2 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 to 5 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 6 to 8 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 13 to 11 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 5 to 12 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 11 to 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 14 to 12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Solved ``` ## Sidef {{trans|Ruby}} ```ruby const N = [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1] const G = [ [ 0, 1, 3],[ 0, 2, 5],[ 1, 3, 6], [ 1, 4, 8],[ 2, 4, 7],[ 2, 5, 9], [ 3, 4, 5],[ 3, 6,10],[ 3, 7,12], [ 4, 7,11],[ 4, 8,13],[ 5, 8,12], [ 5, 9,14],[ 6, 7, 8],[ 7, 8, 9], [10,11,12],[11,12,13],[12,13,14], ] const format = ({"#{' '*(5-_)}#{'%d '*_}\n"}.map(1..5).join + "\n") func solve(n, i, g) is cached { i == N.end && return "Solved" n[g[1]] == 0 && return nil var s = given(n[g[0]]) { when(0) { n[g[2]] == 0 && return nil "#{g[2]} to #{g[0]}\n" } default { n[g[2]] == 1 && return nil "#{g[0]} to #{g[2]}\n" } } var a = n.clone g.each {|n| a[n] = 1-a[n] } var r = '' G.each {|g| (r = solve(a, i+1, g)) && break } r ? (s + (format % (a...)) + r) : r } format.printf(N...) var r = '' G.each {|g| (r = solve(N, 1, g)) && break } say (r ? r : "No solution found") ``` {{out}}0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 to 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 8 to 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 10 to 3 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 to 6 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 11 to 4 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 2 to 7 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 9 to 2 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 to 5 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 6 to 8 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 13 to 11 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 5 to 12 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 11 to 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 14 to 12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Solved ``` ## Visual Basic .NET '''Notes:''' This program uses a brute-force method with a string of 25 characters to internally represent the 15 spots on the peg board. One can set the starting removed peg and intended last remaining peg by editing the header variable declarations named '''''Starting''''' and '''''Target'''''. If one doesn't care which spot the last peg lands on, the '''''Target''''' variable can be set to 0. The constant '''''n''''' can be changed for different sized peg boards, for example with '''''n = 6''''' the peg board would have 21 positions. ```vbnet Imports System, Microsoft.VisualBasic.DateAndTime Public Module Module1 Const n As Integer = 5 ' extent of board Dim Board As String ' the peg board Dim Starting As Integer = 1 ' position on board where first peg has been removed Dim Target As Integer = 13 ' final peg position, use 0 to solve for any postion Dim Moves As Integer() ' possible offset moves on grid Dim bi() As Integer ' string position to peg location index Dim ib() As Integer ' string position to peg location reverse index Dim nl As Char = Convert.ToChar(10) ' newline character ' expands each line of the board properly Public Function Dou(s As String) As String Dou = "" : Dim b As Boolean = True For Each ch As Char In s If b Then b = ch <> " " If b Then Dou &= ch & " " Else Dou = " " & Dou Next : Dou = Dou.TrimEnd() End Function ' formats the string representaion of a board into a viewable item Public Function Fmt(s As String) As String If s.Length < Board.Length Then Return s Fmt = "" : For i As Integer = 1 To n : Fmt &= Dou(s.Substring(i * n - n, n)) & If(i = n, s.Substring(Board.Length), "") & nl Next End Function ' returns triangular number of n Public Function Triangle(n As Integer) As Integer Return (n * (n + 1)) / 2 End Function ' returns an initialized board with one peg missing Public Function Init(s As String, pos As Integer) As String Init = s : Mid(Init, pos, 1) = "0" End Function ' initializes string-to-board position indices Public Sub InitIndex() ReDim bi(Triangle(n)), ib(n * n) : Dim j As Integer = 0 For i As Integer = 0 To ib.Length - 1 If i = 0 Then ib(i) = 0 : bi(j) = 0 : j += 1 Else If Board(i - 1) = "1" Then ib(i) = j : bi(j) = i : j += 1 End If Next End Sub ' brute-force solver, returns either the steps of a solution, or the string "fail" Public Function solve(brd As String, pegsLeft As Integer) As String If pegsLeft = 1 Then ' down to the last one, see if it's the correct one If Target = 0 Then Return "Completed" ' don't care where the last one is If brd(bi(Target) - 1) = "1" Then Return "Completed" Else Return "fail" End If For i = 1 To Board.Length ' for each possible position... If brd(i - 1) = "1" Then ' that still has a peg... For Each mj In Moves ' for each possible move Dim over As Integer = i + mj ' the position to jump over Dim land As Integer = i + 2 * mj ' the landing spot ' ensure landing spot is on the board, then check for a valid pattern If land >= 1 AndAlso land <= brd.Length _ AndAlso brd(land - 1) = "0" _ AndAlso brd(over - 1) = "1" Then setPegs(brd, "001", i, over, land) ' make a move ' recursively send it out to test Dim Res As String = solve(brd.Substring(0, Board.Length), pegsLeft - 1) ' check result, returing if OK If Res.Length <> 4 Then _ Return brd & info(i, over, land) & nl & Res setPegs(brd, "110", i, over, land) ' not