⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}}
The factorial of a number, written as , is defined as .
[http://mathworld.wolfram.com/Multifactorial.html Multifactorials] generalize factorials as follows: : : : : :
In all cases, the terms in the products are positive integers.
If we define the degree of the multifactorial as the difference in successive terms that are multiplied together for a multifactorial (the number of exclamation marks), then the task is twofold:
Write a function that given n and the degree, calculates the multifactorial.
Use the function to generate and display here a table of the first ten members (1 to 10) of the first five degrees of multifactorial.
'''Note:''' The [[wp:Factorial#Multifactorials|wikipedia entry on multifactorials]] gives a different formula. This task uses the [http://mathworld.wolfram.com/Multifactorial.html Wolfram mathworld definition].
360 Assembly
For maximum compatibility, this program uses only the basic instruction set (S/360 1964 POP).
* Multifactorial 09/05/2016
MULFACR CSECT
USING MULFACR,13
SAVEAR B STM-SAVEAR(15)
DC 17F'0'
STM STM 14,12,12(13) prolog
ST 13,4(15) "
ST 15,8(13) "
LR 13,15 "
LA I,1 i=1
LOOPI C I,D do i=1 to deg
BH ELOOPI leave i
LA L,W+4 l=@p
LA J,1 j=1
LOOPJ C J,N do j=1 to num
BH ELOOPJ leave j
LA R,1 r=1
LCR S,I s=-i
LR K,J k=j
LOOPK C K,=F'2' do k=j to 2 by s
BL ELOOPK leave k
MR RR,K r=r*k
AR K,S k=k+s
B LOOPK next k
ELOOPK CVD R,Y pack r
MVC X,=XL12'402020202020202020202120' ed mask
ED X,Y+2 edit r
MVC 0(8,L),X+4 output r
LA L,8(L) l=l+8
LA J,1(J) j=j+1
B LOOPJ next j
ELOOPJ WTO MF=(E,W)
LA I,1(I) i=i+1
B LOOPI next i
ELOOPI L 13,4(0,13) epilog
LM 14,12,12(13) "
XR 15,15 "
BR 14 "
N DC F'10' number
D DC F'5' degree
W DC 0F,H'84',H'0',CL80' ' length,zero,text
X DS CL12 temp
Y DS D packed PL8
I EQU 6
J EQU 7
K EQU 8
S EQU 9
RR EQU 10 even reg of R for MR opcode
R EQU 11
L EQU 12
END MULFACR
{{out}}
1 2 6 24 120 720 5040 40320 362880 3628800
1 2 3 8 15 48 105 384 945 3840
1 2 3 4 10 18 28 80 162 280
1 2 3 4 5 12 21 32 45 120
1 2 3 4 5 6 14 24 36 50
Ada
with Ada.Text_IO; use Ada.Text_IO;
procedure Mfact is
function MultiFact (num : Natural; deg : Positive) return Natural is
Result, N : Integer := num;
begin
if N = 0 then return 1; end if;
loop
N := N - deg; exit when N <= 0; Result := Result * N;
end loop; return Result;
end MultiFact;
begin
for deg in 1..5 loop
Put("Degree"& Integer'Image(deg) &":");
for num in 1..10 loop Put(Integer'Image(MultiFact(num,deg))); end loop;
New_line;
end loop;
end Mfact;
{{out}}
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
Aime
mf(integer a, n)
{
integer o;
o = 1;
do {
o *= a;
} while (0 < (a -= n));
o;
}
main(void)
{
integer i, j;
i = 0;
while ((i += 1) <= 5) {
o_("degree ", i, ":");
j = 0;
while ((j += 1) <= 10) {
o_("\t", mf(j, i));
}
o_("\n");
}
0;
}
{{out}}
degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
degree 2: 1 2 3 8 15 48 105 384 945 3840
degree 3: 1 2 3 4 10 18 28 80 162 280
degree 4: 1 2 3 4 5 12 21 32 45 120
degree 5: 1 2 3 4 5 6 14 24 36 50
ALGOL 68
Translation of C.
