⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{wikipedia}} {{task|Classic CS problems and programs}} This task is an exercise in [[wp:Call-by-name#Call_by_name|call by name]].
'''Jensen's Device''' is a computer programming technique devised by Danish computer scientist [[wp:Jørn_Jensen|Jørn Jensen]] after studying the [[ALGOL 60]] Report.
The following program was proposed to illustrate the technique. It computes the 100th [[wp:Harmonic_number|harmonic number]]:
'''begin''' '''integer''' i; '''real procedure''' sum (i, lo, hi, term); '''value''' lo, hi; '''integer''' i, lo, hi; '''real''' term; '''comment''' term is passed by-name, and so is i; '''begin''' '''real''' temp; temp := 0; '''for''' i := lo '''step''' 1 '''until''' hi '''do''' temp := temp + term; sum := temp '''end'''; '''comment''' note the correspondence between the mathematical notation and the call to sum; print (sum (i, 1, 100, 1/i)) '''end'''
The above exploits [[wp:Call-by-name#Call_by_name|call by name]] to produce the correct answer (5.187...). It depends on the assumption that an expression passed as an actual parameter to a procedure would be re-evaluated in the caller's context every time the corresponding formal parameter's value was required. If the last parameter to ''sum'' had been passed by value, and assuming the initial value of ''i'' were 1, the result would have been 100 × 1/1 = 100.
Moreover, the ''first'' parameter to ''sum'', representing the "bound" variable of the summation, must also be passed by name (or at least by reference), otherwise changes to it (made within ''sum'') would not be visible in the caller's context when computing each of the values to be added. (On the other hand, the global variable does not have to use the same identifier, in this case ''i'', as the formal parameter.)
[[wp:Donald_Knuth|Donald Knuth]] later proposed the [[Man or boy test|Man or Boy Test]] as a more rigorous exercise.
Ada
with Ada.Text_IO; use Ada.Text_IO;
procedure Jensen_Device is
function Sum
( I : not null access Float;
Lo, Hi : Float;
F : access function return Float
) return Float is
Temp : Float := 0.0;
begin
I.all := Lo;
while I.all <= Hi loop
Temp := Temp + F.all;
I.all := I.all + 1.0;
end loop;
return Temp;
end Sum;
I : aliased Float;
function Inv_I return Float is
begin
return 1.0 / I;
end Inv_I;
begin
Put_Line (Float'Image (Sum (I'Access, 1.0, 100.0, Inv_I'Access)));
end Jensen_Device;
5.18738E+00
ALGOL 60
Honor given where honor is due. In Algol 60, 'call by name' is the default argument evaluation. '''begin''' '''integer''' i; '''real procedure''' sum (i, lo, hi, term); '''value''' lo, hi; '''integer''' i, lo, hi; '''real''' term; '''comment''' term is passed by-name, and so is i; '''begin''' '''real''' temp; temp := 0; '''for''' i := lo '''step''' 1 '''until''' hi '''do''' temp := temp + term; sum := temp '''end'''; '''comment''' note the correspondence between the mathematical notation and the call to sum; print (sum (i, 1, 100, 1/i)) '''end'''
ALGOL 68
{{trans|ALGOL 60}}
BEGIN
INT i;
PROC sum = (REF INT i, INT lo, hi, PROC REAL term)REAL:
COMMENT term is passed by-name, and so is i COMMENT
BEGIN
REAL temp := 0;
i := lo;
WHILE i <= hi DO # ALGOL 68 has a "for" loop but it creates a distinct #
temp +:= term; # variable which would not be shared with the passed "i" #
i +:= 1 # Here the actual passed "i" is incremented. #
OD;
temp
END;
COMMENT note the correspondence between the mathematical notation and the call to sum COMMENT
print (sum (i, 1, 100, REAL: 1/i))
END
Output: +5.18737751763962e +0
AppleScript
set i to 0
on jsum(i, lo, hi, term)
set {temp, i's contents} to {0, lo}
repeat while i's contents ≤ hi
set {temp, i's contents} to {temp + (term's f(i)), (i's contents) + 1}
end repeat
return temp
end jsum
script term_func
on f(i)
return 1 / i
end f
end script
return jsum(a reference to i, 1, 100, term_func)
Output: 5.18737751764
ARM Assembly
{{works with|as|Raspberry Pi}}
/* ARM assembly Raspberry PI */
/* program jensen.s */
/* compil as with option -mcpu=<processor> -mfpu=vfpv4 -mfloat-abi=hard */
/* link with gcc */
/* Constantes */
.equ EXIT, 1 @ Linux syscall
/* Initialized data */
.data
szFormat: .asciz "Result = %.8f \n"
.align 4
/* UnInitialized data */
.bss
/* code section */
.text
.global main
main:
mov r0,#1 @ first indice
mov r1,#100 @ last indice
adr r2,funcdiv @ address function
bl funcSum
vcvt.f64.f32 d1, s0 @ conversion double float for print by C
ldr r0,iAdrszFormat @ display format
vmov r2,r3,d1 @ parameter function printf for float double
bl printf @ display float double
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc 0 @ perform system call
iAdrszFormat: .int szFormat
/******************************************************************/
/* function sum */
/******************************************************************/
/* r0 contains begin */
/* r1 contains end */
/* r2 contains address function */
/* r0 return result */
funcSum:
push {r0,r3,lr} @ save registers
mov r3,r0
mov r0,#0 @ init r0
vmov s3,r0 @ and s3
vcvt.f32.s32 s3, s3 @ convert in float single précision (32bits)
1: @ begin loop
mov r0,r3 @ loop indice -> parameter function
blx r2 @ call function address in r2
vadd.f32 s3,s0 @ addition float
add r3,#1 @ increment indice
cmp r3,r1 @ end ?
