⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{Task|Matrices}} Every square matrix can be decomposed into a product of a lower triangular matrix and a upper triangular matrix , as described in [[wp:LU decomposition|LU decomposition]].
:
It is a modified form of Gaussian elimination. While the [[Cholesky decomposition]] only works for symmetric, positive definite matrices, the more general LU decomposition works for any square matrix.
There are several algorithms for calculating L and U. To derive ''Crout's algorithm'' for a 3x3 example, we have to solve the following system:
:
\begin{pmatrix} l_{11} & 0 & 0 \ l_{21} & l_{22} & 0 \ l_{31} & l_{32} & l_{33}\ \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \ 0 & u_{22} & u_{23} \ 0 & 0 & u_{33} \end{pmatrix} = LU
We now would have to solve 9 equations with 12 unknowns. To make the system uniquely solvable, usually the diagonal elements of are set to 1
: : :
so we get a solvable system of 9 unknowns and 9 equations.
:
\begin{pmatrix} 1 & 0 & 0 \ l_{21} & 1 & 0 \ l_{31} & l_{32} & 1\ \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \ 0 & u_{22} & u_{23} \ 0 & 0 & u_{33} \end
\begin{pmatrix} u_{11} & u_{12} & u_{13} \ u_{11}l_{21} & u_{12}l_{21}+u_{22} & u_{13}l_{21}+u_{23} \ u_{11}l_{31} & u_{12}l_{31}+u_{22}l_{32} & u_{13}l_{31} + u_{23}l_{32}+u_{33} \end{pmatrix} = LU
Solving for the other and , we get the following equations:
: : :
: :
:
and for :
: :
:
We see that there is a calculation pattern, which can be expressed as the following formulas, first for
:
and then for
:
We see in the second formula that to get the below the diagonal, we have to divide by the diagonal element (pivot) , so we get problems when is either 0 or very small, which leads to numerical instability.
The solution to this problem is ''pivoting'' , which means rearranging the rows of , prior to the decomposition, in a way that the largest element of each column gets onto the diagonal of . Rearranging the rows means to multiply by a permutation matrix :
:
Example:
:
The decomposition algorithm is then applied on the rearranged matrix so that
:
'''Task description'''
The task is to implement a routine which will take a square nxn matrix and return a lower triangular matrix , a upper triangular matrix and a permutation matrix , so that the above equation is fullfilled. You should then test it on the following two examples and include your output.
Example 1:
A
1 3 5
2 4 7
1 1 0
L
1.00000 0.00000 0.00000
0.50000 1.00000 0.00000
0.50000 -1.00000 1.00000
U
2.00000 4.00000 7.00000
0.00000 1.00000 1.50000
0.00000 0.00000 -2.00000
P
0 1 0
1 0 0
0 0 1
Example 2:
A
11 9 24 2
1 5 2 6
3 17 18 1
2 5 7 1
L
1.00000 0.00000 0.00000 0.00000
0.27273 1.00000 0.00000 0.00000
0.09091 0.28750 1.00000 0.00000
0.18182 0.23125 0.00360 1.00000
U
11.00000 9.00000 24.00000 2.00000
0.00000 14.54545 11.45455 0.45455
0.00000 0.00000 -3.47500 5.68750
0.00000 0.00000 0.00000 0.51079
P
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
Ada
{{works with|Ada 2005}} decomposition.ads:
with Ada.Numerics.Generic_Real_Arrays;
generic
with package Matrix is new Ada.Numerics.Generic_Real_Arrays (<>);
package Decomposition is
-- decompose a square matrix A by PA = LU
procedure Decompose (A : Matrix.Real_Matrix; P, L, U : out Matrix.Real_Matrix);
end Decomposition;
decomposition.adb:
package body Decomposition is
procedure Swap_Rows (M : in out Matrix.Real_Matrix; From, To : Natural) is
Temporary : Matrix.Real;
begin
if From = To then
return;
end if;
for I in M'Range (2) loop
Temporary := M (M'First (1) + From, I);
M (M'First (1) + From, I) := M (M'First (1) + To, I);
M (M'First (1) + To, I) := Temporary;
end loop;
end Swap_Rows;
function Pivoting_Matrix
(M : Matrix.Real_Matrix)
return Matrix.Real_Matrix
is
use type Matrix.Real;
Order : constant Positive := M'Length (1);
Result : Matrix.Real_Matrix := Matrix.Unit_Matrix (Order);
Max : Matrix.Real;
Row : Natural;
begin
for J in 0 .. Order - 1 loop
Max := M (M'First (1) + J, M'First (2) + J);
Row := J;
for I in J .. Order - 1 loop
if M (M'First (1) + I, M'First (2) + J) > Max then
Max := M (M'First (1) + I, M'First (2) + J);
Row := I;
end if;
end loop;
if J /= Row then
-- swap rows J and Row
Swap_Rows (Result, J, Row);
end if;
end loop;
return Result;
end Pivoting_Matrix;
procedure Decompose (A : Matrix.Real_Matrix; P, L, U : out Matrix.Real_Matrix) is
use type Matrix.Real_Matrix, Matrix.Real;
Order : constant Positive := A'Length (1);
A2 : Matrix.Real_Matrix (A'Range (1), A'Range (2));
S : Matrix.Real;
begin
L := (others => (others => 0.0));
U := (others => (others => 0.0));
P := Pivoting_Matrix (A);
A2 := P * A;
for J in 0 .. Order - 1 loop
L (L'First (1) + J, L'First (2) + J) := 1.0;
for I in 0 .. J loop
S := 0.0;
for K in 0 .. I - 1 loop
S := S + U (U'First (1) + K, U'First (2) + J) *
L (L'First (1) + I, L'First (2) + K);
end loop;
U (U'First (1) + I, U'First (2) + J) :=
A2 (A2'First (1) + I, A2'First (2) + J) - S;
end loop;
for I in J + 1 .. Order - 1 loop
S := 0.0;
for K in 0 .. J loop
S := S + U (U'First (1) + K, U'First (2) + J) *
L (L'First (1) + I, L'First (2) + K);
end loop;
L (L'First (1) + I, L'First (2) + J) :=
(A2 (A2'First (1) + I, A2'First (2) + J) - S) /
U (U'First (1) + J, U'First (2) + J);
end loop;
end loop;
end Decompose;
end Decomposition;
Example usage:
with Ada.Numerics.Real_Arrays;
with Ada.Text_IO;
with Decomposition;
procedure Decompose_Example is
package Real_Decomposition is new Decomposition
(Matrix => Ada.Numerics.Real_Arrays);
package Real_IO is new Ada.Text_IO.Float_IO (Float);
procedure Print (M : Ada.Numerics.Real_Arrays.Real_Matrix) is
begin
for Row in M'Range (1) loop
for Col in M'Range (2) loop
Real_IO.Put (M (Row, Col), 3, 2, 0);
end loop;
Ada.Text_IO.New_Line;
end loop;
end Print;
Example_1 : constant Ada.Numerics.Real_Arrays.Real_Matrix :=
((1.0, 3.0, 5.0),
(2.0, 4.0, 7.0),
(1.0, 1.0, 0.0));
P_1, L_1, U_1 : Ada.Numerics.Real_Arrays.Real_Matrix (Example_1'Range (1),
Example_1'Range (2));
Example_2 : constant Ada.Numerics.Real_Arrays.Real_Matrix :=
((11.0, 9.0, 24.0, 2.0),
(1.0, 5.0, 2.0, 6.0),
(3.0, 17.0, 18.0, 1.0),
(2.0, 5.0, 7.0, 1.0));
P_2, L_2, U_2 : Ada.Numerics.Real_Arrays.Real_Matrix (Example_2'Range (1),
Example_2'Range (2));
begin
Real_Decomposition.Decompose (A => Example_1,
P => P_1,
L => L_1,
U => U_1);
Real_Decomposition.Decompose (A => Example_2,
P => P_2,
L => L_2,
U => U_2);
Ada.Text_IO.Put_Line ("Example 1:");
Ada.Text_IO.Put_Line ("A:"); Print (Example_1);
Ada.Text_IO.Put_Line ("L:"); Print (L_1);
Ada.Text_IO.Put_Line ("U:"); Print (U_1);
Ada.Text_IO.Put_Line ("P:"); Print (P_1);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put_Line ("Example 2:");
Ada.Text_IO.Put_Line ("A:"); Print (Example_2);
Ada.Text_IO.Put_Line ("L:"); Print (L_2);
Ada.Text_IO.Put_Line ("U:"); Print (U_2);
Ada.Text_IO.Put_Line ("P:"); Print (P_2);
end Decompose_Example;
{{out}}
Example 1:
A:
1.00 3.00 5.00
2.00 4.00 7.00
1.00 1.00 0.00
L:
1.00 0.00 0.00
0.50 1.00 0.00
0.50 -1.00 1.00
U:
2.00 4.00 7.00
0.00 1.00 1.50
0.00 0.00 -2.00
P:
0.00 1.00 0.00
1.00 0.00 0.00
0.00 0.00 1.00
Example 2:
A:
11.00 9.00 24.00 2.00
1.00 5.00 2.00 6.00
3.00 17.00 18.00 1.00
2.00 5.00 7.00 1.00
L:
1.00 0.00 0.00 0.00
0.27 1.00 0.00 0.00
0.09 0.29 1.00 0.00
0.18 0.23 0.00 1.00
U:
11.00 9.00 24.00 2.00
0.00 14.55 11.45 0.45
0.00 0.00 -3.47 5.69
0.00 0.00 0.00 0.51
P:
1.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00
BBC BASIC
DIM A1(2,2)
A1() = 1, 3, 5, 2, 4, 7, 1, 1, 0
PROCLUdecomposition(A1(), L1(), U1(), P1())
PRINT "L1:" ' FNshowmatrix(L1())
PRINT "U1:" ' FNshowmatrix(U1())
PRINT "P1:" ' FNshowmatrix(P1())
DIM A2(3,3)
A2() = 11, 9, 24, 2, 1, 5, 2, 6, 3, 17, 18, 1, 2, 5, 7, 1
PROCLUdecomposition(A2(), L2(), U2(), P2())
PRINT "L2:" ' FNshowmatrix(L2())
PRINT "U2:" ' FNshowmatrix(U2())
PRINT "P2:" ' FNshowmatrix(P2())
END
DEF PROCLUdecomposition(a(), RETURN l(), RETURN u(), RETURN p())
LOCAL i%, j%, k%, n%, s, b() : n% = DIM(a(),2)
DIM l(n%,n%), u(n%,n%), b(n%,n%)
PROCpivot(a(), p())
b() = p() . a()
FOR j% = 0 TO n%
l(j%,j%) = 1
FOR i% = 0 TO j%
s = 0
FOR k% = 0 TO i% : s += u(k%,j%) * l(i%,k%) : NEXT
u(i%,j%) = b(i%,j%) - s
NEXT
FOR i% = j% TO n%
s = 0
FOR k% = 0 TO j% : s += u(k%,j%) * l(i%,k%) : NEXT
IF i%<>j% l(i%,j%) = (b(i%,j%) - s) / u(j%,j%)
NEXT
NEXT j%
ENDPROC
DEF PROCpivot(a(), RETURN p())
LOCAL i%, j%, m%, n%, r% : n% = DIM(a(),2)
DIM p(n%,n%) : FOR i% = 0 TO n% : p(i%,i%) = 1 : NEXT
FOR i% = 0 TO n%
m% = a(i%,i%)
r% = i%
FOR j% = i% TO n%
IF a(j%,i%) > m% m% = a(j%,i%) : r% = j%
NEXT
IF i%<>r% THEN
FOR j% = 0 TO n% : SWAP p(i%,j%),p(r%,j%) : NEXT
ENDIF
NEXT i%
ENDPROC
DEF FNshowmatrix(a())
LOCAL @%, i%, j%, a$
@% = &102050A
FOR i% = 0 TO DIM(a(),1)
FOR j% = 0 TO DIM(a(),2)
a$ += STR$(a(i%,j%)) + ", "
NEXT
a$ = LEFT$(LEFT$(a$)) + CHR$(13) + CHR$(10)
NEXT i%
= a$
{{out}}
L1:
1.00000, 0.00000, 0.00000
0.50000, 1.00000, 0.00000
0.50000, -1.00000, 1.00000
U1:
2.00000, 4.00000, 7.00000
0.00000, 1.00000, 1.50000
0.00000, 0.00000, -2.00000
P1:
0.00000, 1.00000, 0.00000
1.00000, 0.00000, 0.00000
0.00000, 0.00000, 1.00000
L2:
1.00000, 0.00000, 0.00000, 0.00000
0.27273, 1.00000, 0.00000, 0.00000
0.09091, 0.28750, 1.00000, 0.00000
0.18182, 0.23125, 0.00360, 1.00000
U2:
11.00000, 9.00000, 24.00000, 2.00000
0.00000, 14.54545, 11.45455, 0.45455
0.00000, 0.00000, -3.47500, 5.68750
0.00000, 0.00000, 0.00000, 0.51079
P2:
1.00000, 0.00000, 0.00000, 0.00000
0.00000, 0.00000, 1.00000, 0.00000
0.00000, 1.00000, 0.00000, 0.00000
0.00000, 0.00000, 0.00000, 1.00000
C
Compiled with gcc -std=gnu99 -Wall -lm -pedantic
. Demonstrating how to do LU decomposition, and how (not) to use macros.
