⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
[[Category:Puzzles]] {{task}}
;Task: Find the largest base 10 integer whose digits are all different, and is evenly divisible by each of its individual digits.
These numbers are also known as '''Lynch-Bell numbers''', numbers '''n''' such that the (base ten) digits are all different (and do not include zero) and '''n''' is divisible by each of its individual digits.
For example: 135 is evenly divisible by 1, 3 and 5.
Note that the digit zero (0) can not be in the number as integer division by zero is undefined. The digits must all be unique so a base 10 number will have at most 9 digits.
Feel free to use analytics and clever algorithms to reduce the search space your example needs to visit, but it must do an actual search. (Don't just feed it the answer and verify it is correct.)
;Stretch goal: Do the same thing for hexadecimal.
;Also see:
- The OEIS sequence: [http://oeis.org/A115569 A115569: Lynch-Bell numbers].
AWK
Base 10
Ruling out 9- and 8-digit numbers (see first paragraph in the Perl 6 example), we are looking for 7-digit numbers. In order to be a solution such a number has to be divisible by 12 = 223, because its digits must contain at least 2 of the numbers 2, 4, 6, 8 (leading to a factor of 2*2) and its digits must contain at least one of the numbers 3, 6, 9 (leading to a factor of 3).
The program does a brute force search, starting with the largest possible 7-digit number and iterates over all smaller numbers divisible by 12. It checks for each iteration, if the number in question consists of different digits and is divisible by those digits.
# Usage: gawk -f LARGEST_NUMBER_DIVISIBLE_BY_ITS_DIGITS_10.AWK
BEGIN {
base = 10
comdiv = 12
startn = 9876543
stopn = 1000000
solve(startn, stopn)
}
function solve(startn, stopn, n, d) {
for (n = startn - startn % comdiv; n > stopn; n -= comdiv) {
if (hasuniqedigits(n)) {
# Check divisibility of n by all its digits
for (d = 2; d < base; d++) {
if ((dcount[d]) && (n % d)) {
break
}
}
if (d == base) {
printf("%d\n", n)
return
}
}
}
}
function hasuniqedigits(n, d) {
# Returns 1, if n consists of unique digits in range 1..(base-1)
# The array dcount stores the count (up to 1) of those digits
for (d = 1; d < base; d++)
dcount[d] = 0
while (n) {
d = n % base
if ((d == 0) || (++dcount[d] > 1))
return 0
n = int(n / base)
}
return 1
}
{{out}}
9867312
Base 16
In the hexadecimal case we cannot rule out 15-digit numbers, thus all digits from 1 to f (hex) are present. The number has to be divisible by all its digits, therefore it has to be divisible by the least common multiple of the numbers 1, 2, 3, ..., 15 (360360).
AWK does not support arbitrary long integers, so we have to use an array of digits for its representation. It makes use of functions hexmod (modulus) and hexsub (subtraction), which act on an array.
The program does a brute force search, starting with the largest possible 15-digit number and iterates over all smaller numbers divisible by 360360. It checks for each iteration, if the number in question consists of different digits (by construction it is then also divisible by its digits).
# Usage: GAWK -f LARGEST_NUMBER_DIVISIBLE_BY_ITS_DIGITS_16.AWK
BEGIN {
base = 16
size = 15
# startn = FEDCB A9876 54321 (hex)
for (i = 1; i <= size; i++) {
startn[i] = i
}
comdiv = 360360 # lcm(1..15)
solve(startn)
}
function solve(n, r, i) {
r = hexmod(n, comdiv)
hexsub(n, r)
while (n[size] > 0) {
if (hasuniqedigits(n)) {
for (i = size; i > 0; i--)
printf("%0x", n[i])
printf("\n")
return
}
hexsub(n, comdiv)
}
}
function hasuniqedigits(n, d, i) {
# Return 1, if n is an array of unique digits in range 1..(base-1)
# The array dcount stores the count (up to 1) of those digits
for (d = 1; d < base; d++)
dcount[d] = 0
for (i = 1; i <= size; i++) {
d = n[i]
if ((d == 0) || (++dcount[d] > 1))
return 0
}
return 1
}
function hexmod(n, k, i, r) {
# Return n mod k, where n is an array and k is a number
for (i = size; i > 0; i--) {
r = (r * base + n[i]) % k
}
return r
}
function hexsub(n, m) {
# Calculate n = n - m, where n is an array and m is a number
for (i = 1; m && (i <= size); i++) {
n[i] -= m % base
m = int(m / base)
if (n[i] < 0) {
n[i] += base
m++
}
}
}
{{out}}
fedcb59726a1348
C
Base 10
The number can't contain 0 and 5, 0 is obvious, 5 because the number must end in 5 for it to be a multiple of that number and if that happens, all the even digits are ruled out which severely reduces the number's length since the other condition is that all digits must be unique. However, this means the number must be even and thus end only in 2,4,6,8. This speeds up the search by a factor of 2. The same approach when applied to hexadecimals takes a very long, long time.
#include<stdio.h>
int main()
{
int num = 9876432,diff[] = {4,2,2,2},i,j,k=0;
char str[10];
start:snprintf(str,10,"%d",num);
for(i=0;str[i+1]!=00;i++){
if(str[i]=='0'||str[i]=='5'||num%(str[i]-'0')!=0){
num -= diff[k];
k = (k+1)%4;
goto start;
}
for(j=i+1;str[j]!=00;j++)
if(str[i]==str[j]){
num -= diff[k];
k = (k+1)%4;
goto start;
}
}
printf("Number found : %d",num);
return 0;
}
Output:
Number found : 9867312
Base 16
{{trans|Kotlin}}
#include<string.h>
#define TRUE 1
#define FALSE 0
typedef char bool;
typedef unsigned long long uint64;
bool div_by_all(uint64 num, char digits[], int len) {
int i, d;
for (i = 0; i < len; ++i) {
d = digits[i];
d = (d <= '9') ? d - '0' : d - 'W';
if (num % d != 0) return FALSE;
}
return TRUE;
}
int main() {
uint64 i, magic = 15 * 14 * 13 * 12 * 11;
uint64 high = 0xfedcba987654321 / magic * magic;
int j, len;
char c, *p, s[17], sd[16], found[16];
for (i = high; i >= magic; i -= magic) {
if (i % 16 == 0) continue; // can't end in '0'
snprintf(s, 17, "%llx", i); // always generates lower case a-f
if (strchr(s, '0') - s >= 0) continue; // can't contain '0'
for (j = 0; j < 16; ++j) found[j] = FALSE;
len = 0;
for (p = s; *p; ++p) {
if (*p <= '9') {
c = *p - '0';
} else {
c = *p - 87;
}
if (!found[c]) {
found[c] = TRUE;
sd[len++] = *p;
}
}
if (len != p - s) {
continue; // digits must be unique
}
if (div_by_all(i, sd, len)) {
printf("Largest hex number is %llx\n", i);
break;
}
}
return 0;
}
{{out}}
Largest hex number is fedcb59726a1348
C++
{{trans|D}}
Base 10
#include <iostream>
#include <sstream>
#include <set>
bool checkDec(int num) {
std::set<int> set;
std::stringstream ss;
ss << num;
auto str = ss.str();
for (int i = 0; i < str.size(); ++i) {
char c = str[i];
int d = c - '0';
if (d == 0) return false;
if (num % d != 0) return false;
if (set.find(d) != set.end()) {
return false;
}
set.insert(d);
}
return true;
}
int main() {
for (int i = 98764321; i > 0; i--) {
if (checkDec(i)) {
std::cout << i << "\n";
break;
}
}
return 0;
}
{{out}}
9867312
C#
{{trans|D}}
Base 10
using System;
using System.Collections.Generic;
using System.Linq;
namespace LargestNumber {
class Program {
static bool ChkDec(int num) {
HashSet<int> set = new HashSet<int>();
return num.ToString()
.Select(c => c - '0')
.All(d => (d != 0) && (num % d == 0) && set.Add(d));
}
static void Main() {
int result = Enumerable.Range(0, 98764321)
.Reverse()
.Where(ChkDec)
.First();
Console.WriteLine(result);
}
}
}
{{out}}
9867312
Clojure
Base Agnostic
This is a generic solution that works for any number base. Just change the line '''(def the_base 16)'''. The performance may be questionable for large bases which do not have a Lynch-Bell number using all digits.
