⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}}
A [[wp:Magic_square|magic square]] is an '''NxN''' square matrix whose numbers consist of consecutive numbers arranged so that the sum of each row and column, ''and'' both diagonals are equal to the same sum (which is called the ''magic number'' or ''magic constant'').
A magic square of singly even order has a size that is a multiple of 4, plus 2 (e.g. 6, 10, 14). This means that the subsquares have an odd size, which plays a role in the construction.
;Task Create a magic square of 6 x 6.
; Related tasks
- [[Magic squares of odd order]]
- [[Magic squares of doubly even order]]
; See also
- [http://www.1728.org/magicsq3.htm Singly Even Magic Squares (1728.org)]
Befunge
The size, ''N'', is specified by the first value on the stack. In the example below it is set to 6, but adequate space has been left in the code to replace that with a larger value if desired.
:00p:2/vv1:%g01p04:%g00::p03*2%g01/g00::-1_@
\00g/10g/3*4vv>0g\-1-30g+1+10g%10g*\30g+1+10g%1+ +
:%4+*2/g01g0<vv4*`\g02\!`\0:-!-g02/2g03g04-3*2\-\3
*:p02/4-2:p01<>0g00g20g-`+!!*+10g:**+.:00g%!9+,:^:
{{out}}
26 19 24 8 1 33
21 23 25 3 32 7
22 27 20 4 9 29
17 10 15 35 28 6
12 14 16 30 5 34
13 18 11 31 36 2
C
Takes number of rows from command line, prints out usage on incorrect invocation.
#include<stdlib.h>
#include<ctype.h>
#include<stdio.h>
int** oddMagicSquare(int n) {
if (n < 3 || n % 2 == 0)
return NULL;
int value = 0;
int squareSize = n * n;
int c = n / 2, r = 0,i;
int** result = (int**)malloc(n*sizeof(int*));
for(i=0;i<n;i++)
result[i] = (int*)malloc(n*sizeof(int));
while (++value <= squareSize) {
result[r][c] = value;
if (r == 0) {
if (c == n - 1) {
r++;
} else {
r = n - 1;
c++;
}
} else if (c == n - 1) {
r--;
c = 0;
} else if (result[r - 1][c + 1] == 0) {
r--;
c++;
} else {
r++;
}
}
return result;
}
int** singlyEvenMagicSquare(int n) {
if (n < 6 || (n - 2) % 4 != 0)
return NULL;
int size = n * n;
int halfN = n / 2;
int subGridSize = size / 4, i;
int** subGrid = oddMagicSquare(halfN);
int gridFactors[] = {0, 2, 3, 1};
int** result = (int**)malloc(n*sizeof(int*));
for(i=0;i<n;i++)
result[i] = (int*)malloc(n*sizeof(int));
for (int r = 0; r < n; r++) {
for (int c = 0; c < n; c++) {
int grid = (r / halfN) * 2 + (c / halfN);
result[r][c] = subGrid[r % halfN][c % halfN];
result[r][c] += gridFactors[grid] * subGridSize;
}
}
int nColsLeft = halfN / 2;
int nColsRight = nColsLeft - 1;
for (int r = 0; r < halfN; r++)
for (int c = 0; c < n; c++) {
if (c < nColsLeft || c >= n - nColsRight
|| (c == nColsLeft && r == nColsLeft)) {
if (c == 0 && r == nColsLeft)
continue;
int tmp = result[r][c];
result[r][c] = result[r + halfN][c];
result[r + halfN][c] = tmp;
}
}
return result;
}
int numDigits(int n){
int count = 1;
while(n>=10){
n /= 10;
count++;
}
return count;
}
void printMagicSquare(int** square,int rows){
int i,j;
for(i=0;i<rows;i++){
for(j=0;j<rows;j++){
printf("%*s%d",rows - numDigits(square[i][j]),"",square[i][j]);
}
printf("\n");
}
printf("\nMagic constant: %d ", (rows * rows + 1) * rows / 2);
}
int main(int argC,char* argV[])
{
int n;
if(argC!=2||isdigit(argV[1][0])==0)
printf("Usage : %s <integer specifying rows in magic square>",argV[0]);
else{
n = atoi(argV[1]);
printMagicSquare(singlyEvenMagicSquare(n),n);
}
return 0;
}
Invocation and Output:
C:\rosettaCode>singlyEvenMagicSquare 6
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
Magic constant: 111
C++
#include <iostream>
#include <sstream>
#include <iomanip>
using namespace std;
class magicSqr
{
public:
magicSqr() { sqr = 0; }
~magicSqr() { if( sqr ) delete [] sqr; }
void create( int d ) {
if( sqr ) delete [] sqr;
if( d & 1 ) d++;
while( d % 4 == 0 ) { d += 2; }
sz = d;
sqr = new int[sz * sz];
memset( sqr, 0, sz * sz * sizeof( int ) );
fillSqr();
}
void display() {
cout << "Singly Even Magic Square: " << sz << " x " << sz << "\n";
cout << "It's Magic Sum is: " << magicNumber() << "\n\n";
ostringstream cvr; cvr << sz * sz;
int l = cvr.str().size();
for( int y = 0; y < sz; y++ ) {
int yy = y * sz;
for( int x = 0; x < sz; x++ ) {
cout << setw( l + 2 ) << sqr[yy + x];
}
cout << "\n";
}
cout << "\n\n";
}
private:
void siamese( int from, int to ) {
int oneSide = to - from, curCol = oneSide / 2, curRow = 0, count = oneSide * oneSide, s = 1;
while( count > 0 ) {
bool done = false;
while ( false == done ) {
if( curCol >= oneSide ) curCol = 0;
if( curRow < 0 ) curRow = oneSide - 1;
done = true;
if( sqr[curCol + sz * curRow] != 0 ) {
curCol -= 1; curRow += 2;
if( curCol < 0 ) curCol = oneSide - 1;