ble 1b @ no loop
vmov s0,s3 @ return float result in s0
100:
pop {r0,r3,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* compute 1/r0 */
/******************************************************************/
/* r0 contains the value */
/* r0 return result */
funcdiv:
push {r1,lr} @ save registers
vpush {s1} @ save float registers
cmp r0,#0 @ division by zero -> end
beq 100f
ldr r1,fUn @ load float constant 1.0
vmov s0,r1 @ in float register s3
vmov s1,r0 @
vcvt.f32.s32 s1, s1 @conversion in float single précision (32 bits)
vdiv.f32 s0,s0,s1 @ division 1/r0
@ and return result in s0
100:
vpop {s1} @ restaur float registers
pop {r1,lr} @ restaur registers
bx lr @ return
fUn: .float 1
BBC BASIC
{{works with|BBC BASIC for Windows}}
PRINT FNsum(j, 1, 100, FNreciprocal)
END
DEF FNsum(RETURN i, lo, hi, RETURN func)
LOCAL temp
FOR i = lo TO hi
temp += FN(^func)
NEXT
= temp
DEF FNreciprocal = 1/i
Output:
5.18737752
Bracmat
( ( sum
= I lo hi Term temp
. !arg:((=?I),?lo,?hi,(=?Term))
& 0:?temp
& !lo:?!I
& whl
' ( !!I:~>!hi
& !temp+!Term:?temp
& 1+!!I:?!I
)
& !temp
)
& sum$((=i),1,100,(=!i^-1))
);
Output:
14466636279520351160221518043104131447711/2788815009188499086581352357412492142272
C
#include <stdio.h>
int i;
double sum(int *i, int lo, int hi, double (*term)()) {
double temp = 0;
for (*i = lo; *i <= hi; (*i)++)
temp += term();
return temp;
}
double term_func() { return 1.0 / i; }
int main () {
printf("%f\n", sum(&i, 1, 100, term_func));
return 0;
}
Output: 5.18738
{{works with|gcc}} Alternatively, C's macros provide a closer imitation of ALGOL's call-by-name semantics:
#include <stdio.h>
int i;
#define sum(i, lo_byname, hi_byname, term) \
({ \
int lo = lo_byname; \
int hi = hi_byname; \
\
double temp = 0; \
for (i = lo; i <= hi; ++i) \
temp += term; \
temp; \
})
int main () {
printf("%f\n", sum(i, 1, 100, 1.0 / i));
return 0;
}
Output: 5.187378
C++
#include <iostream>
int i;
double sum(int &i, int lo, int hi, double (*term)()) {
double temp = 0;
for (i = lo; i <= hi; i++)
temp += term();
return temp;
}
double term_func() { return 1.0 / i; }
int main () {
std::cout << sum(i, 1, 100, term_func) << std::endl;
return 0;
}
Output: 5.18738
C#
Can be simulated via lambda expressions:
using System;
class JensensDevice
{
public static double Sum(ref int i, int lo, int hi, Func<double> term)
{
double temp = 0.0;
for (i = lo; i <= hi; i++)
{
temp += term();
}
return temp;
}
static void Main()
{
int i = 0;
Console.WriteLine(Sum(ref i, 1, 100, () => 1.0 / i));
}
}
Clipper
With hindsight Algol60 provided this feature in a way that is terrible for program maintenance, because the calling code looks innocuous.
// Jensen's device in Clipper (or Harbour)
// A fairly direct translation of the Algol 60
// John M Skelton 11-Feb-2012
function main()
local i
? transform(sum(@i, 1, 100, {|| 1 / i}), "##.###############")
// @ is the quite rarely used pass by ref, {|| ...} is a
// code block (an anonymous function, here without arguments)
// The @i makes it clear that something unusual is occurring;
// a called function which modifies a parameter is commonly
// poor design!
return 0
function sum(i, lo, hi, bFunc)
local temp := 0
for i = lo to hi
temp += eval(bFunc)
next i
return temp
Common Lisp
Common Lisp does not have call-by-name for functions; however, it can be directly simulated by a macro wrapping selected parameters in lambdas.
(declaim (inline %sum))
(defun %sum (lo hi func)
(loop for i from lo to hi sum (funcall func i)))
(defmacro sum (i lo hi term)
`(%sum ,lo ,hi (lambda (,i) ,term)))
CL-USER> (sum i 1 100 (/ 1 i))
14466636279520351160221518043104131447711/2788815009188499086581352357412492142272
CL-USER> (float (sum i 1 100 (/ 1 i)))
5.1873775
D
There are better ways to do this in D, but this is closer to the original Algol version:
double sum(ref int i, in int lo, in int hi, lazy double term)
pure @safe /*nothrow @nogc*/ {
double result = 0.0;
for (i = lo; i <= hi; i++)
result += term();
return result;
}
void main() {
import std.stdio;
int i;
sum(i, 1, 100, 1.0/i).writeln;
}
{{out}}
5.18738
DWScript
Must use a "while" loop, as "for" loop variables are restricted to local variable for code clarity, and this indeed a case where any kind of extra clarity helps.
function sum(var i : Integer; lo, hi : Integer; lazy term : Float) : Float;
begin
i:=lo;
while i<=hi do begin
Result += term;
Inc(i);
end;
end;
var i : Integer;
PrintLn(sum(i, 1, 100, 1.0/i));
Output: 5.187...