Rather than searching through all numbers with unique digits, a space whose size verges on N factorial, this algorithm instead works with the non-empty sets of non-zero digits, a space of size 2^(N-1) - 1. For a given subset, it finds the least common multiple for that subset and examines each multiple of the LCM which is between the largest and smallest positive numbers that can be constructed using each digit from that subset exactly once.
(require '[clojure.string :as str]) ;'
(def the_base 16)
;A sequence named digits containing the non-zero digits for the current number base.
(def digits (rest (range the_base)))
;A container for the digits which are prime.
(def primes [])
;Populate the primes sequence with the primes less than the current base.
(for [n digits] (if (= 1 (count (filter (fn[m] (and (< m n) (= 0 (mod n m)))) digits)) ) (def primes (conj primes n))))
;Determines the highest power of a given prime p that divides a given integer n.
(defn duplicity [n p partial] (if (= 0 (mod n p)) (duplicity (/ n p) p (conj partial p)) partial))
;Constructs the prime factorization of a given integer.
(defn factorize [n] (let [a (flatten (for [p (filter #(< % n) primes)]
(remove #(= 1 %) (duplicity n p [1]))))] (if (= 0 (count a)) (lazy-seq [n]) a) ))
;Determines the number of times a given number appears in a given sequence of numbers.
(defn multiplicity [s n] (count (filter #(= n %) s)))
;Combines two sequence two create their "union" in the sense that in the resulting sequence
;each element from each sequence is uniquely represented and no smaller sequence would suffice.
;For example if one sequence contains two A's and other contains three A's, then the result will contain three A's.
;This is used to generate representations of prime factorizations and to construct least common multiples from them.
(defn combine [x y] (concat x (flatten (for [w (dedupe y)] (repeat (- (multiplicity y w) (multiplicity x w)) w) ))))
;deterimes the lcm least common multiple for a set of digits.
(defn lcm [s] (reduce * (reduce combine (map factorize s))))
;Retuns x^n.
(defn exp [x n] (reduce * (repeat n x)))
;Generates all non-empty subsequences for a sequence.
(defn non_empty_subsets [s] (for [x (reverse (rest (range (exp 2 (count s)))))]
(remove nil? (for [i (range (count s))] (if (bit-test x i) (nth s i))))))
;Generates from a given sequence of digits in the current base the number that is s[0]s[1]s[2]...s[n].
;More generally, produces s[0]*the_base^n + s[1]*the_base^(n-1) + ... + s[n-1]*the_base^1 + s[n]*the_base^0
;for an arbitrary sequence of numbers.
(defn power_up [s] (reduce + (loop [idx (- (count s) 1) s_next s]
(if (zero? idx) s_next (recur (dec idx) (map-indexed #(if (< %1 idx) (* %2 the_base) %2) s_next))))))
;Here is an alternative version of power_up that could be more efficient as it does not repeatedly recalculate powers of the base.
;Instead it calculates the dot product of s with a pre-populated sequence of powers of the base.
;Calculates the dot product of two vectors/sequences
;(defn dot [xs ys] (reduce + (map * xs ys)))
;(def places (map #(exp the_base %) (range the_base)))
;(defn power_up [s] (dot s (reverse (take (count s) places))))
;Returns the largest integer which contains each item from a given sequence exactly once as a digit.
(defn max_for_digits [s] (power_up (sort #(> %1 %2) s)))
;Returns the smallest non-negative integer which contains each item from a given sequence exactly once as a digit.
(defn min_for_digits [s] (power_up (sort #(< %1 %2) s)))
;calculate the logarithm of the input in the current base.
(defn log_base [x] (/ (Math/log x) (Math/log the_base)))
;Removes the zeros from a sequence
(defn remove_zeros [s] (remove #(= % 0) s))
;Returns the largest integer that is a multiple of a given integer and does not exceed another given integer.
(defn first_multiple_not_after [n ub] (loop [m ub] (if (= 0 (mod m n)) m (recur (dec m)))))
;creates a representation in the current base of a positive integer as a sequence listing the digits for the number in the base.
(defn representation [n] (let [full_power (int (log_base n))]
(loop [power full_power place (exp the_base full_power) rep [] rem n ] (if (= power -1) rep
(recur (dec power) (/ place the_base) (conj rep (int (/ rem place))) (- rem (* place (int (/ rem place)))))))))
;determines if a given number is exactly comprised of a given set of digits.
(defn digit_qualifies [m s] (let [rep_m (representation m)] (= (sort s) (sort rep_m))))
;Returns a sequence containing the largest Lynch-Bell number for the current base and a given sequence of digits
;or an empty sequence if there is none.
(defn find_s_largest_lb [s] (let [lb (min_for_digits s)] (let [m (lcm s)]
(loop [v (first_multiple_not_after m (max_for_digits s))] (if (< v lb) []
(if (digit_qualifies v s) (representation v) (recur (- v m))))))))
;Finds the largest Lynch-Bell number for the current base by looking for the largest for all subsets of a given size
;and picking the largest from those working from the largest size (most digits) to the smallest.
(defn find_largest_lb [] (let [subsets (non_empty_subsets (reverse digits))]
(loop [s_size (- the_base 1)] (let [hits (remove #(= (count %) 0) (map find_s_largest_lb (filter #(= (count %) s_size) subsets)))]
(if (pos? (count hits)) (first (sort #(first (remove_zeros (map - %2 %1))) hits)) (recur (dec s_size)))))))
;Converts small integers to hexidecimal digits.