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define foreach(a, b, c) for (int a = b; a < c; a++)
#define for_i foreach(i, 0, n)
#define for_j foreach(j, 0, n)
#define for_k foreach(k, 0, n)
#define for_ij for_i for_j
#define for_ijk for_ij for_k
#define _dim int n
#define _swap(x, y) { typeof(x) tmp = x; x = y; y = tmp; }
#define _sum_k(a, b, c, s) { s = 0; foreach(k, a, b) s+= c; }
typedef double **mat;
#define _zero(a) mat_zero(a, n)
void mat_zero(mat x, int n) { for_ij x[i][j] = 0; }
#define _new(a) a = mat_new(n)
mat mat_new(_dim)
{
mat x = malloc(sizeof(double*) * n);
x[0] = malloc(sizeof(double) * n * n);
for_i x[i] = x[0] + n * i;
_zero(x);
return x;
}
#define _copy(a) mat_copy(a, n)
mat mat_copy(void *s, _dim)
{
mat x = mat_new(n);
for_ij x[i][j] = ((double (*)[n])s)[i][j];
return x;
}
#define _del(x) mat_del(x)
void mat_del(mat x) { free(x[0]); free(x); }
#define _QUOT(x) #x
#define QUOTE(x) _QUOT(x)
#define _show(a) printf(QUOTE(a)" =");mat_show(a, 0, n)
void mat_show(mat x, char *fmt, _dim)
{
if (!fmt) fmt = "%8.4g";
for_i {
printf(i ? " " : " [ ");
for_j {
printf(fmt, x[i][j]);
printf(j < n - 1 ? " " : i == n - 1 ? " ]\n" : "\n");
}
}
}
#define _mul(a, b) mat_mul(a, b, n)
mat mat_mul(mat a, mat b, _dim)
{
mat c = _new(c);
for_ijk c[i][j] += a[i][k] * b[k][j];
return c;
}
#define _pivot(a, b) mat_pivot(a, b, n)
void mat_pivot(mat a, mat p, _dim)
{
for_ij { p[i][j] = (i == j); }
for_i {
int max_j = i;
foreach(j, i, n)
if (fabs(a[j][i]) > fabs(a[max_j][i])) max_j = j;
if (max_j != i)
for_k { _swap(p[i][k], p[max_j][k]); }
}
}
#define _LU(a, l, u, p) mat_LU(a, l, u, p, n)
void mat_LU(mat A, mat L, mat U, mat P, _dim)
{
_zero(L); _zero(U);
_pivot(A, P);
mat Aprime = _mul(P, A);
for_i { L[i][i] = 1; }
for_ij {
double s;
if (j <= i) {
_sum_k(0, j, L[j][k] * U[k][i], s)
U[j][i] = Aprime[j][i] - s;
}
if (j >= i) {
_sum_k(0, i, L[j][k] * U[k][i], s);
L[j][i] = (Aprime[j][i] - s) / U[i][i];
}
}
_del(Aprime);
}
double A3[][3] = {{ 1, 3, 5 }, { 2, 4, 7 }, { 1, 1, 0 }};
double A4[][4] = {{11, 9, 24, 2}, {1, 5, 2, 6}, {3, 17, 18, 1}, {2, 5, 7, 1}};
int main()
{
int n = 3;
mat A, L, P, U;
_new(L); _new(P); _new(U);
A = _copy(A3);
_LU(A, L, U, P);
_show(A); _show(L); _show(U); _show(P);
_del(A); _del(L); _del(U); _del(P);
printf("\n");
n = 4;
_new(L); _new(P); _new(U);
A = _copy(A4);
_LU(A, L, U, P);
_show(A); _show(L); _show(U); _show(P);
_del(A); _del(L); _del(U); _del(P);
return 0;
}
Common Lisp
Uses the routine (mmul A B) from [[Matrix multiplication]].
;; Creates a nxn identity matrix.
(defun eye (n)
(let ((I (make-array `(,n ,n) :initial-element 0)))
(loop for j from 0 to (- n 1) do
(setf (aref I j j) 1))
I))
;; Swap two rows l and k of a mxn matrix A, which is a 2D array.
(defun swap-rows (A l k)
(let* ((n (cadr (array-dimensions A)))
(row (make-array n :initial-element 0)))
(loop for j from 0 to (- n 1) do
(setf (aref row j) (aref A l j))
(setf (aref A l j) (aref A k j))
(setf (aref A k j) (aref row j)))))
;; Creates the pivoting matrix for A.
(defun pivotize (A)
(let* ((n (car (array-dimensions A)))
(P (eye n)))
(loop for j from 0 to (- n 1) do
(let ((max (aref A j j))
(row j))
(loop for i from j to (- n 1) do
(if (> (aref A i j) max)
(setq max (aref A i j)
row i)))
(if (not (= j row))
(swap-rows P j row))))
;; Return P.
P))
;; Decomposes a square matrix A by PA=LU and returns L, U and P.
(defun lu (A)
(let* ((n (car (array-dimensions A)))
(L (make-array `(,n ,n) :initial-element 0))
(U (make-array `(,n ,n) :initial-element 0))
(P (pivotize A))
(A (mmul P A)))
(loop for j from 0 to (- n 1) do
(setf (aref L j j) 1)
(loop for i from 0 to j do
(setf (aref U i j)
(- (aref A i j)
(loop for k from 0 to (- i 1)
sum (* (aref U k j)
(aref L i k))))))
(loop for i from j to (- n 1) do
(setf (aref L i j)
(/ (- (aref A i j)
(loop for k from 0 to (- j 1)
sum (* (aref U k j)
(aref L i k))))
(aref U j j)))))
;; Return L, U and P.
(values L U P)))
Example 1:
(setf g (make-array '(3 3) :initial-contents '((1 3 5) (2 4 7)(1 1 0))))
#2A((1 3 5) (2 4 7) (1 1 0))
(lu g)
#2A((1 0 0) (1/2 1 0) (1/2 -1 1))
#2A((2 4 7) (0 1 3/2) (0 0 -2))
#2A((0 1 0) (1 0 0) (0 0 1))
Example 2:
(setf h (make-array '(4 4) :initial-contents '((11 9 24 2)(1 5 2 6)(3 17 18 1)(2 5 7 1))))
#2A((11 9 24 2) (1 5 2 6) (3 17 18 1) (2 5 7 1))
(lup h)
#2A((1 0 0 0) (3/11 1 0 0) (1/11 23/80 1 0) (2/11 37/160 1/278 1))
#2A((11 9 24 2) (0 160/11 126/11 5/11) (0 0 -139/40 91/16) (0 0 0 71/139))
#2A((1 0 0 0) (0 0 1 0) (0 1 0 0) (0 0 0 1))
D
{{trans|Common Lisp}}
import std.stdio, std.algorithm, std.typecons, std.numeric,
std.array, std.conv, std.string, std.range;
bool isRectangular(T)(in T[][] m) pure nothrow @nogc {
return m.all!(r => r.length == m[0].length);
}
bool isSquare(T)(in T[][] m) pure nothrow @nogc {
return m.isRectangular && m[0].length == m.length;
}
T[][] matrixMul(T)(in T[][] A, in T[][] B) pure nothrow
in {
assert(A.isRectangular && B.isRectangular &&
!A.empty && !B.empty && A[0].length == B.length);
} body {
auto result = new T[][](A.length, B[0].length);
auto aux = new T[B.length];
foreach (immutable j; 0 .. B[0].length) {
foreach (immutable k, const row; B)
aux[k] = row[j];
foreach (immutable i, const ai; A)
result[i][j] = dotProduct(ai, aux);
}
return result;
}
/// Creates the pivoting matrix for m.
T[][] pivotize(T)(immutable T[][] m) pure nothrow
in {
assert(m.isSquare);
} body {
immutable n = m.length;
auto id = iota(n)
.map!((in j) => n.iota.map!(i => T(i == j)).array)
.array;
foreach (immutable i; 0 .. n) {
// immutable row = iota(i, n).reduce!(max!(j => m[j][i]));
T maxm = m[i][i];
size_t row = i;
foreach (immutable j; i .. n)
if (m[j][i] > maxm) {
maxm = m[j][i];
row = j;
}
if (i != row)
swap(id[i], id[row]);
}
return id;
}
/// Decomposes a square matrix A by PA=LU and returns L, U and P.
Tuple!(T[][],"L", T[][],"U", const T[][],"P")
lu(T)(immutable T[][] A) pure nothrow
in {
assert(A.isSquare);
} body {
immutable n = A.length;
auto L = new T[][](n, n);
auto U = new T[][](n, n);
foreach (immutable i; 0 .. n) {
L[i][i .. $] = 0;
U[i][0 .. i] = 0;
}
immutable P = A.pivotize!T;
immutable A2 = matrixMul!T(P, A);
foreach (immutable j; 0 .. n) {
L[j][j] = 1;
foreach (immutable i; 0 .. j+1) {
T s1 = 0;
foreach (immutable k; 0 .. i)
s1 += U[k][j] * L[i][k];
U[i][j] = A2[i][j] - s1;
}
foreach (immutable i; j .. n) {
T s2 = 0;
foreach (immutable k; 0 .. j)
s2 += U[k][j] * L[i][k];
L[i][j] = (A2[i][j] - s2) / U[j][j];
}
}
return typeof(return)(L, U, P);
}
void main() {
immutable a = [[1.0, 3, 5],
[2.0, 4, 7],
[1.0, 1, 0]];
immutable b = [[11.0, 9, 24, 2],
[1.0, 5, 2, 6],
[3.0, 17, 18, 1],
[2.0, 5, 7, 1]];
auto f = "[%([%(%.1f, %)],\n %)]]\n\n".replicate(3);
foreach (immutable m; [a, b])
writefln(f, lu(m).tupleof);
}
{{out}}
[[1.0, 0.0, 0.0],
[0.5, 1.0, 0.0],
[0.5, -1.0, 1.0]]
[[2.0, 4.0, 7.0],
[0.0, 1.0, 1.5],
[0.0, 0.0, -2.0]]
[[0.0, 1.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 0.0, 1.0]]
[[1.0, 0.0, 0.0, 0.0],
[0.3, 1.0, 0.0, 0.0],
[0.0, 0.3, 1.0, 0.0],
[0.2, 0.2, 0.0, 1.0]]
[[11.0, 9.0, 24.0, 2.0],
[0.0, 14.5, 11.5, 0.5],
[0.0, 0.0, -3.5, 5.7],
[0.0, 0.0, 0.0, 0.5]]
[[1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 1.0]]
EchoLisp
(lib 'matrix) ;; the matrix library provides LU-decomposition
(decimals 5)
(define A (list->array' (1 3 5 2 4 7 1 1 0 ) 3 3))
(define PLU (matrix-lu-decompose A)) ;; -> list of three matrices, P, Lower, Upper
(array-print (first PLU))
0 1 0
1 0 0
0 0 1
(array-print (second PLU))
1 0 0
0.5 1 0
0.5 -1 1
(array-print (caddr PLU))
2 4 7
0 1 1.5
0 0 -2
(define A (list->array '(11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 ) 4 4))
(define PLU (matrix-lu-decompose A)) ;; -> list of three matrices, P, Lower, Upper
(array-print (first PLU))
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
(array-print (second PLU))
1 0 0 0
0.27273 1 0 0
0.09091 0.2875 1 0
0.18182 0.23125 0.0036 1
(array-print (caddr PLU))
11 9 24 2
0 14.54545 11.45455 0.45455
0 0 -3.475 5.6875
0 0 0 0.51079
Fortran
program lu1
implicit none
call check( reshape([real(8)::1,2,1,3,4,1,5,7,0 ],[3,3]) )
call check( reshape([real(8)::11,1,3,2,9,5,17,5,24,2,18,7,2,6,1,1],[4,4]) )
contains
subroutine check(a)
real(8), intent(in) :: a(:,:)
integer :: i,j,n
real(8), allocatable :: aa(:,:),l(:,:),u(:,:)
integer, allocatable :: p(:,:)
integer, allocatable :: ipiv(:)
n = size(a,1)
allocate(aa(n,n),l(n,n),u(n,n),p(n,n),ipiv(n))
forall (j=1:n,i=1:n)
aa(i,j) = a(i,j)
u (i,j) = 0d0
p (i,j) = merge(1 ,0 ,i.eq.j)
l (i,j) = merge(1d0,0d0,i.eq.j)
end forall
call lu(aa, ipiv)
do i = 1,n
l(i, :i-1) = aa(ipiv(i), :i-1)
u(i,i: ) = aa(ipiv(i),i: )
end do
p(ipiv,:) = p
call mat_print('a',a)
call mat_print('p',p)
call mat_print('l',l)
call mat_print('u',u)
print *, "residual"
print *, "|| P.A - L.U || = ", maxval(abs(matmul(p,a)-matmul(l,u)))
end subroutine
subroutine lu(a,p)
! in situ decomposition, corresponds to LAPACK's dgebtrf
real(8), intent(inout) :: a(:,:)
integer, intent(out ) :: p(:)
integer :: n, i,j,k,kmax
n = size(a,1)
p = [ ( i, i=1,n ) ]
do k = 1,n-1
kmax = maxloc(abs(a(p(k:),k)),1) + k-1
if (kmax /= k ) p([k, kmax]) = p([kmax, k])
a(p(k+1:),k) = a(p(k+1:),k) / a(p(k),k)
forall (j=k+1:n) a(p(k+1:),j) = a(p(k+1:),j) - a(p(k+1:),k) * a(p(k),j)
end do
end subroutine
subroutine mat_print(amsg,a)
character(*), intent(in) :: amsg
class (*), intent(in) :: a(:,:)
integer :: i
print*,' '
print*,amsg
do i=1,size(a,1)
select type (a)
type is (real(8)) ; print'(100f8.2)',a(i,:)
type is (integer) ; print'(100i8 )',a(i,:)
end select
end do
print*,' '
end subroutine
end program
{{out}}
a
1.00 3.00 5.00
2.00 4.00 7.00
1.00 1.00 0.00
p
0.00 1.00 0.00
1.00 0.00 0.00
0.00 0.00 1.00
l
1.00 0.00 0.00
0.50 1.00 0.00
0.50 -1.00 1.00
u
2.00 4.00 7.00
0.00 1.00 1.50
0.00 0.00 -2.00
residual
|| P.A - L.U || = 0.0000000000000000
a
11.00 9.00 24.00 2.00
1.00 5.00 2.00 6.00
3.00 17.00 18.00 1.00
2.00 5.00 7.00 1.00
p
1.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00
l
1.00 0.00 0.00 0.00
0.27 1.00 0.00 0.00
0.09 0.29 1.00 0.00
0.18 0.23 0.00 1.00
u
11.00 9.00 24.00 2.00
0.00 14.55 11.45 0.45
0.00 0.00 -3.47 5.69
0.00 0.00 0.00 0.51
residual
|| P.A - L.U || = 0.0000000000000000
Go
2D representation
{{trans|Common Lisp}}
package main
import "fmt"
type matrix [][]float64
func zero(n int) matrix {
r := make([][]float64, n)
a := make([]float64, n*n)
for i := range r {
r[i] = a[n*i : n*(i+1)]
}
return r
}
func eye(n int) matrix {
r := zero(n)
for i := range r {
r[i][i] = 1
}
return r
}
func (m matrix) print(label string) {
if label > "" {
fmt.Printf("%s:\n", label)
}
for _, r := range m {
for _, e := range r {
fmt.Printf(" %9.5f", e)
}
fmt.Println()
}
}
func (a matrix) pivotize() matrix {
p := eye(len(a))
for j, r := range a {
max := r[j]
row := j
for i := j; i < len(a); i++ {
if a[i][j] > max {
max = a[i][j]
row = i
}
}
if j != row {
// swap rows
p[j], p[row] = p[row], p[j]
}
}
return p
}
func (m1 matrix) mul(m2 matrix) matrix {
r := zero(len(m1))
for i, r1 := range m1 {
for j := range m2 {
for k := range m1 {
r[i][j] += r1[k] * m2[k][j]
}
}
}
return r
}
func (a matrix) lu() (l, u, p matrix) {
l = zero(len(a))
u = zero(len(a))
p = a.pivotize()
a = p.mul(a)
for j := range a {
l[j][j] = 1
for i := 0; i <= j; i++ {
sum := 0.