if( curRow >= oneSide ) curRow -= oneSide;
done = false;
}
}
sqr[curCol + sz * curRow] = s;
s++; count--; curCol++; curRow--;
}
}
void fillSqr() {
int n = sz / 2, ns = n * sz, size = sz * sz, add1 = size / 2, add3 = size / 4, add2 = 3 * add3;
siamese( 0, n );
for( int r = 0; r < n; r++ ) {
int row = r * sz;
for( int c = n; c < sz; c++ ) {
int m = sqr[c - n + row];
sqr[c + row] = m + add1;
sqr[c + row + ns] = m + add3;
sqr[c - n + row + ns] = m + add2;
}
}
int lc = ( sz - 2 ) / 4, co = sz - ( lc - 1 );
for( int r = 0; r < n; r++ ) {
int row = r * sz;
for( int c = co; c < sz; c++ ) {
sqr[c + row] -= add3;
sqr[c + row + ns] += add3;
}
}
for( int r = 0; r < n; r++ ) {
int row = r * sz;
for( int c = 0; c < lc; c++ ) {
int cc = c;
if( r == lc ) cc++;
sqr[cc + row] += add2;
sqr[cc + row + ns] -= add2;
}
}
}
int magicNumber() { return sz * ( ( sz * sz ) + 1 ) / 2; }
void inc( int& a ) { if( ++a == sz ) a = 0; }
void dec( int& a ) { if( --a < 0 ) a = sz - 1; }
bool checkPos( int x, int y ) { return( isInside( x ) && isInside( y ) && !sqr[sz * y + x] ); }
bool isInside( int s ) { return ( s < sz && s > -1 ); }
int* sqr;
int sz;
};
int main( int argc, char* argv[] ) {
magicSqr s; s.create( 6 );
s.display();
return 0;
}
{{out}}
Singly Even Magic Square: 6 x 6
It's Magic Sum is: 111
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
D
{{trans|Java}}
import std.exception;
import std.stdio;
void main() {
int n = 6;
foreach (row; magicSquareSinglyEven(n)) {
foreach (x; row) {
writef("%2s ", x);
}
writeln();
}
writeln("\nMagic constant: ", (n * n + 1) * n / 2);
}
int[][] magicSquareOdd(const int n) {
enforce(n >= 3 && n % 2 != 0, "Base must be odd and >2");
int value = 0;
int gridSize = n * n;
int c = n / 2;
int r = 0;
int[][] result = new int[][](n, n);
while(++value <= gridSize) {
result[r][c] = value;
if (r == 0) {
if (c == n - 1) {
r++;
} else {
r = n - 1;
c++;
}
} else if (c == n - 1) {
r--;
c = 0;
} else if (result[r - 1][c + 1] == 0) {
r--;
c++;
} else {
r++;
}
}
return result;
}
int[][] magicSquareSinglyEven(const int n) {
enforce(n >= 6 && (n - 2) % 4 == 0, "Base must be a positive multiple of four plus 2");
int size = n * n;
int halfN = n / 2;
int subSquareSize = size / 4;
int[][] subSquare = magicSquareOdd(halfN);
int[] quadrantFactors = [0, 2, 3, 1];
int[][] result = new int[][](n, n);
for (int r = 0; r < n; r++) {
for (int c = 0; c < n; c++) {
int quadrant = (r / halfN) * 2 + (c / halfN);
result[r][c] = subSquare[r % halfN][c % halfN];
result[r][c] += quadrantFactors[quadrant] * subSquareSize;
}
}
int nColsLeft = halfN / 2;
int nColsRight = nColsLeft - 1;
for (int r = 0; r < halfN; r++) {
for (int c = 0; c < n; c++) {
if (c < nColsLeft || c >= n - nColsRight
|| (c == nColsLeft && r == nColsLeft)) {
if (c == 0 && r == nColsLeft) {
continue;
}
int tmp = result[r][c];
result[r][c] = result[r + halfN][c];
result[r + halfN][c] = tmp;
}
}
}
return result;
}
Elixir
[[wp:Conway's LUX method for magic squares]]:
defmodule Magic_square do
@lux %{ L: [4, 1, 2, 3], U: [1, 4, 2, 3], X: [1, 4, 3, 2] }
def singly_even(n) when rem(n-2,4)!=0, do: raise ArgumentError, "must be even, but not divisible by 4."
def singly_even(2), do: raise ArgumentError, "2x2 magic square not possible."
def singly_even(n) do
n2 = div(n, 2)
oms = odd_magic_square(n2)
mat = make_lux_matrix(n2)
square = synthesis(n2, oms, mat)
IO.puts to_string(n, square)
square
end
defp odd_magic_square(m) do # zero beginning, it is 4 multiples.
for i <- 0..m-1, j <- 0..m-1, into: %{},
do: {{i,j}, (m*(rem(i+j+1+div(m,2),m)) + rem(i+2*j-5+2*m, m)) * 4}
end
defp make_lux_matrix(m) do
center = div(m, 2)
lux = List.duplicate(:L, center+1) ++ [:U] ++ List.duplicate(:X, m-center-2)
(for {x,i} <- Enum.with_index(lux), j <- 0..m-1, into: %{}, do: {{i,j}, x})
|> Map.put({center, center}, :U)
|> Map.put({center+1, center}, :L)
end
defp synthesis(m, oms, mat) do
range = 0..m-1
Enum.reduce(range, [], fn i,acc ->
{row0, row1} = Enum.reduce(range, {[],[]}, fn j,{r0,r1} ->
x = oms[{i,j}]
[lux0, lux1, lux2, lux3] = @lux[mat[{i,j}]]
{[x+lux0, x+lux1 | r0], [x+lux2, x+lux3 | r1]}
end)
[row0, row1 | acc]
end)
end
defp to_string(n, square) do
format = String.duplicate("~#{length(to_char_list(n*n))}w ", n) <> "\n"
Enum.map_join(square, fn row ->
:io_lib.format(format, row)
end)
end
end
Magic_square.singly_even(6)
{{out}}
5 8 36 33 13 16
6 7 34 35 14 15
28 25 17 20 12 9
26 27 18 19 10 11
24 21 4 1 32 29
22 23 2 3 30 31
FreeBASIC
' version 18-03-2016
' compile with: fbc -s console
' singly even magic square 6, 10, 14, 18...