;This isn't being used but could be leveraged to make output that looks normal for base 16.
(defn hex_digit [v] (case v 15 "F" 14 "E" 13 "D" 12 "C" 11 "B" 10 "A" (str v)))
(find_largest_lb)
{{out}}
[15 14 13 12 11 5 9 7 2 6 10 1 3 4 8] (base 16)
[10 9 8 7 6 2 4 1 3] (base 11)
[9 8 6 7 3 1 2] (base 10)
D
{{trans|Scala}}
Base 10
import std.algorithm.iteration : filter, map;
import std.algorithm.searching : all;
import std.conv : to;
import std.range : iota;
import std.stdio : writeln;
bool chkDec(int num) {
int[int] set;
return num
.to!string
.map!(c => c.to!int - '0')
.all!(d => (d != 0) && (num % d == 0) && set[d]++ < 1);
}
auto lcm(R)(R r) {
return r.reduce!((a,b) => a * b / gcd(a,b));
}
void main() {
// base 10
iota(98764321, 0, -1)
.filter!chkDec
.front
.writeln;
}
{{out}}
9867312
Factor
Base 10
This program works by filtering all the 8-digit permutations (of which there are only ~40,000) for all-digit-divisibility, and upon finding none, it will then generate the 7-digit combinations (of which there are 8) of the 8 possible digits, and then filter all permutations of the 8 combinations for all-digit-divisibility. Upon finding many, it will simply select the largest element which is our answer. If there hadn't been any 7-digit solutions, it would have gone down to six and then five, etc.
USING: io kernel math math.combinatorics math.parser math.ranges
sequences tools.time ;
IN: rosetta-code.largest-divisible
: all-div? ( seq -- ? )
[ string>number ] [ string>digits ] bi [ mod ] with map
sum 0 = ;
: n-digit-all-div ( n -- seq )
"12346789" swap <combinations>
[ [ all-div? ] filter-permutations ] map concat ;
: largest-divisible ( -- str )
8 [ dup n-digit-all-div dup empty? ] [ drop 1 - ] while
nip supremum ;
: largest-divisible-demo ( -- )
[ largest-divisible print ] time ;
MAIN: largest-divisible-demo
{{out}}
9867312
Running time: 0.07224931499999999 seconds
Go
{{trans|Kotlin}}
base 10
package main
import (
"fmt"
"strconv"
"strings"
)
func divByAll(num int, digits []byte) bool {
for _, digit := range digits {
if num%int(digit-'0') != 0 {
return false
}
}
return true
}
func main() {
magic := 9 * 8 * 7
high := 9876432 / magic * magic
for i := high; i >= magic; i -= magic {
if i%10 == 0 {
continue // can't end in '0'
}
s := strconv.Itoa(i)
if strings.ContainsAny(s, "05") {
continue // can't contain '0'or '5'
}
var set = make(map[byte]bool)
var sd []byte // distinct digits
for _, b := range []byte(s) {
if !set[b] {
set[b] = true
sd = append(sd, b)
}
}
if len(sd) != len(s) {
continue // digits must be unique
}
if divByAll(i, sd) {
fmt.Println("Largest decimal number is", i)
return
}
}
}
{{out}}
Largest decimal number is 9867312
base 16
package main
import (
"fmt"
"strconv"
"strings"
)
func divByAll(num int64, digits []byte) bool {
for _, digit := range digits {
var d int64
if digit <= '9' {
d = int64(digit - '0')
} else {
d = int64(digit - 'W')
}
if num%d != 0 {
return false
}
}
return true
}
func main() {
var magic int64 = 15 * 14 * 13 * 12 * 11
high := 0xfedcba987654321 / magic * magic
for i := high; i >= magic; i -= magic {
if i%16 == 0 {
continue // can't end in '0'
}
s := strconv.FormatInt(i, 16) // always generates lower case a-f
if strings.IndexByte(s, '0') >= 0 {
continue // can't contain '0'
}
var set = make(map[byte]bool)
var sd []byte // distinct digits
for _, b := range []byte(s) {
if !set[b] {
set[b] = true
sd = append(sd, b)
}
}
if len(sd) != len(s) {
continue // digits must be unique
}
if divByAll(i, sd) {
fmt.Printf("Largest hex number is %x\n", i)
return
}
}
}
{{out}}
Largest hex number is fedcb59726a1348
Haskell
base 10
Using the analysis provided in the Perl 6 (base 10) example:
import Data.List (maximumBy, permutations, delete)
import Data.Ord (comparing)
unDigits :: [Int] -> Int
unDigits = foldl ((+) . (10 *)) 0
ds :: [Int]
ds = [1, 2, 3, 4, 6, 7, 8, 9] -- 0 (and thus 5) are both unworkable
lcmDigits :: Int
lcmDigits = foldr1 lcm ds -- 504
sevenDigits :: [[Int]]
sevenDigits = (`delete` ds) <$> [1, 4, 7] -- Dropping any one of these three
main :: IO ()
main =
print $
maximumBy
(comparing
(\x ->
if rem x lcmDigits == 0 -- Checking for divisibility by all digits
then x
else 0))
(unDigits <$> concat (permutations <$> sevenDigits))
{{Out}} Test run from inside the Atom editor:
9867312
[Finished in 0.395s]
base 16
First member of a descending sequence of multiples of 360360 that uses the full set of 15 digits when expressed in hex.
import Data.Set (fromList)
import Numeric (showHex)
lcmDigits :: Int
lcmDigits = foldr1 lcm [1 .. 15] -- 360360
upperLimit :: Int
upperLimit =
let allDigits = 0xfedcba987654321
in allDigits - rem allDigits lcmDigits
main :: IO ()
main =
print $
head
(filter ((15 ==) . length . fromList) $
(`showHex` []) <$> [upperLimit,upperLimit - lcmDigits .. 1])
Test run from inside the Atom editor:
"fedcb59726a1348"
[Finished in 2.319s]
J
The 536 values found---all base 10 numbers that are divisible by their digits without repetition---are sorted descending, hence 9867312 is the greatest number divisible by its digits in base 10.
Filter =: (#~`)(`:6)
combinations =: <@#"1~ [: #: [: i. 2 ^ #
permutations =: A.&i.~ !
f =: [: \:~ _ ". [: ; [: ({~ permutations@#)L:_1 }.@combinations
test =: 0 = ([: +/ (|~ 10&#.inv))&>
test Filter f '12346789'
9867312 9812376 9782136 9781632 9723168 9718632 9678312 9617832 9617328 9283176 9278136 9237816 9231768 9182376 9176832 9176328 9163728 8973216 8912736 8796312 8731296 8617392 8367912 8312976 8219736 8176392 8163792 8123976 7921368 7916832 7916328 7892136 ...