BEGIN
INT highest degree = 5;
INT largest number = 10;
CO Recursive implementation of multifactorial function CO
PROC multi fact = (INT n, deg) INT :
(n <= deg | n | n * multi fact(n - deg, deg));
CO Iterative implementation of multifactorial function CO
PROC multi fact i = (INT n, deg) INT :
BEGIN
INT result := n, nn := n;
WHILE (nn >= deg + 1) DO
result TIMESAB nn - deg;
nn MINUSAB deg
OD;
result
END;
CO Print out multifactorials CO
FOR i TO highest degree DO
printf (($l, "Degree ", g(0), ":"$, i));
FOR j TO largest number DO
printf (($xg(0)$, multi fact (j, i)))
OD
OD
END
{{out}}
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
ALGOL W
Iterative multifactorial based on Ada, AutoHotkey, etc.
begin
% returns the multifactorial of n with the specified degree %
integer procedure multifactorial ( integer value n, degree ) ;
begin
integer mf, v;
mf := v := n;
while begin
v := v - degree;
v > 1
end do mf := mf * v;
mf
end multifactorial ;
% tests as per task %
for degree := 1 until 5 do begin
i_w := 1; s_w := 0; % output formatting %
write( "Degree: ", degree, ":" );
for v := 1 until 10 do begin
writeon( " ", multifactorial( v, degree ) )
end for_v
end for_degree
end.
{{out}}
Degree: 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree: 2: 1 2 3 8 15 48 105 384 945 3840
Degree: 3: 1 2 3 4 10 18 28 80 162 280
Degree: 4: 1 2 3 4 5 12 21 32 45 120
Degree: 5: 1 2 3 4 5 6 14 24 36 50
ANSI Standard BASIC
Translation of FreeBASIC.
100 FUNCTION multiFactorial (n, degree)
110 IF n < 2 THEN
120 LET multiFactorial = 1
130 EXIT FUNCTION
140 END IF
150 LET result = n
160 FOR i = n - degree TO 2 STEP -degree
170 LET result = result * i
180 NEXT i
190 LET multiFactorial = result
200 END FUNCTION
210
220 FOR degree = 1 TO 5
230 PRINT "Degree"; degree; " => ";
240 FOR n = 1 TO 10
250 PRINT multiFactorial(n, degree); " ";
260 NEXT n
270 PRINT
280 NEXT degree
290 END
AutoHotkey
Loop, 5 {
Output .= "Degree " (i := A_Index) ": "
Loop, 10
Output .= MultiFact(A_Index, i) (A_Index = 10 ? "`n" : ", ")
}
MsgBox, % Output
MultiFact(n, d) {
Result := n
while 1 < n -= d
Result *= n
return, Result
}
'''Output:'''
Degree 1: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800
Degree 2: 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840
Degree 3: 1, 2, 3, 4, 10, 18, 28, 80, 162, 280
Degree 4: 1, 2, 3, 4, 5, 12, 21, 32, 45, 120
Degree 5: 1, 2, 3, 4, 5, 6, 14, 24, 36, 50
AWK
# syntax: GAWK -f MULTIFACTORIAL.AWK
# converted from Go
BEGIN {
for (k=1; k<=5; k++) {
printf("degree %d:",k)
for (n=1; n<=10; n++) {
printf(" %d",multi_factorial(n,k))
}
printf("\n")
}
exit(0)
}
function multi_factorial(n,k, r) {
r = 1
for (; n>1; n-=k) {
r *= n
}
return(r)
}
{{out}}
degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
degree 2: 1 2 3 8 15 48 105 384 945 3840
degree 3: 1 2 3 4 10 18 28 80 162 280
degree 4: 1 2 3 4 5 12 21 32 45 120
degree 5: 1 2 3 4 5 6 14 24 36 50
BBC BASIC
multifact
FOR i% = 1 TO 5
PRINT "Degree "; i%; ":";
FOR j% = 1 TO 10
PRINT " ";FNmultifact(j%, i%);
NEXT
PRINT
NEXT
END
:
DEF FNmultifact(n%, degree%)
LOCAL i%, mfact%
mfact% = 1
FOR i% = n% TO 1 STEP -degree%
mfact% = mfact% * i%
NEXT
= mfact%