for k := 0; k < i; k++ {
sum += u[k][j] * l[i][k]
}
u[i][j] = a[i][j] - sum
}
for i := j; i < len(a); i++ {
sum := 0.
for k := 0; k < j; k++ {
sum += u[k][j] * l[i][k]
}
l[i][j] = (a[i][j] - sum) / u[j][j]
}
}
return
}
func main() {
showLU(matrix{
{1, 3, 5},
{2, 4, 7},
{1, 1, 0}})
showLU(matrix{
{11, 9, 24, 2},
{1, 5, 2, 6},
{3, 17, 18, 1},
{2, 5, 7, 1}})
}
func showLU(a matrix) {
a.print("\na")
l, u, p := a.lu()
l.print("l")
u.print("u")
p.print("p")
}
{{out}}
a:
1.00000 3.00000 5.00000
2.00000 4.00000 7.00000
1.00000 1.00000 0.00000
l:
1.00000 0.00000 0.00000
0.50000 1.00000 0.00000
0.50000 -1.00000 1.00000
u:
2.00000 4.00000 7.00000
0.00000 1.00000 1.50000
0.00000 0.00000 -2.00000
p:
0.00000 1.00000 0.00000
1.00000 0.00000 0.00000
0.00000 0.00000 1.00000
a:
11.00000 9.00000 24.00000 2.00000
1.00000 5.00000 2.00000 6.00000
3.00000 17.00000 18.00000 1.00000
2.00000 5.00000 7.00000 1.00000
l:
1.00000 0.00000 0.00000 0.00000
0.27273 1.00000 0.00000 0.00000
0.09091 0.28750 1.00000 0.00000
0.18182 0.23125 0.00360 1.00000
u:
11.00000 9.00000 24.00000 2.00000
0.00000 14.54545 11.45455 0.45455
0.00000 0.00000 -3.47500 5.68750
0.00000 0.00000 0.00000 0.51079
p:
1.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.00000 0.00000
0.00000 1.00000 0.00000 0.00000
0.00000 0.00000 0.00000 1.00000
Flat representation
package main
import "fmt"
type matrix struct {
stride int
ele []float64
}
func (m *matrix) print(heading string) {
if heading > "" {
fmt.Print("\n", heading, "\n")
}
for e := 0; e < len(m.ele); e += m.stride {
fmt.Printf("%8.5f ", m.ele[e:e+m.stride])
fmt.Println()
}
}
func (m1 *matrix) mul(m2 *matrix) (m3 *matrix, ok bool) {
if m1.stride*m2.stride != len(m2.ele) {
return nil, false
}
m3 = &matrix{m2.stride, make([]float64, (len(m1.ele)/m1.stride)*m2.stride)}
for m1c0, m3x := 0, 0; m1c0 < len(m1.ele); m1c0 += m1.stride {
for m2r0 := 0; m2r0 < m2.stride; m2r0++ {
for m1x, m2x := m1c0, m2r0; m2x < len(m2.ele); m2x += m2.stride {
m3.ele[m3x] += m1.ele[m1x] * m2.ele[m2x]
m1x++
}
m3x++
}
}
return m3, true
}
func zero(rows, cols int) *matrix {
return &matrix{cols, make([]float64, rows*cols)}
}
func eye(n int) *matrix {
m := zero(n, n)
for ix := 0; ix < len(m.ele); ix += n + 1 {
m.ele[ix] = 1
}
return m
}
func (a *matrix) pivotize() *matrix {
pv := make([]int, a.stride)
for i := range pv {
pv[i] = i
}
for j, dx := 0, 0; j < a.stride; j++ {
row := j
max := a.ele[dx]
for i, ixcj := j, dx; i < a.stride; i++ {
if a.ele[ixcj] > max {
max = a.ele[ixcj]
row = i
}
ixcj += a.stride
}
if j != row {
pv[row], pv[j] = pv[j], pv[row]
}
dx += a.stride + 1
}
p := zero(a.stride, a.stride)
for r, c := range pv {
p.ele[r*a.stride+c] = 1
}
return p
}
func (a *matrix) lu() (l, u, p *matrix) {
l = zero(a.stride, a.stride)
u = zero(a.stride, a.stride)
p = a.pivotize()
a, _ = p.mul(a)
for j, jxc0 := 0, 0; j < a.stride; j++ {
l.ele[jxc0+j] = 1
for i, ixc0 := 0, 0; ixc0 <= jxc0; i++ {
sum := 0.
for k, kxcj := 0, j; k < i; k++ {
sum += u.ele[kxcj] * l.ele[ixc0+k]
kxcj += a.stride
}
u.ele[ixc0+j] = a.ele[ixc0+j] - sum
ixc0 += a.stride
}
for ixc0 := jxc0; ixc0 < len(a.ele); ixc0 += a.stride {
sum := 0.
for k, kxcj := 0, j; k < j; k++ {
sum += u.ele[kxcj] * l.ele[ixc0+k]
kxcj += a.stride
}
l.ele[ixc0+j] = (a.ele[ixc0+j] - sum) / u.ele[jxc0+j]
}
jxc0 += a.stride
}
return
}
func main() {
showLU(&matrix{3, []float64{
1, 3, 5,
2, 4, 7,
1, 1, 0}})
showLU(&matrix{4, []float64{
11, 9, 24, 2,
1, 5, 2, 6,
3, 17, 18, 1,
2, 5, 7, 1}})
}
func showLU(a *matrix) {
a.print("\na")
l, u, p := a.lu()
l.print("l")
u.print("u")
p.print("p")
}
Output is same as from 2D solution.
Library gonum/mat
package main
import (
"fmt"
"gonum.org/v1/gonum/mat"
)
func main() {
showLU(mat.NewDense(3, 3, []float64{
1, 3, 5,
2, 4, 7,
1, 1, 0,
}))
fmt.Println()
showLU(mat.NewDense(4, 4, []float64{
11, 9, 24, 2,
1, 5, 2, 6,
3, 17, 18, 1,
2, 5, 7, 1,
}))
}
func showLU(a *mat.Dense) {
fmt.Printf("a: %v\n\n", mat.Formatted(a, mat.Prefix(" ")))
var lu mat.LU
lu.Factorize(a)
l := lu.LTo(nil)
u := lu.UTo(nil)
fmt.Printf("l: %.5f\n\n", mat.Formatted(l, mat.Prefix(" ")))
fmt.Printf("u: %.5f\n\n", mat.Formatted(u, mat.Prefix(" ")))
fmt.Println("p:", lu.Pivot(nil))
}
{{out}} Pivot format is a little different here. (But library solutions don't really meet task requirements anyway.)
a: ⎡1 3 5⎤
⎢2 4 7⎥
⎣1 1 0⎦
l: ⎡ 1.00000 0.00000 0.00000⎤
⎢ 0.50000 1.00000 0.00000⎥
⎣ 0.50000 -1.00000 1.00000⎦
u: ⎡ 2.00000 4.00000 7.00000⎤
⎢ 0.00000 1.00000 1.50000⎥
⎣ 0.00000 0.00000 -2.00000⎦
p: [1 0 2]
a: ⎡11 9 24 2⎤
⎢ 1 5 2 6⎥
⎢ 3 17 18 1⎥
⎣ 2 5 7 1⎦
l: ⎡1.00000 0.00000 0.00000 0.00000⎤
⎢0.27273 1.00000 0.00000 0.00000⎥
⎢0.09091 0.28750 1.00000 0.00000⎥
⎣0.18182 0.23125 0.00360 1.00000⎦
u: ⎡11.00000 9.00000 24.00000 2.00000⎤
⎢ 0.00000 14.54545 11.45455 0.45455⎥
⎢ 0.00000 0.00000 -3.47500 5.68750⎥
⎣ 0.00000 0.00000 0.00000 0.51079⎦
p: [0 2 1 3]
Library go.matrix
package main
import (
"fmt"
mat "github.com/skelterjohn/go.matrix"
)
func main() {
showLU(mat.MakeDenseMatrixStacked([][]float64{
{1, 3, 5},
{2, 4, 7},
{1, 1, 0}}))
showLU(mat.MakeDenseMatrixStacked([][]float64{
{11, 9, 24, 2},
{1, 5, 2, 6},
{3, 17, 18, 1},
{2, 5, 7, 1}}))
}
func showLU(a *mat.DenseMatrix) {
fmt.Printf("\na:\n%v\n", a)
l, u, p := a.LU()
fmt.Printf("l:\n%v\n", l)
fmt.Printf("u:\n%v\n", u)
fmt.Printf("p:\n%v\n", p)
}
{{out}}
a:
{1, 3, 5,
2, 4, 7,
1, 1, 0}
l:
{ 1, 0, 0,
0.5, 1, 0,
0.5, -1, 1}
u:
{ 2, 4, 7,
0, 1, 1.5,
0, 0, -2}
p:
{0, 1, 0,
1, 0, 0,
0, 0, 1}
a:
{11, 9, 24, 2,
1, 5, 2, 6,
3, 17, 18, 1,
2, 5, 7, 1}
l:
{ 1, 0, 0, 0,
0.272727, 1, 0, 0,
0.090909, 0.2875, 1, 0,
0.181818, 0.23125, 0.003597, 1}
u:
{ 11, 9, 24, 2,
0, 14.545455, 11.454545, 0.454545,
0, 0, -3.475, 5.6875,
0, 0, 0, 0.510791}
p:
{1, 0, 0, 0,
0, 0, 1, 0,
0, 1, 0, 0,
0, 0, 0, 1}
Haskell
''Without elem-at-index modifications; doesn't find maximum but any non-zero element''
import Data.List
import Data.Maybe
import Text.Printf
-- a matrix is represented as a list of columns
mmult :: Num a => [[a]] -> [[a]] -> [[a]]
mmult a b = [ [ sum $ zipWith (*) ak bj | ak <- (transpose a) ] | bj <- b ]
nth mA i j = (mA !! j) !! i
idMatrixPart n m k = [ [if (i==j) then 1 else 0 | i <- [1..n]] | j <- [k..m]]
idMatrix n = idMatrixPart n n 1
permMatrix n ix1 ix2 =
[ [ if ((i==ix1 && j==ix2) || (i==ix2 && j==ix1) || (i==j && j /= ix1 && i /= ix2))
then 1 else 0| i <- [0..n-1]] | j <- [0..n-1]]
permMatrix_inv n ix1 ix2 = permMatrix n ix2 ix1
-- count k from zero
elimColumn :: Int -> [[Rational]] -> Int -> [Rational]
elimMatrix :: Int -> [[Rational]] -> Int -> [[Rational]]
elimMatrix_inv :: Int -> [[Rational]] -> Int -> [[Rational]]
elimColumn n mA k = [(let mAkk = (nth mA k k) in if (i>k) then (-(nth mA i k)/mAkk)
else if (i==k) then 1 else 0) | i <- [0..n-1]]
elimMatrix n mA k = (idMatrixPart n k 1) ++ [elimColumn n mA k] ++ (idMatrixPart n n (k+2))
elimMatrix_inv n mA k = (idMatrixPart n k 1) ++ --mA is elimMatrix there
[let c = (mA!!k) in [if (i==k) then 1 else if (i<k) then 0 else (-(c!!i)) | i <- [0..n-1]]]
++ (idMatrixPart n n (k+2))
swapIndx :: [[Rational]] -> Int -> Int
swapIndx mA k = fromMaybe k (findIndex (>0) (drop k (mA!!k)))
-- LUP; lupStep returns [L:U:P]
paStep_recP :: Int -> [[Rational]] -> [[Rational]] -> [[Rational]] -> Int -> [[[Rational]]]
paStep_recM :: Int -> [[Rational]] -> [[Rational]] -> [[Rational]] -> Int -> [[[Rational]]]
lupStep :: Int -> [[Rational]] -> [[[Rational]]]
paStep_recP n mP mA mL cnt =
let mPt = permMatrix n cnt (swapIndx mA cnt) in
let mPtInv = permMatrix_inv n cnt (swapIndx mA cnt) in
if (cnt >= n) then [(mmult mP mL),mA,mP] else
(paStep_recM n (mmult mPt mP) (mmult mPt mA) (mmult mL mPtInv) cnt)
paStep_recM n mP mA mL cnt =
let mMt = elimMatrix n mA cnt in
let mMtInv = elimMatrix_inv n mMt cnt in
paStep_recP n mP (mmult mMt mA) (mmult mL mMtInv) (cnt + 1)
lupStep n mA = paStep_recP n (idMatrix n) mA (idMatrix n) 0
--IO
matrixFromRationalToString m = concat $ intersperse "\n"
(map (\x -> unwords $ printf "%8.4f" <$> (x::[Double]))
(transpose (matrixFromRational m))) where
matrixFromRational m = map (\x -> map fromRational x) m
solveTask mY = let mLUP = lupStep (length mY) mY in
putStrLn ("A: \n" ++ matrixFromRationalToString mY) >>
putStrLn ("L: \n" ++ matrixFromRationalToString (mLUP!!0)) >>
putStrLn ("U: \n" ++ matrixFromRationalToString (mLUP!!1)) >>
putStrLn ("P: \n" ++ matrixFromRationalToString (mLUP!!2)) >>
putStrLn ("Verify: PA\n" ++ matrixFromRationalToString (mmult (mLUP!!2) mY)) >>
putStrLn ("Verify: LU\n" ++ matrixFromRationalToString (mmult (mLUP!!0) (mLUP!!1)))
mY1 = [[1, 2, 1], [3, 4, 7], [5, 7, 0]] :: [[Rational]]
mY2 = [[11, 1, 3, 2], [9, 5, 17, 5], [24, 2, 18, 7], [2, 6, 1, 1]] :: [[Rational]]
main = putStrLn "Task1: \n" >> solveTask mY1 >>
putStrLn "Task2: \n" >> solveTask mY2
{{out}}
Task1:
A:
1.0000 3.0000 5.0000
2.0000 4.0000 7.0000
1.0000 7.0000 0.0000
L:
1.0000 0.0000 0.0000
2.0000 1.0000 0.0000
1.0000 -2.0000 1.0000
U:
1.0000 3.0000 5.0000
0.0000 -2.0000 -3.0000
0.0000 0.0000 -11.0000
P:
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000
Verify: PA
1.0000 3.0000 5.0000
2.0000 4.0000 7.0000
1.0000 7.0000 0.0000
Verify: LU
1.0000 3.0000 5.0000
2.0000 4.0000 7.0000
1.0000 7.0000 0.0000
Task2:
A:
11.0000 9.0000 24.0000 2.0000
1.0000 5.0000 2.0000 6.0000
3.0000 17.0000 18.0000 1.0000
2.0000 5.0000 7.0000 1.0000
L:
1.0000 0.5556 0.2317 0.0000
0.0000 1.0000 0.0000 0.0000
0.0000 1.8889 1.0000 0.0000
0.0000 0.0909 0.0000 1.0000
U:
0.0081 0.0000 0.0000 0.5325
11.0000 9.0000 24.0000 2.0000