Working in base 16 using the largest possible solution also a multiple of the least common multiple, subtract the LCM until all the digits appear.
NB. 16bfedcba987654321 loses precision and so we need to work in extended data type
[ HEX_DIGITS =: >: i. _15x
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[ LCM =: *./ HEX_DIGITS
360360
] START =: <.&.(%&LCM)16#.HEX_DIGITS
1147797409030632360
Until =: conjunction def 'u^:(0-:v)^:_'
assert 9 -: >:Until(>&8)1
test=: 0 -.@e. HEX_DIGITS e. 16&#.inv
[ SOLUTION =: -&LCM Until test START
1147797065081426760
'16b' , (16 #.inv SOLUTION) { Num_j_ , 26 }. Alpha_j_
16bfedcb59726a1348
Java
{{works with|JDK 1.8.0}}
Base 10
Using the analysis provided in the Perl 6 (base 10) example:
public class LynchBell {
static String s = "";
public static void main(String args[]) {
//Highest number with unique digits (no 0 or 5)
int i = 98764321;
boolean isUnique = true;
boolean canBeDivided = true;
while (i>0) {
s = String.valueOf(i);
isUnique = uniqueDigits(i);
if (isUnique) {
//Number has unique digits
canBeDivided = testNumber(i);
if(canBeDivided) {
System.out.println("Number found: " + i);
i=0;
}
}
i--;
}
}
public static boolean uniqueDigits(int i) {
//returns true, if unique digits, false otherwise
for (int k = 0; k<s.length();k++) {
for(int l=k+1; l<s.length();l++) {
if(s.charAt(l)=='0' || s.charAt(l)=='5') {
//0 or 5 is a digit
return false;
}
if(s.charAt(k) == s.charAt(l)) {
//non-unique digit
return false;
}
}
}
return true;
}
public static boolean testNumber(int i) {
//Tests, if i is divisible by all its digits (0 is not a digit already)
int j = 0;
boolean divisible = true;
// TODO: divisible by all its digits
for (char ch: s.toCharArray()) {
j = Character.getNumericValue(ch);
divisible = ((i%j)==0);
if (!divisible) {
return false;
}
}
return true;
}
}
{{out}}
Number found: 9867312
Julia
{{works with|Julia|0.6}}
Base 10
{{trans|C}}
function main()
num = 9876432
dif = [4, 2, 2, 2]
local k = 1
@label start
local str = dec(num)
for (i, ch) in enumerate(str)
if ch in ('0', '5') || num % (ch - '0') != 0
num -= dif[k]
k = (k + 1) % 4 + 1
@goto start
end
for j in i+1:endof(str)
if str[i] == str[j]
num -= dif[k]
k = (k + 1) % 4 + 1
@goto start
end
end
end
return num
end
println("Number found: ", main())
{{out}}
Number found: 9867312
Kotlin
Makes use of the Perl 6 entry's analysis:
base 10
// version 1.1.4-3
fun Int.divByAll(digits: List<Char>) = digits.all { this % (it - '0') == 0 }
fun main(args: Array<String>) {
val magic = 9 * 8 * 7
val high = 9876432 / magic * magic
for (i in high downTo magic step magic) {
if (i % 10 == 0) continue // can't end in '0'
val s = i.toString()
if ('0' in s || '5' in s) continue // can't contain '0' or '5'
val sd = s.toCharArray().distinct()
if (sd.size != s.length) continue // digits must be unique
if (i.divByAll(sd)) {
println("Largest decimal number is $i")
return
}
}
}
{{out}}
Largest decimal number is 9867312
base 16
// version 1.1.4-3
fun Long.divByAll(digits: List<Char>) =
digits.all { this % (if (it <= '9') it - '0' else it - 'W') == 0L }
fun main(args: Array<String>) {
val magic = 15L * 14 * 13 * 12 * 11
val high = 0xfedcba987654321L / magic * magic
for (i in high downTo magic step magic) {
if (i % 16 == 0L) continue // can't end in '0'
val s = i.toString(16) // always generates lower case a-f
if ('0' in s) continue // can't contain '0'
val sd = s.toCharArray().distinct()
if (sd.size != s.length) continue // digits must be unique
if (i.divByAll(sd)) {
println("Largest hex number is ${i.toString(16)}")
return
}
}
}
{{out}}
Largest hex number is fedcb59726a1348
Mathematica
base 10
Max@Select[FromDigits/@Rest@Flatten[Permutations/@Subsets[Range@9,9],1],And@@IntegerQ/@(#/IntegerDigits@#)&]
{{out}}
9867312
Perl
{{trans|Perl 6}}
Base 10
my $step = 9 * 8 * 7; # 504, interval between tests
my $initial = int(9876432 / $step) * $step; # largest 7 digit multiple of 504 < 9876432
for($test = $initial; $test > 0 ; $test -= $step) { # decrement by 504
next if $test =~ /[05]/; # skip numbers containing 0 or 5
next if $test =~ /(.).*\1/; # skip numbers with non unique digits
for (split '', $test) { # skip numbers that don't divide evenly by all digits
next unless ($test / $_) % 1;
}
printf "Found $test after %d steps\n", ($initial-$test)/$step;
for (split '', $test) {
printf "%s / %s = %s\n", $test, $_, $test / $_;
}
last
}
{{out}}
Found 9867312 after 18 steps
9867312 / 9 = 1096368
9867312 / 8 = 1233414
9867312 / 6 = 1644552
9867312 / 7 = 1409616
9867312 / 3 = 3289104
9867312 / 1 = 9867312
9867312 / 2 = 4933656
Base 16
use bigint; # Very slow, but consistent results even with 32-bit Perl
my $hex = 'FEDCBA987654321'; # largest possible hex number
$step = Math::BigInt::blcm(1..15);
$initial = int(hex($hex) / $step) * $step;
for($num = $initial; $num > 0 ; $num -= $step) { # decrement by lcm
my $test = sprintf '%x', $num;
next if $test =~ /0/; # skip numbers containing 0
next if $test =~ /(.).*\1/; # skip numbers with non unique digits
push @res, sprintf "Found $test after %d steps\n", ($initial-$num)/$step;
push @res, ' 'x12 . 'In base 16' . ' 'x36 . 'In base 10';
for (split '', $test) {
push @res, sprintf "%s / %s = %x | %d / %2d = %19d",
$test, $_, $num / hex($_),
$num, hex($_), $num / hex($_);
}
last
}
print join "\n", @res;
{{out}}
Found fedcb59726a1348 after 954460 steps
In base 16 In base 10
fedcb59726a1348 / f = 10fda5b4be4f038 | 1147797065081426760 / 15 = 76519804338761784
fedcb59726a1348 / e = 1234561d150b83c | 1147797065081426760 / 14 = 81985504648673340
fedcb59726a1348 / d = 139ad2e43e0c668 | 1147797065081426760 / 13 = 88292081929340520
fedcb59726a1348 / c = 153d0f21ede2c46 | 1147797065081426760 / 12 = 95649755423452230
fedcb59726a1348 / b = 172b56538f25ed8 | 1147797065081426760 / 11 = 104345187734675160
fedcb59726a1348 / 5 = 32f8f11e3aed0a8 | 1147797065081426760 / 5 = 229559413016285352
fedcb59726a1348 / 9 = 1c5169829283b08 | 1147797065081426760 / 9 = 127533007231269640
fedcb59726a1348 / 7 = 2468ac3a2a17078 | 1147797065081426760 / 7 = 163971009297346680
fedcb59726a1348 / 2 = 7f6e5acb93509a4 | 1147797065081426760 / 2 = 573898532540713380
fedcb59726a1348 / 6 = 2a7a1e43dbc588c | 1147797065081426760 / 6 = 191299510846904460
fedcb59726a1348 / a = 197c788f1d76854 | 1147797065081426760 / 10 = 114779706508142676
fedcb59726a1348 / 1 = fedcb59726a1348 | 1147797065081426760 / 1 = 1147797065081426760
fedcb59726a1348 / 3 = 54f43c87b78b118 | 1147797065081426760 / 3 = 382599021693808920
fedcb59726a1348 / 4 = 3fb72d65c9a84d2 | 1147797065081426760 / 4 = 286949266270356690
fedcb59726a1348 / 8 = 1fdb96b2e4d4269 | 1147797065081426760 / 8 = 143474633135178345
Perl 6
{{works with|Rakudo|2017.08}}
Base 10
The number can not have a zero in it, that implies that it can not have a 5 either since if it has a 5, it must be divisible by 5, but the only numbers divisible by 5 end in 5 or 0. It can't be zero, and if it is odd, it can't be divisible by 2, 4, 6 or 8. So that leaves 98764321 as possible digits the number can contain. The sum of those 8 digits is not divisible by three so the largest possible integer must use no more than 7 of them (since 3, 6 and 9 would be eliminated). Strictly by removing possibilities that cannot possibly work we are down to at most 7 digits.