{{out}}
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
C
{{uses from|Library|C Runtime|component1=printf}}
/* Include statements and constant definitions */
#include <stdio.h>
#define HIGHEST_DEGREE 5
#define LARGEST_NUMBER 10
/* Recursive implementation of multifactorial function */
int multifact(int n, int deg){
return n <= deg ? n : n * multifact(n - deg, deg);
}
/* Iterative implementation of multifactorial function */
int multifact_i(int n, int deg){
int result = n;
while (n >= deg + 1){
result *= (n - deg);
n -= deg;
}
return result;
}
/* Test function to print out multifactorials */
int main(void){
int i, j;
for (i = 1; i <= HIGHEST_DEGREE; i++){
printf("\nDegree %d: ", i);
for (j = 1; j <= LARGEST_NUMBER; j++){
printf("%d ", multifact(j, i));
}
}
}
{{out}}
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
C#
namespace RosettaCode.Multifactorial
{
using System;
using System.Linq;
internal static class Program
{
private static void Main()
{
Console.WriteLine(string.Join(Environment.NewLine,
Enumerable.Range(1, 5)
.Select(
degree =>
string.Join(" ",
Enumerable.Range(1, 10)
.Select(
number =>
Multifactorial(number, degree))))));
}
private static int Multifactorial(int number, int degree)
{
if (degree < 1)
{
throw new ArgumentOutOfRangeException("degree");
}
var count = 1 + (number - 1) / degree;
if (count < 1)
{
throw new ArgumentOutOfRangeException("number");
}
return Enumerable.Range(0, count)
.Aggregate(1, (accumulator, index) => accumulator * (number - degree * index));
}
}
}
Output:
1 2 6 24 120 720 5040 40320 362880 3628800
1 2 3 8 15 48 105 384 945 3840
1 2 3 4 10 18 28 80 162 280
1 2 3 4 5 12 21 32 45 120
1 2 3 4 5 6 14 24 36 50
C++
#include <algorithm>
#include <iostream>
#include <iterator>
/*Generate multifactorials to 9
Nigel_Galloway
November 14th., 2012.
*/
int main(void) {
for (int g = 1; g < 10; g++) {
int v[11], n=0;
generate_n(std::ostream_iterator<int>(std::cout, " "), 10, [&]{n++; return v[n]=(g<n)? v[n-g]*n : n;});
std::cout << std::endl;
}
return 0;
}
{{out}}
1 2 6 24 120 720 5040 40320 362880 3628800
1 2 3 8 15 48 105 384 945 3840
1 2 3 4 10 18 28 80 162 280
1 2 3 4 5 12 21 32 45 120
1 2 3 4 5 6 14 24 36 50
1 2 3 4 5 6 7 16 27 40
1 2 3 4 5 6 7 8 18 30
1 2 3 4 5 6 7 8 9 20
1 2 3 4 5 6 7 8 9 10
Clojure
(defn !! [m n]
(->> (iterate #(- % m) n) (take-while pos?) (apply *)))
(doseq [m (range 1 6)]
(prn m (map #(!! m %) (range 1 11))))
{{out}}
1 (1 2 6 24 120 720 5040 40320 362880 3628800)
2 (1 2 3 8 15 48 105 384 945 3840)
3 (1 2 3 4 10 18 28 80 162 280)
4 (1 2 3 4 5 12 21 32 45 120)
5 (1 2 3 4 5 6 14 24 36 50)
Common Lisp
(defun mfac (n m)
(reduce #'* (loop for i from n downto 1 by m collect i)))
(loop for i from 1 to 10
do (format t "~2@a: ~{~a~^ ~}~%"
i (loop for j from 1 to 10
collect (mfac j i))))
{{out}}
1: 1 2 6 24 120 720 5040 40320 362880 3628800
2: 1 2 3 8 15 48 105 384 945 3840
3: 1 2 3 4 10 18 28 80 162 280
4: 1 2 3 4 5 12 21 32 45 120
5: 1 2 3 4 5 6 14 24 36 50
6: 1 2 3 4 5 6 7 16 27 40
7: 1 2 3 4 5 6 7 8 18 30
8: 1 2 3 4 5 6 7 8 9 20
9: 1 2 3 4 5 6 7 8 9 10
10: 1 2 3 4 5 6 7 8 9 10
D
import std.stdio, std.algorithm, std.range;