Sub Err_msg(msg As String)
Print msg
Beep : Sleep 5000, 1 : Exit Sub
End Sub
Sub se_magicsq(n As UInteger, filename As String = "")
' filename <> "" then save square in a file
' filename can contain directory name
' if filename exist it will be overwriten, no error checking
If n < 6 Then
Err_msg( "Error: n is to small")
Exit Sub
End If
If ((n -2) Mod 4) <> 0 Then
Err_msg "Error: not possible to make singly" + _
" even magic square size " + Str(n)
Exit Sub
End If
Dim As UInteger sq(1 To n, 1 To n)
Dim As UInteger magic_sum = n * (n ^ 2 +1) \ 2
Dim As UInteger sq_d_2 = n \ 2, q2 = sq_d_2 ^ 2
Dim As UInteger l = (n -2) \ 4
Dim As UInteger x = sq_d_2 \ 2 + 1, y = 1, nr = 1
Dim As String frmt = String(Len(Str(n * n)) +1, "#")
' fill pattern A C
' D B
' main loop for creating magic square in section A
' the value for B,C and D is derived from A
' uses the FreeBASIC odd order magic square routine
Do
If sq(x, y) = 0 Then
sq(x , y ) = nr ' A
sq(x + sq_d_2, y + sq_d_2) = nr + q2 ' B
sq(x + sq_d_2, y ) = nr + q2 * 2 ' C
sq(x , y + sq_d_2) = nr + q2 * 3 ' D
If nr Mod sq_d_2 = 0 Then
y += 1
Else
x += 1 : y -= 1
End If
nr += 1
End If
If x > sq_d_2 Then
x = 1
Do While sq(x,y) <> 0
x += 1
Loop
End If
If y < 1 Then
y = sq_d_2
Do While sq(x,y) <> 0
y -= 1
Loop
End If
Loop Until nr > q2
' swap left side
For y = 1 To sq_d_2
For x = 1 To l
Swap sq(x, y), sq(x,y + sq_d_2)
Next
Next
' make indent
y = (sq_d_2 \ 2) +1
Swap sq(1, y), sq(1, y + sq_d_2) ' was swapped, restore to orignal value
Swap sq(l +1, y), sq(l +1, y + sq_d_2)
' swap right side
For y = 1 To sq_d_2
For x = n - l +2 To n
Swap sq(x, y), sq(x,y + sq_d_2)
Next
Next
' check columms and rows
For y = 1 To n
nr = 0 : l = 0
For x = 1 To n
nr += sq(x,y)
l += sq(y,x)
Next
If nr <> magic_sum Or l <> magic_sum Then
Err_msg "Error: value <> magic_sum"
Exit Sub
End If
Next
' check diagonals
nr = 0 : l = 0
For x = 1 To n
nr += sq(x, x)
l += sq(n - x +1, n - x +1)
Next
If nr <> magic_sum Or l <> magic_sum Then
Err_msg "Error: value <> magic_sum"
Exit Sub
End If
' printing square's on screen bigger when
' n > 19 results in a wrapping of the line
Print "Single even magic square size: "; n; "*"; n
Print "The magic sum = "; magic_sum
Print
For y = 1 To n
For x = 1 To n
Print Using frmt; sq(x, y);
Next
Print
Next
' output magic square to a file with the name provided
If filename <> "" Then
nr = FreeFile
Open filename For Output As #nr
Print #nr, "Single even magic square size: "; n; "*"; n
Print #nr, "The magic sum = "; magic_sum
Print #nr,
For y = 1 To n
For x = 1 To n
Print #nr, Using frmt; sq(x,y);
Next
Print #nr,
Next
Close #nr
End If
End Sub
' ------=< MAIN >=------
se_magicsq(6, "magicse6.txt") : Print
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
{{out}}
Single even magic square size: 6*6
The magic sum = 111
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
Go
{{trans|Java}}
package main
import (
"fmt"
"log"
)
func magicSquareOdd(n int) ([][]int, error) {
if n < 3 || n%2 == 0 {
return nil, fmt.Errorf("base must be odd and > 2")
}
value := 1
gridSize := n * n
c, r := n/2, 0
result := make([][]int, n)
for i := 0; i < n; i++ {
result[i] = make([]int, n)
}
for value <= gridSize {
result[r][c] = value
if r == 0 {
if c == n-1 {
r++
} else {
r = n - 1
c++
}
} else if c == n-1 {
r--
c = 0
} else if result[r-1][c+1] == 0 {
r--
c++
} else {
r++
}
value++
}
return result, nil
}
func magicSquareSinglyEven(n int) ([][]int, error) {
if n < 6 || (n-2)%4 != 0 {
return nil, fmt.Errorf("base must be a positive multiple of 4 plus 2")
}
size := n * n
halfN := n / 2
subSquareSize := size / 4
subSquare, err := magicSquareOdd(halfN)
if err != nil {
return nil, err
}
quadrantFactors := [4]int{0, 2, 3, 1}
result := make([][]int, n)
for i := 0; i < n; i++ {
result[i] = make([]int, n)
}
for r := 0; r < n; r++ {
for c := 0; c < n; c++ {
quadrant := r/halfN*2 + c/halfN
result[r][c] = subSquare[r%halfN][c%halfN]
result[r][c] += quadrantFactors[quadrant] * subSquareSize
}
}
nColsLeft := halfN / 2
nColsRight := nColsLeft - 1
for r := 0; r < halfN; r++ {
for c := 0; c < n; c++ {
if c < nColsLeft || c >= n-nColsRight ||
(c == nColsLeft && r == nColsLeft) {
if c == 0 && r == nColsLeft {
continue
}
tmp := result[r][c]
result[r][c] = result[r+halfN][c]
result[r+halfN][c] = tmp
}
}
}
return result, nil
}
func main() {
const n = 6
msse, err := magicSquareSinglyEven(n)
if err != nil {
log.Fatal(err)
}
for _, row := range msse {
for _, x := range row {
fmt.Printf("%2d ", x)
}
fmt.Println()
}
fmt.Printf("\nMagic constant: %d\n", (n*n+1)*n/2)
}
{{out}}
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
Magic constant: 111
Haskell
Using [[wp:Conway's LUX method for magic squares|Conway's LUX method for magic squares]]
import qualified Data.Map.Strict as M
import Data.List (transpose, intercalate)
import Data.Maybe (fromJust, isJust)
import Control.Monad (forM_)
import Data.Monoid ((<>))
magic :: Int -> [[Int]]
magic n = mapAsTable ((4 * n) + 2) (hiResMap n)
-- Order of square -> sequence numbers keyed by cartesian coordinates
hiResMap :: Int -> M.Map (Int, Int) Int
hiResMap n =
let mapLux = luxMap n
mapSiam = siamMap n
in M.fromList $
foldMap
(\(xy, n) ->
luxNums xy (fromJust (M.lookup xy mapLux)) ((4 * (n - 1)) + 1))
(M.toList mapSiam)
-- LUX table coordinate -> L|U|X -> initial number -> 4 numbered coordinates
luxNums :: (Int, Int) -> Char -> Int -> [((Int, Int), Int)]
luxNums xy lux n =
zipWith (\x d -> (x, n + d)) (hiRes xy) $
case lux of
'L' -> [3, 0, 1, 2]
'U' -> [0, 3, 1, 2]
'X' -> [0, 3, 2, 1]
_ -> [0, 0, 0, 0]
-- Size of square -> integers keyed by coordinates -> rows of integers
mapAsTable :: Int -> M.Map (Int, Int) Int -> [[Int]]
mapAsTable nCols xyMap =
let axis = [0 .. nCols - 1]
in fmap (fromJust . flip M.lookup xyMap) <$>
(axis >>= \y -> [axis >>= \x -> [(x, y)]])
-- Dimension of LUX table -> LUX symbols keyed by coordinates
luxMap :: Int -> M.Map (Int, Int) Char
luxMap n =
(M.fromList . concat) $
zipWith
(\y xs -> (zipWith (\x c -> ((x, y), c)) [0 ..] xs))
[0 ..]