-17.7778 0.0000 -27.3333 -2.7778
0.0000 4.1818 -0.1818 5.8182
P:
0.0000 0.0000 0.0000 1.0000
1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000
0.0000 1.0000 0.0000 0.0000
Verify: PA
2.0000 5.0000 7.0000 1.0000
11.0000 9.0000 24.0000 2.0000
3.0000 17.0000 18.0000 1.0000
1.0000 5.0000 2.0000 6.0000
Verify: LU
2.0000 5.0000 7.0000 1.0000
11.0000 9.0000 24.0000 2.0000
3.0000 17.0000 18.0000 1.0000
1.0000 5.0000 2.0000 6.0000
Idris
'''works with Idris 0.10'''
Uses The Method Of Partial Pivoting
'''Solution:'''
module Main
import Data.Vect
Matrix : Nat -> Nat -> Type -> Type
Matrix m n t = Vect m (Vect n t)
-- Creates list from 0 to n (not including n)
upTo : (m : Nat) -> Vect m (Fin m)
upTo Z = []
upTo (S n) = 0 :: (map FS (upTo n))
-- Creates list from 0 to n-1 (not including n-1)
upToM1 : (m : Nat) -> (sz ** Vect sz (Fin m))
upToM1 m = case (upTo m) of
(y::ys) => (_ ** init(y::ys))
[] => (_ ** [])
-- Creates list from i to n (not including n)
fromUpTo : {n : Nat} -> Fin n -> (sz ** Vect sz (Fin n))
fromUpTo {n} m = filter (>= m) (upTo n)
-- Creates list from i+1 to n (not including n)
fromUpTo1 : {n : Nat} -> Fin n -> (sz ** Vect sz (Fin n))
fromUpTo1 {n} m with (fromUpTo m)
| (_ ** xs) = case xs of
(y::ys) => (_ ** ys)
[] => (_ ** [])
-- Create Zero Matrix of size m by n
zeros : (m : Nat) -> (n : Nat) -> Matrix m n Double
zeros m n = replicate m (replicate n 0.0)
replaceAtM : (Fin m, Fin n) -> t -> Matrix m n t -> Matrix m n t
replaceAtM (i, j) e a = replaceAt i (replaceAt j e (index i a)) a
-- Create Identity Matrix of size m by m
eye : (m : Nat) -> Matrix m m Double
eye m = map create1Vec (upTo m)
where
set1 : Vect m Double -> Fin m -> Vect m Double
set1 a n = replaceAt n 1.0 a
create1Vec : Fin m -> Vect m Double
create1Vec n = set1 (replicate m 0.0) n
indexM : (Fin m, Fin n) -> Matrix m n t -> t
indexM (i, j) a = index j (index i a)
-- Obtain index for the row containing the
-- largest absolute value for the given column
colAbsMaxIndex : Fin m -> Fin m -> Matrix m m Double -> Fin m
colAbsMaxIndex startRow col a {m} with (fromUpTo startRow)
| (_ ** xs) =
snd $ foldl (\(absMax, idx), curIdx =>
let curAbsVal = abs(indexM (curIdx, col) a) in
if (curAbsVal > absMax)
then (curAbsVal, curIdx)
else (absMax, idx)
) (0.0, startRow) xs
-- Swaps two rows in a given matrix
swapRows : Fin m -> Fin m -> Matrix m n t -> Matrix m n t
swapRows r1 r2 a = replaceAt r2 tempRow $ replaceAt r1 (index r2 a) a
where tempRow = index r1 a
-- Swaps two individual values in a matrix
swapValues : (Fin m, Fin m) -> (Fin m, Fin m) -> Matrix m m Double -> Matrix m m Double
swapValues (i1, j1) (i2, j2) m = replaceAtM (i2, j2) v1 $ replaceAtM (i1, j1) v2 m
where
v1 = indexM (i1, j1) m
v2 = indexM (i2, j2) m
-- Perform row Swap on Lower Triangular Matrix
lSwapRow : Fin m -> Fin m -> Matrix m m Double -> Matrix m m Double
lSwapRow row1 row2 l {m} with (filter (< row1) (upTo m))
| (_ ** xs) = foldl (\l',col => swapValues (row1, col) (row2, col) l') l xs
rowSwap : Fin m -> (Matrix m m Double, Matrix m m Double, Matrix m m Double) ->
(Matrix m m Double, Matrix m m Double, Matrix m m Double)
rowSwap col (l,u,p) = (lSwapRow col row l, swapRows col row u, swapRows col row p)
where row = colAbsMaxIndex col col u
calc : (Fin m) -> (Fin m) -> (Matrix m m Double, Matrix m m Double) ->
(Matrix m m Double, Matrix m m Double)
calc i j (l, u) {m} = (l', u')
where
l' : Matrix m m Double
l' = replaceAtM (j, i) ((indexM (j, i) u) / indexM (i, i) u) l
u'' : (Fin m) -> (Matrix m m Double) -> (Matrix m m Double)
u'' k u = replaceAtM (j, k) ((indexM (j, k) u) -
((indexM (j, i) l') * (indexM (i, k) u))) u
u' : (Matrix m m Double)
u' with (fromUpTo i) | (_ ** xs) = foldl (\curU, idx => u'' idx curU) u xs
-- Perform a single iteration of the algorithm for the given column
iteration : Fin m -> (Matrix m m Double, Matrix m m Double, Matrix m m Double) ->
(Matrix m m Double, Matrix m m Double, Matrix m m Double)
iteration i lup {m} = iterate' (rowSwap i lup)
where
modify : (Matrix m m Double, Matrix m m Double) ->
(Matrix m m Double, Matrix m m Double)
modify lu with (fromUpTo1 i) | (_ ** xs) =
foldl (\lu',j => calc i j lu') lu xs
iterate' : (Matrix m m Double, Matrix m m Double, Matrix m m Double) ->
(Matrix m m Double, Matrix m m Double, Matrix m m Double)
iterate' (l, u, p) with (modify (l, u)) | (l', u') = (l', u', p)
-- Generate L, U, P matricies from a given square matrix.
-- Where L * U = A, and P is the permutation matrix
luDecompose : Matrix m m Double -> (Matrix m m Double, Matrix m m Double, Matrix m m Double)
luDecompose a {m} with (upToM1 m)
| (_ ** xs) = foldl (\lup,idx => iteration idx lup) (eye m,a,eye m) xs
ex1 : (Matrix 3 3 Double, Matrix 3 3 Double, Matrix 3 3 Double)
ex1 = luDecompose [[1, 3, 5], [2, 4, 7], [1, 1, 0]]
ex2 : (Matrix 4 4 Double, Matrix 4 4 Double, Matrix 4 4 Double)
ex2 = luDecompose [[11, 9, 24, 2], [1, 5, 2, 6], [3, 17, 18, 1], [2, 5, 7, 1]]
printEx : (Matrix n n Double, Matrix n n Double, Matrix n n Double) -> IO ()
printEx (l, u, p) = do
putStr "l:"
print l
putStrLn "\n"
putStr "u:"
print u
putStrLn "\n"
putStr "p:"
print p
putStrLn "\n"
main : IO()
main = do
putStrLn "Solution 1:"
printEx ex1
putStrLn "Solution 2:"
printEx ex2
{{out}}
Solution 1:
l:[[1, 0, 0], [0.5, 1, 0], [0.5, -1, 1]]
u:[[2, 4, 7], [0, 1, 1.5], [0, 0, -2]]
p:[[0, 1, 0], [1, 0, 0], [0, 0, 1]]
Solution 2:
l:[[1, 0, 0, 0], [0.2727272727272727, 1, 0, 0], [0.09090909090909091, 0.2875, 1, 0], [0.1818181818181818, 0.23125, 0.003597122302158069, 1]]
u:[[11, 9, 24, 2], [0, 14.54545454545455, 11.45454545454546, 0.4545454545454546], [0, 0, -3.475, 5.6875], [0, 0, 0, 0.510791366906476]]
p:[[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]
J
Taken with slight modification from [http://www.jsoftware.com/jwiki/Essays/LU%20Decomposition].
'''Solution:'''
mp=: +/ .*
LU=: 3 : 0
'm n'=. $ A=. y
if. 1=m do.
p ; (=1) ; p{"1 A [ p=. C. (n-1);~.0,(0~:,A)i.1
else.
m2=. >.m%2
'p1 L1 U1'=. LU m2{.A
D=. (/:p1) {"1 m2}.A
F=. m2 {."1 D
E=. m2 {."1 U1
FE1=. F mp %. E
G=. m2}."1 D - FE1 mp U1
'p2 L2 U2'=. LU G
p3=. (i.m2),m2+p2
H=. (/:p3) {"1 U1
(p1{p3) ; (L1,FE1,.L2) ; H,(-n){."1 U2
end.
)
permtomat=: 1 {.~"0 -@>:@:/:
LUdecompose=: (permtomat&.>@{. , }.)@:LU
'''Example use:'''
A=:3 3$1 3 5 2 4 7 1 1 0
LUdecompose A
┌─────┬─────┬───────┐
│1 0 0│1 0 0│1 3 5│
│0 1 0│2 1 0│0 _2 _3│
│0 0 1│1 1 1│0 0 _2│
└─────┴─────┴───────┘
mp/> LUdecompose A
1 3 5
2 4 7
1 1 0
A=:4 4$11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1
LUdecompose A
┌───────┬─────────────────────────────┬─────────────────────────────┐
│1 0 0 0│ 1 0 0 0│11 9 24 2│
│0 1 0 0│0.0909091 1 0 0│ 0 4.18182 _0.181818 5.81818│
│0 0 1 0│ 0.272727 3.47826 1 0│ 0 0 12.087 _19.7826│
│0 0 0 1│ 0.181818 0.804348 0.230216 1│ 0 0 0 0.510791│
└───────┴─────────────────────────────┴─────────────────────────────┘
mp/> LUdecompose A
11 9 24 2
1 5 2 6
3 17 18 1
2 5 7 1
Java
Translation of [[#Common_Lisp|Common Lisp]] via [[#D|D]] {{works with|Java|8}}
import static java.util.Arrays.stream;
import java.util.Locale;
import static java.util.stream.IntStream.range;
public class Test {
static double dotProduct(double[] a, double[] b) {
return range(0, a.length).mapToDouble(i -> a[i] * b[i]).sum();
}
static double[][] matrixMul(double[][] A, double[][] B) {
double[][] result = new double[A.length][B[0].length];
double[] aux = new double[B.length];
for (int j = 0; j < B[0].length; j++) {
for (int k = 0; k < B.length; k++)
aux[k] = B[k][j];
for (int i = 0; i < A.length; i++)
result[i][j] = dotProduct(A[i], aux);
}
return result;
}
static double[][] pivotize(double[][] m) {
int n = m.length;
double[][] id = range(0, n).mapToObj(j -> range(0, n)
.mapToDouble(i -> i == j ? 1 : 0).toArray())
.toArray(double[][]::new);
for (int i = 0; i < n; i++) {
double maxm = m[i][i];
int row = i;
for (int j = i; j < n; j++)
if (m[j][i] > maxm) {
maxm = m[j][i];
row = j;
}
if (i != row) {
double[] tmp = id[i];
id[i] = id[row];
id[row] = tmp;
}
}
return id;
}
static double[][][] lu(double[][] A) {
int n = A.length;
double[][] L = new double[n][n];
double[][] U = new double[n][n];
double[][] P = pivotize(A);
double[][] A2 = matrixMul(P, A);
for (int j = 0; j < n; j++) {
L[j][j] = 1;
for (int i = 0; i < j + 1; i++) {
double s1 = 0;
for (int k = 0; k < i; k++)
s1 += U[k][j] * L[i][k];
U[i][j] = A2[i][j] - s1;
}
for (int i = j; i < n; i++) {
double s2 = 0;
for (int k = 0; k < j; k++)
s2 += U[k][j] * L[i][k];
L[i][j] = (A2[i][j] - s2) / U[j][j];
}
}
return new double[][][]{L, U, P};
}
static void print(double[][] m) {
stream(m).forEach(a -> {
stream(a).forEach(n -> System.out.printf(Locale.US, "%5.1f ", n));
System.out.println();
});
System.out.println();
}
public static void main(String[] args) {
double[][] a = {{1.0, 3, 5}, {2.0, 4, 7}, {1.0, 1, 0}};
double[][] b = {{11.0, 9, 24, 2}, {1.0, 5, 2, 6}, {3.0, 17, 18, 1},
{2.0, 5, 7, 1}};
for (double[][] m : lu(a))
print(m);
System.out.println();
for (double[][] m : lu(b))
print(m);
}
}
1.0 0.0 0.0
0.5 1.0 0.0
0.5 -1.0 1.0
2.0 4.0 7.0
0.0 1.0 1.5
0.0 0.0 -2.0
0.0 1.0 0.0
1.0 0.0 0.0
0.0 0.0 1.0
1.0 0.0 0.0 0.0
0.3 1.0 0.0 0.0
0.1 0.3 1.0 0.0
0.2 0.2 0.0 1.0
11.0 9.0 24.0 2.0
0.0 14.5 11.5 0.5
0.0 0.0 -3.5 5.7
0.0 0.0 0.0 0.5
1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0
jq
{{Works with|jq|1.4}} jq currently does not have builtin support for matrices and therefore some infrastructure is needed to make the following self-contained. Matrices here are represented as arrays of arrays in the usual way.