We can deduce that the digit that won't get used is one of 1, 4, or 7 since those are the only ones where the removal will yield a sum divisible by 3. It is ''extremely'' unlikely be 1, since EVERY number is divisible by 1. Removing it reduces the number of digits available but doesn't gain anything as far as divisibility. It is unlikely to be 7 since 7 is prime and can't be made up of multiples of other numbers. Practically though, the code to accommodate these observations is longer running and more complex than just brute-forcing it from here.
In order to accommodate the most possible digits, the number must be divisible by 7, 8 and 9. If that is true then it is automatically divisible by 2, 3, 4, & 6 as they can all be made from the combinations of multiples of 2 and 3 which are present in 8 & 9; so we'll only bother to check multiples of 9 * 8 * 7 or 504.
All these optimizations get the run time to well under 1 second.
my $magic-number = 9 * 8 * 7; # 504
my $div = 9876432 div $magic-number * $magic-number; # largest 7 digit multiple of 504 < 9876432
for $div, { $_ - $magic-number } ... * -> $test { # only generate multiples of 504
next if $test ~~ / <[05]> /; # skip numbers containing 0 or 5
next if $test ~~ / (.).*$0 /; # skip numbers with non unique digits
say "Found $test"; # Found a solution, display it
for $test.comb {
printf "%s / %s = %s\n", $test, $_, $test / $_;
}
last
}
{{out}}
Found 9867312
9867312 / 9 = 1096368
9867312 / 8 = 1233414
9867312 / 6 = 1644552
9867312 / 7 = 1409616
9867312 / 3 = 3289104
9867312 / 1 = 9867312
9867312 / 2 = 4933656
Base 16
There are fewer analytical optimizations available for base 16. Other than 0, no digits can be ruled out so a much larger space must be searched. We'll start at the largest possible permutation (FEDCBA987654321) and work down so as soon as we find '''a''' solution, we know it is '''the''' solution. The combination of .race.grep
with .first
lets us utilize concurrency and exit early when the single desired solution is found.
sub find-match ($num) {
my $test = $num.base(16);
return if index $test, 0;
return if $test.comb.Bag.values.max > 1;
$num;
}
my $hex = 'FEDCBA987654321'; # largest possible hex number
my $magic-number = [lcm] 1 .. 15; # find least common multiple
my $div = :16($hex) div $magic-number * $magic-number;
# hunt for target stepping backwards in multiples of the lcm
my $target = ($div, { $_ - $magic-number } ... 0).race.grep(*.&find-match).first;
my $hexnum = $target.base(16);
say "Found $hexnum"; # Found a solution, display it
say ' ' x 12, 'In base 16', ' ' x 36, 'In base 10';
for $hexnum.comb {
printf "%s / %s = %s | %d / %2d = %19d\n",
$hexnum, $_, ($target / :16($_)).base(16),
$target, :16($_), $target / :16($_);}
{{out}}
Found FEDCB59726A1348
In base 16 In base 10
FEDCB59726A1348 / F = 10FDA5B4BE4F038 | 1147797065081426760 / 15 = 76519804338761784
FEDCB59726A1348 / E = 1234561D150B83C | 1147797065081426760 / 14 = 81985504648673340
FEDCB59726A1348 / D = 139AD2E43E0C668 | 1147797065081426760 / 13 = 88292081929340520
FEDCB59726A1348 / C = 153D0F21EDE2C46 | 1147797065081426760 / 12 = 95649755423452230
FEDCB59726A1348 / B = 172B56538F25ED8 | 1147797065081426760 / 11 = 104345187734675160
FEDCB59726A1348 / 5 = 32F8F11E3AED0A8 | 1147797065081426760 / 5 = 229559413016285352
FEDCB59726A1348 / 9 = 1C5169829283B08 | 1147797065081426760 / 9 = 127533007231269640
FEDCB59726A1348 / 7 = 2468AC3A2A17078 | 1147797065081426760 / 7 = 163971009297346680
FEDCB59726A1348 / 2 = 7F6E5ACB93509A4 | 1147797065081426760 / 2 = 573898532540713380
FEDCB59726A1348 / 6 = 2A7A1E43DBC588C | 1147797065081426760 / 6 = 191299510846904460
FEDCB59726A1348 / A = 197C788F1D76854 | 1147797065081426760 / 10 = 114779706508142676
FEDCB59726A1348 / 1 = FEDCB59726A1348 | 1147797065081426760 / 1 = 1147797065081426760
FEDCB59726A1348 / 3 = 54F43C87B78B118 | 1147797065081426760 / 3 = 382599021693808920
FEDCB59726A1348 / 4 = 3FB72D65C9A84D2 | 1147797065081426760 / 4 = 286949266270356690
FEDCB59726A1348 / 8 = 1FDB96B2E4D4269 | 1147797065081426760 / 8 = 143474633135178345
Phix
base 10
{{trans|Go}}
integer magic = 9*8*7,
high = 9876432,
n = high-mod(high,magic)
sequence seen
while true do
string s = sprintf("%d",n)
seen = {1,0,0,0,0,1,0,0,0,0}
for j=1 to length(s) do
seen[s[j]-'0'+1] += 1
end for
if max(seen)=1 then exit end if
n -= magic
end while
-- may as well quickly verify...