(luxPattern n)
-- LUX dimension -> square of L|U|X cells with two mixed rows
luxPattern :: Int -> [String]
luxPattern n =
let d = (2 * n) + 1
[ls, us] = replicate n <$> "LU"
[lRow, xRow] = replicate d <$> "LX"
in replicate n lRow <> [ls <> ('U' : ls)] <> [us <> ('L' : us)] <>
replicate (n - 1) xRow
-- Highest zero-based index of grid -> Siamese indices keyed by coordinates
siamMap :: Int -> M.Map (Int, Int) Int
siamMap n =
let uBound = (2 * n)
sPath uBound sMap (x, y) n =
let newMap = M.insert (x, y) n sMap
in if y == uBound && x == quot uBound 2
then newMap
else sPath uBound newMap (nextSiam uBound sMap (x, y)) (n + 1)
in sPath uBound (M.fromList []) (n, 0) 1
-- Highest index of square -> Siam xys so far -> xy -> next xy coordinate
nextSiam :: Int -> M.Map (Int, Int) Int -> (Int, Int) -> (Int, Int)
nextSiam uBound sMap (x, y) =
let alt (a, b)
| a > uBound && b < 0 = (uBound, 1) -- Top right corner ?
| a > uBound = (0, b) -- beyond right edge ?
| b < 0 = (a, uBound) -- above top edge ?
| isJust (M.lookup (a, b) sMap) = (a - 1, b + 2) -- already filled ?
| otherwise = (a, b) -- Up one, right one.
in alt (x + 1, y - 1)
-- LUX cell coordinate -> four coordinates at higher resolution
hiRes :: (Int, Int) -> [(Int, Int)]
hiRes (x, y) =
let [col, row] = (* 2) <$> [x, y]
[col1, row1] = succ <$> [col, row]
in [(col, row), (col1, row), (col, row1), (col1, row1)]
-- TESTS ----------------------------------------------------------------------
checked :: [[Int]] -> (Int, Bool)
checked square = (h, all (h ==) t)
where
diagonals = fmap (flip (zipWith (!!)) [0 ..]) . ((:) <*> (return . reverse))
h:t = sum <$> square <> transpose square <> diagonals square
table :: String -> [[String]] -> [String]
table delim rows =
let justifyRight c n s = drop (length s) (replicate n c <> s)
in intercalate delim <$>
transpose
((fmap =<< justifyRight ' ' . maximum . fmap length) <$> transpose rows)
main :: IO ()
main =
forM_ [1, 2, 3] $
\n -> do
let test = magic n
putStrLn $ unlines (table " " (fmap show <$> test))
print $ checked test
putStrLn ""
{{Out}}
32 29 4 1 24 21
30 31 2 3 22 23
12 9 17 20 28 25
10 11 18 19 26 27
13 16 36 33 5 8
14 15 34 35 6 7
(111,True)
68 65 96 93 4 1 32 29 60 57
66 67 94 95 2 3 30 31 58 59
92 89 20 17 28 25 56 53 64 61
90 91 18 19 26 27 54 55 62 63
16 13 24 21 49 52 80 77 88 85
14 15 22 23 50 51 78 79 86 87
37 40 45 48 76 73 81 84 9 12
38 39 46 47 74 75 82 83 10 11
41 44 69 72 97 100 5 8 33 36
43 42 71 70 99 98 7 6 35 34
(505,True)
120 117 156 153 192 189 4 1 40 37 76 73 112 109
118 119 154 155 190 191 2 3 38 39 74 75 110 111
152 149 188 185 28 25 36 33 72 69 108 105 116 113
150 151 186 187 26 27 34 35 70 71 106 107 114 115
184 181 24 21 32 29 68 65 104 101 140 137 148 145
182 183 22 23 30 31 66 67 102 103 138 139 146 147
20 17 56 53 64 61 97 100 136 133 144 141 180 177
18 19 54 55 62 63 98 99 134 135 142 143 178 179
49 52 57 60 93 96 132 129 165 168 173 176 13 16
50 51 58 59 94 95 130 131 166 167 174 175 14 15
81 84 89 92 125 128 161 164 169 172 9 12 45 48
83 82 91 90 127 126 163 162 171 170 11 10 47 46
85 88 121 124 157 160 193 196 5 8 41 44 77 80
87 86 123 122 159 158 195 194 7 6 43 42 79 78
(1379,True)
J
Using the Strachey method:
odd =: i:@<.@-: |."0 1&|:^:2 >:@i.@,~
t =: ((*: * i.@4:) +"0 2 odd)@-:
l =: (f=:$~ # , #)@((<. , >.)@%&4 # (1: , 0:))
sh =: <:@-: * (bn=:-: # 2:) #: (2: ^ <.@%&4)
lm =: sh |."0 1 l
rm =: f@bn #: <:@(2: ^ <:@<.@%&4)
a =: ((-.@lm * {.@t) + lm * {:@t)
b =: ((-.@rm * 1&{@t) + rm * 2&{@t)
c =: ((rm * 1&{@t) + -.@rm * 2&{@t)
d =: ((lm * {.@t) + -.@lm * {:@t)
m =: (a ,"1 c) , d ,"1 b
{{Out}}
m 6
33 7 2 24 25 20
1 32 9 19 23 27
35 3 4 26 21 22
6 34 29 15 16 11
28 5 36 10 14 18
8 30 31 17 12 13
m 18
258 268 278 288 46 56 66 76 5 177 187 197 207 208 218 147 157 86
277 287 297 298 65 75 4 14 24 196 206 216 217 227 237 85 95 105
296 306 307 317 3 13 23 33 43 215 225 226 236 165 175 104 114 124
315 316 245 255 22 32 42 52 62 234 235 164 174 184 194 123 133 143
1 254 264 274 284 51 61 71 81 163 173 183 193 203 213 142 152 162
263 273 283 293 60 70 80 9 10 182 192 202 212 222 232 161 90 91