'''Infrastructure'''
# Create an m x n matrix
def matrix(m; n; init):
if m == 0 then []
elif m == 1 then [range(0;n)] | map(init)
elif m > 0 then
matrix(1;n;init) as $row
| [range(0;m)] | map( $row )
else error("matrix\(m);_;_) invalid")
end ;
def I(n): matrix(n;n;0) as $m
| reduce range(0;n) as $i ($m; . | setpath( [$i,$i]; 1));
def dot_product(a; b):
reduce range(0;a|length) as $i (0; . + (a[$i] * b[$i]) );
# transpose/0 expects its input to be a rectangular matrix
def transpose:
if (.[0] | length) == 0 then []
else [map(.[0])] + (map(.[1:]) | transpose)
end ;
# A and B should both be numeric matrices, A being m by n, and B being n by p.
def multiply(A; B):
(B[0]|length) as $p
| (B|transpose) as $BT
| reduce range(0; A|length) as $i
([];
reduce range(0; $p) as $j
(.;
.[$i][$j] = dot_product( A[$i]; $BT[$j] ) ));
def swap_rows(i;j):
if i == j then .
else .[i] as $i | .[i] = .[j] | .[j] = $i
end ;
# Print a matrix neatly, each cell occupying n spaces, but without truncation
def neatly(n):
def right: tostring | ( " " * (n-length) + .);
. as $in
| length as $length
| reduce range (0;$length) as $i
(""; . + reduce range(0;$length) as $j
(""; "\(.) \($in[$i][$j] | right )" ) + "\n" ) ;
'''LU decomposition'''
# Create the pivot matrix for the input matrix.
# Use "range(0;$n) as $i" to handle ill-conditioned cases.
def pivotize:
def abs: if .<0 then -. else . end;
length as $n
| . as $m
| reduce range(0;$n) as $j
(I($n);
# state: [row; max]
(reduce range(0; $n) as $i
([$j, $m[$j][$j]|abs ];
($m[$i][$j]|abs) as $a
| if $a > .[1] then [ $i, $a ] else . end) | .[0]) as $row
| swap_rows( $j; $row)
) ;
# Decompose the input nxn matrix A by PA=LU and return [L, U, P].
def lup:
def div(i;j):
if j == 0 then if i==0 then 0 else error("\(i)/0") end
else i/j
end;
. as $A
| length as $n
| I($n) as $L # matrix($n; $n; 0.0) as $L
| matrix($n; $n; 0.0) as $U
| ($A|pivotize) as $P
| multiply($P;$A) as $A2
# state: [L, U]
| reduce range(0; $n) as $i ( [$L, $U];
reduce range(0; $n) as $j (.;
.[0] as $L
| .[1] as $U
| if ($j >= $i) then
(reduce range(0;$i) as $k (0; . + ($U[$k][$j] * $L[$i][$k] ))) as $s1
| [$L, ($U| setpath([$i,$j]; ($A2[$i][$j] - $s1))) ]
else
(reduce range(0;$j) as $k (0; . + ($U[$k][$j] * $L[$i][$k]))) as $s2
| [ ($L | setpath([$i,$j]; div(($A2[$i][$j] - $s2) ; $U[$j][$j] ))), $U ]
end ))
| . + [ $P ]
;
'''Example 1''':
def a: [[1, 3, 5], [2, 4, 7], [1, 1, 0]];
a | lup[] | neatly(4)
{{Out}}
$ /usr/local/bin/jq -M -n -r -f LU.jq
1 0 0
0.5 1 0
0.5 -1 1
2 4 7
0 1 1.5
0 0 -2
0 1 0
1 0 0
0 0 1
'''Example 2''':
def b: [[11,9,24,2],[1,5,2,6],[3,17,18,1],[2,5,7,1]];
b | lup[] | neatly(21)
{{Out}}
$ /usr/local/bin/jq -M -n -r -f LU.jq
1 0 0 0
0.2727272727272727 1 0 0
0.09090909090909091 0.2875 1 0
0.18181818181818182 0.23124999999999996 0.0035971223021580693 1
11 9 24 2
0 14.545454545454547 11.454545454545455 0.4545454545454546
0 0 -3.4749999999999996 5.6875
0 0 0 0.510791366906476
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
'''Example 3''':
# A|lup|verify(A) should be true
def verify(A):
.[0] as $L | .[1] as $U | .[2] as $P
| multiply($P; A) == multiply($L; $U);
def A:
[[1, 1, 1, 1],
[1, 1, -1, -1],
[1, -1, 0, 0],
[0, 0, 1, -1]];
A|lup|verify(A)
{{out}} true
Julia
Julia has the predefined functions lu
, lufact
and lufact!
in the standard library to compute the lu decomposition of a matrix.
{{Out}}
julia> lu([1 3 5 ; 2 4 7 ; 1 1 0])
(
3x3 Array{Float64,2}:
1.0 0.0 0.0
0.5 1.0 0.0
0.5 -1.0 1.0,
3x3 Array{Float64,2}:
2.0 4.0 7.0
0.0 1.0 1.5
0.0 0.0 -2.0,
[2,1,3])
Kotlin
// version 1.1.4-3
typealias Vector = DoubleArray
typealias Matrix = Array<Vector>
operator fun Matrix.times(other: Matrix): Matrix {
val rows1 = this.size
val cols1 = this[0].size
val rows2 = other.size
val cols2 = other[0].size
require(cols1 == rows2)
val result = Matrix(rows1) { Vector(cols2) }
for (i in 0 until rows1) {
for (j in 0 until cols2) {
for (k in 0 until rows2) {
result[i][j] += this[i][k] * other[k][j]
}
}
}
return result
}
fun pivotize(m: Matrix): Matrix {
val n = m.size
val im = Array(n) { Vector(n) }
for (i in 0 until n) im[i][i] = 1.0
for (i in 0 until n) {
var max = m[i][i]
var row = i
for (j in i until n) {
if (m[j][i] > max) {
max = m[j][i]
row = j
}
}
if (i != row) {
val t = im[i]
im[i] = im[row]
im[row] = t
}
}
return im
}
fun lu(a: Matrix): Array<Matrix> {
val n = a.size
val l = Array(n) { Vector(n) }
val u = Array(n) { Vector(n) }
val p = pivotize(a)
val a2 = p * a
for (j in 0 until n) {
l[j][j] = 1.0
for (i in 0 until j + 1) {
var sum = 0.0
for (k in 0 until i) sum += u[k][j] * l[i][k]
u[i][j] = a2[i][j] - sum
}
for (i in j until n) {
var sum2 = 0.0
for(k in 0 until j) sum2 += u[k][j] * l[i][k]
l[i][j] = (a2[i][j] - sum2) / u[j][j]
}
}
return arrayOf(l, u, p)
}
fun printMatrix(title: String, m: Matrix, f: String) {
val n = m.size
println("\n$title\n")
for (i in 0 until n) {
for (j in 0 until n) print("${f.format(m[i][j])} ")
println()
}
}
fun main(args: Array<String>) {
val a1 = arrayOf(
doubleArrayOf( 1.0, 3.0, 5.0),
doubleArrayOf( 2.0, 4.0, 7.0),
doubleArrayOf( 1.0, 1.0, 0.0)
)
val (l1, u1, p1) = lu(a1)
println("EXAMPLE 1:-")
printMatrix("A:", a1, "%1.0f")
printMatrix("L:", l1, "% 7.5f")
printMatrix("U:", u1, "% 8.5f")
printMatrix("P:", p1, "%1.0f")
val a2 = arrayOf(
doubleArrayOf(11.0, 9.0, 24.0, 2.0),
doubleArrayOf( 1.0, 5.0, 2.0, 6.0),
doubleArrayOf( 3.0, 17.0, 18.0, 1.0),
doubleArrayOf( 2.0, 5.0, 7.0, 1.0)
)
val (l2, u2, p2) = lu(a2)
println("\nEXAMPLE 2:-")
printMatrix("A:", a2, "%2.0f")
printMatrix("L:", l2, "%7.5f")
printMatrix("U:", u2, "%8.5f")
printMatrix("P:", p2, "%1.0f")
}
{{out}}
EXAMPLE 1:-
A:
1 3 5
2 4 7
1 1 0
L:
1.00000 0.00000 0.00000
0.50000 1.00000 0.00000
0.50000 -1.00000 1.00000
U:
2.00000 4.00000 7.00000
0.00000 1.00000 1.50000
0.00000 0.00000 -2.00000
P:
0 1 0
1 0 0
0 0 1
EXAMPLE 2:-
A:
11 9 24 2
1 5 2 6
3 17 18 1
2 5 7 1
L:
1.00000 0.00000 0.00000 0.00000
0.27273 1.00000 0.00000 0.00000
0.09091 0.28750 1.00000 0.00000
0.18182 0.23125 0.00360 1.00000
U:
11.00000 9.00000 24.00000 2.00000
0.00000 14.54545 11.45455 0.45455
0.00000 0.00000 -3.47500 5.68750
0.00000 0.00000 0.00000 0.51079
P:
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
Maple
A:=<<1.0|3.0|5.0>,<2.0|4.0|7.0>,<1.0|1.0|0.0>>:
LinearAlgebra:-LUDecomposition(A);
{{out}}
[0 1 0] [ 1.0 0. 0.] [2. 4. 7.]
[ ] [ ] [ ]
[1 0 0], [0.500000000000000 1.0 0.], [0. 1. 1.50000000000000]
[ ] [ ] [ ]
[0 0 1] [0.500000000000000 -1. 1.0] [0. 0. -2.]
A:=<<11.0|9.0|24.0|2.0>,<1.0|5.0|2.0|6.0>,
<3.0|17.0|18.0|1.0>,<2.0|5.0|7.0|1.0>>:
with(LinearAlgebra):
LUDecomposition(A);
{{out}}
[1 0 0 0]
[ ]
[0 0 1 0]
[ ],
[0 1 0 0]
[ ]
[0 0 0 1]
[ 1.0 0. 0. 0.]
[ ]
[ 0.272727272727273 1.0 0. 0.]
[ ],
[0.0909090909090909 0.287500000000000 1.0 0.]
[ ]
[ 0.181818181818182 0.231250000000000 0.00359712230215807 1.0]
[11. 9. 24. 2.]
[ ]
[ 0. 14.5454545454545 11.4545454545455 0.454545454545455]
[ ]
[ 0. 0. -3.47500000000000 5.68750000000000]
[ ]
[ 0. 0. 0. 0.510791366906476]
Mathematica
(*Ex1*)a = {{1, 3, 5}, {2, 4, 7}, {1, 1, 0}};
{lu, p, c} = LUDecomposition[a];
l = LowerTriangularize[lu, -1] + IdentityMatrix[Length[p]];
u = UpperTriangularize[lu];
P = Part[IdentityMatrix[Length[p]], p] ;
MatrixForm /@ {P.a , P, l, u, l.u}
(*Ex2*)a = {{11, 9, 24, 2}, {1, 5, 2, 6}, {3, 17, 18, 1}, {2, 5, 7, 1}};
{lu, p, c} = LUDecomposition[a];
l = LowerTriangularize[lu, -1] + IdentityMatrix[Length[p]];
u = UpperTriangularize[lu];
P = Part[IdentityMatrix[Length[p]], p] ;
MatrixForm /@ {P.a , P, l, u, l.u}
{{out}} [[File:LUex1.png]] [[File:LUex2.png]]
=={{header|MATLAB}} / {{header|Octave}}==
LU decomposition is part of language
A = [
1 3 5
2 4 7
1 1 0];
[L,U,P] = lu(A)
{{out}}
L =
1.00000 0.00000 0.00000
0.50000 1.00000 0.00000
0.50000 -1.00000 1.00000
U =
2.00000 4.00000 7.00000
0.00000 1.00000 1.50000
0.00000 0.00000 -2.00000
P =
0 1 0
1 0 0
0 0 1
2nd example:
A = [
11 9 24 2
1 5 2 6
3 17 18 1
2 5 7 1 ];
[L,U,P] = lu(A)
{{out}}
L =
1.00000 0.00000 0.00000 0.00000
0.27273 1.00000 0.00000 0.00000
0.09091 0.28750 1.00000 0.00000
0.18182 0.23125 0.00360 1.00000
U =
11.00000 9.00000 24.00000 2.00000
0.00000 14.54545 11.45455 0.45455
0.00000 0.00000 -3.47500 5.68750
0.00000 0.00000 0.00000 0.51079
P =
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
Creating a MATLAB function
function [ P, L, U ] = LUdecomposition(A)
% Ensures A is n by n
sz = size(A);
if sz(1)~=sz(2)
fprintf('A is not n by n\n');
clear x;
return;
end
n = sz(1);
L = eye(n);
P = eye(n);
U = A;
for i=1:sz(1)
% Row reducing
if U(i,i)==0
maximum = max(abs(U(i:end,1)));
for k=1:n
if maximum == abs(U(k,i))
temp = U(1,:);
U(1,:) = U(k,:);
U(k,:) = temp;
temp = P(:,1);
P(1,:) = P(k,:);
P(k,:) = temp;
end
end
end
if U(i,i)~=1
temp = eye(n);
temp(i,i)=U(i,i);
L = L * temp;
U(i,:) = U(i,:)/U(i,i); %Ensures the pivots are 1.
