⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}} [[Category:Matrices]]
;Task: Build an [[wp:identity matrix|identity matrix]] of a size known at run-time.
An ''identity matrix'' is a square matrix of size '''''n'' × ''n''''',
where the diagonal elements are all '''1'''s (ones),
and all the other elements are all '''0'''s (zeroes).
;Related tasks:
- [[Spiral matrix]]
- [[Zig-zag matrix]]
- [[Ulam_spiral_(for_primes)]]
360 Assembly
* Identity matrix 31/03/2017
INDENMAT CSECT
USING INDENMAT,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) save previous context
ST R13,4(R15) link backward
ST R15,8(R13) link forward
LR R13,R15 set addressability
L R1,N n
MH R1,N+2 n*n
SLA R1,2 *4
ST R1,LL amount of storage required
GETMAIN RU,LV=(R1) allocate storage for matrix
USING DYNA,R11 make storage addressable
LR R11,R1 set addressability
LA R6,1 i=1
DO WHILE=(C,R6,LE,N) do i=1 to n
LA R7,1 j=1
DO WHILE=(C,R7,LE,N) do j=1 to n
IF CR,R6,EQ,R7 THEN if i=j then
LA R2,1 k=1
ELSE , else
LA R2,0 k=0
ENDIF , endif
LR R1,R6 i
BCTR R1,0 -1
MH R1,N+2 *n
AR R1,R7 (i-1)*n+j
BCTR R1,0 -1
SLA R1,2 *4
ST R2,A(R1) a(i,j)=k
LA R7,1(R7) j++
ENDDO , enddo j
LA R6,1(R6) i++
ENDDO , enddo i
LA R6,1 i=1
DO WHILE=(C,R6,LE,N) do i=1 to n
LA R10,PG pgi=0
LA R7,1 j=1
DO WHILE=(C,R7,LE,N) do j=1 to n
LR R1,R6 i
BCTR R1,0 -1
MH R1,N+2 *n
AR R1,R7 (i-1)*n+j
BCTR R1,0 -1
SLA R1,2 *4
L R2,A(R1) a(i,j)
XDECO R2,XDEC edit
MVC 0(1,R10),XDEC+11 output
LA R10,1(R10) pgi+=1
LA R7,1(R7) j++
ENDDO , enddo j
XPRNT PG,L'PG print
LA R6,1(R6) i++
ENDDO , enddo i
LA R1,A address to free
LA R2,LL amount of storage to free
FREEMAIN A=(R1),LV=(R2) free allocated storage
DROP R11 drop register
L R13,4(0,R13) restore previous savearea pointer
LM R14,R12,12(R13) restore previous context
XR R15,R15 rc=0
BR R14 exit
NN EQU 10 parameter n (90=>32K)
N DC A(NN) n
LL DS F n*n*4
PG DC CL(NN)' ' buffer
XDEC DS CL12 temp
DYNA DSECT
A DS F a(n,n)
YREGS
END INDENMAT
{{out}}
1000000000
0100000000
0010000000
0001000000
0000100000
0000010000
0000001000
0000000100
0000000010
0000000001
Ada
When using floating point matrices in Ada 2005+ the function is defined as "Unit_Matrix" in Ada.Numerics.Generic_Real_Arrays. As a generic package it can work with user defined floating point types, or the predefined Short_Real_Arrays, Real_Arrays, and Long_Real_Arrays initializations. As seen below, the first indices of both dimensions can also be set since Ada array indices do not arbitrarily begin with a particular number.
-- As prototyped in the Generic_Real_Arrays specification:
-- function Unit_Matrix (Order : Positive; First_1, First_2 : Integer := 1) return Real_Matrix;
-- For the task:
mat : Real_Matrix := Unit_Matrix(5);
For prior versions of Ada, or non floating point types its back to basics:
type Matrix is array(Positive Range <>, Positive Range <>) of Integer;
mat : Matrix(1..5,1..5) := (others => (others => 0));
-- then after the declarative section:
for i in mat'Range(1) loop mat(i,i) := 1; end loop;
ALGOL 68
{{works with|ALGOL 68|Revision 1 - one extension to language used - PRAGMA READ - a non standard feature similar to C's #include directive.}} {{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-2.8 algol68g-2.8].}} {{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of '''format'''[ted] ''transput''.}} '''Note:''' The generic vector and matrix code should be moved to a more generic page.
'''File: prelude/vector_base.a68'''
#!/usr/bin/a68g --script #
# -*- coding: utf-8 -*- #
# Define some generic vector initialisation and printing operations #
COMMENT REQUIRES:
MODE SCAL = ~ # a scalar, eg REAL #;
FORMAT scal fmt := ~;
END COMMENT
INT vec lwb := 1, vec upb := 0;
MODE VECNEW = [vec lwb:vec upb]SCAL; MODE VEC = REF VECNEW;
FORMAT vec fmt := $"("n(vec upb-vec lwb)(f(scal fmt)", ")f(scal fmt)")"$;
PRIO INIT = 1;
OP INIT = (VEC self, SCAL scal)VEC: (
FOR col FROM LWB self TO UPB self DO self[col]:= scal OD;
self
);
# ZEROINIT: defines the additive identity #
OP ZEROINIT = (VEC self)VEC:
self INIT SCAL(0);
OP REPR = (VEC self)STRING: (
FILE f; STRING s; associate(f,s);
vec lwb := LWB self; vec upb := UPB self;
putf(f, (vec fmt, self)); close(f);
s
);
SKIP
'''File: prelude/matrix_base.a68'''
# -*- coding: utf-8 -*- #
# Define some generic matrix initialisation and printing operations #
COMMENT REQUIRES:
MODE SCAL = ~ # a scalar, eg REAL #;
MODE VEC = []SCAL;
FORMAT scal fmt := ~;
et al.
END COMMENT
INT mat lwb := 1, mat upb := 0;
MODE MATNEW = [mat lwb:mat upb, vec lwb: vec upb]SCAL; MODE MAT = REF MATNEW;
FORMAT mat fmt = $"("n(vec upb-vec lwb)(f(vec fmt)","lx)f(vec fmt)")"l$;
PRIO DIAGINIT = 1;
OP INIT = (MAT self, SCAL scal)MAT: (
FOR row FROM LWB self TO UPB self DO self[row,] INIT scal OD;
self
);
# ZEROINIT: defines the additive identity #
OP ZEROINIT = (MAT self)MAT:
self INIT SCAL(0);
OP REPR = (MATNEW self)STRING: (
FILE f; STRING s; associate(f,s);
vec lwb := 2 LWB self; vec upb := 2 UPB self;
mat lwb := LWB self; mat upb := UPB self;
putf(f, (mat fmt, self)); close(f);
s
);
OP DIAGINIT = (MAT self, VEC diag)MAT: (
ZEROINIT self;
FOR d FROM LWB diag TO UPB diag DO self[d,d]:= diag[d] OD;
# or alternatively using TORRIX ...
DIAG self := diag;
#
self
);
# ONEINIT: defines the multiplicative identity #
OP ONEINIT = (MAT self)MAT: (
ZEROINIT self DIAGINIT (LOC[LWB self:UPB self]SCAL INIT SCAL(1))
# or alternatively using TORRIX ...
(DIAG out) VECINIT SCAL(1)
#
);
SKIP
'''File: prelude/matrix_ident.a68'''
# -*- coding: utf-8 -*- #
PRIO IDENT = 9; # The same as I for COMPLex #
OP IDENT = (INT lwb, upb)MATNEW:
ONEINIT LOC [lwb:upb,lwb:upb]SCAL;
OP IDENT = (INT upb)MATNEW: # default lwb is 1 #
1 IDENT upb;
SKIP
'''File: prelude/matrix.a68'''
#!/usr/bin/a68g --script #
# -*- coding: utf-8 -*- #
PR READ "prelude/vector_base.a68" PR;
PR READ "prelude/matrix_base.a68" PR;
PR READ "prelude/matrix_ident.a68" PR;
SKIP
'''File: test/matrix_ident.a68'''
#!/usr/bin/a68g --script #
# -*- coding: utf-8 -*- #
MODE SCAL = REAL;
FORMAT scal fmt := $g(-3,1)$;
PR READ "prelude/matrix.a68" PR;
print(REPR IDENT 4)
{{out}}
((1.0, 0.0, 0.0, 0.0),
(0.0, 1.0, 0.0, 0.0),
(0.0, 0.0, 1.0, 0.0),
(0.0, 0.0, 0.0, 1.0))
ALGOL W
begin
% set m to an identity matrix of size s %
procedure makeIdentity( real array m ( *, * )
; integer value s
) ;
for i := 1 until s do begin
for j := 1 until s do m( i, j ) := 0.0;
m( i, i ) := 1.0
end makeIdentity ;
% test the makeIdentity procedure %
begin
real array id5( 1 :: 5, 1 :: 5 );
makeIdentity( id5, 5 );
r_format := "A"; r_w := 6; r_d := 1; % set output format for reals %
for i := 1 until 5 do begin
write();
for j := 1 until 5 do writeon( id5( i, j ) )
end for_i ;
end text
end.
APL
Making an identity matrix in APL involves the outer product of the equality function.