282 292 302 312 79 8 18 19 29 201 211 221 231 241 170 99 100 110
301 311 321 250 17 27 28 38 48 220 230 240 169 179 189 109 119 129
320 249 259 269 36 37 47 57 67 239 168 178 188 198 199 128 138 148
15 25 35 45 289 299 309 319 248 96 106 116 126 127 137 228 238 167
34 44 54 55 308 318 247 257 267 115 125 135 136 146 156 166 176 186
53 63 64 74 246 256 266 276 286 134 144 145 155 84 94 185 195 205
72 73 2 12 265 275 285 295 305 153 154 83 93 103 113 204 214 224
244 11 21 31 41 294 304 314 324 82 92 102 112 122 132 223 233 243
20 30 40 50 303 313 323 252 253 101 111 121 131 141 151 242 171 172
39 49 59 69 322 251 261 262 272 120 130 140 150 160 89 180 181 191
58 68 78 7 260 270 271 281 291 139 149 159 88 98 108 190 200 210
77 6 16 26 279 280 290 300 310 158 87 97 107 117 118 209 219 229
Java
public class MagicSquareSinglyEven {
public static void main(String[] args) {
int n = 6;
for (int[] row : magicSquareSinglyEven(n)) {
for (int x : row)
System.out.printf("%2s ", x);
System.out.println();
}
System.out.printf("\nMagic constant: %d ", (n * n + 1) * n / 2);
}
public static int[][] magicSquareOdd(final int n) {
if (n < 3 || n % 2 == 0)
throw new IllegalArgumentException("base must be odd and > 2");
int value = 0;
int gridSize = n * n;
int c = n / 2, r = 0;
int[][] result = new int[n][n];
while (++value <= gridSize) {
result[r][c] = value;
if (r == 0) {
if (c == n - 1) {
r++;
} else {
r = n - 1;
c++;
}
} else if (c == n - 1) {
r--;
c = 0;
} else if (result[r - 1][c + 1] == 0) {
r--;
c++;
} else {
r++;
}
}
return result;
}
static int[][] magicSquareSinglyEven(final int n) {
if (n < 6 || (n - 2) % 4 != 0)
throw new IllegalArgumentException("base must be a positive "
+ "multiple of 4 plus 2");
int size = n * n;
int halfN = n / 2;
int subSquareSize = size / 4;
int[][] subSquare = magicSquareOdd(halfN);
int[] quadrantFactors = {0, 2, 3, 1};
int[][] result = new int[n][n];
for (int r = 0; r < n; r++) {
for (int c = 0; c < n; c++) {
int quadrant = (r / halfN) * 2 + (c / halfN);
result[r][c] = subSquare[r % halfN][c % halfN];
result[r][c] += quadrantFactors[quadrant] * subSquareSize;
}
}
int nColsLeft = halfN / 2;
int nColsRight = nColsLeft - 1;
for (int r = 0; r < halfN; r++)
for (int c = 0; c < n; c++) {
if (c < nColsLeft || c >= n - nColsRight
|| (c == nColsLeft && r == nColsLeft)) {
if (c == 0 && r == nColsLeft)
continue;
int tmp = result[r][c];
result[r][c] = result[r + halfN][c];
result[r + halfN][c] = tmp;
}
}
return result;
}
}
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
Magic constant: 111
Julia
{{trans|Lua}}
function oddmagicsquare(order)
if iseven(order)
order += 1
end
q = zeros(Int, (order, order))
p = 1
i = div(order, 2) + 1
j = 1
while p <= order * order
q[i, j] = p
ti = (i + 1 > order) ? 1 : i + 1
tj = (j - 1 < 1) ? order : j - 1
if q[ti, tj] != 0
ti = i
tj = j + 1
end
i = ti
j = tj
p = p + 1
end
q, order
end
function singlyevenmagicsquare(order)
if isodd(order)
order += 1
end
if order % 4 == 0
order += 2
end
q = zeros(Int, (order, order))
z = div(order, 2)
b = z * z
c = 2 * b
d = 3 * b
sq, ord = oddmagicsquare(z)
for j in 1:z, i in 1:z
a = sq[i, j]
q[i, j] = a
q[i + z, j + z] = a + b
q[i + z, j] = a + c
q[i, j + z] = a + d
end
lc = div(z, 2)
rc = lc - 1
for j in 1:z, i in 1:order
if i <= lc || i > order - rc || (i == lc && j == lc)
if i != 0 || j != lc + 1
t = q[i, j]
q[i, j] = q[i, j + z]
q[i, j + z] = t
end
end
end
q, order
end
function check(q)
side = size(q)[1]
sums = Vector{Int}()
for n in 1:side
push!(sums, sum(q[n, :]))
push!(sums, sum(q[:, n]))
end
println(all(x->x==sums[1], sums) ?
"Checks ok: all sides add to $(sums[1])." : "Bad sum.")
end
function display(q)
r, c = size(q)
for i in 1:r, j in 1:c
nstr = lpad(string(q[i, j]), 4)
print(j % c > 0 ? nstr : "$nstr\n")
end
end
for o in (6, 10)
println("\nWith order $o:")
msq = singlyevenmagicsquare(o)[1]
display(msq)
check(msq)
end
{{output}}
With order 6:
35 30 31 8 3 4
1 5 9 28 32 36
6 7 2 33 34 29
26 21 22 17 12 13
19 23 27 10 14 18
24 25 20 15 16 11
Checks ok: all sides add to 111.