E
In E, the distinct mutable locations behind assignable variables can be reified as [http://wiki.erights.org/wiki/Slot Slot] objects. The E language allows a variable name (''noun'') to be bound to a particular slot, and the slot of an already-bound noun to be extracted, using the & operator.
(The definition of the outer i has been moved down to emphasize that it is unrelated to the i inside of sum.)
pragma.enable("one-method-object") # "def _.get" is experimental shorthand
def sum(&i, lo, hi, &term) { # bind i and term to passed slots
var temp := 0
i := lo
while (i <= hi) { # E has numeric-range iteration but it creates a distinct
temp += term # variable which would not be shared with the passed i
i += 1
}
return temp
}
{
var i := null
sum(&i, 1, 100, def _.get() { return 1/i })
}
1/i is not a noun, so there is no slot associated with it; so we use def _.get() { return 1/i } to define a slot object which does the computation when it is read as a slot.
The value returned by the above program (expression) is 5.187377517639621.
This emulation of the original call-by-name is of course unidiomatic; a natural version of the same computation would be:
def sum(lo, hi, f) {
var temp := 0
for i in lo..hi { temp += f(i) }
return temp
}
sum(1, 100, fn i { 1/i })
Elixir
{{trans|Erlang}}
defmodule JensenDevice do
def task, do: sum( 1, 100, fn i -> 1 / i end )
defp sum( i, high, _term ) when i > high, do: 0
defp sum( i, high, term ) do
temp = term.( i )
temp + sum( i + 1, high, term )
end
end
IO.puts JensenDevice.task
{{out}}
5.1873775176396215
Erlang
No call by name, no macros, so I use a fun(ction). Actually, the the macro part is a lie. Somebody else, that knows how, could do a parse transform.
-module( jensens_device ).
-export( [task/0] ).
task() ->
sum( 1, 100, fun (I) -> 1 / I end ).
sum( I, High, _Term ) when I > High -> 0;
sum( I, High, Term ) ->
Temp = Term( I ),
Temp + sum( I + 1, High, Term ).
{{out}}
4> jensens_device:task().
5.1873775176396215
Factor
Similar to the Java and Kotlin examples:
: sum ( lo hi term -- x ) [ [a,b] ] dip map-sum ; inline
1 100 [ recip ] sum .
This version is a bit closer to the original, as it increments i
in the caller's namespace.
SYMBOL: i
: sum ( i lo hi term -- x )
[ [a,b] ] dip pick [ inc ] curry compose map-sum nip ;
inline
i 1 100 [ recip ] sum .
{{out}}
5+522561233577855727314756256041670736351/2788815009188499086581352357412492142272
Forth
This version passes i on the stack:
f 1+ swap ?do i over execute f+ loop drop ;
:noname s>f 1 s>f fswap f/ ; 1 100 sum f.
Output: 5.18737751763962
The following version passes i and 1/i as execution tokens and is thus closer to the original, but less idiomatic:
fvariable ii \ i is a Forth word that we need
: sum ( xt1 lo hi xt2 -- r )
0e swap 1+ rot ?do ( addr xt r1 )
i s>f over execute f! dup execute f+
loop 2drop ;
' ii 1 100 :noname 1e ii f@ f/ ; sum f.
Fortran
Fortran does not offer call-by-name in the manner of the Algol language. It passes parameters by reference (i.e. by passing the storage address) and alternatively uses copy-in, copy-out to give the same effect, approximately, as by reference. If a parameter is an arithmetic expression, it will be evaluated and its value stored in a temporary storage area, whose address will be passed to the routine. This evaluation is done once only for each call, thus vitiating the repeated re-evaluation required by Jensen's device every time within the routine that the parameter is accessed. So, this will ''not'' work
FUNCTION SUM(I,LO,HI,TERM)
SUM = 0
DO I = LO,HI
SUM = SUM + TERM
END DO
END FUNCTION SUM
WRITE (6,*) SUM(I,1,100,1.0/I)
END
Here, type declarations have been omitted to save space because they won't help - until there appears a "BY NAME" or some such phrasing. Although variable I
in the calling routine will have its value adjusted as the DO-loop in SUM proceeds (the parameter being passed by reference), this won't affect the evaluation of 1.0/I, which will be performed once using whatever value is in the caller's variable (it is uninitialised, indeed, undeclared also and so by default an integer) then the function is invoked with the address of the location containing that result. The function will make many references to that result, obtaining the same value each time. The fact that the caller's I
will be changed each time doesn't matter.
Fortran does offer a facility to pass a function as a parameter using the EXTERNAL declaration, as follows - SUM is a F90 library function, so a name change to SUMJ:
FUNCTION SUMJ(I,LO,HI,TERM) !Attempt to follow Jensen's Device...
INTEGER I !Being by reference is workable.
INTEGER LO,HI !Just as any other parameters.
EXTERNAL TERM !Thus, not a variable, but a function.
SUMJ = 0
DO I = LO,HI !The specified span.
SUMJ = SUMJ + TERM(I) !Number and type of parameters now apparent.
END DO !TERM will be evaluated afresh, each time.
END FUNCTION SUMJ !So, almost there.
FUNCTION THIS(I) !A function of an integer.
INTEGER I
THIS = 1.0/I !Convert to floating-point.
END !Since 1/i will mostly give zero.
PROGRAM JENSEN !Aspiration.
EXTERNAL THIS !Thus, not a variable, but a function.