For a square matrix of 3:
∘.=⍨⍳3
1 0 0
0 1 0
0 0 1
For a function that makes an identity matrix:
ID←{∘.=⍨⍳⍵}
ID 5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
An tacit function can be defined with one of the following equivalent lines:
ID←∘.=⍨⍳
ID←⍳∘.=⍳
There is a more idomatic way however:
ID←{⍵ ⍵ ρ 1, ⍵ρ0}
AppleScript
-- ID MATRIX -----------------------------------------------------------------
-- idMatrix :: Int -> [(0|1)]
on idMatrix(n)
set xs to enumFromTo(1, n)
script row
on |λ|(x)
script
on |λ|(i)
if i = x then
1
else
0
end if
end |λ|
end script
map(result, xs)
end |λ|
end script
map(row, xs)
end idMatrix
-- TEST ----------------------------------------------------------------------
on run
idMatrix(5)
end run
-- GENERIC FUNCTIONS ---------------------------------------------------------
-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if n < m then
set d to -1
else
set d to 1
end if
set lst to {}
repeat with i from m to n by d
set end of lst to i
end repeat
return lst
end enumFromTo
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
{{Out}}
{{1, 0, 0, 0, 0},
{0, 1, 0, 0, 0},
{0, 0, 1, 0, 0},
{0, 0, 0, 1, 0},
{0, 0, 0, 0, 1}}
Applesoft BASIC
100 INPUT "MATRIX SIZE:"; SIZE%
110 GOSUB 200"IDENTITYMATRIX
120 FOR R = 0 TO SIZE%
130 FOR C = 0 TO SIZE%
140 LET S$ = CHR$(13)
150 IF C < SIZE% THEN S$ = " "
160 PRINT IM(R, C) S$; : NEXT C, R
170 END
200 REMIDENTITYMATRIX SIZE%
210 LET SIZE% = SIZE% - 1
220 DIM IM(SIZE%, SIZE%)
230 FOR I = 0 TO SIZE%
240 LET IM(I, I) = 1 : NEXT I
250 RETURN :IM
ATS
(* ****** ****** *)
//
// How to compile:
//
// patscc -DATS_MEMALLOC_LIBC -o idmatrix idmatrix.dats
//
(* ****** ****** *)
//
#include
"share/atspre_staload.hats"
//
(* ****** ****** *)
extern
fun
idmatrix{n:nat}(n: size_t(n)): matrixref(int, n, n)
implement
idmatrix(n) =
matrixref_tabulate_cloref<int> (n, n, lam(i, j) => bool2int0(i = j))
(* ****** ****** *)
implement
main0 () =
{
//
val N = 5
//
val M = idmatrix(i2sz(N))
val () = fprint_matrixref_sep (stdout_ref, M, i2sz(N), i2sz(N), " ", "\n")
val () = fprint_newline (stdout_ref)
//
} (* end of [main0] *)
AutoHotkey
msgbox % Clipboard := I(6)
return
I(n){
r := "--`n" , s := " "
loop % n
{
k := A_index , r .= "| "
loop % n
r .= A_index=k ? "1, " : "0, "
r := RTrim(r, " ,") , r .= " |`n"
}
loop % 4*n
s .= " "
return Rtrim(r,"`n") "`n" s "--"
}
{{out}}
--
| 1, 0, 0, 0, 0, 0 |
| 0, 1, 0, 0, 0, 0 |
| 0, 0, 1, 0, 0, 0 |
| 0, 0, 0, 1, 0, 0 |
| 0, 0, 0, 0, 1, 0 |
| 0, 0, 0, 0, 0, 1 |
--
AWK
# syntax: GAWK -f IDENTITY_MATRIX.AWK size
BEGIN {
size = ARGV[1]
if (size !~ /^[0-9]+$/) {
print("size invalid or missing from command line")
exit(1)
}
for (i=1; i<=size; i++) {
for (j=1; j<=size; j++) {
x = (i == j) ? 1 : 0
printf("%2d",x) # print
arr[i,j] = x # build
}
printf("\n")
}
exit(0)
}
{{out}} for command: GAWK -f IDENTITY_MATRIX.AWK 5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
Bash
for i in `seq $1`;do printf '%*s\n' $1|tr ' ' '0'|sed "s/0/1/$i";done
{{out}} for command: ./scriptname 5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
BBC BASIC
{{works with|BBC BASIC for Windows}}
INPUT "Enter size of matrix: " size%
PROCidentitymatrix(size%, im())
FOR r% = 0 TO size%-1
FOR c% = 0 TO size%-1
PRINT im(r%, c%),;
NEXT
PRINT
NEXT r%
END
DEF PROCidentitymatrix(s%, RETURN m())
LOCAL i%
DIM m(s%-1, s%-1)
FOR i% = 0 TO s%-1
m(i%,i%) = 1
NEXT
ENDPROC
Burlesque
Neither very elegant nor short but it'll do
blsq ) 6 -.^^0\/r@\/'0\/.*'1+]\/{\/{rt}\/E!XX}x/+]m[sp
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
The example above uses strings to generate the identity matrix. If you need a matrix with real numbers (Integers) then use:
6hd0bx#a.*\[#a.*0#a?dr@{(D!)\/1\/^^bx\/[+}m[e!
Shorter alternative:
blsq ) 6 ^^^^10\/**XXcy\/co.+sp
C
#include <stdlib.h>
#include <stdio.h>
int main(int argc, char** argv) {
if (argc < 2) {
printf("usage: identitymatrix <number of rows>\n");
exit(EXIT_FAILURE);
}
signed int rowsize = atoi(argv[1]);
if (rowsize < 0) {
printf("Dimensions of matrix cannot be negative\n");
exit(EXIT_FAILURE);
}
volatile int numElements = rowsize * rowsize;
if (numElements < rowsize) {
printf("Squaring %d caused result to overflow to %d.\n", rowsize, numElements);
abort();
}
int** matrix = calloc(numElements, sizeof(int*));
if (!matrix) {
printf("Failed to allocate %d elements of %d bytes each\n", numElements, sizeof(int*));
abort();
}
for (unsigned int row = 0;row < rowsize;row++) {
matrix[row] = calloc(numElements, sizeof(int));
if (!matrix[row]) {
printf("Failed to allocate %d elements of %d bytes each\n", numElements, sizeof(int));
abort();
}
matrix[row][row] = 1;
}
printf("Matrix is: \n");
for (unsigned int row = 0;row < rowsize;row++) {
for (unsigned int column = 0;column < rowsize;column++) {
printf("%d ", matrix[row][column]);
}
printf("\n");
}
}
C++
{{libheader|STL}}
template<class T>
class matrix
{
public:
matrix( unsigned int nSize ) :
m_oData(nSize * nSize, 0), m_nSize(nSize) {}
inline T& operator()(unsigned int x, unsigned int y)
{
return m_oData[x+m_nSize*y];
}
void identity()
{
int nCount = 0;
int nStride = m_nSize + 1;
std::generate( m_oData.begin(), m_oData.end(),
[&]() { return !(nCount++%nStride); } );
}
inline unsigned int size() { return m_nSize; }
private:
std::vector<T> m_oData;
unsigned int m_nSize;
};
int main()
{
int nSize;
std::cout << "Enter matrix size (N): ";
std::cin >> nSize;
matrix<int> oMatrix( nSize );
oMatrix.identity();
for ( unsigned int y = 0; y < oMatrix.size(); y++ )
{
for ( unsigned int x = 0; x < oMatrix.size(); x++ )
{
std::cout << oMatrix(x,y) << " ";
}
std::cout << std::endl;
}
return 0;
}
{{libheader|boost}}
#include <boost/numeric/ublas/matrix.hpp>
int main()
{
using namespace boost::numeric::ublas;
int nSize;
std::cout << "Enter matrix size (N): ";
std::cin >> nSize;
identity_matrix<int> oMatrix( nSize );
for ( unsigned int y = 0; y < oMatrix.size2(); y++ )
{
for ( unsigned int x = 0; x < oMatrix.size1(); x++ )
{
std::cout << oMatrix(x,y) << " ";
}
std::cout << std::endl;
}
return 0;
}
{{out}}
Enter matrix size (N): 5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
C#
using System;
using System.Linq;
namespace IdentityMatrix
{
class Program
{
static void Main(string[] args)
{
if (args.Length != 1)
{
Console.WriteLine("Requires exactly one argument");
return;
}
int n;
if (!int.TryParse(args[0], out n))
{
Console.WriteLine("Requires integer parameter");
return;
}
var identity =
Enumerable.Range(0, n).Select(i => Enumerable.Repeat(0, n).Select((z,j) => j == i ? 1 : 0).ToList()).ToList();
foreach (var row in identity)
{
foreach (var elem in row)
{
Console.Write(" " + elem);
}
Console.WriteLine();
}
Console.ReadKey();
}
}
}
{{out}}
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
Clio
fn identity-matrix n:
[0:n] -> * fn i:
[0:n] -> * if = i: 1
else: 0
5 -> identity-matrix -> * print
Clojure
{{trans|PicoLisp}}
The (vec ) function in the following solution is with respect to vector matrices. If dealing with normal lists matrices (e.g.
'( (0 1) (2 3) )
, then care to remove the vec function.