T multifactorial(T=long)(in int n, in int m) pure /*nothrow*/ {
T one = 1;
return reduce!q{a * b}(one, iota(n, 0, -m));
}
void main() {
foreach (immutable m; 1 .. 11)
writefln("%2d: %s", m, iota(1, 11)
.map!(n => multifactorial(n, m)));
}
{{out}}
1: 1 2 6 24 120 720 5040 40320 362880 3628800
2: 1 2 3 8 15 48 105 384 945 3840
3: 1 2 3 4 10 18 28 80 162 280
4: 1 2 3 4 5 12 21 32 45 120
5: 1 2 3 4 5 6 14 24 36 50
6: 1 2 3 4 5 6 7 16 27 40
7: 1 2 3 4 5 6 7 8 18 30
8: 1 2 3 4 5 6 7 8 9 20
9: 1 2 3 4 5 6 7 8 9 10
10: 1 2 3 4 5 6 7 8 9 10
Dart
main()
{
int n=5,d=3;
int z= fact(n,d);
print('$n factorial of degree $d is $z');
for(var j=1;j<=5;j++)
{
print('first 10 numbers of degree $j :');
for(var i=1;i<=10;i++)
{
int z=fact(i,j);
print('$z');
}
print('\n');
}
}
int fact(int a,int b)
{
if(a<=b||a==0)
return a;
if(a>1)
return a*fact((a-b),b);
}
Elixir
{{trans|Erlang}}
defmodule RC do
def multifactorial(n,d) do
Enum.take_every(n..1, d) |> Enum.reduce(1, fn x,p -> x*p end)
end
end
Enum.each(1..5, fn d ->
multifac = for n <- 1..10, do: RC.multifactorial(n,d)
IO.puts "Degree #{d}: #{inspect multifac}"
end)
{{out}}
Degree 1: [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
Degree 2: [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840]
Degree 3: [1, 2, 3, 4, 10, 18, 28, 80, 162, 280]
Degree 4: [1, 2, 3, 4, 5, 12, 21, 32, 45, 120]
Degree 5: [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
Erlang
-module(multifac).
-compile(export_all).
multifac(N,D) ->
lists:foldl(fun (X,P) -> X * P end, 1, lists:seq(N,1,-D)).
main() ->
Ds = lists:seq(1,5),
Ns = lists:seq(1,10),
lists:foreach(fun (D) ->
io:format("Degree ~b: ~p~n",[D, [ multifac(N,D) || N <- Ns]])
end, Ds).
{{out}}
multifac:main().
Degree 1: [1,2,6,24,120,720,5040,40320,362880,3628800]
Degree 2: [1,2,3,8,15,48,105,384,945,3840]
Degree 3: [1,2,3,4,10,18,28,80,162,280]
Degree 4: [1,2,3,4,5,12,21,32,45,120]
Degree 5: [1,2,3,4,5,6,14,24,36,50]
ok
ERRE
PROGRAM MULTIFACTORIAL
PROCEDURE MULTI_FACT(NUM,DEG->MF)
RESULT=NUM
N=NUM
IF N=0 THEN
MF=1
EXIT PROCEDURE
END IF
LOOP
N-=DEG
EXIT IF N<=0
RESULT*=N
END LOOP
MF=RESULT
END PROCEDURE
BEGIN
PRINT(CHR$(12);)
FOR DEG=1 TO 10 DO
PRINT("Degree";DEG;":";)
FOR NUM=1 TO 10 DO
MULTI_FACT(NUM,DEG->MF)
PRINT(MF;)
END FOR
PRINT
END FOR
END PROGRAM
Degree 1 : 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2 : 1 2 3 8 15 48 105 384 945 3840
Degree 3 : 1 2 3 4 10 18 28 80 162 280
Degree 4 : 1 2 3 4 5 12 21 32 45 120
Degree 5 : 1 2 3 4 5 6 14 24 36 50
Degree 6 : 1 2 3 4 5 6 7 16 27 40
Degree 7 : 1 2 3 4 5 6 7 8 18 30
Degree 8 : 1 2 3 4 5 6 7 8 9 20
Degree 9 : 1 2 3 4 5 6 7 8 9 10
Degree 10 : 1 2 3 4 5 6 7 8 9 10
=={{header|F_Sharp|F#}}==
let rec mfact d = function
| n when n <= d -> n
| n -> n * mfact d (n-d)
[<EntryPoint>]
let main argv =
let (|UInt|_|) = System.UInt32.TryParse >> function | true, v -> Some v | false, _ -> None
let (maxDegree, maxN) =
match argv with
| [| UInt d; UInt n |] -> (int d, int n)
| [| UInt d |] -> (int d, 10)
| _ -> (5, 10)
let showFor d = List.init maxN (fun i -> mfact d (i+1)) |> printfn "%i: %A" d
ignore (List.init maxDegree (fun i -> showFor (i+1)))
0
1: [1; 2; 6; 24; 120; 720; 5040; 40320; 362880; 3628800]