INTEGER I !But this is a variable, not a function.
WRITE (6,*) SUMJ(I,1,100,THIS) !No statement as to the parameters of THIS.
END
The result of this is 5.187378, however it does not follow the formalism of Jensen's Device. The invocation statement SUMJ(I,1,100,THIS) does not contain the form of the function but only its name, and the function itself is defined separately. This means that the convenience of different functions via the likes of SUM(I,1,100,1.0/I**2) is unavailable, a separately-defined function with its own name must be defined for each such function. Further, the SUM routine must invoke TERM(I) itself, explicitly supplying the appropriate parameter. And the fact that variable I
is a parameter to SUM is an irrelevance, and might as well be omitted from SUMJ.
Incidentally, a subroutine such as TEST(A,B) invoked as TEST(X,X) enables the discovery of copy-in, copy-out parameter passing. Within the routine, modify the value of A and look to see if B suddenly has a new value also.
Go
package main
import "fmt"
var i int
func sum(i *int, lo, hi int, term func() float64) float64 {
temp := 0.0
for *i = lo; *i <= hi; (*i)++ {
temp += term()
}
return temp
}
func main() {
fmt.Printf("%f\n", sum(&i, 1, 100, func() float64 { return 1.0 / float64(i) }))
}
{{out}}
5.187378
Groovy
{{trans|JavaScript}} Solution:
def sum = { i, lo, hi, term ->
(lo..hi).sum { i.value = it; term() }
}
def obj = [:]
println (sum(obj, 1, 100, { 1 / obj.value }))
Output:
5.1873775176
Haskell
import Control.Monad
import Control.Monad.ST
import Data.STRef
sum' ref_i lo hi term =
return sum `ap`
mapM (\i -> writeSTRef ref_i i >> term) [lo..hi]
foo = runST $ do
i <- newSTRef undefined -- initial value doesn't matter
sum' i 1 100 $ return recip `ap` readSTRef i
main = print foo
Output: 5.187377517639621
Huginn
harmonic_sum( i, lo, hi, term ) {
temp = 0.0;
i *= 0.0;
i += lo;
while ( i <= hi ) {
temp += term();
i += 1.0;
}
return ( temp );
}
main() {
i = 0.0;
print( "{}\n".format( harmonic_sum( i, 1.0, 100.0, @[i](){ 1.0 / i; } ) ) );
}
{{Output}}
5.18737751764
=={{header|Icon}} and {{header|Unicon}}== Traditional call by name and reference are not features of Icon/Unicon. Procedures parameters are passed by value (immutable types) and reference (mutable types). However, a similar effect may be accomplished by means of co-expressions. The example below was selected for cleanliness of calling.
record mutable(value) # record wrapper to provide mutable access to immutable types
procedure main()
A := mutable()
write( sum(A, 1, 100, create 1.0/A.value) )
end
procedure sum(A, lo, hi, term)
temp := 0
every A.value := lo to hi do
temp +:= @^term
return temp
end
Refreshing the co-expression above is more expensive to process but to avoid it requires unary alternation in the call.
write( sum(A, 1, 100, create |1.0/A.value) )
...
temp +:= @term
Alternately, we can use a programmer defined control operator (PDCO) approach that passes every argument as a co-expression. Again the refresh co-expression/unary iteration trade-off can be made. The call is cleaner looking but the procedure code is less clear. Additionally all the parameters are passed as individual co-expressions.
write( sum{A.value, 1, 100, 1.0/A.value} )
...
procedure sum(X)
...
every @X[1] := @X[2] to @X[3] do
temp +:= @^X[4]
J
'''Solution:'''
jensen=: monad define
'name lo hi expression'=. y
temp=. 0
for_n. lo+i.1+hi-lo do.
(name)=. n
temp=. temp + ".expression
end.
)
'''Example:'''
jensen 'i';1;100;'1%i'
5.18738
Note, however, that in J it is reasonably likely that the expression (or an obvious variation on the expression) can deal with the looping itself. And in typical use this often simplifies to entering the expression and data directly on the command line.
And another obvious variation here would be turning the expression into a named entity (if it has some lasting usefulness).
Java
This is Java 8.
import java.util.function.*;
import java.util.stream.*;
public class Jensen {
static double sum(int lo, int hi, IntToDoubleFunction f) {
return IntStream.rangeClosed(lo, hi).mapToDouble(f).sum();
}
public static void main(String args[]) {
System.out.println(sum(1, 100, (i -> 1.0/i)));
}
}
The program prints '5.187377517639621'.
Java 7 is more verbose, but under the hood does essentially the same thing:
public class Jensen2 {
interface IntToDoubleFunction {
double apply(int n);
}
static double sum(int lo, int hi, IntToDoubleFunction f) {
double res = 0;
for (int i = lo; i <= hi; i++)
res += f.apply(i);
return res;
}
public static void main(String args[]) {
System.out.println(
sum(1, 100,
new IntToDoubleFunction() {
public double apply(int i) { return 1.0/i;}
}));
}
}
JavaScript
{{trans|C}}
Uses an object ''o'' instead of integer pointer ''i'', as the C example does.
var obj;
function sum(o, lo, hi, term) {
var tmp = 0;
for (o.val = lo; o.val <= hi; o.val++)
tmp += term();
return tmp;
}
obj = {val: 0};
alert(sum(obj, 1, 100, function() {return 1 / obj.val}));
The alert shows us '5.187377517639621'.
Joy
100 [0] [[1.0 swap /] dip +] primrec.