(defn identity-matrix [n]
(let [row (conj (repeat (dec n) 0) 1)]
(vec
(for [i (range 1 (inc n))]
(vec
(reduce conj (drop i row ) (take i row)))))))
{{out}}
(identity-matrix 5)
[[1 0 0 0 0] [0 1 0 0 0] [0 0 1 0 0] [0 0 0 1 0] [0 0 0 0 1]]
The following is a more idomatic definition that utilizes infinite lists and cycling.
(defn identity-matrix [n]
(take n
(partition n (dec n)
(cycle (conj (repeat (dec n) 0) 1)))))
Common Lisp
Common Lisp provides multi-dimensional arrays.
(defun make-identity-matrix (n)
(let ((array (make-array (list n n) :initial-element 0)))
(loop for i below n do (setf (aref array i i) 1))
array))
{{out}}
- (make-identity-matrix 5) #2A((1 0 0 0 0) (0 1 0 0 0) (0 0 1 0 0) (0 0 0 1 0) (0 0 0 0 1))
(defun identity-matrix (n)
(loop for a from 1 to n
collect (loop for e from 1 to n
if (= a e) collect 1
else collect 0)))
{{out}}
> (identity-matrix 5)
((1 0 0 0 0) (0 1 0 0 0) (0 0 1 0 0) (0 0 0 1 0) (0 0 0 0 1))
Component Pascal
BlackBox Component Builder
MODULE Algebras;
IMPORT StdLog,Strings;
TYPE
Matrix = POINTER TO ARRAY OF ARRAY OF INTEGER;
PROCEDURE NewIdentityMatrix(n: INTEGER): Matrix;
VAR
m: Matrix;
i: INTEGER;
BEGIN
NEW(m,n,n);
FOR i := 0 TO n - 1 DO
m[i,i] := 1;
END;
RETURN m;
END NewIdentityMatrix;
PROCEDURE Show(m: Matrix);
VAR
i,j: INTEGER;
BEGIN
FOR i := 0 TO LEN(m,0) - 1 DO
FOR j := 0 TO LEN(m,1) - 1 DO
StdLog.Int(m[i,j]);
END;
StdLog.Ln
END
END Show;
PROCEDURE Do*;
BEGIN
Show(NewIdentityMatrix(5));
END Do;
END Algebras.
Execute: ^Q Algebras.Do
{{out}}
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
D
import std.traits;
T[][] matId(T)(in size_t n) pure nothrow if (isAssignable!(T, T)) {
auto Id = new T[][](n, n);
foreach (r, row; Id) {
static if (__traits(compiles, {row[] = 0;})) {
row[] = 0; // vector op doesn't work with T = BigInt
row[r] = 1;
} else {
foreach (c; 0 .. n)
row[c] = (c == r) ? 1 : 0;
}
}
return Id;
}
void main() {
import std.stdio, std.bigint;
enum form = "[%([%(%s, %)],\n %)]]";
immutable id1 = matId!real(5);
writefln(form ~ "\n", id1);
immutable id2 = matId!BigInt(3);
writefln(form ~ "\n", id2);
// auto id3 = matId!(const int)(2); // cant't compile
}
{{out}}
[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]
[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]
Delphi
program IdentityMatrix;
// Modified from the Pascal version
{$APPTYPE CONSOLE}
var
matrix: array of array of integer;
n, i, j: integer;
begin
write('Size of matrix: ');
readln(n);
setlength(matrix, n, n);
for i := 0 to n - 1 do
matrix[i,i] := 1;
for i := 0 to n - 1 do
begin
for j := 0 to n - 1 do
write (matrix[i,j], ' ');
writeln;
end;
end.
{{out}}
Size of matrix: 5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
Eiffel
class
APPLICATION
inherit
ARGUMENTS
create
make
feature {NONE} -- Initialization
make
-- Run application.
local
dim : INTEGER -- Dimension of the identity matrix
do
from dim := 1 until dim > 10 loop
print_matrix( identity_matrix(dim) )
dim := dim + 1
io.new_line
end
end
feature -- Access
identity_matrix(dim : INTEGER) : ARRAY2[REAL_64]
require
dim > 0
local
matrix : ARRAY2[REAL_64]
i : INTEGER
do
create matrix.make_filled (0.0, dim, dim)
from i := 1 until i > dim loop
matrix.put(1.0, i, i)
i := i + 1
end
Result := matrix
end
print_matrix(matrix : ARRAY2[REAL_64])
local
i, j : INTEGER
do
from i := 1 until i > matrix.height loop
print("[ ")
from j := 1 until j > matrix.width loop
print(matrix.item (i, j))
print(" ")
j := j + 1
end
print("]%N")
i := i + 1
end
end
end
{{out}}
[ 1 0 0 0 0 0 0 0 0 0 ]
[ 0 1 0 0 0 0 0 0 0 0 ]
[ 0 0 1 0 0 0 0 0 0 0 ]
[ 0 0 0 1 0 0 0 0 0 0 ]
[ 0 0 0 0 1 0 0 0 0 0 ]
[ 0 0 0 0 0 1 0 0 0 0 ]
[ 0 0 0 0 0 0 1 0 0 0 ]
[ 0 0 0 0 0 0 0 1 0 0 ]
[ 0 0 0 0 0 0 0 0 1 0 ]
[ 0 0 0 0 0 0 0 0 0 1 ]
Elena
ELENA 4.x :
import extensions;
import system'routines;
import system'collections;
public program()
{
var n := console.write:"Enter the matrix size:".readLine().toInt();
var identity := new Range(0, n).selectBy:(i => new Range(0,n).selectBy:(j => (i == j).iif(1,0) ).summarize(new ArrayList()))
.summarize(new ArrayList());
identity.forEach:
(row) { console.printLine(row.asEnumerable()) }
}
{{out}}
Enter the matrix size:3
1,0,0
0,1,0
0,0,1
Elixir
defmodule Matrix do
def identity(n) do
Enum.map(0..n-1, fn i ->
for j <- 0..n-1, do: (if i==j, do: 1, else: 0)
end)
end
end
IO.inspect Matrix.identity(5)
{{out}}
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]
Erlang
%% Identity Matrix in Erlang for the Rosetta Code Wiki.
%% Implemented by Arjun Sunel
-module(identity_matrix).
-export([square_matrix/2 , identity/1]).
square_matrix(Size, Elements) ->
[[Elements(Column, Row) || Column <- lists:seq(1, Size)] || Row <- lists:seq(1, Size)].
identity(Size) ->
square_matrix(Size, fun(Column, Row) -> case Column of Row -> 1; _ -> 0 end end).
ERRE
PROGRAM IDENTITY
!$DYNAMIC
DIM A[0,0]
BEGIN
PRINT(CHR$(12);) ! CLS
INPUT("Matrix size",N%)
!$DIM A[N%,N%]
FOR I%=1 TO N% DO
A[I%,I%]=1
END FOR
! print matrix
FOR I%=1 TO N% DO
FOR J%=1 TO N% DO
WRITE("###";A[I%,J%];)
END FOR
PRINT
END FOR
END PROGRAM
Euler Math Toolbox
function IdentityMatrix(n)
$ X:=zeros(n,n);
$ for i=1 to n
$ X[i,i]:=1;
$ end;
$ return X;
$endfunction
>function IdentityMatrix (n:index)
$ return setdiag(zeros(n,n),0,1);
$endfunction
=={{header|F Sharp|F#}}==
Builds a 2D matrix with the given square size.
```FSharp
let ident n = Array2D.init n n (fun i j -> if i = j then 1 else 0)
{{out}}
ident 10;;
val it : int [,] = [[1; 0; 0; 0; 0; 0; 0; 0; 0; 0]
[0; 1; 0; 0; 0; 0; 0; 0; 0; 0]
[0; 0; 1; 0; 0; 0; 0; 0; 0; 0]
[0; 0; 0; 1; 0; 0; 0; 0; 0; 0]
[0; 0; 0; 0; 1; 0; 0; 0; 0; 0]
[0; 0; 0; 0; 0; 1; 0; 0; 0; 0]
[0; 0; 0; 0; 0; 0; 1; 0; 0; 0]
[0; 0; 0; 0; 0; 0; 0; 1; 0; 0]
[0; 0; 0; 0; 0; 0; 0; 0; 1; 0]
[0; 0; 0; 0; 0; 0; 0; 0; 0; 1]]
Factor
USE: math.matrices
IN: scratchpad 6 identity-matrix .
{
{ 1 0 0 0 0 0 }
{ 0 1 0 0 0 0 }
{ 0 0 1 0 0 0 }
{ 0 0 0 1 0 0 }
{ 0 0 0 0 1 0 }
{ 0 0 0 0 0 1 }
}
FBSL
FBSL's BASIC layer can easily manipulate square matrices of arbitrary sizes and data types in ways similar to e.g. [[BBC BASIC]] or [[OxygenBasic]] as shown elsewhere on this page. But FBSL has also an '''extremely fast built-in''' single-precision vector2f/3f/4f, plane4f, quaternion4f, and matrix4f math library totaling 150 functions and targeting primarily 3D rendering tasks:
#APPTYPE CONSOLE
TYPE M4F ' Matrix 4F
:m11 AS SINGLE
:m12 AS SINGLE
:m13 AS SINGLE
:m14 AS SINGLE
:m21 AS SINGLE
:m22 AS SINGLE
:m23 AS SINGLE
:m24 AS SINGLE
:m31 AS SINGLE
:m32 AS SINGLE
:m33 AS SINGLE
:m34 AS SINGLE
:m41 AS SINGLE
:m42 AS SINGLE
:m43 AS SINGLE
:m44 AS SINGLE
END TYPE
DIM m AS M4F ' DIM zeros out any variable automatically
PRINT "Matrix 'm' is identity: ", IIF(MATRIXISIDENTITY(@m), "TRUE", "FALSE") ' is matrix an identity?