end
if i~=sz(1)
for j=i+1:length(U)
temp = eye(n);
temp(j,i) = U(j,i);
L = L * temp;
U(j,:) = U(j,:)-U(j,i)*U(i,:);
end
end
end
P = P';
end
Maxima
/* LU decomposition is built-in */
a: hilbert_matrix(4)$
/* LU in "packed" form */
lup: lu_factor(a);
/* [matrix([1, 1/2, 1/3, 1/4 ],
[1/2, 1/12, 1/12, 3/40 ],
[1/3, 1, 1/180, 1/120 ],
[1/4, 9/10, 3/2, 1/2800]),
[1, 2, 3, 4], generalring] */
/* extract actual factors */
get_lu_factors(lup);
/* [matrix([1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]),
matrix([1, 0, 0, 0],
[1/2, 1, 0, 0],
[1/3, 1, 1, 0],
[1/4, 9/10, 3/2, 1]),
matrix([1, 1/2, 1/3, 1/4 ],
[0, 1/12, 1/12, 3/40 ],
[0, 0, 1/180, 1/120 ],
[0, 0, 0, 1/2800])
] */
/* solve for a given right-hand side */
lu_backsub(lup, transpose([1, 1, -1, -1]));
/* matrix([-204], [2100], [-4740], [2940]) */
PARI/GP
matlup(M) =
{
my (L = matid(#M), U = M, P = L);
for (i = 1, #M-1, \\ pivoting
p = M[z=i,i];
for (k = i, #M, if (M[k,i] > p, p = M[z=k,i]));
if (i != z, \\ swap rows
k = U[i,]; U[i,] = U[z,]; U[z,] = k;
k = P[i,]; P[i,] = P[z,]; P[z,] = k;
);
);
for (i = 1, #M-1, \\ decompose
for (k = i+1, #M,
L[k,i] = U[k,i] / U[i,i];
for (j = i, #M, U[k,j] -= L[k,i] * U[i,j])
)
);
[L,U,P] \\ return L,U,P triple matrix
}
Output:
gp > [L,U,P] = matlup([1,3,5;2,4,7;1,1,0]);
gp > L
[ 1 0 0]
[1/2 1 0]
[1/2 -1 1]
gp > U
[2 4 7]
[0 1 3/2]
[0 0 -2]
gp > P
[0 1 0]
[1 0 0]
[0 0 1]
gp > [L,U,P] = matlup([11,9,24,2;1,5,2,6;3,17,18,1;2,5,7,1]);
gp > L
[ 1 0 0 0]
[3/11 1 0 0]
[1/11 23/80 1 0]
[2/11 37/160 1/278 1]
gp > U
[11 9 24 2]
[ 0 160/11 126/11 5/11]
[ 0 0 -139/40 91/16]
[ 0 0 0 71/139]
gp > P
[1 0 0 0]
[0 0 1 0]
[0 1 0 0]
[0 0 0 1]
Perl
{{trans|Perl 6}}
use List::Util qw(sum);
for $test (
[[1, 3, 5],
[2, 4, 7],
[1, 1, 0]],
[[11, 9, 24, 2],
[ 1, 5, 2, 6],
[ 3, 17, 18, 1],
[ 2, 5, 7, 1]]
) {
my($P, $AP, $L, $U) = lu(@$test);
say_it('A matrix', @$test);
say_it('P matrix', @$P);
say_it('AP matrix', @$AP);
say_it('L matrix', @$L);
say_it('U matrix', @$U);
}
sub lu {
my (@a) = @_;
my $n = +@a;
my @P = pivotize(@a);
my $AP = mmult(\@P, \@a);
my @L = matrix_ident($n);
my @U = matrix_zero($n);
for $i (0..$n-1) {
for $j (0..$n-1) {
if ($j >= $i) {
$U[$i][$j] = $$AP[$i][$j] - sum map { $U[$_][$j] * $L[$i][$_] } 0..$i-1;
} else {
$L[$i][$j] = ($$AP[$i][$j] - sum map { $U[$_][$j] * $L[$i][$_] } 0..$j-1) / $U[$j][$j];
}
}
}
return \@P, $AP, \@L, \@U;
}
sub pivotize {
my(@m) = @_;
my $size = +@m;
my @id = matrix_ident($size);
for $i (0..$size-1) {
my $max = $m[$i][$i];
my $row = $i;
for $j ($i .. $size-2) {
if ($m[$j][$i] > $max) {
$max = $m[$j][$i];
$row = $j;
}
}
($id[$row],$id[$i]) = ($id[$i],$id[$row]) if $row != $i;
}
@id
}
sub matrix_zero { my($n) = @_; map { [ (0) x $n ] } 0..$n-1 }
sub matrix_ident { my($n) = @_; map { [ (0) x $_, 1, (0) x ($n-1 - $_) ] } 0..$n-1 }
sub mmult {
local *a = shift;
local *b = shift;
my @p = [];
my $rows = @a;
my $cols = @{ $b[0] };
my $n = @b - 1;
for (my $r = 0 ; $r < $rows ; ++$r) {
for (my $c = 0 ; $c < $cols ; ++$c) {
$p[$r][$c] += $a[$r][$_] * $b[$_][$c] foreach 0 .. $n;
}
}
return [@p];
}
sub say_it {
my($message, @array) = @_;
print "$message\n";
$line = sprintf join("\n" => map join(" " => map(sprintf("%8.5f", $_), @$_)), @{+\@array})."\n";
$line =~ s/\.00000/ /g;
$line =~ s/0000\b/ /g;
print "$line\n";
}
{{out}}
A matrix 1 3 5 2 4 7 1 1 0 P matrix 0 1 0 1 0 0 0 0 1 AP matrix 2 4 7 1 3 5 1 1 0 L matrix 1 0 0 0.5 1 0 0.5 -1 1 U matrix 2 4 7 0 1 1.5 0 0 -2 A matrix 11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 P matrix 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 AP matrix 11 9 24 2 3 17 18 1 1 5 2 6 2 5 7 1 L matrix 1 0 0 0 0.27273 1 0 0 0.09091 0.28750 1 0 0.18182 0.23125 0.00360 1 U matrix 11 9 24 2 0 14.54545 11.45455 0.45455 0 0 -3.47500 5.68750 0 0 0 0.51079 ``` ## Perl 6 {{works with|Rakudo|2015-11-20}} Translation of Ruby. ```perl6 for ( [1, 3, 5], # Test Matrices [2, 4, 7], [1, 1, 0] ), ( [11, 9, 24, 2], [ 1, 5, 2, 6], [ 3, 17, 18, 1], [ 2, 5, 7, 1] ) -> @test { say-it 'A Matrix', @test; say-it( $_[0], @($_[1]) ) for 'P Matrix', 'Aʼ Matrix', 'L Matrix', 'U Matrix' Z, lu @test; } sub lu (@a) { die unless @a.&is-square; my $n = +@a; my @P = pivotize @a; my @Aʼ = mmult @P, @a; my @L = matrix-ident $n; my @U = matrix-zero $n; for ^$n -> $i { for ^$n -> $j { if $j >= $i { @U[$i][$j] = @Aʼ[$i][$j] - [+] map { @U[$_][$j] * @L[$i][$_] }, ^$i } else { @L[$i][$j] = (@Aʼ[$i][$j] - [+] map { @U[$_][$j] * @L[$i][$_] }, ^$j) / @U[$j][$j]; } } } return @P, @Aʼ, @L, @U; } sub pivotize (@m) { my $size = +@m; my @id = matrix-ident $size; for ^$size -> $i { my $max = @m[$i][$i]; my $row = $i; for $i ..^ $size -> $j { if @m[$j][$i] > $max { $max = @m[$j][$i]; $row = $j; } } if $row != $i { @id[$row, $i] = @id[$i, $row] } } @id } sub is-square (@m) { so @m == all @m[*] } sub matrix-zero ($n, $m = $n) { map { [ flat 0 xx $n ] }, ^$m } sub matrix-ident ($n) { map { [ flat 0 xx $_, 1, 0 xx $n - 1 - $_ ] }, ^$n } sub mmult(@a,@b) { my @p; for ^@a X ^@b[0] -> ($r, $c) { @p[$r][$c] += @a[$r][$_] * @b[$_][$c] for ^@b; } @p } sub rat-int ($num) { return $num unless $num ~~ Rat; return $num.narrow if $num.narrow.WHAT ~~ Int; $num.nude.join: '/'; } sub say-it ($message, @array) { say "\n$message"; $_».&rat-int.fmt("%7s").say for @array; } ``` {{out}} ```txt A Matrix 1 3 5 2 4 7 1 1 0 P Matrix 0 1 0 1 0 0 0 0 1 Aʼ Matrix 2 4 7 1 3 5 1 1 0 L Matrix 1 0 0 1/2 1 0 1/2 -1 1 U Matrix 2 4 7 0 1 3/2 0 0 -2 A Matrix 11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 P Matrix 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 Aʼ Matrix 11 9 24 2 3 17 18 1 1 5 2 6 2 5 7 1 L Matrix 1 0 0 0 3/11 1 0 0 1/11 23/80 1 0 2/11 37/160 1/278 1 U Matrix 11 9 24 2 0 160/11 126/11 5/11 0 0 -139/40 91/16 0 0 0 71/139 ``` ## Phix {{trans|Kotlin}} ```Phix function matrix_mul(sequence a, sequence b) sequence c if length(a[1]) != length(b) then return 0 else c = repeat(repeat(0,length(b[1])),length(a)) for i=1 to length(a) do for j=1 to length(b[1]) do for k=1 to length(a[1]) do c[i][j] += a[i][k]*b[k][j] end for end for end for return c end if end function function pivotize(sequence m) integer n = length(m) sequence im = repeat(repeat(0,n),n) for i=1 to n do im[i][i] = 1 end for for i=1 to n do atom mx = m[i][i] integer row = i for j=i to n do if m[j][i]>mx then mx = m[j][i] row = j end if end for if i!=row then {im[i],im[row]} = {im[row],im[i]} end if end for return im end function function lu(sequence a) integer n = length(a) sequence l = repeat(repeat(0,n),n), u = l, p = pivotize(a), a2 = matrix_mul(p,a) for j=1 to n do l[j][j] = 1.0 for i=1 to j do atom sum1 = 0.0 for k=1 to i do sum1 += u[k][j] * l[i][k] end for u[i][j] = a2[i][j] - sum1 end for for i=j+1 to n do atom sum2 = 0.0 for k=1 to j do sum2 += u[k][j] * l[i][k] end for l[i][j] = (a2[i][j] - sum2) / u[j][j] end for end for return {a, l, u, p} end function constant a = {{{1, 3, 5}, {2, 4, 7}, {1, 1, 0}}, {{11, 9,24, 2}, { 1, 5, 2, 6}, { 3,17,18, 1}, { 2, 5, 7, 1}}} for i=1 to length(a) do ?"== a,l,u,p: ==" pp(lu(a[i]),{pp_Nest,2,pp_Pause,0}) end for ``` {{out}} ```txt "== a,l,u,p: ==" {{{1,3,5}, {2,4,7}, {1,1,0}}, {{1,0,0}, {0.5,1,0}, {0.5,-1,1}}, {{2,4,7}, {0,1,1.5}, {0,0,-2}}, {{0,1,0}, {1,0,0}, {0,0,1}}} "== a,l,u,p: ==" {{{11,9,24,2}, {1,5,2,6}, {3,17,18,1}, {2,5,7,1}}, {{1,0,0,0}, {0.2727272727,1,0,0}, {0.09090909091,0.2875,1,0}, {0.1818181818,0.23125,0.003597122302,1}}, {{11,9,24,2}, {0,14.54545455,11.45454545,0.4545454545}, {0,0,-3.475,5.6875}, {0,0,0,0.5107913669}}, {{1,0,0,0}, {0,0,1,0}, {0,1,0,0}, {0,0,0,1}}} ``` ## PL/I ```PL/I (subscriptrange, fofl, size): /* 2 Nov. 2013 */ LU_Decomposition: procedure options (main); declare a1(3,3) float (18) initial ( 1, 3, 5, 2, 4, 7, 1, 1, 0); declare a2(4,4) float (18) initial (11, 9, 24, 2, 1, 5, 2, 6, 3, 17, 18, 1, 2, 5, 7, 1); call check(a1); call check(a2); /* In-situ decomposition */ LU: procedure(a, p); declare a(*,*) float (18); declare p(*) fixed binary; declare (maximum, rtemp) float (18); declare (n, i, j, k, ii, temp) fixed binary; n = hbound(a,1); do i = 1 to n; p(i) = i; end; do k = 1 to n-1; maximum = 0; ii = k; do i = k to n; if maximum < abs(a(p(i),k)) then do; maximum = abs(a(p(i),k)); ii = i; end; end; if ii ^= k then do; temp = p(k); p(k) = p(ii); p(ii) = temp; end; do i = k+1 to n; a(p(i),k) = a(p(i),k) / a(p(k),k); end; do j = k+1 to n; do i = k+1 to n; a(p(i),j) = a(p(i),j) - a(p(i),k) * a(p(k),j); end; end; end; end LU; CHECK: procedure(a); declare a(*,*) float (18) nonassignable; declare aa(hbound(a,1), hbound(a,2)) float (18); declare L(hbound(a,1), hbound(a,2)) float (18); declare U(hbound(a,1), hbound(a,2)) float (18); declare (p(hbound(a,1), hbound(a,2)), ipiv(hbound(a,1)) ) fixed binary; declare pp(hbound(a,1), hbound(a,2)) fixed binary; declare (i, j, n, temp(hbound(a,1))) fixed binary; n = hbound(a,1); aa = A; /* work with a copy */ P = 0; L = 0; U = 0; do i = 1 to n; p(i,i) = 1; L(i,i) = 1; /* convert permutation vector to a matrix */ end; call LU(aa, ipiv); do i = 1 to n; do j = 1 to i-1; L(i,j) = aa(ipiv(i),j); end; do j = i to n; U(i,j) = aa(ipiv(i),j); end; end; pp = p; do i = 1 to n; p(ipiv(i), *) = pp(i,*); end; put skip list ('A'); put edit (A) (skip, (n) f(10,5)); put skip list ('P'); put edit (P) (skip, (n) f(11)); put skip list ('L'); put edit (L) (skip, (n) f(10,5)); put skip list ('U'); put edit (U) (skip, (n) f(10,5)); end CHECK; end LU_Decomposition; ``` Derived from Fortran version above. Results: ```txt A 1.00000 3.00000 5.00000 2.00000 4.00000 7.00000 1.00000 1.00000 0.00000 P 0 1 0 1 0 0 0 0 1 L 1.00000 0.00000 0.00000 0.50000 1.00000 0.00000 0.50000 -1.00000 1.00000 U 2.00000 4.00000 7.00000 0.00000 1.00000 1.50000 0.00000 0.00000 -2.00000 A 11.00000 9.00000 24.00000 2.00000 1.00000 5.00000 2.00000 6.00000 3.00000 17.00000 18.00000 1.00000 2.00000 5.00000 7.00000 1.00000 P 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 L 1.00000 0.00000 0.00000 0.00000 0.27273 1.00000 0.00000 0.00000 0.09091 0.28750 1.00000 0.00000 0.18182 0.23125 0.00360 1.00000 U 11.00000 9.00000 24.00000 2.00000 0.00000 14.54545 11.45455 0.45455 0.00000 0.00000 -3.47500 5.68750 0.00000 0.00000 0.00000 0.51079 ``` ## Python {{trans|D}} ```python from pprint import pprint def matrixMul(A, B): TB = zip(*B) return [[sum(ea*eb for ea,eb in zip(a,b)) for b in TB] for a in A] def