Joy does not have named parameters. Neither i nor 1/i are visible in the program.
jq
The technique used in the Javascript example can also be used in jq, but in jq it is more idiomatic to use "." to refer to the current term. For example, using sum/3 defined below, we can write: sum(1; 100; 1/.) to perform the task.
def sum(lo; hi; term):
reduce range(lo; hi+1) as $i (0; . + ($i|term));
# The task:
sum(1;100;1/.)
{{Out}} $ jq -n -f jensen.jq 5.187377517639621
Julia
{{works with|Julia|0.6}} {{trans|C}}
macro sum(i, loname, hiname, term)
return quote
lo = $loname
hi = $hiname
tmp = 0.0
for i in lo:hi
tmp += $term
end
return tmp
end
end
i = 0
@sum(i, 1, 100, 1.0 / i)
Kotlin
fun sum(lo: Int, hi: Int, f: (Int) -> Double) = (lo..hi).sumByDouble(f)
fun main(args: Array<String>) = println(sum(1, 100, { 1.0 / it }))
Lua
function sum(var, a, b, str)
local ret = 0
for i = a, b do
ret = ret + setfenv(loadstring("return "..str), {[var] = i})()
end
return ret
end
print(sum("i", 1, 100, "1/i"))
M2000 Interpreter
The definition of the lazy function has two statements. First statement is a Module with one argument, the actual name of Jensens_Device, which make the function to get the same scope as module Jensen
s_Device, and the second statement is =1/i which return the expression.
Module Jensen`s_Device {
Def double i
Report Lazy$(1/i) ' display the definition of the lazy function
Function Sum (&i, lo, hi, &f()) {
def double temp
For i= lo to hi {
temp+=f()
}
=temp
}
Print Sum(&i, 1, 100, Lazy$(1/i))==5.1873775176392 ' true
Print i=101 ' true
}
Jensen`s_Device
Using Decimal for better accuracy. change &i to &any to show that: when any change, change i, so f() use this i.
Module Jensen`s_Device {
Def decimal i
Function Sum (&any, lo, hi, &f()) {
def decimal temp
For any= lo to hi {
temp+=f()
}
=temp
}
Print Sum(&i, 1, 100, Lazy$(1/i))=5.1873775176396202608051176755@ ' true
Print i=101 ' true
}
Jensen`s_Device
Many other examples use single float. So this is one for single.
Module Jensen`s_Device {
Def single i
Function Sum (&any, lo, hi, &f()) {
def single temp
For any= lo to hi {
temp+=f()
}
=temp
}
Print Sum(&i, 1, 100, Lazy$(1/i))=5.187378~ ' true
Print i=101 ' true
}
Jensen`s_Device
M4
define(`for',
`ifelse($#,0,``$0'',
`ifelse(eval($2<=$3),1,
`pushdef(`$1',$2)$4`'popdef(`$1')$0(`$1',incr($2),$3,`$4')')')')
define(`sum',
`pushdef(`temp',0)`'for(`$1',$2,$3,
`define(`temp',eval(temp+$4))')`'temp`'popdef(`temp')')
sum(`i',1,100,`1000/i')
Output:
5142
=={{header|Mathematica}} / {{header|Wolfram Language}}==
sum[term_, i_, lo_, hi_] := Block[{temp = 0},
Do[temp = temp + term, {i, lo, hi}];
temp];
SetAttributes[sum, HoldFirst];
Output:
In[2]:= sum[1/i, i, 1, 100]
Out[2]= 14466636279520351160221518043104131447711/2788815009188499086581352357412492142272
In[3]:=N[sum[1/i, i, 1, 100]]
Out[3]:=5.18738
Maxima
mysum(e, v, lo, hi) := block([s: 0], for i from lo thru hi do s: s + subst(v=i, e), s)$
mysum(1/n, n, 1, 10);
7381/2520
/* compare with builtin sum */
sum(1/n, n, 1, 10);
7381/2520
/* what if n is assigned a value ? */
n: 200$
/* still works */
mysum(1/n, n, 1, 10);
7381/2520
NetRexx
import COM.ibm.netrexx.process.