MATRIXIDENTITY(@m) ' set matrix to identity
PRINT "Matrix 'm' is identity: ", IIF(MATRIXISIDENTITY(@m), "TRUE", "FALSE") ' is matrix an identity?
PAUSE
Matrix 'm' is identity: FALSE
Matrix 'm' is identity: TRUE
Press any key to continue...
=={{header|Fōrmulæ}}==
In [http://wiki.formulae.org/Identity_matrix this] page you can see the solution of this task.
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text ([http://wiki.formulae.org/Editing_F%C5%8Drmul%C3%A6_expressions more info]). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.
The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.
Forth
{{libheader|Forth Scientific Library}} {{works with|gforth|0.7.9_20170308}}
S" fsl-util.fs" REQUIRED
: build-identity ( 'p n -- 'p ) \ make an NxN identity matrix
0 DO
I 1+ 0 DO
I J = IF 1.0E0 DUP I J }} F!
ELSE
0.0E0 DUP J I }} F!
0.0E0 DUP I J }} F!
THEN
LOOP
LOOP ;
6 6 float matrix a{{
a{{ 6 build-identity
6 6 a{{ }}fprint
Fortran
{{works with|Fortran|95}}
program identitymatrix
real, dimension(:, :), allocatable :: I
character(len=8) :: fmt
integer :: ms, j
ms = 10 ! the desired size
allocate(I(ms,ms))
I = 0 ! Initialize the array.
forall(j = 1:ms) I(j,j) = 1 ! Set the diagonal.
! I is the identity matrix, let's show it:
write (fmt, '(A,I2,A)') '(', ms, 'F6.2)'
! if you consider to have used the (row, col) convention,
! the following will print the transposed matrix (col, row)
! but I' = I, so it's not important here
write (*, fmt) I(:,:)
deallocate(I)
end program identitymatrix
Notorious trick
The objective is to do the assignment in one fell swoop, rather than separately setting the 0 values and the 1 values. It works because, with integer arithmetic, the only way that both i/j and j/i are one is when they are equal - thus one on the diagonal elements, and zero elsewhere because either i < j so that i/j = 0, or i > j so that j/i = 0. While this means two divides and a multiply per element instead of simply transferring a constant, the constraint on speed is likely to be the limited bandwidth from cpu to memory. The expression's code would surely fit in the cpu's internal memory, and registers would be used for the variables.
Program Identity
Integer N
Parameter (N = 666)
Real A(N,N)
Integer i,j
ForAll(i = 1:N, j = 1:N) A(i,j) = (i/j)*(j/i)
END
The ForAll
statement is a feature of F90, and carries the implication that the assignments may be done in any order, even "simultaneously" (as with multiple cpus), plus that all RHS values are calculated before any LHS part receives a value - not relevant here since the RHS makes no reference to items altered in the LHS. Earlier Fortran compilers lack this statement and so one must use explicit DO-loops:
DO 1 I = 1,N
DO 1 J = 1,N
1 A(I,J) = (I/J)*(J/I)
Array assignment statements are also a feature of F90 and later.
An alternative might be a simpler logical expression testing ''i = j'' except that the numerical values for ''true'' and ''false'' on a particular system may well not be 1 and 0 but (for instance, via Compaq F90/95 on Windows XP) 0 and -1 instead. On an IBM 390 mainframe, pl/i and Fortran used different values. The Burroughs 6700 inspected the low-order bit only, with the intriguing result that odd integers would be deemed ''true'' and even ''false''. Integer arithmetic can't be relied upon across languages either, because in pl/i, integer division doesn't truncate.
FreeBASIC
' FB 1.05.0 Win64
Dim As Integer n
Do
Input "Enter size of matrix "; n
Loop Until n > 0
Dim identity(1 To n, 1 To n) As Integer '' all zero by default
' enter 1s in diagonal elements
For i As Integer = 1 To n
identity(i, i) = 1
Next
' print identity matrix if n < 40
Print
If n < 40 Then
For i As Integer = 1 To n
For j As Integer = 1 To n
Print identity(i, j);
Next j
Print
Next i
Else
Print "Matrix is too big to display on 80 column console"
End If
Print
Print "Press any key to quit"
Sleep
Sample input/output {{out}}
Enter size of matrix ? 5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
FunL
def identity( n ) = vector( n, n, \r, c -> if r == c then 1 else 0 )
println( identity(3) )
{{out}}
((1, 0, 0), (0, 1, 0), (0, 0, 1))
GAP
# Built-in
IdentityMat(3);
# One can also specify the base ring
IdentityMat(3, Integers mod 10);
Go
Library gonum/mat
package main
import (
"fmt"
"gonum.org/v1/gonum/mat"
)
func eye(n int) *mat.Dense {
m := mat.NewDense(n, n, nil)
for i := 0; i < n; i++ {
m.Set(i, i, 1)
}
return m
}
func main() {
fmt.Println(mat.Formatted(eye(3)))
}
{{out}}
⎡1 0 0⎤
⎢0 1 0⎥
⎣0 0 1⎦
Library go.matrix
A somewhat earlier matrix library for Go.
package main
import (
"fmt"
mat "github.com/skelterjohn/go.matrix"
)
func main() {
fmt.Println(mat.Eye(3))
}
{{out}}
{1, 0, 0,
0, 1, 0,
0, 0, 1}
From scratch
'''Simplest: ''' A matrix as a slice of slices, allocated separately.
package main
import "fmt"
func main() {
fmt.Println(I(3))
}
func I(n int) [][]float64 {
m := make([][]float64, n)
for i := 0; i < n; i++ {
a := make([]float64, n)
a[i] = 1
m[i] = a
}
return m
}
{{out}} No special formatting method used.
[[1 0 0] [0 1 0] [0 0 1]]
'''2D, resliced: ''' Representation as a slice of slices still, but with all elements based on single underlying slice. Might save a little memory management, might have a little better locality.
package main
import "fmt"
func main() {
fmt.Println(I(3))
}
func I(n int) [][]float64 {
m := make([][]float64, n)
a := make([]float64, n*n)
for i := 0; i < n; i++ {
a[i] = 1
m[i] = a[:n]
a = a[n:]
}
return m
}
{{out}} Same as previous.
'''Flat: ''' Representation as a single flat slice. You just have to know to handle it as a square matrix. In many cases that's not a problem and the code is simpler this way. If you want to add a little bit of type checking, you can define a matrix type as shown here.
package main
import "fmt"
type matrix []float64
func main() {
n := 3
m := I(n)
// dump flat represenation
fmt.Println(m)
// function x turns a row and column into an index into the
// flat representation.
x := func(r, c int) int { return r*n + c }
// access m by row and column.
for r := 0; r < n; r++ {
for c := 0; c < n; c++ {
fmt.Print(m[x(r, c)], " ")
}
fmt.Println()
}
}
func I(n int) matrix {
m := make(matrix, n*n)
// a fast way to initialize the flat representation
n++
for i := 0; i < len(m); i += n {
m[i] = 1
}
return m
}
{{out}}
[1 0 0 0 1 0 0 0 1]
1 0 0
0 1 0
0 0 1
Groovy
Solution:
def makeIdentityMatrix = { n ->
(0..<n).collect { i -> (0..<n).collect { j -> (i == j) ? 1 : 0 } }
}
Test:
(2..6).each { order ->
def iMatrix = makeIdentityMatrix(order)
iMatrix.each { println it }
println()
}
{{out}}
[1, 0]
[0, 1]
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]
[1, 0, 0, 0, 0]
[0, 1, 0, 0, 0]
[0, 0, 1, 0, 0]
[0, 0, 0, 1, 0]
[0, 0, 0, 0, 1]
[1, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0]
[0, 0, 0, 1, 0, 0]
[0, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 0, 1]
Haskell
matI n = [ [fromEnum $ i == j | i <- [1..n]] | j <- [1..n]]
And a function to show matrix pretty:
showMat :: [[Int]] -> String
showMat = unlines . map (unwords . map show)
*Main> putStr $ showMat $ matId 9
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
We could alternatively bypassing the syntactic sugaring of list comprehension notation, and use a bind function directly:
idMatrix :: Int -> [[Int]]
idMatrix n =
let xs = [1 .. n]
in xs >>= \x -> [xs >>= \y -> [fromEnum (x == y)]]
or reduce the number of terms a little to:
idMatrix :: Int -> [[Int]]
idMatrix n =
let xs = [1 .. n]
in (\x -> fromEnum . (x ==) <$> xs) <$> xs
main :: IO ()
main = (putStr . unlines) $ unwords . fmap show <$> idMatrix 5
{{Out}}
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
=={{header|Icon}} and {{header|Unicon}}==
This code works for Icon and Unicon.
link matrix
procedure main(argv)
if not (integer(argv[1]) > 0) then stop("Argument must be a positive integer.")