pivotize(m): """Creates the pivoting matrix for m.""" n = len(m) ID = [[float(i == j) for i in xrange(n)] for j in xrange(n)] for j in xrange(n): row = max(xrange(j, n), key=lambda i: abs(m[i][j])) if j != row: ID[j], ID[row] = ID[row], ID[j] return ID def lu(A): """Decomposes a nxn matrix A by PA=LU and returns L, U and P.""" n = len(A) L = [[0.0] * n for i in xrange(n)] U = [[0.0] * n for i in xrange(n)] P = pivotize(A) A2 = matrixMul(P, A) for j in xrange(n): L[j][j] = 1.0 for i in xrange(j+1): s1 = sum(U[k][j] * L[i][k] for k in xrange(i)) U[i][j] = A2[i][j] - s1 for i in xrange(j, n): s2 = sum(U[k][j] * L[i][k] for k in xrange(j)) L[i][j] = (A2[i][j] - s2) / U[j][j] return (L, U, P) a = [[1, 3, 5], [2, 4, 7], [1, 1, 0]] for part in lu(a): pprint(part, width=19) print print b = [[11,9,24,2],[1,5,2,6],[3,17,18,1],[2,5,7,1]] for part in lu(b): pprint(part) print ``` {{out}} ```txt [[1.0, 0.0, 0.0], [0.5, 1.0, 0.0], [0.5, -1.0, 1.0]] [[2.0, 4.0, 7.0], [0.0, 1.0, 1.5], [0.0, 0.0, -2.0]] [[0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 1.0]] [[1.0, 0.0, 0.0, 0.0], [0.27272727272727271, 1.0, 0.0, 0.0], [0.090909090909090912, 0.28749999999999998, 1.0, 0.0], [0.18181818181818182, 0.23124999999999996, 0.0035971223021580693, 1.0]] [[11.0, 9.0, 24.0, 2.0], [0.0, 14.545454545454547, 11.454545454545455, 0.45454545454545459], [0.0, 0.0, -3.4749999999999996, 5.6875], [0.0, 0.0, 0.0, 0.51079136690647597]] [[1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0]] ``` ## R {{Out}} ```txt > A <- c(1, 2, 1, 3, 4, 1, 5, 7, 0) > dim(A) <- c(3, 3) > library(Matrix) > expand(lu(A)) $L 3 x 3 Matrix of class "dtrMatrix" (unitriangular) [,1] [,2] [,3] [1,] 1.0 . . [2,] 0.5 1.0 . [3,] 0.5 -1.0 1.0 $U 3 x 3 Matrix of class "dtrMatrix" [,1] [,2] [,3] [1,] 2.0 4.0 7.0 [2,] . 1.0 1.5 [3,] . . -2.0 $P 3 x 3 sparse Matrix of class "pMatrix" [1,] . | . [2,] | . . [3,] . . | ``` ## Racket ```racket #lang racket (require math) (define A (matrix [[1 3 5] [2 4 7] [1 1 0]])) (matrix-lu A) ; result: ; (mutable-array #[#[1 0 0] ; #[2 1 0] ; #[1 1 1]]) ; (mutable-array #[#[1 3 5] ; #[0 -2 -3] ; #[0 0 -2]]) ``` ## REXX ```rexx /*REXX program creates a matrix from console input, performs/shows LU decomposition.*/ #=0; P.=0; PA.=0; L.=0; U.=0 /*initialize some variables to zero. */ parse arg x /*obtain matrix elements from the C.L. */ call bldAMat; call showMat 'A' /*build and display A matrix.*/ call bldPmat; call showMat 'P' /* " " " P " */ call multMat; call showMat 'PA' /* " " " PA " */ do y=1 for N; call bldUmat; call bldLmat /*build U and L " */ end /*y*/ call showMat 'L'; call showMat 'U' /*display L and U " */ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ bldAMat: ?=words(x); do N=1 for ? until N**2>=? /*find matrix size. */ end /*N*/ if N**2\==? then do; say '***error*** wrong # of elements entered:' ?; exit 9 end do r=1 for N /*build A matrix.*/ do c=1 for N; #=# + 1; _=word(x, #); A.r.c=_ if \datatype(_, 'N') then call er "element isn't numeric: " _ end /*c*/ end /*r*/; return /*──────────────────────────────────────────────────────────────────────────────────────*/ bldLmat: do r=1 for N /*build lower matrix*/ do c=1 for N; if r==c then do; L.r.c=1; iterate; end if c\==y | r==c | c>r then iterate _=PA.r.c do k=1 for c-1; _=_ - U.k.c * L.r.k end /*k*/ L.r.c=_ / U.c.c end /*c*/ end /*r*/; return /*──────────────────────────────────────────────────────────────────────────────────────*/ bldPmat: c=N; do r=N by -1 for N; P.r.c=1; c=c+1 /*build perm. matrix*/ if c>N then c=N%2; if c==N then c=1 end /*r*/; return /*──────────────────────────────────────────────────────────────────────────────────────*/ bldUmat: do r=1 for N; if r\==y then iterate /*build upper matrix*/ do c=1 for N; if c1 3 5 2 4 7 1 1 0 }} ```txt ──A matrix─── 1 3 5 2 4 7 1 1 0 ──P matrix─── 0 1 0 1 0 0 0 0 1 ──PA matrix── 2 4 7 1 3 5 1 1 0 ─────L matrix────── 1 0 0 0.5 1 0 0.5 -1 1 ─────U matrix────── 2 4 7 0 1 1.5 0 0 -2 ``` {{out|output|text= when using the input of: 11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 }} ```txt ─────A matrix────── 11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 ───P matrix──── 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 ─────PA matrix───── 11 9 24 2 3 17 18 1 1 5 2 6 2 5 7 1 ───────────────────────────L matrix──────────────────────────── 1 0 0 0 0.272727273 1 0 0 0.0909090909 0.287500001 1 0 0.181818182 0.23125 0.00359712804 1 ───────────────────────U matrix──────────────────────── 11 9 24 2 0 14.5454545 11.4545455 0.45454545 0 0 -3.47500002 5.6875 0 0 0 0.510791339 ``` ## Ruby ```ruby require 'matrix' class Matrix def lu_decomposition p = get_pivot tmp = p * self u = Matrix.zero(row_size).to_a l = Matrix.identity(row_size).to_a (0 ... row_size).each do |i| (0 ... row_size).each do |j| if j >= i # upper u[i][j] = tmp[i,j] - (0 ... i).inject(0.0) {|sum, k| sum + u[k][j] * l[i][k]} else # lower l[i][j] = (tmp[i,j] - (0 ... j).inject(0.0) {|sum, k| sum + u[k][j] * l[i][k]}) / u[j][j] end end end [ Matrix[*l], Matrix[*u], p ] end def get_pivot raise ArgumentError, "must be square" unless square? id = Matrix.identity(row_size).to_a (0 ... row_size).each do |i| max = self[i,i] row = i (i ... row_size).each do |j| if self[j,i] > max max = self[j,i] row = j end end id[i], id[row] = id[row], id[i] end Matrix[*id] end def pretty_print(format, head=nil) puts head if head puts each_slice(column_size).map{|row| format*row_size % row} end end puts "Example 1:" a = Matrix[[1, 3, 5], [2, 4, 7], [1, 1, 0]] a.pretty_print(" %2d", "A") l, u, p = a.lu_decomposition l.pretty_print(" %8.5f", "L") u.pretty_print(" %8.5f", "U") p.pretty_print(" %d", "P") puts "\nExample 2:" a = Matrix[[11, 9,24,2], [ 1, 5, 2,6], [ 3,17,18,1], [ 2, 5, 7,1]] a.pretty_print(" %2d", "A") l, u, p = a.lu_decomposition l.pretty_print(" %8.5f", "L") u.pretty_print(" %8.5f", "U") p.pretty_print(" %d", "P") ``` {{out}} Example 1: A 1 3 5 2 4 7 1 1 0 L 1.00000 0.00000 0.00000 0.50000 1.00000 0.00000 0.50000 -1.00000 1.00000 U 2.00000 4.00000 7.00000 0.00000 1.00000 1.50000 0.00000 0.00000 -2.00000 P 0 1 0 1 0 0 0 0 1 Example 2: A 11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 L 1.00000 0.00000 0.00000 0.00000 0.27273 1.00000 0.00000 0.00000 0.09091 0.28750 1.00000 0.00000 0.18182 0.23125 0.00360 1.00000 U 11.00000 9.00000 24.00000 2.00000 0.00000 14.54545 11.45455 0.45455 0.00000 0.00000 -3.47500 5.68750 0.00000 0.00000 0.00000 0.51079 P 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 ``` Matrix has alup_decomposition
built-in method. ```ruby l, u, p = a.lup_decomposition l.pretty_print(" %8.5f", "L") u.pretty_print(" %8.5f", "U") p.pretty_print(" %d", "P") ``` Output is the same. ## Rust {{libheader| ndarray}} ```Rust #![allow(non_snake_case)] use ndarray::{Array, Axis, Array2, arr2, Zip, NdFloat, s}; fn main() { println!("Example 1:"); let A: Array2= arr2(&[ [1.0, 3.0, 5.0], [2.0, 4.0, 7.0], [1.0, 1.0, 0.0], ]); println!("A \n {}", A); let (L, U, P) = lu_decomp(A); println!("L \n {}", L); println!("U \n {}", U); println!("P \n {}", P); println!("\nExample 2:"); let A: Array2 = arr2(&[ [11.0, 9.0, 24.0, 2.0], [1.0, 5.0, 2.0, 6.0], [3.0, 17.0, 18.0, 1.0], [2.0, 5.0, 7.0, 1.0], ]); println!("A \n {}", A); let (L, U, P) = lu_decomp(A); println!("L \n {}", L); println!("U \n {}", U); println!("P \n {}", P); } fn pivot (A: &Array2 ) -> Array2 where T: NdFloat { let matrix_dimension = A.rows(); let mut P: Array2 = Array::eye(matrix_dimension); for (i, column) in A.axis_iter(Axis(1)).enumerate() { // find idx of maximum value in column i let mut max_pos = i; for j in i..matrix_dimension { if column[max_pos].abs() < column[j].abs() { max_pos = j; } } // swap rows of P if necessary if max_pos != i { swap_rows(&mut P, i, max_pos); } } P } fn swap_rows (A: &mut Array2 , idx_row1: usize, idx_row2: usize) where T: NdFloat { // to swap rows, get two ArrayViewMuts for the corresponding rows // and apply swap elementwise using ndarray::Zip let (.., mut matrix_rest) = A.view_mut().split_at(Axis(0), idx_row1); let (row0, mut matrix_rest) = matrix_rest.view_mut().split_at(Axis(0), 1); let (_matrix_helper, mut matrix_rest) = matrix_rest.view_mut().split_at(Axis(0), idx_row2 - idx_row1 - 1); let (row1, ..) = matrix_rest.view_mut().split_at(Axis(0), 1); Zip::from(row0).and(row1).apply(std::mem::swap); } fn lu_decomp (A: Array2 ) -> (Array2 , Array2 , Array2 ) where T: NdFloat { let matrix_dimension = A.rows(); assert_eq!(matrix_dimension, A.cols(), "Tried LU decomposition with a non-square matrix."); let P = pivot(&A); let pivotized_A = P.dot(&A); let mut L: Array2 = Array::eye(matrix_dimension); let mut U: Array2 = Array::zeros((matrix_dimension, matrix_dimension)); for idx_col in 0..matrix_dimension { // fill U for idx_row in 0..idx_col+1 { U[[idx_row, idx_col]] = pivotized_A[[idx_row, idx_col]] - U.slice(s![0..idx_row,idx_col]).dot(&L.slice(s![idx_row,0..idx_row])); } // fill L for idx_row in idx_col+1..matrix_dimension { L[[idx_row, idx_col]] = (pivotized_A[[idx_row, idx_col]] - U.slice(s![0..idx_col,idx_col]).dot(&L.slice(s![idx_row,0..idx_col]))) / U[[idx_col, idx_col]]; } } (L, U, P) } ``` {{out}} Example 1: A [[1, 3, 5], [2, 4, 7], [1, 1, 0]] L [[1, 0, 0], [0.5, 1, 0], [0.5, -1, 1]] U [[2, 4, 7], [0, 1, 1.5], [0, 0, -2]] P [[0, 1, 0], [1, 0, 0], [0, 0, 1]] Example 2: A [[11, 9, 24, 2], [1, 5, 2, 6], [3, 17, 18, 1], [2, 5, 7, 1]] L [[1, 0, 0, 0], [0.2727272727272727, 1, 0, 0], [0.09090909090909091, 0.2875, 1, 0], [0.18181818181818182, 0.23124999999999996, 0.0035971223021580693, 1]] U [[11, 9, 24, 2], [0, 14.545454545454547, 11.454545454545455, 0.4545454545454546], [0, 0, -3.4749999999999996, 5.6875], [0, 0, 0, 0.510791366906476]] P [[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]] ``` ## Sidef {{trans|Perl 6}} ```ruby func is_square(m) { m.all { .len == m.len } } func matrix_zero(n, m=n) { m.of { n.of(0) } } func matrix_ident(n) { n.of {|i| n.of {|j| i==j ? 