With order 10:
92 98 79 85 86 17 23 4 10 11
99 80 81 87 93 24 5 6 12 18
1 7 13 19 25 76 82 88 94 100
8 14 20 21 2 83 89 95 96 77
15 16 22 3 9 90 91 97 78 84
67 73 54 60 61 42 48 29 35 36
74 55 56 62 68 49 30 31 37 43
51 57 63 69 75 26 32 38 44 50
58 64 70 71 52 33 39 45 46 27
40 41 47 28 34 65 66 72 53 59
Checks ok: all sides add to 505.
Kotlin
{{trans|Java}}
// version 1.0.6
fun magicSquareOdd(n: Int): Array<IntArray> {
if (n < 3 || n % 2 == 0)
throw IllegalArgumentException("Base must be odd and > 2")
var value = 0
val gridSize = n * n
var c = n / 2
var r = 0
val result = Array(n) { IntArray(n) }
while (++value <= gridSize) {
result[r][c] = value
if (r == 0) {
if (c == n - 1) r++
else {
r = n - 1
c++
}
}
else if (c == n - 1) {
r--
c = 0
}
else if (result[r - 1][c + 1] == 0) {
r--
c++
}
else r++
}
return result
}
fun magicSquareSinglyEven(n: Int): Array<IntArray> {
if (n < 6 || (n - 2) % 4 != 0)
throw IllegalArgumentException("Base must be a positive multiple of 4 plus 2")
val size = n * n
val halfN = n / 2
val subSquareSize = size / 4
val subSquare = magicSquareOdd(halfN)
val quadrantFactors = intArrayOf(0, 2, 3, 1)
val result = Array(n) { IntArray(n) }
for (r in 0 until n)
for (c in 0 until n) {
val quadrant = r / halfN * 2 + c / halfN
result[r][c] = subSquare[r % halfN][c % halfN]
result[r][c] += quadrantFactors[quadrant] * subSquareSize
}
val nColsLeft = halfN / 2
val nColsRight = nColsLeft - 1
for (r in 0 until halfN)
for (c in 0 until n)
if (c < nColsLeft || c >= n - nColsRight || (c == nColsLeft && r == nColsLeft)) {
if (c == 0 && r == nColsLeft) continue
val tmp = result[r][c]
result[r][c] = result[r + halfN][c]
result[r + halfN][c] = tmp
}
return result
}
fun main(args: Array<String>) {
val n = 6
for (ia in magicSquareSinglyEven(n)) {
for (i in ia) print("%2d ".format(i))
println()
}
println("\nMagic constant ${(n * n + 1) * n / 2}")
}
{{out}}
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
Magic constant 111
Lua
For all three kinds of Magic Squares(Odd, singly and doubly even)
See [[Magic_squares/Lua]].
Perl
See [[Magic_squares/Perl|Magic squares/Perl]] for a general magic square generator.
## Perl 6
See [[Magic_squares/Perl_6|Magic squares/Perl 6]] for a general magic square generator.
{{out}}
With a parameter of 6:
```txt
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
The magic number is 111
With a parameter of 10:
92 99 1 8 15 67 74 51 58 40
98 80 7 14 16 73 55 57 64 41
4 81 88 20 22 54 56 63 70 47
85 87 19 21 3 60 62 69 71 28
86 93 25 2 9 61 68 75 52 34
17 24 76 83 90 42 49 26 33 65
23 5 82 89 91 48 30 32 39 66
79 6 13 95 97 29 31 38 45 72
10 12 94 96 78 35 37 44 46 53
11 18 100 77 84 36 43 50 27 59
The magic number is 505
Phix
{{trans|FreeBASIC}}
procedure Abort(string msg)
puts(1,msg&"\nPress any key...")
{} = wait_key()
abort(0)
end procedure
function swap(sequence s, integer x1, y1, x2, y2)
{s[x1,y1],s[x2,y2]} = {s[x2,y2],s[x1,y1]}
return s
end function
function se_magicsq(integer n)
if n<6 or mod(n-2,4)!=0 then
Abort(sprintf("illegal size (%d)",{n}))
end if
sequence sq = repeat(repeat(0,n),n)
integer magic_sum = n*(n*n+1)/2,
sq_d_2 = n/2,
q2 = power(sq_d_2,2),
l = (n-2)/4,
x1 = floor(sq_d_2/2)+1, x2,
y1 = 1, y2,
r = 1
-- fill pattern a c
-- d b
-- main loop for creating magic square in section a
-- the value for b,c and d is derived from a
while true do
if sq[x1,y1]=0 then
x2 = x1+sq_d_2
y2 = y1+sq_d_2
sq[x1,y1] = r -- a
sq[x2,y2] = r+q2 -- b
sq[x2,y1] = r+q2*2 -- c
sq[x1,y2] = r+q2*3 -- d
if mod(r,sq_d_2)=0 then
y1 += 1
else
x1 += 1
y1 -= 1
end if
r += 1
end if
if x1>sq_d_2 then
x1 = 1
while sq[x1,y1] <> 0 do
x1 += 1
end while
end if
if y1<1 then
y1 = sq_d_2
while sq[x1,y1] <> 0 do
y1 -= 1
end while
end if
if r>q2 then exit end if
end while
-- swap left side
for y1=1 to sq_d_2 do
y2 = y1+sq_d_2
for x1=1 to l do
sq = swap(sq, x1,y1, x1,y2)
end for
end for
-- make indent
y1 = floor(sq_d_2/2) +1
y2 = y1+sq_d_2
x1 = 1