matrix1 := identity_matrix(argv[1], argv[1])
write_matrix(&output,matrix1)
end
{{out}}
->im 6
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
->
=={{header|IS-BASIC}}==
## J
```j
= i. 4 NB. create an Identity matrix of size 4
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
makeI=: =@i. NB. define as a verb with a user-defined name
makeI 5 NB. create an Identity matrix of size 5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
Java
public class PrintIdentityMatrix {
public static void main(String[] args) {
int n = 5;
int[][] array = new int[n][n];
IntStream.range(0, n).forEach(i -> array[i][i] = 1);
Arrays.stream(array)
.map((int[] a) -> Arrays.toString(a))
.forEach(System.out::println);
}
}
{{out}}
[1, 0, 0, 0, 0]
[0, 1, 0, 0, 0]
[0, 0, 1, 0, 0]
[0, 0, 0, 1, 0]
[0, 0, 0, 0, 1]
JavaScript
ES5
function idMatrix(n) {
return Array.apply(null, new Array(n))
.map(function (x, i, xs) {
return xs.map(function (_, k) {
return i === k ? 1 : 0;
})
});
}
ES6
(() => {
// idMatrix :: Int -> [[0 | 1]]
const idMatrix = n => Array.from({
length: n
}, (_, i) => Array.from({
length: n
}, (_, j) => i !== j ? 0 : 1));
// show :: a -> String
const show = JSON.stringify;
// TEST
return idMatrix(5)
.map(show)
.join('\n');
})();
{{Out}}
[1,0,0,0,0]
[0,1,0,0,0]
[0,0,1,0,0]
[0,0,0,1,0]
[0,0,0,0,1]
jq
Construction
def identity(n):
[range(0;n) | 0] as $row
| reduce range(0;n) as $i ([]; . + [ $row | .[$i] = 1 ] );
Example:
identity(4)
produces: [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
Using matrix/2
Using the definition of matrix/2 at [[Create_a_two-dimensional_array_at_runtime#jq]]:
def identity(n):
reduce range(0;n) as $i
(0 | matrix(n;n); .[$i][$i] = 1);
Jsish
/* Identity matrix, in Jsish */
function identityMatrix(n) {
var mat = new Array(n).fill(0);
for (var r in mat) {
mat[r] = new Array(n).fill(0);
mat[r][r] = 1;
}
return mat;
}
provide('identityMatrix', 1);
if (Interp.conf('unitTest')) {
; identityMatrix(0);
; identityMatrix(1);
; identityMatrix(2);
; identityMatrix(3);
var mat = identityMatrix(4);
for (var r in mat) puts(mat[r]);
}
/*
=!EXPECTSTART!=
identityMatrix(0) ==> []
identityMatrix(1) ==> [ [ 1 ] ]
identityMatrix(2) ==> [ [ 1, 0 ], [ 0, 1 ] ]
identityMatrix(3) ==> [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
[ 1, 0, 0, 0 ]
[ 0, 1, 0, 0 ]
[ 0, 0, 1, 0 ]
[ 0, 0, 0, 1 ]
=!EXPECTEND!=
*/
{{out}}
promt$ jsish -u identityMatrix.jsi
[PASS] identityMatrix.jsi
Julia
The eye function takes an integer argument and returns a square identity matrix of that size.
eye(3)
This returns:
3x3 Float64 Array:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
If you want to take the size from the commandline:
eye(int(readline(STDIN)))
You can also can also call eye(m,n) to create an M-by-N identity matrix. For example:
eye(2,3)
results in:
2x3 Float64 Array:
1.0 0.0 0.0
0.0 1.0 0.0
K
=4
(1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1)
=5
(1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1)
Kotlin
// version 1.0.6
fun main(args: Array<String>) {
print("Enter size of matrix : ")
val n = readLine()!!.toInt()
println()
val identity = Array(n) { IntArray(n) } // create n x n matrix of integers
// enter 1s in diagonal elements
for(i in 0 until n) identity[i][i] = 1
// print identity matrix if n <= 40
if (n <= 40)
for (i in 0 until n) println(identity[i].joinToString(" "))
else
println("Matrix is too big to display on 80 column console")
}
Sample input/output {{out}}
Enter size of matrix : 5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
LSL
To test it yourself; rez a box on the ground, and add the following as a New Script.
default {
state_entry() {
llListen(PUBLIC_CHANNEL, "", llGetOwner(), "");
llOwnerSay("Please Enter a Dimension for an Identity Matrix.");
}
listen(integer iChannel, string sName, key kId, string sMessage) {
llOwnerSay("You entered "+sMessage+".");
list lMatrix = [];
integer x = 0;
integer n = (integer)sMessage;
for(x=0 ; x<n*n ; x++) {
lMatrix += [(integer)(((x+1)%(n+1))==1)];
}
//llOwnerSay("["+llList2CSV(lMatrix)+"]");
for(x=0 ; x<n ; x++) {
llOwnerSay("["+llList2CSV(llList2ListStrided(lMatrix, x*n, (x+1)*n-1, 1))+"]");
}
}
}
{{out}}
You: 0
Identity_Matrix: You entered 0.
You: 1
Identity_Matrix: You entered 1.
Identity_Matrix: [1]
You: 3
Identity_Matrix: You entered 3.
Identity_Matrix: [1, 0, 0]
Identity_Matrix: [0, 1, 0]
Identity_Matrix: [0, 0, 1]
You: 5
Identity_Matrix: You entered 5.
Identity_Matrix: [1, 0, 0, 0, 0]
Identity_Matrix: [0, 1, 0, 0, 0]
Identity_Matrix: [0, 0, 1, 0, 0]
Identity_Matrix: [0, 0, 0, 1, 0]
Identity_Matrix: [0, 0, 0, 0, 1]
Lang5
: identity-matrix
dup iota 'A set
: i.(*) A in ;
[1] swap append reverse A swap reshape 'i. apply
;
5 identity-matrix .
{{out}}
[
[ 1 0 0 0 0 ]
[ 0 1 0 0 0 ]
[ 0 0 1 0 0 ]
[ 0 0 0 1 0 ]
[ 0 0 0 0 1 ]
]
LFE
(defun identity
((`(,m ,n))
(identity m n))
((m)
(identity m m)))
(defun identity (m n)
(lists:duplicate m (lists:duplicate n 1)))
From the LFE REPL; note that the last two usage examples demonstrate how identify could be used when composed with functions that get the dimension of a matrix:
> (identity 3)
((1 1 1) (1 1 1) (1 1 1))
> (identity 3 3)
((1 1 1) (1 1 1) (1 1 1))
> (identity '(3 3))
((1 1 1) (1 1 1) (1 1 1))
Lua
function identity_matrix (size)
local m = {}
for i = 1, size do
m[i] = {}
for j = 1, size do
m[i][j] = i == j and 1 or 0
end
end
return m
end
function print_matrix (m)
for i = 1, #m do
print(table.concat(m[i], " "))
end
end
print_matrix(identity_matrix(5))
{{out}}
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
Maple
One of a number of ways to do this:
> LinearAlgebra:-IdentityMatrix( 4 );
[1 0 0 0]
[ ]
[0 1 0 0]
[ ]
[0 0 1 0]
[ ]
[0 0 0 1]
Here, for instance, is another, in which the entries are (4-byte) floats.
> Matrix( 4, shape = scalar[1], datatype = float[4] );
[1. 0. 0. 0.]
[ ]
[0. 1. 0. 0.]
[ ]
[0. 0. 1. 0.]
[ ]
[0. 0. 0. 1.]
Yet another, with 2-byte integer entries:
> Matrix( 4, shape = identity, datatype = integer[ 2 ] );
[1 0 0 0]
[ ]
[0 1 0 0]
[ ]
[0 0 1 0]
[ ]
[0 0 0 1]
MathCortex
I = eye(10)
=={{header|Mathematica}} / {{header|Wolfram Language}}==
IdentityMatrix[4]
=={{header|MATLAB}} / {{header|Octave}}== The '''eye''' function create the identity (I) matrix, e.g.:
I = eye(10)
Maxima
ident(4);
/* matrix([1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]) */
NetRexx
Using int Array
{{trans|REXX}}
/* NetRexx ************************************************************
* show identity matrix of size n
* I consider m[i,j] to represent the matrix
* 09.07.2013 Walter Pachl (translated from REXX Version 2)
**********************************************************************/
options replace format comments java crossref symbols binary
Parse Arg n .