seen[5+1] = 0 -- (skipping 5)
for i=1 to 9 do -- ( and 0 )
if seen[i+1] then
if mod(n,i)!=0 then ?9/0 end if
end if
end for
printf(1,"%d (%d iterations)\n",{n,(high-n)/magic})
{{out}}
9867312 (18 iterations)
base 16
{{trans|Haskell}} {{libheader|mpfr}} using gmp (15 times faster than bigatom)
atom t0 = time()
integer count = 0
string s
include mpfr.e
mpz lcm15 = mpz_init(lcm(tagset(15))),
d = mpz_init(),
r = mpz_init()
mpz_set_str(d,"FEDCBA987654321",16)
mpz_mod(r,d,lcm15)
mpz_sub(d,d,r) -- d:= max k*lcm <= "FE..21"
r = mpz_free(r) -- (no longer used)
while true do
s = mpz_get_str(d,16)
if sort(s)="123456789abcdef" then exit end if
mpz_sub(d,d,lcm15)
count += 1
end while
string e = elapsed(time()-t0)
printf(1,"%s (%d iterations, %s)\n",{s,count,e})
{{out}}
fedcb59726a1348 (954460 iterations, 4s)
Prolog
This will work with any radix, including base 10 and base 16.
% Find the largest integer divisible by all it's digits, with no digit repeated.
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% We go for a generic algorithm here. Test for divisibility is done by
% calculating the least common multiplier for all digits, and testing
% whether a candidate can be divided by the LCM without remainder.
%
% Instead of iterating numbers and checking whether the number has
% repeating digits, it is more efficient to generate permutations of
% digits and then convert to a number. Doing it this way reduces search
% space greatly.
%
% Notes:
% For decimal numbers we could improve times by testing only numbers
% of length 7 (since 5x2=10 and 0 is not one of our digits, and 9x2=18
% which needs 2 digits to store), but that sort of logic does not
% hold for hexadecimal numbers.
% We could also explicitly eliminate odd numbers, but the double validity
% check actually slows us down very slightly instead of speeding us up.
:- dynamic
trial/1. % temporarily store digit combinations here.
gcd(X, X, X). % Calculate greatest common divisor
gcd(M, N, X) :- N > M, B is N-M, gcd(M,B,X).
gcd(M, N, X) :- N < M, A is M-N, gcd(A,N,X).
lcm(A, B, LCM) :- gcd(A,B,GCD), LCM is A * B / GCD.
lcm([H], H). % Calculate least common multiplier
lcm([A|T], LCM) :- lcm(T, B), !, lcm(A,B,LCM).
mkint(_, Val, [], Val). % Result = Val where list is empty
mkint(Radix, Val, [H|T], Int) :- % (((I0*10+I1)*10+I2)*10+In)...
V0 is Val*Radix+H, !, mkint(Radix, V0, T, Int).
% Turn a list of digits into an integer number using Radix.
mkint(Radix, [H|T], Int) :- mkint(Radix, H, T, Int).
domain(0, []). % For example, domain(5) is [1,2,3,4,5]
domain(N, [N|Digits]) :-
succ(N0, N), !, domain(N0, Digits).
trial(0, Digits, Digits). % generates a combination of digits to test
trial(N, D, Digits) :- % remove N digits, and find remaining combinations
append(L0,[_|L1],D), succ(N0, N), trial(N0, L1, Dx),
append(L0, Dx, Digits). % trial(1, [3,2,1], D) -> D=[2,1]; D=[3,1]; D=[3,2].
make_trials(_,_) :- retractall(trial(_)), fail.
make_trials(N,Domain) :- trial(N, Domain, Digits), asserta(trial(Digits)), fail.
make_trials(_,_). % trials are stored highest values to lowest
combinations(Radix, NDigits) :- % Precalculate all possible digit combinations
succ(R0, Radix), domain(R0, Domain), Nskip is R0 - NDigits,
make_trials(Nskip, Domain).
test(Radix, Digits, LCM, Number) :- % Make an integer and check for divisibility
mkint(Radix, Digits, Number), 0 is Number mod LCM.
bignum(Radix, Number) :-
succ(R0, Radix), between(1,R0,N), NDigits is Radix - N, % loop decreasing length
combinations(Radix, NDigits), % precalc digit combos with length=NDigits
trial(Digits), lcm(Digits, LCM), % for a combination, calculate LCM
permutation(Digits, Trial), % generate a permutation
test(Radix, Trial, LCM, Number). % test for divisibility
largest_decimal(N) :- bignum(10, N), !.
largest_hex(N, H) :- bignum(16, N), !, sformat(H, '~16r', [N]).
?- time(largest_decimal(S)).
% 20,043,250 inferences, 3.086 CPU in 3.089 seconds (100% CPU, 6493905 Lips)
S = 9867312.
?- time(largest_hex(S,H)).
% 73,332,059 inferences, 11.800 CPU in 11.803 seconds (100% CPU, 6214553 Lips)
S = 1147797065081426760,
H = "fedcb59726a1348".
Python
base 10
Using the insights presented in the preamble to the '''Perl 6''' (base 10) example: {{Works with|Python|3.7}}
'''Largest number divisible by its digits'''
from itertools import (chain, permutations)
from collections import (defaultdict)
from inspect import (signature)
from functools import (reduce)
from math import (gcd)
# main :: IO ()
def main():
'''Tests'''
# (Division by zero is not an option, so we omit 0 and 5)
digits = [1, 2, 3, 4, 6, 7, 8, 9]
# Least common multiple of the digits above
lcmDigits = foldl1(lcm)(digits)
# Any set of 7 distinct digits obtained by deleting
# [1, 4 or 7] from the list of 8 above
sevenDigits = fmap(flip(delete)(digits))(
[1, 4, 7]
)
print(
max(
fmap(intFromDigits)(
concatMap(permutations)(sevenDigits)
),
key=lambda n: n if 0 == n % lcmDigits else 0
)
)
# intFromDigits :: [Int] -> Int
def intFromDigits(xs):
'''An integer derived from an
ordered list of digits.
'''
return reduce(lambda a, x: a * 10 + x, xs, 0)
# GENERIC --------------------------------------------------
# concatMap :: (a -> [b]) -> [a] -> [b]
def concatMap(f):
'''A concatenated list over which a function has been mapped.
The list monad can be derived by using a function f which
wraps its output in a list,
(using an empty list to represent computational failure).'''
return lambda xs: list(
chain.from_iterable(map(f, xs))
)
# delete :: Eq a => a -> [a] -> [a]
def delete(x):
'''xs with the first instance of
x removed.