sq = swap(sq, x1,y1, x1,y2)
x1 = l+1
sq = swap(sq, x1,y1, x1,y2)
-- swap right side
for y1=1 to sq_d_2 do
y2 = y1+sq_d_2
for x1=n-l+2 to n do
sq = swap(sq, x1,y1, x1,y2)
end for
end for
-- check columms and rows
for y1=1 to n do
r = 0
l = 0
for x1=1 to n do
r += sq[x1,y1]
l += sq[y1,x1]
end for
if r<>magic_sum
or l<>magic_sum then
Abort("error: value <> magic_sum")
end if
end for
-- check diagonals
r = 0
l = 0
for x1=1 to n do
r += sq[x1,x1]
x2 = n-x1+1
l += sq[x2,x2]
end for
if r<>magic_sum
or l<>magic_sum then
Abort("error: value <> magic_sum")
end if
return sq
end function
pp(se_magicsq(6),{pp_Nest,1,pp_IntFmt,"%3d",pp_StrFmt,1,pp_Pause,0})
{{out}}
{{35, 3,31, 8,30, 4},
{ 1,32, 9,28, 5,36},
{ 6, 7, 2,33,34,29},
{26,21,22,17,12,13},
{19,23,27,10,14,18},
{24,25,20,15,16,11}}
Python
{{trans|Lua}}
import math
from sys import stdout
LOG_10 = 2.302585092994
# build odd magic square
def build_oms(s):
if s % 2 == 0:
s += 1
q = [[0 for j in range(s)] for i in range(s)]
p = 1
i = s // 2
j = 0
while p <= (s * s):
q[i][j] = p
ti = i + 1
if ti >= s: ti = 0
tj = j - 1
if tj < 0: tj = s - 1
if q[ti][tj] != 0:
ti = i
tj = j + 1
i = ti
j = tj
p = p + 1
return q, s
# build singly even magic square
def build_sems(s):
if s % 2 == 1:
s += 1
while s % 4 == 0:
s += 2
q = [[0 for j in range(s)] for i in range(s)]
z = s // 2
b = z * z
c = 2 * b
d = 3 * b
o = build_oms(z)
for j in range(0, z):
for i in range(0, z):
a = o[0][i][j]
q[i][j] = a
q[i + z][j + z] = a + b
q[i + z][j] = a + c
q[i][j + z] = a + d
lc = z // 2
rc = lc
for j in range(0, z):
for i in range(0, s):
if i < lc or i > s - rc or (i == lc and j == lc):
if not (i == 0 and j == lc):
t = q[i][j]
q[i][j] = q[i][j + z]
q[i][j + z] = t
return q, s
def format_sqr(s, l):
for i in range(0, l - len(s)):
s = "0" + s
return s + " "
def display(q):
s = q[1]
print(" - {0} x {1}\n".format(s, s))
k = 1 + math.floor(math.log(s * s) / LOG_10)
for j in range(0, s):
for i in range(0, s):
stdout.write(format_sqr("{0}".format(q[0][i][j]), k))
print()
print("Magic sum: {0}\n".format(s * ((s * s) + 1) // 2))
stdout.write("Singly Even Magic Square")
display(build_sems(6))
{{out}}
Singly Even Magic Square - 6 x 6
35 01 06 26 19 24
03 32 07 21 23 25
31 09 02 22 27 20
08 28 33 17 10 15
30 05 34 12 14 16
04 36 29 13 18 11
Magic sum: 111
Ruby
def odd_magic_square(n)
n.times.map{|i| n.times.map{|j| n*((i+j+1+n/2)%n) + ((i+2*j-5)%n) + 1} }
end
def single_even_magic_square(n)
raise ArgumentError, "must be even, but not divisible by 4." unless (n-2) % 4 == 0
raise ArgumentError, "2x2 magic square not possible." if n == 2
order = (n-2)/4
odd_square = odd_magic_square(n/2)
to_add = (0..3).map{|f| f*n*n/4}
quarts = to_add.map{|f| odd_square.dup.map{|row|row.map{|el| el+f}} }
sq = []
quarts[0].zip(quarts[2]){|d1,d2| sq << [d1,d2].flatten}
quarts[3].zip(quarts[1]){|d1,d2| sq << [d1,d2].flatten}
sq = sq.transpose
order.times{|i| sq[i].rotate!(n/2)}
swap(sq[0][order], sq[0][-order-1])
swap(sq[order][order], sq[order][-order-1])
(order-1).times{|i| sq[-(i+1)].rotate!(n/2)}
randomize(sq)
end
def swap(a,b)
a,b = b,a
end
def randomize(square)
square.shuffle.transpose.shuffle
end
def to_string(square)
n = square.size
fmt = "%#{(n*n).to_s.size + 1}d" * n
square.inject(""){|str,row| str << fmt % row << "\n"}
end
puts to_string(single_even_magic_square(6))
{{out}}
23 7 5 21 30 25
18 29 36 13 4 11
14 34 32 12 3 16
19 6 1 26 35 24
27 2 9 22 31 20
10 33 28 17 8 15
LUX method
[[wp:Conway's LUX method for magic squares]]
class Magic_square
attr_reader :square
LUX = { L: [[4, 1], [2, 3]], U: [[1, 4], [2, 3]], X: [[1, 4], [3, 2]] }
def initialize(n)
raise ArgumentError, "must be even, but not divisible by 4." unless (n-2) % 4 == 0
raise ArgumentError, "2x2 magic square not possible." if n == 2
@n = n
oms = odd_magic_square(n/2)
mat = make_lux_matrix(n/2)
@square = synthesize(oms, mat)
puts to_s
end
def odd_magic_square(n) # zero beginning, it is 4 multiples.