If n='' then n=5
Say 'Identity Matrix of size' n '(m[i,j] IS the Matrix)'
m=int[n,n] -- Allocate 2D square array at run-time
Loop i=0 To n-1 -- Like Java, arrays in NetRexx start at 0
ol=''
Loop j=0 To n-1
m[i,j]=(i=j)
ol=ol m[i,j]
End
Say ol
End
Using Indexed String
/* NetRexx */
options replace format comments java crossref symbols nobinary
runSample(arg)
return
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method createIdMatrix(n) public static
DIM_ = 'DIMENSION'
m = 0 -- Indexed string to hold matrix; default value for all elements is zero
m[DIM_] = n
loop i = 1 to n -- NetRexx indexed strings don't have to start at zero
m[i, i] = 1 -- set this diagonal element to 1
end i
return m
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method displayIdMatrix(m) public static
DIM_ = 'DIMENSION'
if \m.exists(DIM_) then signal RuntimeException('Matrix dimension not set')
n = m[DIM_]
loop i = 1 to n
ol = ''
loop j = 1 To n
ol = ol m[i, j]
end j
say ol
end i
return
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method runSample(arg) public static
parse arg n .
if n = '' then n = 5
say 'Identity Matrix of size' n
displayIdMatrix(createIdMatrix(n))
return
Nim
proc identityMatrix(n): auto =
result = newSeq[seq[int]](n)
for i in 0 .. < result.len:
result[i] = newSeq[int](n)
result[i][i] = 1
Objeck
class IdentityMatrix {
function : Matrix(n : Int) ~ Int[,] {
array := Int->New[n,n];
for(row:=0; row<n; row+=1;){
for(col:=0; col<n; col+=1;){
if(row = col){
array[row, col] := 1;
}
else{
array[row,col] := 0;
};
};
};
return array;
}
function : PrintMatrix(array : Int[,]) ~ Nil {
sizes := array->Size();
for(row:=0; row<sizes[0]; row+=1;){
for(col:=0; col<sizes[1]; col+=1;){
value := array[row,col];
"{$value} \t"->Print();
};
'\n'->PrintLine();
};
}
function : Main(args : String[]) ~ Nil {
PrintMatrix(Matrix(5));
}
}
OCaml
From the interactive loop (that we call the "toplevel"):
$ ocaml
# let make_id_matrix n =
let m = Array.make_matrix n n 0.0 in
for i = 0 to pred n do
m.(i).(i) <- 1.0
done;
(m)
;;
val make_id_matrix : int -> float array array = <fun>
# make_id_matrix 4 ;;
- : float array array =
[| [|1.; 0.; 0.; 0.|];
[|0.; 1.; 0.; 0.|];
[|0.; 0.; 1.; 0.|];
[|0.; 0.; 0.; 1.|] |]
another way:
# let make_id_matrix n =
Array.init n (fun i ->
Array.init n (fun j ->
if i = j then 1.0 else 0.0))
;;
val make_id_matrix : int -> float array array = <fun>
# make_id_matrix 4 ;;
- : float array array =
[| [|1.; 0.; 0.; 0.|];
[|0.; 1.; 0.; 0.|];
[|0.; 0.; 1.; 0.|];
[|0.; 0.; 0.; 1.|] |]
When we write a function in the toplevel, it returns us its signature (the prototype), and when we write a variable (or a function call), it returns its type and its value.
Octave
The '''eye''' function create the identity (I) matrix, e.g.:
I = eye(10)
ooRexx
ooRexx doesn't have a proper matrix class, but it does have multidimensional arrays.
say "a 3x3 identity matrix"
say
call printMatrix createIdentityMatrix(3)
say
say "a 5x5 identity matrix"
say
call printMatrix createIdentityMatrix(5)
::routine createIdentityMatrix
use arg size
matrix = .array~new(size, size)
loop i = 1 to size
loop j = 1 to size
if i == j then matrix[i, j] = 1
else matrix[i, j] = 0
end j
end i
return matrix
::routine printMatrix
use arg matrix
loop i = 1 to matrix~dimension(1)
line = ""
loop j = 1 to matrix~dimension(2)
line = line matrix[i, j]
end j
say line
end i
{{out}}
a 3x3 identity matrix 1 0 0 0 1 0 0 0 1 a 5x5 identity matrix 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 ``` ## OxygenBasic ```oxygenbasic Class SquareMatrix ' ### =========== double *Cell sys size method SetIdentity() indexbase 0 sys e,i,j e=size*size for i=0 to$i, $j { @id[$i][$j] = +($i == $j); } @id; } .say for identity-matrix(5); ``` {{out}} ```txt [1 0 0 0 0] [0 1 0 0 0] [0 0 1 0 0] [0 0 0 1 0] [0 0 0 0 1] ``` On the other hand, this may be clearer and/or faster: ```perl6 sub identity-matrix($n) { my @id = [0 xx $n] xx $n; @id[$_][$_] = 1 for ^$n; @id; } ``` Here is yet an other way to do it: ```perl6 sub identity-matrix($n) { [1, |(0 xx $n-1)], *.rotate(-1) ... *[*-1] } ``` ## Phix ```Phix function identity(integer n) sequence res = repeat(repeat(0,n),n) for i=1 to n do res[i][i] = 1 end for return res end function ppOpt({pp_Nest,1}) pp(identity(3)) pp(identity(5)) pp(identity(7)) pp(identity(9)) ``` {{out}} {{1,0,0}, {0,1,0}, {0,0,1}} ```{{1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}, {0,0,0,0,1}} ```{{1,0,0,0,0,0,0}, {0,1,0,0,0,0,0}, {0,0,1,0,0,0,0}, {0,0,0,1,0,0,0}, {0,0,0,0,1,0,0}, {0,0,0,0,0,1,0}, {0,0,0,0,0,0,1}} ``` ```txt {{1,0,0,0,0,0,0,0,0}, {0,1,0,0,0,0,0,0,0}, {0,0,1,0,0,0,0,0,0}, {0,0,0,1,0,0,0,0,0}, {0,0,0,0,1,0,0,0,0}, {0,0,0,0,0,1,0,0,0}, {0,0,0,0,0,0,1,0,0}, {0,0,0,0,0,0,0,1,0}, {0,0,0,0,0,0,0,0,1}} ``` ## PHP ```php function createMatrix($size) { $result = array(); for ($i = 0; $i < $size; $i++) { $row = array_fill(0, $size, 0); $row[$i] = 1; $result[] = $row; } return $result; } function printMatrix(array $matrix) { foreach ($matrix as $row) { foreach ($row as $column) { echo $column . " "; } echo PHP_EOL; } echo PHP_EOL; } printMatrix(createMatrix(5)); ``` {{out}} ```txt 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 ``` ## PicoLisp ```PicoLisp (de identity (Size) (let L (need Size (1) 0) (make (do Size (link (copy (rot L))) ) ) ) ) ``` Test: ```PicoLisp : (identity 3) -> ((1 0 0) (0 1 0) (0 0 1)) : (mapc println (identity 5)) (1 0 0 0 0) (0 1 0 0 0) (0 0 1 0 0) (0 0 0 1 0) (0 0 0 0 1) ``` ## PL/I ```PL/I identity: procedure (A, n); declare A(n,n) fixed controlled; declare (i,n) fixed binary; allocate A; A = 0; do i = 1 to n; A(i,i) = 1; end; end identity; ``` ## PostScript ```PostScript % n ident [identity-matrix] % create an identity matrix of dimension n*n. % Uses a local dictionary for its one parameter, perhaps overkill. % Constructs arrays of arrays of integers using [], for loops, and stack manipulation. /ident { 1 dict begin /n exch def [ 1 1 n { % [ i [ exch % [ [ i 1 1 n { % [ [ i j 1 index eq { 1 }{ 0 } ifelse % [ [ i b exch % [ [ b i } for % [ [ b+ i pop ] % [ [ b+ ] } for % [ [b+]+ ] ] end } def ``` ## PowerShell ```PowerShell function identity($n) { 0..($n-1) | foreach{$row = @(0) * $n; $row[$_] = 1; ,$row} } function show($a) { $a | foreach{ "$_"} } $array = identity 4 show $array ``` Output: ```txt 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ``` ```PowerShell $array[0][0] $array[0][1] ``` Output: ```txt 1 0 ``` ## PureBasic ```purebasic> Procedure identityMatrix(Array i(2), size) ;valid only for size >= 0 ;formats array i() as an identity matrix of size x size Dim i(size - 1, size - 1) Protected j For j = 0 To size - 1 i(j, j) = 1 Next EndProcedure Procedure displayMatrix(Array a(2)) Protected rows = ArraySize(a(), 2), columns = ArraySize(a(), 1) Protected i, j For i = 0 To rows For j = 0 To columns Print(RSet(Str(a(i, j)), 3, " ")) Next PrintN("") Next EndProcedure If OpenConsole() Dim i3(0, 0) Dim i4(0, 0) identityMatrix(i3(), 3) identityMatrix(i4(), 4) displayMatrix(i3()) PrintN("") displayMatrix(i4()) Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input() CloseConsole() EndIf ``` {{out}} ```txt 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ``` ## Python ### Nested lists A simple solution, using nested lists to represent the matrix. ```python def identity(size): matrix = [[0]*size for i in range(size)] #matrix = [[0] * size] * size #Has a flaw. See http://stackoverflow.com/questions/240178/unexpected-feature-in-a-python-list-of-lists for i in range(size): matrix[i][i] = 1 for rows in matrix: for elements in rows: print elements, print "" ``` ### Nested maps and comprehensions {{Works with|Python|3.7}} ```python '''Identity matrices by maps and equivalent list comprehensions''' import operator # idMatrix :: Int -> [[Int]] def idMatrix(n): '''Identity matrix of order n, expressed as a nested map. ''' eq = curry(operator.eq) xs = range(0, n) return list(map( lambda x: list(map( compose(int)(eq(x)), xs )), xs )) # idMatrix3 :: Int -> [[Int]] def idMatrix2(n): '''Identity matrix of order n, expressed as a nested comprehension. ''' xs = range(0, n) return ([int(x == y) for x in xs] for y in xs) # TEST ---------------------------------------------------- def main(): ''' Identity matrix of dimension five, by two different routes. ''' for f in [idMatrix, idMatrix2]: print( '\n' + f.