class JensensDevice
properties static
interpreter=NetRexxA
exp=Rexx ""
termMethod=Method
method main(x=String[]) static
say sum('i',1,100,'1/i')
method sum(i,lo,hi,term) static SIGNALS IOException,NoSuchMethodException,IllegalAccessException,InvocationTargetException
sum=0
loop iv=lo to hi
sum=sum+termeval(i,iv,term)
end
return sum
method termeval(i,iv,e) static returns Rexx SIGNALS IOException,NoSuchMethodException,IllegalAccessException,InvocationTargetException
if e\=exp then interpreter=null
exp=e
if interpreter=null then do
termpgm='method term('i'=Rexx) static returns rexx;return' e
fw=FileWriter("termpgm.nrx")
fw.write(termpgm,0,termpgm.length)
fw.close
interpreter=NetRexxA()
interpreter.parse([String 'termpgm.nrx'],[String 'nocrossref'])
termClass=interpreter.getClassObject(null,'termpgm')
classes=[interpreter.getClassObject('netrexx.lang', 'Rexx', 0)]
termMethod=termClass.getMethod('term', classes)
end
return Rexx termMethod.invoke(null,[iv])
Nim
var i: int
proc harmonicSum(i: var int, lo, hi, term): float =
i = lo
while i <= hi:
result += term()
inc i
echo harmonicSum(i, 1, 100, proc: float = 1.0 / float(i))
Output:
5.1873775176396206e+00
Objeck
bundle Default {
class Jensens {
i : static : Int;
function : Sum(lo : Int, hi : Int, term : () ~ Float) ~ Float {
temp := 0.0;
for(i := lo; i <= hi; i += 1;) {
temp += term();
};
return temp;
}
function : term() ~ Float {
return 1.0 / i;
}
function : Main(args : String[]) ~ Nil {
Sum(1, 100, term() ~ Float)->PrintLine();
}
}
}
Output: 5.18738
OCaml
let i = ref 42 (* initial value doesn't matter *)
let sum' i lo hi term =
let result = ref 0. in
i := lo;
while !i <= hi do
result := !result +. term ();
incr i
done;
!result
let () =
Printf.printf "%f\n" (sum' i 1 100 (fun () -> 1. /. float !i))
Output: 5.187378
Oforth
: mysum(lo, hi, term) | i | 0 lo hi for: i [ i term perform + ] ;
{{out}}
mysum(1, 100, #inv) println
5.18737751763962
mysum(1, 100, #[ sq inv ]) println
1.63498390018489
Oz
Translation using mutable references and an anonymous function:
declare
fun {Sum I Lo Hi Term}
Temp = {NewCell 0.0}
in
I := Lo
for while:@I =< Hi do
Temp := @Temp + {Term}
I := @I + 1
end
@Temp
end
I = {NewCell unit}
in
{Show {Sum I 1 100 fun {$} 1.0 / {Int.toFloat @I} end}}
Idiomatic code:
declare
fun {Sum Lo Hi F}
{FoldL {Map {List.number Lo Hi 1} F} Number.'+' 0.0}
end
in
{Show {Sum 1 100 fun {$ I} 1.0/{Int.toFloat I} end}}
PARI/GP
GP does not have pass-by-reference semantics for user-generated functions, though some predefined functions do. PARI programming allows this, though such a solution would essentially be identical to the [[#C|C]] solution above.
Pascal
{$MODE objFPC}
type
tTerm = function(i: integer):real;
function term(i:integer):real;
Begin
term := 1/i;
end;
function sum(var i: LongInt;
lo,hi: integer;
term:tTerm):real;
Begin
result := 0;
i := lo;
while i<=hi do begin
result := result+term(i);
inc(i);
end;
end;
var
i : LongInt;
Begin
writeln(sum(i,1,100,@term));
end.
Out
5.1873775176396206E+000
Perl
my $i;
sub sum {
my ($i, $lo, $hi, $term) = @_;
my $temp = 0;
for ($$i = $lo; $$i <= $hi; $$i++) {
$temp += $term->();
}
return $temp;
}
print sum(\$i, 1, 100, sub { 1 / $i }), "\n";
Output: 5.18737751763962
Or you can take advantage of the fact that elements of the @_ are aliases of the original:
my $i;
sub sum {
my (undef, $lo, $hi, $term) = @_;
my $temp = 0;
for ($_[0] = $lo; $_[0] <= $hi; $_[0]++) {
$temp += $term->();
}
return $temp;
}
print sum($i, 1, 100, sub { 1 / $i }), "\n";
Output: 5.18737751763962
Perl 6
Rather than playing tricks like Perl 5 does, the declarations of the formal parameters are quite straightforward in Perl 6:
sub sum($i is rw, $lo, $hi, &term) {
my $temp = 0;
loop ($i = $lo; $i <= $hi; $i++) {
$temp += term;
}
return $temp;
}
my $i;
say sum $i, 1, 100, { 1 / $i };
Note that the C-style "for" loop is pronounced "loop" in Perl 6, and is the only loop statement that actually requires parens.
Phix
Not really as asked for (implicit assumption replaced with explicit parameter) but this gives the required result.
I could also have done what C and PHP are doing, though in Phix I'd have to explicitly assign the static var within the loop.
I wholeheartedly agree with the comment on the Clipper example.
function sumr(integer lo, hi, rid)
atom res = 0
for i=lo to hi do
res += call_func(rid,{i})
end for
return res
end function
function reciprocal(atom i) return 1/i end function
?sumr(1, 100, routine_id("reciprocal"))
{{out}}
5.187377518
PHP
$i;
function sum (&$i, $lo, $hi, $term) {
$temp = 0;
for ($i = $lo; $i <= $hi; $i++) {
$temp += $term();
}
return $temp;
}
echo sum($i, 1, 100, create_function('', 'global $i; return 1 / $i;')), "\n";
//Output: 5.18737751764 (5.1873775176396)
function sum ($lo,$hi)
{
$temp = 0;
for ($i = $lo; $i <= $hi; $i++)
{
$temp += (1 / $i);
}
return $temp;
}
echo sum(1,100);
//Output: 5.1873775176396
PicoLisp
(scl 6)
(de jensen (I Lo Hi Term)
(let Temp 0
(set I Lo)
(while (>= Hi (val I))
(inc 'Temp (Term))
(inc I) )
Temp ) )
(let I (box) # Create indirect reference
(format
(jensen I 1 100 '(() (*/ 1.0 (val I))))
*Scl ) )
Output:
-> "5.187383"
PureBasic
{{trans|C}}
Prototype.d func()
Global i
Procedure.d Sum(*i.Integer, lo, hi, *term.func)
Protected Temp.d
For i=lo To hi
temp + *term()
Next
ProcedureReturn Temp
EndProcedure
Procedure.d term_func()
ProcedureReturn 1/i
EndProcedure
Answer.d = Sum(@i, 1, 100, @term_func())
Python
class Ref(object):
def __init__(self, value=None):
self.value = value
def harmonic_sum(i, lo, hi, term):
# term is passed by-name, and so is i
temp = 0
i.value = lo
while i.value <= hi: # Python "for" loop creates a distinct which
temp += term() # would not be shared with the passed "i"
i.value += 1 # Here the actual passed "i" is incremented.