'''
def go(xs):
ys = xs.copy()
ys.remove(x)
return ys
return lambda xs: go(xs)
# flip :: (a -> b -> c) -> b -> a -> c
def flip(f):
'''The (curried or uncurried) function f with its
arguments reversed.
'''
if 1 < len(signature(f).parameters):
return lambda a, b: f(b, a)
else:
return lambda a: lambda b: f(b)(a)
# foldl1 :: (a -> a -> a) -> [a] -> a
def foldl1(f):
'''Left to right reduction of the
non-empty list xs, using the binary
operator f, with the head of xs
as the initial acccumulator value.
'''
return lambda xs: reduce(
lambda a, x: f(a)(x), xs[1:], xs[0]
) if xs else None
# fmap :: Functor f => (a -> b) -> f a -> f b
def fmap(f):
'''A function f mapped over a functor.'''
def go(x):
return defaultdict(list, [
('list', fmapList),
# ('iter', fmapNext),
# ('Either', fmapLR),
# ('Maybe', fmapMay),
# ('Tree', fmapTree),
# ('tuple', fmapTuple),
('function', fmapFn)
])[
typeName(x)
](f)(x)
return lambda v: go(v)
# fmapList :: (a -> b) -> [a] -> [b]
def fmapList(f):
'''fmap over a list.
f lifted to a function over a list.
'''
return lambda xs: list(map(f, xs))
# fmapFn :: (a -> b) -> (r -> a) -> r -> b
def fmapFn(f):
'''fmap over a function.
The composition of f and g.
'''
return lambda g: lambda x: f(g(x))
# lcm :: Int -> Int -> Int
def lcm(x):
'''The smallest positive integer divisible
without remainder by both x and y.
'''
return lambda y: (
0 if (0 == x or 0 == y) else abs(
y * (x // gcd(x, y))
)
)
# typeName :: a -> String
def typeName(x):
'''Name string for a built-in or user-defined type.
Selector for type-specific instances
of polymorphic functions.
'''
if isinstance(x, dict):
return x.get('type') if 'type' in x else 'dict'
else:
return 'iter' if hasattr(x, '__next__') else (
type(x).__name__
)
# MAIN ---
if __name__ == '__main__':
main()
{{Out}}
9867312
base 16
Descending from the upper limit, in steps of 360360 (least common multiple of the fifteen digit values), until the first number that uses all fifteen digits when expressed in hexadecimal.
{{Works with|Python|3.7}}
'''Largest number divisible by its hex digits'''
from functools import (reduce)
from math import (gcd)
# main :: IO ()
def main():
'''First integer evenly divisible by each of its
hex digits, none of which appear more than once.
'''
# Least common multiple of digits [1..15]
# ( -> 360360 )
lcmDigits = foldl1(lcm)(
enumFromTo(1)(15)
)
allDigits = 0xfedcba987654321
# ( -> 1147797409030632360 )
upperLimit = allDigits - (allDigits % lcmDigits)
# Possible numbers
xs = enumFromThenToNext(upperLimit)(
upperLimit - lcmDigits
)(1)
print(
hex(
until(lambda x: 15 == len(set(showHex(x))))(
lambda _: next(xs)
)(next(xs))
)
) # --> 0xfedcb59726a1348
# GENERIC ABSTRACTIONS -----------------------------------
# enumFromThenToNext :: Int -> Int -> Int -> Gen [Int]
def enumFromThenToNext(m):
'''Non-finite series of integer values enumerated
from m to n with a step size defined by nxt-m.
'''
def go(m, nxt):
d = nxt - m
v = m
while True:
yield v
v = d + v
return lambda nxt: lambda n: go(m, nxt)
# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: list(range(m, 1 + n))
# foldl1 :: (a -> a -> a) -> [a] -> a
def foldl1(f):
'''Left to right reduction of the
non-empty list xs, using the binary
operator f, with the head of xs
as the initial acccumulator value.
'''
return lambda xs: reduce(
lambda a, x: f(a)(x), xs[1:], xs[0]
) if xs else None
# lcm :: Int -> Int -> Int
def lcm(x):
'''The smallest positive integer divisible
without remainder by both x and y.
'''
return lambda y: (
0 if (0 == x or 0 == y) else abs(
y * (x // gcd(x, y))
)
)
# until :: (a -> Bool) -> (a -> a) -> a -> a
def until(p):
'''The result of repeatedly applying f until p holds.
The initial seed value is x.
'''
def go(f, x):
v = x
while not p(v):
v = f(v)
return v
return lambda f: lambda x: go(f, x)
# showHex :: Int -> String
def showHex(n):
'''Hexadecimal string representation
of an integer value.
'''
return hex(n)[2:]
# MAIN --
if __name__ == '__main__':
main()
{{Out}}
0xfedcb59726a1348
[Finished in 1.243s]
REXX
base 10
This REXX version uses mostly the same logic and deductions that the '''Perl 6''' example does, but it performs
the tests in a different order for maximum speed.
The inner '''do''' loop is only executed a score of times; the 1st '''if''' statement does the bulk of the eliminations.
/*REXX program finds the largest (decimal) integer divisible by all its decimal digits. */
$= 7 * 8 * 9 /*a number that it must be divisible by*/
start= 9876432 % $ * $ /*the number to start the sieving from.*/
t= 0 /*the number of divisibility trials. */
do #=start by -$ /*search from largest number downwards.*/
if # // $ \==0 then iterate /*Not divisible? Then keep searching.*/
if verify(50, #, 'M') \==0 then iterate /*does it contain a five or a zero? */
t= t+1 /*curiosity's sake, track # of trials. */
do j=1 for length(#) - 1 /*look for a possible duplicated digit.*/
if pos( substr( #, j, 1), #, j+1) \==0 then iterate #
end /*j*/ /* [↑] Not unique? Then keep searching*/
/* [↓] superfluous, but check anyways.*/
do v=1 for length(#) /*verify the # is divisible by all digs*/
if # // substr(#, v, 1) \==0 then iterate #
end /*v*/ /* [↑] ¬divisible? Then keep looking.*/
leave /*we found a number, so go display it. */
end /*#*/
say 'found ' # " (in " t ' trials)' /*stick a fork in it, we're all done. */
{{out|output|:}} Timing note: execution time is under '''1/2''' millisecond (essentially not measurable in the granularity of the REXX timer under Microsoft Windows).
found 9867312 (in 11 trials)
base 16
The "magic" number was expanded to handle hexadecimal numbers.
Note that '''1514131211''' is the same as '''1311987*5'''.