n.times.map{|i| n.times.map{|j| (n*((i+j+1+n/2)%n) + ((i+2*j-5)%n)) * 4} }
end
def make_lux_matrix(n)
center = n / 2
lux = [*[:L]*(center+1), :U, *[:X]*(n-center-2)]
matrix = lux.map{|x| Array.new(n, x)}
matrix[center][center] = :U
matrix[center+1][center] = :L
matrix
end
def synthesize(oms, mat)
range = 0...@n/2
range.inject([]) do |matrix,i|
row = [[], []]
range.each do |j|
x = oms[i][j]
LUX[mat[i][j]].each_with_index{|lux,k| row[k] << lux.map{|y| x+y}}
end
matrix << row[0].flatten << row[1].flatten
end
end
def to_s
format = "%#{(@n*@n).to_s.size}d " * @n + "\n"
@square.map{|row| format % row}.join
end
end
sq = Magic_square.new(6).square
{{out}}
32 29 4 1 24 21
30 31 2 3 22 23
12 9 17 20 28 25
10 11 18 19 26 27
13 16 36 33 5 8
14 15 34 35 6 7
Rust
use std::env;
fn main() {
let n: usize =
match env::args().nth(1).and_then(|arg| arg.parse().ok()).ok_or(
"Please specify the size of the magic square, as a positive multiple of 4 plus 2.",
) {
Ok(arg) if arg % 2 == 1 || arg >= 6 && (arg - 2) % 4 == 0 => arg,
Err(e) => panic!(e),
_ => panic!("Argument must be a positive multiple of 4 plus 2."),
};
let (ms, mc) = magic_square_singly_even(n);
println!("n: {}", n);
println!("Magic constant: {}\n", mc);
let width = (n * n).to_string().len() + 1;
for row in ms {
for elem in row {
print!("{e:>w$}", e = elem, w = width);
}
println!();
}
}
fn magic_square_singly_even(n: usize) -> (Vec<Vec<usize>>, usize) {
let size = n * n;
let half = n / 2;
let sub_square_size = size / 4;
let sub_square = magic_square_odd(half);
let quadrant_factors = [0, 2, 3, 1];
let cols_left = half / 2;
let cols_right = cols_left - 1;
let ms = (0..n)
.map(|r| {
(0..n)
.map(|c| {
let localr = if (c < cols_left
|| c >= n - cols_right
|| c == cols_left && r % half == cols_left)
&& !(c == 0 && r % half == cols_left)
{
if r >= half {
r - half
} else {
r + half
}
} else {
r
};
let quadrant = localr / half * 2 + c / half;
let v = sub_square[localr % half][c % half];
v + quadrant_factors[quadrant] * sub_square_size
})
.collect()
})
.collect::<Vec<Vec<_>>>();
(ms, (n * n + 1) * n / 2)
}
fn magic_square_odd(n: usize) -> Vec<Vec<usize>> {
(0..n)
.map(|r| {
(0..n)
.map(|c| {
n * (((c + 1) + (r + 1) - 1 + (n >> 1)) % n)
+ (((c + 1) + (2 * (r + 1)) - 2) % n)
+ 1
})
.collect::<Vec<_>>()
})
.collect::<Vec<Vec<_>>>()
}
{{out}}
n: 6
Magic constant: 111
35 3 4 26 21 22
1 32 9 19 23 27
33 7 2 24 25 20
8 30 31 17 12 13
28 5 36 10 14 18
6 34 29 15 16 11
n: 10
Magic constant: 505
92 98 4 10 11 67 73 54 60 36
99 80 6 12 18 74 55 56 62 43
1 82 88 19 25 51 57 63 69 50
83 89 20 21 2 58 64 70 71 27
90 91 22 3 9 65 66 72 53 34
17 23 79 85 86 42 48 29 35 61
24 5 81 87 93 49 30 31 37 68
76 7 13 94 100 26 32 38 44 75
8 14 95 96 77 33 39 45 46 52
15 16 97 78 84 40 41 47 28 59
n: 18
Magic constant: 2925
290 300 310 320 6 16 26 36 37 209 219 229 239 168 178 107 117 118
301 311 321 250 17 27 28 38 48 220 230 240 169 179 189 109 119 129
312 322 251 261 19 29 39 49 59 231 241 170 180 181 191 120 130 140
323 252 253 263 30 40 50 60 70 242 171 172 182 192 202 131 141 151
1 254 264 274 284 51 61 71 81 163 173 183 193 203 213 142 152 162
255 265 275 285 52 62 72 73 2 174 184 194 204 214 224 153 154 83
266 276 286 296 63 64 74 3 13 185 195 205 215 225 226 155 84 94
277 287 297 298 65 75 4 14 24 196 206 216 217 227 237 85 95 105
288 289 299 309 76 5 15 25 35 207 208 218 228 238 167 96 106 116
47 57 67 77 249 259 269 279 280 128 138 148 158 87 97 188 198 199
58 68 78 7 260 270 271 281 291 139 149 159 88 98 108 190 200 210
69 79 8 18 262 272 282 292 302 150 160 89 99 100 110 201 211 221
80 9 10 20 273 283 293 303 313 161 90 91 101 111 121 212 222 232
244 11 21 31 41 294 304 314 324 82 92 102 112 122 132 223 233 243
12 22 32 42 295 305 315 316 245 93 103 113 123 133 143 234 235 164
23 33 43 53 306 307 317 246 256 104 114 124 134 144 145 236 165 175
34 44 54 55 308 318 247 257 267 115 125 135 136 146 156 166 176 186
45 46 56 66 319 248 258 268 278 126 127 137 147 157 86 177 187 197
zkl
{{trans|Java}}
class MagicSquareSinglyEven{
fcn init(n){ var result=magicSquareSinglyEven(n) }
fcn toString{
sink,n:=Sink(String),result.len(); // num collumns
fmt:="%2s ";
foreach row in (result)
{ sink.write(row.apply('wrap(n){ fmt.fmt(n) }).concat(),"\n") }
sink.write("\nMagic constant: %d".fmt((n*n + 1)*n/2));
sink.close();
}
fcn magicSquareOdd(n){
if (n<3 or n%2==0) throw(Exception.ValueError("base must be odd and > 2"));
value,gridSize,c,r:=0, n*n, n/2, 0;
result:=n.pump(List(),n.pump(List(),0).copy); // array[n,n] of zero
while((value+=1)<=gridSize){
result[r][c]=value;
if(r==0){
if(c==n-1) r+=1;
else{ r=n-1; c+=1; }
}
else if(c==n-1){ r-=1; c=0; }
else if(result[r-1][c+1]==0){ r-=1; c+=1; }
else r+=1;
}
result;
}
fcn magicSquareSinglyEven(n){
if (n<6 or (n-2)%4!=0)
throw(Exception.ValueError("base must be a positive multiple of 4 +2"));
size,halfN,subSquareSize:=n*n, n/2, size/4;
subSquare:=magicSquareOdd(halfN);
quadrantFactors:=T(0, 2, 3, 1);
result:=n.pump(List(),n.pump(List(),0).copy); // array[n,n] of zero
foreach r,c in (n,n){
quadrant:=(r/halfN)*2 + (c/halfN);
result[r][c]=subSquare[r%halfN][c%halfN];
result[r][c]+=quadrantFactors[quadrant]*subSquareSize;
}
nColsLeft,nColsRight:=halfN/2, nColsLeft-1;
foreach r,c in (halfN,n){
if ( c<nColsLeft or c>=(n-nColsRight) or
(c==nColsLeft and r==nColsLeft) ){
if(c==0 and r==nColsLeft) continue;
tmp:=result[r][c];
result[r][c]=result[r+halfN][c];
result[r+halfN][c]=tmp;
}
}
result
}
}
MagicSquareSinglyEven(6).println();
{{out}}
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
Magic constant: 111