return temp
i = Ref()
# note the correspondence between the mathematical notation and the
# call to sum it's almost as good as sum(1/i for i in range(1,101))
print harmonic_sum(i, 1, 100, lambda: 1.0/i.value)
Output: 5.18737751764
R
R uses a [[wp:Evaluation_strategy#Call_by_need|call by need]] evaluation strategy where function inputs are evaluated on demand and then cached; functions can bypass the normal argument evaluation by using functions substitute and match.call to access the parse tree of the as-yet-unevaluated arguments, and using parent.frame to access the scope of the caller. There are some proposed [http://developer.r-project.org/nonstandard-eval.pdf conventions] to do this in a way that is less confusing to the user of a function; however, ignoring conventions we can come disturbingly close to the ALGOL call-by-name semantics.
sum <- function(var, lo, hi, term)
eval(substitute({
.temp <- 0;
for (var in lo:hi) {
.temp <- .temp + term
}
.temp
}, as.list(match.call()[-1])),
enclos=parent.frame())
sum(i, 1, 100, 1/i) #prints 5.187378
##and because of enclos=parent.frame(), the term can involve variables in the caller's scope:
x <- -1
sum(i, 1, 100, i^x) #5.187378
Racket
Racket happens to have an Algol 60-language, so Jensen's Device can be written just as Jørn Jensen did at Regnecentralen.
#lang algol60
begin
integer i;
real procedure sum (i, lo, hi, term);
value lo, hi;
integer i, lo, hi;
real term;
comment term is passed by-name, and so is i;
begin
real temp;
temp := 0;
for i := lo step 1 until hi do
temp := temp + term;
sum := temp
end;
comment note the correspondence between the mathematical notation and the call to sum;
printnln (sum (i, 1, 100, 1/i))
end
But of course you can also use the more boring popular alternative of first class functions:
#lang racket/base
(define (sum lo hi f)
(for/sum ([i (in-range lo (add1 hi))]) (f i)))
(sum 1 100 (λ(i) (/ 1.0 i)))
Rascal
public num Jenssen(int lo, int hi, num (int i) term){
temp = 0;
while (lo <= hi){
temp += term(lo);
lo += 1;}
return temp;
}
With as output:
Jenssen(1, 100, num(int i){return 1.0/i;})
num: 5.18737751763962026080511767565825315790897212670845165317653395662
REXX
Note: the 2nd and 3rd arguments for the '''sum''' function needn't be enclosed in quotes (as they're numeric);
they were enclosed just to be consistent with the other arguments.
/*REXX program demonstrates Jensen's device (via call subroutine, and args by name).*/
parse arg d .; if d=='' | d=="," then d=100 /*Not specified? Then use the default.*/
numeric digits d /*use D decimal digits (9 is default)*/
say 'using ' d " decimal digits:" /*display what's being used for digits.*/
say
say sum( 'i', "1", '100', "1/i" ) /*invoke SUM (100th harmonic number).*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
sum: procedure; parse arg j,start,finish,exp; $=0
interpret 'do' j "=" start 'to' finish"; $=$+" exp '; end'
/* ──── ═ ─── ═════ ──── ══════────────── ═══ ───────── */
/* lit var lit var lit var literal var literal */
return $
{{out|output|text= when using the default input:}}
using 100 decimal digits:
5.187377517639620260805117675658253157908972126708451653176533956587219557532550496605687768923120415
{{out|output|text= when using the input: 1000 }}
(Shown at three-quarter size and with 200 characters per line.)
using 1000 decimal digits: 5.187377517639620260805117675658253157908972126708451653176533956587219557532550496605687768923120413552951372900080959485764334902003859251284547479399606488677719356437701034351417501628003612133813 93634033610397170258150385609229760925775852490242015786454123413833660918987060275907253504512582948807527866739590394714709377905509971663909084580816222756304901297019081913723833776150679344482592 19985786828216280140988475651174867766685160764730429716983310052063466701008405663630740646670436720827975050329078640945579952223172461998152578702106818073281191723171032278163615245743308956980821 10786794204451169328900410057940565163334352244388766863157323818250401277131246550164879348955299573048040410736739783727083287179928615106959660501145265658411572959372901925824344377263363761945330 17905075097606740175205276891748232922334187250177881689092871712673549165589217457070884105311065936887252732260150280756519586504475363590572034459636088593436136141078274322996362525543164325745468 2 ``` ## Ring ```ring # Project : Jensen's Device decimals(14) i = 100 see sum(i,1,100,"1/n") + nl func sum(i,lo,hi,term) temp = 0 for n = lo to hi step 1 eval("num = " + term) temp = temp + num next return temp ``` Output: ```txt 5.18737751763962 ``` ## Ruby Here, setting the variable and evaluating the term are truly executed in the "outer" context: ```ruby def sum(var, lo, hi, term, context) sum = 0.0 lo.upto(hi) do |n| sum += eval "#{var} = #{n}; #{term}", context end sum end p sum "i", 1, 100, "1.0 / i", binding # => 5.18737751763962 ``` But here is the Ruby way to do it: ```ruby def sum2(lo, hi) lo.upto(hi).inject(0.0) {|sum, n| sum += yield n} end p sum2(1, 100) {|i| 1.0/i} # => 5.18737751763962 ``` Even more concise: (requires ruby >= 2.4) ```ruby def sum lo, hi, &term (lo..hi).sum(&term) end p sum(1,100){|i| 1.0/i} # => 5.187377517639621 # or using Rational: p sum(1,100){|i| Rational(1,i)} # => 14466636279520351160221518043104131447711 / 2788815009188499086581352357412492142272 ``` ## Scala Actually, thei