/*REXX program finds the largest hexadecimal integer divisible by all its hex digits. */
numeric digits 20 /*be able to handle the large hex nums.*/
bigH= 'fedcba987654321' /*biggest hexadecimal number possible. */
bigN= x2d(bigH) /* " " " in decimal*/
$= 15 * 14 * 13 * 12 * 11 /*a number that it must be divisible by*/
start= bigN % $ * $ /*the number to start the sieving from.*/
t=0 /*the number of divisibility trials. */
do #=start by -$ /*search from largest poss. # downwards*/
if # // $ \==0 then iterate /*Not divisible? Then keep searching.*/
h= d2x(#) /*convert decimal number to hexadecimal*/
if pos(0, h) \==0 then iterate /*does hexadecimal number contain a 0? */
t= t+1 /*curiosity's sake, track # of trials. */
do j=1 for length(h) - 1 /*look for a possible duplicated digit.*/
if pos( substr(h, j, 1), h, j+1) \==0 then iterate #
end /*j*/ /* [↑] Not unique? Then keep searching*/
do v=1 for length(h) /*verify the # is divisible by all digs*/
if # // x2d(substr( h, v, 1) ) \==0 then iterate #
end /*v*/ /* [↑] ¬divisible? Then keep looking.*/
leave /*we found a number, so go display it. */
end /*#*/
say 'found ' h " (in " t ' trials)' /*stick a fork in it, we're all done. */
{{out|output|:}}
found FEDCB59726A1348 (in 287747 trials)
Ring
# Project : Largest number divisible by its digits
for n = 9867000 to 9867400
numbers = list(9)
for t=1 to 9
numbers[t] = 0
next
flag = 1
flag2 = 1
flag3 = 1
str=string(n)
for m=1 to len(str)
if number(str[m]) > 0
numbers[number(str[m])] = numbers[number(str[m])] + 1
else
flag2 = 0
ok
next
if flag2 = 1
for p=1 to 9
if numbers[p] = 0 or numbers[p] = 1
else
flag = 0
ok
next
if flag = 1
for x=1 to len(str)
if n%(number(str[x])) != 0
flag3 = 0
ok
next
if flag3 = 1
see n + nl
ok
ok
ok
next
Output:
9867312
Ruby
base 10
Following the reasoning of the Perl 6 sample.
magic_number = 9*8*7
div = 9876432.div(magic_number) * magic_number
candidates = div.step(0, -magic_number)
res = candidates.find do |c|
digits = c.digits
(digits & [0,5]).empty? && digits == digits.uniq
end
puts res # => 9867312
Scala
base 10
This example starts with a lazily evaluated list of decreasing decimal numbers, starting with 98764321 (5 is eliminated as per the Pearl 6 analysis). It applies a filter to only accept numbers with distinct, nonzero digits that all divide the number itself, and then returns the head of the list.
import scala.collection.mutable
def largestDecimal: Int = Iterator.from(98764321, -1).filter(chkDec).next
def chkDec(num: Int): Boolean = {
val set = mutable.HashSet[Int]()
num.toString.toVector.map(_.asDigit).forall(d => (d != 0) && (num%d == 0) && set.add(d))
}
{{out}}
scala> println(s"Base 10: $largestDecimal")
Base 10: 9867312
base 16
While concise, the previous example is relatively slow, taking nearly 30 seconds to complete. So, instead of simply moving on to a base 16 version, this next example is a fast version for arbitrary base. Starting with a list of digits generated from the given base, the program generates a lazily evaluated list of all possible combinations of digits in blocks of decreasing length. Each block is passed to a function that generates a list of numbers for each combination which are divisible by all the digits, then filters it for numbers which are made up of the required digits. The blocks are checked in order until a number is found.
import spire.math.SafeLong
import spire.implicits._
object LargestNumDivisibleByDigits {
def main(args: Array[String]): Unit = {
for(b <- Seq(10, 16)){
val tStart = System.currentTimeMillis
val res = getLargestNum(b).toBigInt.toString(b)
val tDur = System.currentTimeMillis - tStart
println(s"Base $b: $res [${tDur}ms]")
}
}
def getLargestNum(base: SafeLong): SafeLong = {
def chkNum(digits: Vector[SafeLong])(num: SafeLong): Boolean = {
val lst = LazyList.iterate((num%base, num/base)){case (_, src) => (src%base, src/base)}.take(digits.length).map(_._1)
lst.diff(digits).isEmpty
}
def chkChunk(combo: Vector[SafeLong]): Option[SafeLong] = {
val lcm = combo.reduce(_.lcm(_))
val ulim = combo.zipWithIndex.map{case (n, i) => n*(base ** i)}.reduce(_+_)
Iterator.iterate(ulim - (ulim%lcm))(_ - lcm).takeWhile(_ > 0).find(chkNum(combo))
}
val baseDigits: Vector[SafeLong] = Vector.range(1, base.toInt).map(SafeLong(_))
def chkBlock(digits: Iterator[Vector[SafeLong]]): Option[SafeLong] = digits.map(chkChunk).collect{case Some(n) => n}.maxOption
Iterator.from(base.toInt - 1, -1).map(len => chkBlock(baseDigits.combinations(len))).collect{case Some(n) => n}.next
}
}
{{out}}
Base 10: 9867312 [1144ms]
Base 16: fedcb59726a1348 [1090ms]
Sidef
base 10
func largest_number(base) {
var digits = @(base ^.. 1)
digits.each {|k|
digits.variations(k, {|*a|
var n = Number(a.join, base)
if (a.all {|d| d.divides(n) }) {
return n
}
})
}
}
say largest_number(10) #=> 9867312
zkl
base 10
{{trans|Perl6}}
const magic_number=9*8*7; # 504
const div=9876432 / magic_number * magic_number; #largest 7 digit multiple of 504 < 9876432
foreach test in ([div..0,-magic_number]){
text:=test.toString();
if(text.holds("0","5")) continue; # skip numbers containing 0 or 5
if(text.unique().len()!=text.len()) continue; # skip numbers with non unique digits
if(test.split().filter1('%.fp(test))) continue; # skip numbers that don't divide evenly by all digits
println("Found ",test); # Found a solution, display it
foreach d in (test.split()){
println("%s / %s = %s".fmt(test,d, test/d));
}
break;
}
{{out}}
Found 9867312
9867312 / 9 = 1096368
9867312 / 8 = 1233414
9867312 / 6 = 1644552
9867312 / 7 = 1409616
9867312 / 3 = 3289104
9867312 / 1 = 9867312
9867312 / 2 = 4933656
base 16
{{trans|Haskell}}
const bigN=0xfedcba987654321; // biggest hexadecimal number possible.
lcm:=lcmNs([1..15]); // 360360, smallest # that will divide answer
upperLimit:=bigN - bigN%lcm; // start at a mulitple of whatever the answer is
foreach test in ([upperLimit..1,-lcm]){
text:=test.toString(16);
if(15!=text.unique().len()) continue;
println(text);
break;
}
fcn lcmNs(ns){ ns.reduce(fcn(m,n){ (m*n).abs()/m.gcd(n) }) }
{{out}}
fedcb59726a1348