1 : 0 } } } func pivotize(m) { var size = m.len var id = matrix_ident(size) for i (^size) { var max = m[i][i] var row = i for j (i .. size-1) { if (m[j][i] > max) { max = m[j][i] row = j } } if (row != i) { id.swap(row, i) } } return id } func mmult(a, b) { var p = [] for r,c (^a ~X ^b[0]) { for i (^b) { p[r][c] := 0 += (a[r][i] * b[i][c]) } } return p } func lu(a) { is_square(a) || die "Defined only for square matrices!"; var n = a.len var P = pivotize(a) var Aʼ = mmult(P, a) var L = matrix_ident(n) var U = matrix_zero(n) for i,j (^n ~X ^n) { if (j >= i) { U[i][j] = (Aʼ[i][j] - ({ U[_][j] * L[i][_] }.map(^i).sum)) } else { L[i][j] = (Aʼ[i][j] - ({ U[_][j] * L[i][_] }.map(^j).sum))/U[j][j] } } return [P, Aʼ, L, U] } func say_it(message, array) { say "\n#{message}" array.each { |row| say row.map{"%7s" % .as_rat}.join(' ') } } var t = [[ %n(1 3 5), %n(2 4 7), %n(1 1 0), ],[ %n(11 9 24 2), %n( 1 5 2 6), %n( 3 17 18 1), %n( 2 5 7 1), ]] for test (t) { say_it('A Matrix', test); for a,b (['P Matrix', 'Aʼ Matrix', 'L Matrix', 'U Matrix'] ~Z lu(test)) { say_it(a, b) } } ```A Matrix 1 3 5 2 4 7 1 1 0 P Matrix 0 1 0 1 0 0 0 0 1 Aʼ Matrix 2 4 7 1 3 5 1 1 0 L Matrix 1 0 0 1/2 1 0 1/2 -1 1 U Matrix 2 4 7 0 1 3/2 0 0 -2 A Matrix 11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 P Matrix 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 Aʼ Matrix 11 9 24 2 3 17 18 1 1 5 2 6 2 5 7 1 L Matrix 1 0 0 0 3/11 1 0 0 1/11 23/80 1 0 2/11 37/160 1/278 1 U Matrix 11 9 24 2 0 160/11 126/11 5/11 0 0 -139/40 91/16 0 0 0 71/139 ``` ## Stata ### Builtin LU decoposition See [http://www.stata.com/help.cgi?mf_lud LU decomposition] in Stata help. ```stata mata : lud(a=(1,3,5\2,4,7\1,1,0),l=.,u=.,p=.) : a 1 2 3 +-------------+ 1 | 1 3 5 | 2 | 2 4 7 | 3 | 1 1 0 | +-------------+ : l 1 2 3 +----------------+ 1 | 1 0 0 | 2 | .5 1 0 | 3 | .5 -1 1 | +----------------+ : u 1 2 3 +-------------------+ 1 | 2 4 7 | 2 | 0 1 1.5 | 3 | 0 0 -2 | +-------------------+ : p 1 +-----+ 1 | 2 | 2 | 1 | 3 | 3 | +-----+ ``` ### Implementation ```stata void ludec(real matrix a, real matrix l, real matrix u, real vector p) { real scalar i,j,n,s real vector js l = a n = rows(a) p = 1::n for (i=1; i$max} { set max [lindex $matrix $i $j] set row $i } } if {$j != $row} { # Row swap inlined; too trivial to have separate procedure set tmp [lindex $p $j] lset p $j [lindex $p $row] lset p $row $tmp } } return $p } # Decompose a square matrix A by PA=LU and return L, U and P proc luDecompose {A} { set n [llength $A] set L [lrepeat $n [lrepeat $n 0]] set U $L set P [pivotize $A] set A [multiply $P $A] for {set j 0} {$j < $n} {incr j} { lset L $j $j 1 for {set i 0} {$i <= $j} {incr i} { lset U $i $j [- [lindex $A $i $j] [SumMul $L $U $i $j $i]] } for {set i $j} {$i < $n} {incr i} { set sum [SumMul $L $U $i $j $j] lset L $i $j [/ [- [lindex $A $i $j] $sum] [lindex $U $j $j]] } } return [list $L $U $P] } # Helper that makes inner loop nicer; multiplies column and row, # possibly partially... proc SumMul {A B i j kmax} { set s 0.0 for {set k 0} {$k < $kmax} {incr k} { set s [+ $s [* [lindex $A $i $k] [lindex $B $k $j]]] } return $s } } ``` Support code: ```tcl # Code adapted from Matrix_multiplication and Matrix_transposition tasks namespace eval matrix { # Get the size of a matrix; assumes that all rows are the same length, which # is a basic well-formed-ness condition... proc size {m} { set rows [llength $m] set cols [llength [lindex $m 0]] return [list $rows $cols] } # Matrix multiplication implementation proc multiply {a b} { lassign [size $a] a_rows a_cols lassign [size $b] b_rows b_cols if {$a_cols != $b_rows} { error "incompatible sizes: a($a_rows, $a_cols), b($b_rows, $b_cols)" } set temp [lrepeat $a_rows [lrepeat $b_cols 0]] for {set i 0} {$i < $a_rows} {incr i} { for {set j 0} {$j < $b_cols} {incr j} { lset temp $i $j [SumMul $a $b $i $j $a_cols] } } return $temp } # Pretty printer for matrices proc print {matrix {fmt "%g"}} { set max [Widest $matrix $fmt] lassign [size $matrix] rows cols foreach row $matrix { foreach val $row width $max { puts -nonewline [format "%*s " $width [format $fmt $val]] } puts "" } } proc Widest {m fmt} { lassign [size $m] rows cols set max [lrepeat $cols 0] foreach row $m { for {set j 0} {$j < $cols} {incr j} { set s [format $fmt [lindex $row $j]] lset max $j [max [lindex $max $j] [string length $s]] } } return $max } } ``` Demonstrating: ```tcl # This does the decomposition and prints it out nicely proc demo {A} { lassign [matrix::luDecompose $A] L U P foreach v {A L U P} { upvar 0 $v matrix puts "${v}:" matrix::print $matrix %.5g if {$v ne "P"} {puts "---------------------------------"} } } demo {{1 3 5} {2 4 7} {1 1 0}} puts " ### =========================== " demo {{11 9 24 2} {1 5 2 6} {3 17 18 1} {2 5 7 1}} ``` {{out}} ```txt A: 1 3 5 2 4 7 1 1 0 --------------------------------- L: 1 0 0 0.5 1 0 0.5 -1 1 --------------------------------- U: 2 4 7 0 1 1.5 0 0 -2 --------------------------------- P: 0 1 0 1 0 0 0 0 1 ### =========================== A: 11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 --------------------------------- L: 1 0 0 0 0.27273 1 0 0 0.090909 0.2875 1 0 0.18182 0.23125 0.0035971 1 --------------------------------- U: 11 9 24 2 0 14.545 11.455 0.45455 0 0 -3.475 5.6875 0 0 0 0.51079 --------------------------------- P: 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 ``` ## VBA {{trans|Phix}} ```vb Option Base 1 Private Function pivotize(m As Variant) As Variant Dim n As Integer: n = UBound(m) Dim im() As Double ReDim im(n, n) For i = 1 To n For j = 1 To n im(i, j) = 0 Next j im(i, i) = 1 Next i For i = 1 To n mx = m(i, i) row_ = i For j = i To n If m(j, i) > mx Then mx = m(j, i) row_ = j End If Next j If i <> Row Then For j = 1 To n tmp = im(i, j) im(i, j) = im(row_, j) im(row_, j) = tmp Next j End If Next i pivotize = im End Function Private Function lu(a As Variant) As Variant Dim n As Integer: n = UBound(a) Dim l() As Double ReDim l(n, n) For i = 1 To n For j = 1 To n l(i, j) = 0 Next j Next i u = l p = pivotize(a) a2 = WorksheetFunction.MMult(p, a) For j = 1 To n l(j, j) = 1# For i = 1 To j sum1 = 0# For k = 1 To i sum1 = sum1 + u(k, j) * l(i, k) Next k u(i, j) = a2(i, j) - sum1 Next i For i = j + 1 To n sum2 = 0# For k = 1 To j sum2 = sum2 + u(k, j) * l(i, k) Next k l(i, j) = (a2(i, j) - sum2) / u(j, j) Next i Next j Dim res(4) As Variant res(1) = a res(2) = l res(3) = u res(4) = p lu = res End Function Public Sub main() a = [{1, 3, 5; 2, 4, 7; 1, 1, 0}] Debug.Print "== a,l,u,p: ==" result = lu(a) For i = 1 To 4 For j = 1 To UBound(result(1)) For k = 1 To UBound(result(1), 2) Debug.Print result(i)(j, k), Next k Debug.Print Next j Debug.Print Next i a = [{11, 9,24, 2; 1, 5, 2, 6; 3,17,18, 1; 2, 5, 7, 1}] Debug.Print "== a,l,u,p: ==" result = lu(a) For i = 1 To 4 For j = 1 To UBound(result(1)) For k = 1 To UBound(result(1), 2) Debug.Print Format(result(i)(j, k), "0.#####"), Next k Debug.Print Next j Debug.Print Next i End Sub ``` {{out}} ```txt == a,l,u,p: == 1 3 5 2 4 7 1 1 0 1 0 0 0,5 1 0 0,5 -1 1 2 4 7 0 1 1,5 0 0 -2 0 1 0 1 0 0 0 0 1 == a,l,u,p: == 11, 9, 24, 2, 1, 5, 2, 6, 3, 17, 18, 1, 2, 5, 7, 1, 1, 0, 0, 0, 0,27273 1, 0, 0, 0,09091 0,2875 1, 0, 0,18182 0,23125 0,0036 1, 11, 9, 24, 2, 0, 14,54545 11,45455 0,45455 0, 0, -3,475 5,6875 0, 0, 0, 0,51079 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, ``` ## zkl Using the GNU Scientific Library, which does the decomposition without returning the permutations: ```zkl var [const] GSL=Import("zklGSL"); // libGSL (GNU Scientific Library) fcn luTask(A){ A.LUDecompose(); // in place, contains L & U L:=A.copy().lowerTriangle().setDiagonal(0,0,1); U:=A.copy().upperTriangle(); return(L,U); } A:=GSL.Matrix(3,3).set(1,3,5, 2,4,7, 1,1,0); // example 1 L,U:=luTask(A); println("L:\n",L.format(),"\nU:\n",U.format()); A:=GSL.Matrix(4,4).set(11.0, 9.0, 24.0, 2.0, // example 2 1.0, 5.0, 2.0, 6.0, 3.0, 17.0, 18.0, 1.0, 2.0, 5.0, 7.0, 1.0); L,U:=luTask(A); println("L:\n",L.format(8,4),"\nU:\n",U.format(8,4)); ``` {{out}} ```txt L: 1.00, 0.00, 0.00 0.50, 1.00, 0.00 0.50, -1.00, 1.00 U: 2.00, 4.00, 7.00 0.00, 1.00, 1.50 0.00, 0.00, -2.00 L: 1.0000, 0.0000, 0.0000, 0.0000 0.2727, 1.0000, 0.0000, 0.0000 0.0909, 0.2875, 1.0000, 0.0000 0.1818, 0.2312, 0.0036, 1.0000 U: 11.0000, 9.0000, 24.0000, 2.0000 0.0000, 14.5455, 11.4545, 0.4545 0.0000, 0.0000, -3.4750, 5.6875 0.0000, 0.0000, 0.0000, 0.5108 ``` Or, using lists: {{trans|Common Lisp}} {{trans|D}} A matrix is a list of lists, ie list of rows in row major order. ```zkl fcn make_array(n,m,v){ (m).pump(List.createLong(m).write,v)*n } fcn eye(n){ // Creates a nxn identity matrix. I:=make_array(n,n,0.0); foreach j in (n){ I[j][j]=1.0 } I } // Creates the pivoting matrix for A. fcn pivotize(A){ n:=A.len(); // rows P:=eye(n); foreach i in (n){ max,row:=A[i][i],i; foreach j in ([i..n-1]){ if(A[j][i]>max) max,row=A[j][i],j; } if(i!=row) P.swap(i,row); } // Return P. P } // Decomposes a square matrix A by PA=LU and returns L, U and P. fcn lu(A){ n:=A.len(); L:=eye(n); U:=make_array(n,n,0.0); P:=pivotize(A); A=matMult(P,A); foreach j in (n){ foreach i in (j+1){ U[i][j]=A[i][j] - (i).reduce('wrap(s,k){ s + U[k][j]*L[i][k] },0.0); } foreach i in ([j..n-1]){ L[i][j]=( A[i][j] - (j).reduce('wrap(s,k){ s + U[k][j]*L[i][k] },0.0) ) / U[j][j]; } } // Return L, U and P. return(L,U,P); } fcn matMult(a,b){ n,m,p:=a[0].len(),a.len(),b[0].len(); ans:=make_array(n,m,0.0); foreach i,j,k in (m,p,n){ ans[i][j]+=a[i][k]*b[k][j]; } ans } ``` Example 1 ```zkl g:=L(L(1.0,3.0,5.0),L(2.0,4.0,7.0),L(1.0,1.0,0.0)); lu(g).apply2("println"); ``` {{out}} ```txt L(L(1,0,0),L(0.5,1,0),L(0.5,-1,1)) L(L(2,4,7),L(0,1,1.5),L(0,0,-2)) L(L(0,1,0),L(1,0,0),L(0,0,1)) ``` Example 2 ```zkl lu(L( L(11.0, 9.0, 24.0, 2.0), L( 1.0, 5.0, 2.0, 6.0), L( 3.0, 17.0, 18.0, 1.0), L( 2.0, 5.0, 7.0, 1.0) )).apply2(T(printM,Console.writeln.fpM("-"))); fcn printM(m) { m.pump(Console.println,rowFmt) } fcn rowFmt(row){ ("%9.5f "*row.len()).fmt(row.xplode()) } ``` The list apply2 method is side effects only, it doesn't aggregate results. When given a list of actions, it applies the action and passes the result to the next action. The fpM method is partial application with a mask, "-" truncates the parameters at that point (in this case, no parameters, ie just print a blank line, not the result of printM). {{out}} ```txt 1.00000 0.00000 0.00000 0.00000 0.27273 1.00000 0.00000 0.00000 0.09091 0.28750 1.00000 0.00000 0.18182 0.23125 0.00360 1.00000 11.00000 9.00000 24.00000 2.00000 0.00000 14.54545 11.45455 0.45455 0.00000 0.00000 -3.47500 5.68750 0.00000 0.00000 0.00000 0.51079 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 ```