parameter needs to be passed by reference, as done in so many examples here, so that changes made to it reflect on the parameter that was passed. Scala supports passing parameters by name, but not by reference, which means it can't change the value of any parameter passed. The code below gets around that by creating a mutable integer class, which is effectively the same as passing by reference. ```scala class MyInt { var i: Int = _ } val i = new MyInt def sum(i: MyInt, lo: Int, hi: Int, term: => Double) = { var temp = 0.0 i.i = lo while(i.i <= hi) { temp = temp + term i.i += 1 } temp } sum(i, 1, 100, 1.0 / i.i) ``` Result: ```txt res2: Double = 5.187377517639621 ``` ## Scheme Scheme procedures do not support call-by-name. Scheme macros, however, do: ```scheme (define-syntax sum (syntax-rules () ((sum var low high . body) (let loop ((var low) (result 0)) (if (> var high) result (loop (+ var 1) (+ result . body))))))) ``` ```txt (exact->inexact (sum i 1 100 (/ 1 i))) 5.18737751763962 ``` ## Seed7 Seed7 supports call-by-name with function parameters: ```seed7 $ include "seed7_05.s7i"; include "float.s7i"; var integer: i is 0; const func float: sum (inout integer: i, in integer: lo, in integer: hi, ref func float: term) is func result var float: sum is 0.0 begin for i range lo to hi do sum +:= term; end for; end func; const proc: main is func begin writeln(sum(i, 1, 100, 1.0/flt(i)) digits 6); end func; ``` Output: ```txt 5.187378 ``` ## Sidef ```ruby var i; func sum (i, lo, hi, term) { var temp = 0; for (*i = lo; *i <= hi; (*i)++) { temp += term.run; }; return temp; }; say sum(\i, 1, 100, { 1 / i }); ``` {{out}} ```txt 5.18737751763962026080511767565825315790899 ``` ## Simula {{trans|algol60}} {{works with|SIMULA-67}} Compare with Algol 60, in Simula 67 'call by name' is specified with '''name'''. It is a true 'call by name' evaluation not a 'procedure parameter' emulation. ```simula comment Jensen's Device; begin integer i; real procedure sum (i, lo, hi, term); name i, term; value lo, hi; integer i, lo, hi; real term; comment term is passed by-name, and so is i; begin integer j; real temp; temp := 0; for j := lo step 1 until hi do begin i := j; temp := temp + term end; sum := temp end; comment note the correspondence between the mathematical notation and the call to sum; outreal (sum (i, 1, 100, 1/i), 7, 14) end ``` {{out}} ```txt 5.187378&+000 ``` ## Standard ML ```sml val i = ref 42 (* initial value doesn't matter *) fun sum' (i, lo, hi, term) = let val result = ref 0.0 in i := lo; while !i <= hi do ( result := !result + term (); i := !i + 1 ); !result end val () = print (Real.toString (sum' (i, 1, 100, fn () => 1.0 / real (!i))) ^ "\n") ``` Output: 5.18737751764 ## Swift ```swift var i = 42 // initial value doesn't matter func sum(inout i: Int, lo: Int, hi: Int, @autoclosure term: () -> Double) -> Double { var result = 0.0 for i = lo; i <= hi; i++ { result += term() } return result } println(sum(&i, 1, 100, 1 / Double(i))) ``` (Prior to Swift 1.2, replace@autoclosure term: () -> Double
withterm: @autoclosure () -> Double
.) {{out}} ```txt 5.187378 ``` ## VBA ```vb Private Function sum(i As String, ByVal lo As Integer, ByVal hi As Integer, term As String) As Double Dim temp As Double For k = lo To hi temp = temp + Evaluate(Replace(term, i, k)) Next k sum = temp End Function Sub Jensen_Device() Debug.Print sum("i", 1, 100, "1/i") Debug.Print sum("i", 1, 100, "i*i") Debug.Print sum("j", 1, 100, "sin(j)") End Sub ``` {{out}} ```txt 5,18737751763962 338350 -0,12717101366042 ``` ## Tcl Here, we set the value of the passed variable in the caller's frame. We then evaluate the passed term there too. ```tcl proc sum {var lo hi term} { upvar 1 $var x set sum 0.0 for {set x $lo} {$x < $hi} {incr x} { set sum [expr {$sum + [uplevel 1 [list expr $term]]}] } return $sum } puts [sum i 1 100 {1.0/$i}] ;# 5.177377517639621 ``` However, the solution is expressed more simply like this ```tcl proc sum2 {lo hi lambda} { set sum 0.0 for {set n $lo} {$n < $hi} {incr n} { set sum [expr {$sum + [apply $lambda $n]}] } return $sum } puts [sum2 1 100 {i {expr {1.0/$i}}}] ;# 5.177377517639621 ``` ## zkl zkl doesn't support call by name/address but does have reference objects. Using an explicit call to term: ```zkl fcn sum(ri, lo,hi, term){ temp:=0.0; ri.set(lo); do{ temp+=term(ri); } while(ri.inc()