OK, so undo the move End If Next End If Next Return "fail" End Function ' returns a text representation of peg movement for each turn Function info(frm As Integer, over As Integer, dest As Integer) As String Return " Peg from " & ib(frm).ToString() & " goes to " & ib(dest).ToString() & ", removing peg at " & ib(over).ToString() End Function ' sets three pegs as once, used for making and un-doing moves Sub setPegs(ByRef board As String, pat As String, a As Integer, b As Integer, c As Integer) Mid(board, a, 1) = pat(0) : Mid(board, b, 1) = pat(1) : Mid(board, c, 1) = pat(2) End Sub ' limit an integer to a range Sub LimitIt(ByRef x As Integer, lo As Integer, hi As Integer) x = Math.Max(Math.Min(x, hi), lo) End Sub Public Sub Main() Dim t As Integer = Triangle(n) ' use the nth triangular number for bounds LimitIt(Starting, 1, t) ' ensure valid parameters for staring and ending positions LimitIt(Target, 0, t) Dim stime As Date = Now() ' keep track of start time for performance result Moves = {-n - 1, -n, -1, 1, n, n + 1} ' possible offset moves on a nxn grid Board = New String("1", n * n) ' init string representation of board For i As Integer = 0 To n - 2 ' and declare non-existent spots Mid(Board, i * (n + 1) + 2, n - 1 - i) = New String(" ", n - 1 - i) Next InitIndex() ' create indicies from board's pattern Dim B As String = Init(Board, bi(Starting)) ' remove first peg Console.WriteLine(Fmt(B & " Starting with peg removed from " & Starting.ToString())) Dim res As String() = solve(B.Substring(0, B.Length), t - 1).Split(nl) Dim ts As String = (Now() - stime).TotalMilliseconds.ToString() & " ms." If res(0).Length = 4 Then If Target = 0 Then Console.WriteLine("Unable to find a solution with last peg left anywhere.") Else Console.WriteLine("Unable to find a solution with last peg left at " & Target.ToString() & ".") End If Console.WriteLine("Computation time: " & ts) Else For Each Sol As String In res : Console.WriteLine(Fmt(Sol)) : Next Console.WriteLine("Computation time to first found solution: " & ts) End If If Diagnostics.Debugger.IsAttached Then Console.ReadLine() End Sub End Module ``` {{out}} '''A full solution:'''0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Starting with peg removed from 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 Peg from 4 goes to 1, removing peg at 2 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 Peg from 6 goes to 4, removing peg at 5 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 Peg from 1 goes to 6, removing peg at 3 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 Peg from 7 goes to 2, removing peg at 4 0 1 1 0 0 0 0 1 1 0 1 1 1 1 1 Peg from 10 goes to 3, removing peg at 6 0 1 1 0 1 0 0 0 1 0 1 0 1 1 1 Peg from 12 goes to 5, removing peg at 8 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 Peg from 13 goes to 6, removing peg at 9 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 Peg from 2 goes to 9, removing peg at 5 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 Peg from 3 goes to 10, removing peg at 6 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 Peg from 15 goes to 6, removing peg at 10 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 Peg from 6 goes to 13, removing peg at 9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 Peg from 14 goes to 12, removing peg at 13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Peg from 11 goes to 13, removing peg at 12 Completed Computation time to first found solution: 15.6086 ms. ``` '''A failed solution:''' ```txt 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 Starting with peg removed from 2 Unable to find a solution with last peg left at 13. Computation time: 1656.2754 ms. ``` ## zkl {{trans|D}} {{Trans|Ruby}} ```zkl var N=T(0,1,1,1,1,1,1,1,1,1,1,1,1,1,1); var G=T( T(0,1, 3), T(0,2, 5), T(1,3, 6), T( 1, 4, 8), T( 2, 4, 7), T( 2, 5, 9), T(3,4, 5), T(3,6,10), T(3,7,12), T( 4, 7,11), T( 4, 8,13), T( 5, 8,12), T(5,9,14), T(6,7, 8), T(7,8, 9), T(10,11,12), T(11,12,13), T(12,13,14)); fcn b2s(n){ var fmt=[1..5].pump(String,fcn(i){ String(" "*(5 - i),"%d "*i,"\n") }); fmt.fmt(n.xplode()) } fcn solve(n,i,g){ // --> False|String if (i==N.len() - 1) return("\nSolved"); if (n[g[1]]==0) return(False); reg s; if (n[g[0]]==0){ if(n[g[2]]==0) return(False); s="\n%d to %d\n".fmt(g[2],g[0]); } else { if(n[g[2]]==1) return(False); s="\n%d to %d\n".fmt(g[0],g[2]); } a:=n.copy(); foreach gi in (g){ a[gi]=1 - a[gi]; } reg l; // auto sets to Void foreach gi in (G){ if(l=solve(a,i + 1,gi)) break; } l and String(s,b2s(a),l) } b2s(N).print(); reg l; foreach g in (G){ if(l=solve(N,1,g)) break; } println(l and l or "No solution found."); ``` {{out}}0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 to 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 8 to 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 10 to 3 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 to 6 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 11 to 4 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 2 to 7 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 9 to 2 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 to 5 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 6 to 8 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 13 to 11 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 5 to 12 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 11 to 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 14 to 12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Solved ```