__name__ + ':', '\n\n' + '\n'.join(map(str, f(5))), ) # GENERIC ------------------------------------------------- # compose (<<<) :: (b -> c) -> (a -> b) -> a -> c def compose(g): '''Right to left function composition.''' return lambda f: lambda x: g(f(x)) # curry :: ((a, b) -> c) -> a -> b -> c def curry(f): '''A curried function derived from an uncurried function.''' return lambda a: lambda b: f(a, b) # MAIN --- if __name__ == '__main__': main() ``` {{Out}} ```txt idMatrix: [1, 0, 0, 0, 0] [0, 1, 0, 0, 0] [0, 0, 1, 0, 0] [0, 0, 0, 1, 0] [0, 0, 0, 0, 1] idMatrix2: [1, 0, 0, 0, 0] [0, 1, 0, 0, 0] [0, 0, 1, 0, 0] [0, 0, 0, 1, 0] [0, 0, 0, 0, 1] ``` ### Dict of points A dict of tuples of two ints (x, y) are used to represent the matrix. ```python>>> def identity(size): ... return {(x, y):int(x == y) for x in range(size) for y in range(size)} ... >>> size = 4 >>> matrix = identity(size) >>> print('\n'.join(' '.join(str(matrix[(x, y)]) for x in range(size)) for y in range(size))) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 >>> ``` ### Numpy A solution using the numpy library ```python np.mat(np.eye(size)) ``` ## R When passed a single scalar argument,diag
produces an identity matrix of size given by the scalar. For example: ```rsplus diag(3) ``` produces: ```txt [,1] [,2] [,3] [1,] 1 0 0 [2,] 0 1 0 [3,] 0 0 1 ``` Or you can also use the method that is shown below ```rsplus Identity_matrix=function(size){ x=matrix(0,size,size) for (i in 1:size) { x[i,i]=1 } return(x) } ``` ## Racket ```racket #lang racket (require math) (identity-matrix 5) ``` {{out}} ```txt (array #[#[1 0 0 0 0] #[0 1 0 0 0] #[0 0 1 0 0] #[0 0 0 1 0] #[0 0 0 0 1]]) ``` ## REXX ### version 1 The REXX language doesn't have matrices as such, so the problem is largely how to display the "matrix". The code to display the matrices was kept as a stand-alone general-purpose (square) matrix display subroutine, which, in part, determines if the square matrix is indeed a square matrix based on the number of elements given. It also finds the maximum widths of the integer and decimal fraction parts (if any) and uses those widths to align (right-justify according to the [possibly implied] decimal point) the columns of the square matrix. It also tries to display a centered (and easier to read) matrix, along with a title. ```rexx /*REXX program creates and displays any sized identity matrix (centered, with title).*/ do k=3 to 6 /* [↓] build and display a sq. matrix.*/ call ident_mat k /*build & display a KxK square matrix. */ end /*k*/ /* [↑] use general─purpose display sub*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ ident_mat: procedure; parse arg n; $= do r=1 for n /*build identity matrix, by row and col*/ do c=1 for n; $= $ (r==c) /*append zero or one (if on diag). */ end /*c*/ end /*r*/ call showMat 'identity matrix of size' n, $ return /*──────────────────────────────────────────────────────────────────────────────────────*/ showMat: procedure; parse arg hdr,x; #=words(x) /*# is the number of matrix elements. */ dp= 0 /*DP: max width of decimal fractions. */ w= 0 /*W: max width of integer part. */ do n=1 until n*n>=#; _= word(x,n) /*determine the matrix order. */ parse var _ y '.' f; w= max(w, length(y)); dp= max(dp, length(f) ) end /*n*/ /* [↑] idiomatically find the widths. */ w= w +1 say; say center(hdr, max(length(hdr)+8, (w+1)*#%n), '─'); say #= 0 /*#: element #.*/ do row=1 for n; _= left('', n+w) /*indentation. */ do col=1 for n; #= # + 1 /*bump element.*/ _=_ right(format(word(x, #), , dp)/1, w) end /*col*/ /* [↑] division by unity normalizes #.*/ say _ /*display a single line of the matrix. */ end /*row*/ return ``` {{out|output|text= when using the default sizes (3 ──► 6) for generating four matrices:}} ```txt ────identity matrix of size 3──── 1 0 0 0 1 0 0 0 1 ────identity matrix of size 4──── 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ────identity matrix of size 5──── 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 ────identity matrix of size 6──── 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ``` ### version 2 An alternative?! ```rexx /* REXX *************************************************************** * show identity matrix of size n * I consider m.i.j to represent the matrix (not needed for showing) * 06.07.2012 Walter Pachl **********************************************************************/ Parse Arg n Say 'Identity Matrix of size' n '(m.i.j IS the Matrix)' m.=0 Do i=1 To n ol='' Do j=1 To n m.i.j=(i=j) ol=ol''format(m.i.j,2) /* or ol=ol (i=j) */ End Say ol End ``` {{out}} ```txt Identity Matrix of size 3 (m.i.j IS the Matrix) 1 0 0 0 1 0 0 0 1 ``` This could be a 3-dimensional sparse matrix with one element set: ```rexx m.=0 m.0=1000 /* the matrix' size */ m.4.17.333='Walter' ``` ## Ring ```ring size = 5 im = newlist(size, size) identityMatrix(size, im) for r = 1 to size for c = 1 to size see im[r][c] next see nl next func identityMatrix s, m m = newlist(s, s) for i = 1 to s m[i][i] = 1 next return m func newlist x, y if isstring(x) x=0+x ok if isstring(y) y=0+y ok alist = list(x) for t in alist t = list(y) next return alist ``` Output: ```txt 10000 01000 00100 00010 00001 ``` ## Ruby ### Using Array ```ruby def identity(size) Array.new(size){|i| Array.new(size){|j| i==j ? 1 : 0}} end [4,5,6].each do |size| puts size, identity(size).map {|r| r.to_s}, "" end ``` {{out}} ```txt 4 [1, 0, 0, 0] [0, 1, 0, 0] [0, 0, 1, 0] [0, 0, 0, 1] 5 [1, 0, 0, 0, 0] [0, 1, 0, 0, 0] [0, 0, 1, 0, 0] [0, 0, 0, 1, 0] [0, 0, 0, 0, 1] 6 [1, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0, 0] [0, 0, 1, 0, 0, 0] [0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0] [0, 0, 0, 0, 0, 1] ``` ### Using Matrix ```ruby 2.1.1 :001 > require "matrix" => true 2.1.1 :002 > Matrix.identity(5) => Matrix[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]] ``` ## Run BASIC ```runbasic ' formats array im() of size ims for ims = 4 to 6 print :print "--- Size: ";ims;" ---" Dim im(ims,ims) For i = 1 To ims im(i,i) = 1 next For row = 1 To ims print "["; cma$ = "" For col = 1 To ims print cma$;im(row, col); cma$ = ", " next print "]" next next ims ``` {{out}} ```txt --- Size: 4 --- [1, 0, 0, 0] [0, 1, 0, 0] [0, 0, 1, 0] [0, 0, 0, 1] --- Size: 5 --- [1, 0, 0, 0, 0] [0, 1, 0, 0, 0] [0, 0, 1, 0, 0] [0, 0, 0, 1, 0] [0, 0, 0, 0, 1] --- Size: 6 --- [1, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0, 0] [0, 0, 1, 0, 0, 0] [0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0] [0, 0, 0, 0, 0, 1] ``` ## Rust Run with command-line containing the matrix size. ```rust extern crate num; struct Matrix{ data: Vec , size: usize, } impl Matrix where T: num::Num + Clone + Copy, { fn new(size: usize) -> Self { Self { data: vec![T::zero(); size * size], size: size, } } fn get(&mut self, x: usize, y: usize) -> T { self.data[x + self.size * y] } fn identity(&mut self) { for (i, item) in self.data.iter_mut().enumerate() { *item = if i % (self.size + 1) == 0 { T::one() } else { T::zero() } } } } fn main() { let size = std::env::args().nth(1).unwrap().parse().unwrap(); let mut matrix = Matrix:: ::new(size); matrix.identity(); for y in 0..size { for x in 0..size { print!("{} ", matrix.get(x, y)); } println!(); } } ``` ## Scala ```scala def identityMatrix(n:Int)=Array.tabulate(n,n)((x,y) => if(x==y) 1 else 0) def printMatrix[T](m:Array[Array[T]])=m map (_.mkString("[", ", ", "]")) mkString "\n" printMatrix(identityMatrix(5)) ``` {{out}} ```txt [1, 0, 0, 0, 0] [0, 1, 0, 0, 0] [0, 0, 1, 0, 0] [0, 0, 0, 1, 0] [0, 0, 0, 0, 1] ``` ## Scheme When representing a matrix as a collection of nested lists: ```scheme (define (identity n) (letrec ((uvec (lambda (m i acc) (if (= i n) acc (uvec m (+ i 1) (cons (if (= i m) 1 0) acc))))) (idgen (lambda (i acc) (if (= i n) acc (idgen (+ i 1) (cons (uvec i 0 '()) acc)))))) (idgen 0 '()))) ``` Test program: ```scheme (display (identity 4)) ``` {{out}} ```txt ((1 0 0 0) (0 1 0 0) (0 0 1 0) (0 0 0 1)) ``` ## Seed7 ```seed7 $ include "seed7_05.s7i"; const type: matrix is array array integer; const func matrix: identity (in integer: size) is func result var matrix: identity is matrix.value; local var integer: index is 0; begin identity := size times size times 0; for index range 1 to size do identity[index][index] := 1; end for; end func; const proc: writeMat (in matrix: a) is func local var integer: i is 0; var integer: num is 0; begin for key i range a do for num range a[i] do write(num lpad 2); end for; writeln; end for; end func; const proc: main is func begin writeMat(identity(6)); end func; ``` {{out}} ```txt 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ``` ## Sidef ```ruby func identity_matrix(n) { n.of { |i| n.of { |j| i == j ? 1 : 0 } } } for n (ARGV ? ARGV.map{.to_i} : [4, 5, 6]) { say "\n#{n}:" for row (identity_matrix(n)) { say row.join(' ') } } ``` {{out}} ```txt 4: 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 5: 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 6: 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ``` ## Sinclair ZX81 BASIC Works with 1k of RAM, but for a larger matrix you'll want at least 2k. ```zxbasic 10 INPUT S 20 DIM M(S,S) 30 FOR I=1 TO S 40 LET M(I,I)=1 50 NEXT I 60 FOR I=1 TO S 70 SCROLL 80 FOR J=1 TO S 90 PRINT M(I,J); 100 NEXT J 110 PRINT 120 NEXT I ``` {{in}} ```txt 10 ``` {{out}} ```txt 1000000000 0100000000 0010000000 0001000000 0000100000 0000010000 0000001000 0000000100 0000000010 0000000001 ``` ## Smalltalk {{works with|Pharo Smalltalk}} ```smalltalk (Array2D identity: (UIManager default request: 'Enter size of the matrix:') asInteger) asString ``` {{Out}} ```txt '(1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 )' ``` ## Sparkling ```sparkling function unitMatrix(n) { return map(range(n), function(k1, v1) { return map(range(n), function(k2, v2) { return v2 == v1 ? 1 : 0; }); }); } ``` ## Stata ### Stata matrix ```stata . mat a = I(3) . mat list a symmetric a[3,3] c1 c2 c3 r1 1 r2 0 1 r3 0 0 1 ``` ### Mata ```stata : I(3) [symmetric] 1 2 3 +-------------+ 1 | 1 | 2 | 0 1 | 3 | 0 0 1 | +-------------+ ``` ## Swift {{trans|Elixir}} ```swift func identityMatrix(size: Int) -> [[Int]] { return (0.. (def i: $; [1..$n -> (<$i> 1 ! <> 0 !)] !)] ! end identityMatrix def identity: 5 -> identityMatrix; $identity... -> '|$(1);$(2..-1)... -> ', $;';| ' -> !OUT::write ``` {{out}} ```txt |1, 0, 0, 0, 0| |0, 1, 0, 0, 0| |0, 0, 1, 0, 0| |0, 0, 0, 1, 0| |0, 0, 0, 0, 1| ``` ## Tcl When representing a matrix as a collection of nested lists: ```tcl proc I {rank {zero 0.0} {one 1.0}} { set m [lrepeat $rank [lrepeat $rank $zero]] for {set i 0} {$i < $rank} {incr i} { lset m $i $i $one } return $m } ``` Or alternatively with the help of the tcllib package for rectangular data structures: {{tcllib|struct::matrix}} ```tcl package require struct::matrix proc I {rank {zero 0.0} {one 1.0}} { set m [struct::matrix] $m add columns $rank $m add rows $rank for {set i 0} {$i < $rank} {incr i} { for {set j 0} {$j < $rank} {incr j} { $m set cell $i $j [expr {$i==$j ? $one : $zero}] } } return $m } ``` Demonstrating the latter: ```tcl set m [I 5 0 1] ;# Integer 0/1 for clarity of presentation puts [$m format 2string] ``` {{out}} ```txt 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 ``` ## TypeScript ```typescript function identity(n) { if (n < 1) return "Not defined"; else if (n == 1) return 1; else { var idMatrix:number[][]; for (var i: number = 0; i < n; i++) { for (var j: number = 0; j < n; j++) { if (i != j) idMatrix[i][j] = 0; else idMatrix[i][j] = 1; } } return idMatrix; } } ``` ## Vala ```vala int main (string[] args) { if (args.length < 2) { print ("Please, input an integer > 0.\n"); return 0; } var n = int.parse (args[1]); if (n <= 0) { print ("Please, input an integer > 0.\n"); return 0; } int[,] array = new int[n, n]; for (var i = 0; i < n; i ++) { for (var j = 0; j < n; j ++) { if (i == j) array[i,j] = 1; else array[i,j] = 0; } } for (var i = 0; i < n; i ++) { for (var j = 0; j < n; j ++) { print ("%d ", array[i,j]); } print ("\b\n"); } return 0; } ``` ## VBA ```vb Private Function Identity(n As Integer) As Variant Dim I() As Integer ReDim I(n - 1, n - 1) For j = 0 To n - 1 I(j, j) = 1 Next j Identity = I End Function ``` ## VBScript ```vb build_matrix(7) Sub build_matrix(n) Dim matrix() ReDim matrix(n-1,n-1) i = 0 'populate the matrix For row = 0 To n-1 For col = 0 To n-1 If col = i Then matrix(row,col) = 1 Else matrix(row,col) = 0 End If Next i = i + 1 Next 'display the matrix For row = 0 To n-1 For col = 0 To n-1 If col < n-1 Then WScript.StdOut.Write matrix(row,col) & " " Else WScript.StdOut.Write matrix(row,col) End If Next WScript.StdOut.WriteLine Next End Sub ``` {{Out}} ```txt 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ``` '''Alternate version''' ```vbscript n = 8 arr = Identity(n) for i = 0 to n-1 for j = 0 to n-1 wscript.stdout.Write arr(i,j) & " " next wscript.stdout.writeline next Function Identity (size) Execute Replace("dim a(#,#):for i=0 to #:for j=0 to #:a(i,j)=0:next:a(i,i)=1:next","#",size-1) Identity = a End Function ``` {{Out}} ```txt 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 ``` ## Visual Basic {{works with|Visual Basic|6}} ```vb Option Explicit '------------ Public Function BuildIdentityMatrix(ByVal Size As Long) As Byte() Dim i As Long Dim b() As Byte Size = Size - 1 ReDim b(0 To Size, 0 To Size) 'at this point, the matrix is allocated and 'all elements are initialized to 0 (zero) For i = 0 To Size b(i, i) = 1 'set diagonal elements to 1 Next i BuildIdentityMatrix = b End Function '------------ Sub IdentityMatrixDemo(ByVal Size As Long) Dim b() As Byte Dim i As Long, j As Long b() = BuildIdentityMatrix(Size) For i = LBound(b(), 1) To UBound(b(), 1) For j = LBound(b(), 2) To UBound(b(), 2) Debug.Print CStr(b(i, j)); Next j Debug.Print Next i End Sub '------------ Sub Main() IdentityMatrixDemo 5 Debug.Print IdentityMatrixDemo 10 End Sub ``` {{out}} ```txt 10000 01000 00100 00010 00001 1000000000 0100000000 0010000000 0001000000 0000100000 0000010000 0000001000 0000000100 0000000010 0000000001 ``` ## Wortel ```wortel @let { im ^(%^\@table ^(@+ =) @to) !im 4 } ``` Returns: ```txt [[1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1]] ``` ## XPL0 ```XPL0 include c:\cxpl\codes; def IntSize = 4; \number of bytes in an integer int Matrix, Size, I, J; [Text(0, "Size: "); Size:= IntIn(0); Matrix:= Reserve(Size*IntSize); \reserve memory for 2D integer array for I:= 0 to Size-1 do Matrix(I):= Reserve(Size*IntSize); for J:= 0 to Size-1 do \make array an identity matrix for I:= 0 to Size-1 do Matrix(I,J):= if I=J then 1 else 0; for J:= 0 to Size-1 do \display the result [for I:= 0 to Size-1 do [IntOut(0, Matrix(I,J)); ChOut(0, ^ )]; CrLf(0); ]; ] ``` {{out}} ```txt Size: 5 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 ``` ## zkl Using lists of lists: ```zkl fcn idMatrix(n){ m:=(0).pump(n,List.createLong(n).write,0)*n; m.apply2(fcn(row,rc){ row[rc.inc()]=1 },Ref(0)); m } idMatrix(5).println(); idMatrix(5).pump(Console.println); ``` {{out}} ```txt L(L(1,0,0,0,0),L(0,1,0,0,0),L(0,0,1,0,0),L(0,0,0,1,0),L(0,0,0,0,1)) L(1,0,0,0,0) L(0,1,0,0,0) L(0,0,1,0,0) L(0,0,0,1,0) L(0,0,0,0,1) ``` ## ZX Spectrum Basic {{trans|Applesoft_BASIC}} ```zxbasic 10 INPUT "Matrix size: ";size 20 GO SUB 200: REM Identity matrix 30 FOR r=1 TO size 40 FOR c=1 TO size 50 LET s$=CHR$ 13 60 IF c