2: [1; 2; 3; 8; 15; 48; 105; 384; 945; 3840]
3: [1; 2; 3; 4; 10; 18; 28; 80; 162; 280]
4: [1; 2; 3; 4; 5; 12; 21; 32; 45; 120]
5: [1; 2; 3; 4; 5; 6; 14; 24; 36; 50]
Factor
: multifactorial ( n degree -- m )
neg 1 swap
: mf-row ( degree -- ) dup "Degree %d: " printf 10 [1,b] [ swap multifactorial pprint bl ] with each ;
: main ( -- ) 5 [1,b] [ mf-row nl ] each ;
MAIN: main
{{out}}
```txt
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
Forth
{{out}}
```txt
test
1 2 6 24 120 720 5040 40320 362880 3628800
1 2 3 8 15 48 105 384 945 3840
1 2 3 4 10 18 28 80 162 280
1 2 3 4 5 12 21 32 45 120
1 2 3 4 5 6 14 24 36 50
ok
Fortran
{{works with|Fortran|95 and later}}
program test
implicit none
integer :: i, j, n
do i = 1, 5
write(*, "(a, i0, a)", advance = "no") "Degree ", i, ": "
do j = 1, 10
n = multifactorial(j, i)
write(*, "(i0, 1x)", advance = "no") n
end do
write(*,*)
end do
contains
function multifactorial (range, degree)
integer :: multifactorial, range, degree
integer :: k
multifactorial = product((/(k, k=range, 1, -degree)/))
end function multifactorial
end program test
{{out}}
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
FreeBASIC
' FB 1.05.0 Win64
Function multiFactorial (n As UInteger, degree As Integer) As UInteger
If n < 2 Then Return 1
Var result = n
For i As Integer = n - degree To 2 Step -degree
result *= i
Next
Return result
End Function
For degree As Integer = 1 To 5
Print "Degree"; degree; " => ";
For n As Integer = 1 To 10
Print multiFactorial(n, degree); " ";
Next n
Print
Next degree
Print
Print "Press any key to quit"
Sleep
{{out}}
Degree 1 => 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2 => 1 2 3 8 15 48 105 384 945 3840
Degree 3 => 1 2 3 4 10 18 28 80 162 280
Degree 4 => 1 2 3 4 5 12 21 32 45 120
Degree 5 => 1 2 3 4 5 6 14 24 36 50
FunL
def multifactorial( n, d ) = product( n..1 by -d )
for d <- 1..5
println( d, [multifactorial(i, d) | i <- 1..10] ))
{{out}}
1, [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
2, [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840]
3, [1, 2, 3, 4, 10, 18, 28, 80, 162, 280]
4, [1, 2, 3, 4, 5, 12, 21, 32, 45, 120]
5, [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
GAP
MultiFactorial := function(n, k)
local r;
r := 1;
while n > 1 do
r := r*n;
n := n - k;
od;
return r;
end;
PrintArray(List([1 .. 10], n -> List([1 .. 5], k -> MultiFactorial(n, k))));
[ [ 1, 1, 1, 1, 1 ],
[ 2, 2, 2, 2, 2 ],
[ 6, 3, 3, 3, 3 ],
[ 24, 8, 4, 4, 4 ],
[ 120, 15, 10, 5, 5 ],
[ 720, 48, 18, 12, 6 ],
[ 5040, 105, 28, 21, 14 ],
[ 40320, 384, 80, 32, 24 ],
[ 362880, 945, 162, 45, 36 ],
[ 3628800, 3840, 280, 120, 50 ] ]
Go
package main
import "fmt"
func multiFactorial(n, k int) int {
r := 1
for ; n > 1; n -= k {
r *= n
}
return r
}
func main() {
for k := 1; k <= 5; k++ {
fmt.Print("degree ", k, ":")
for n := 1; n <= 10; n++ {
fmt.Print(" ", multiFactorial(n, k))
}
fmt.Println()
}
}
{{out}}
degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
degree 2: 1 2 3 8 15 48 105 384 945 3840
degree 3: 1 2 3 4 10 18 28 80 162 280
degree 4: 1 2 3 4 5 12 21 32 45 120
degree 5: 1 2 3 4 5 6 14 24 36 50
Haskell
mulfac k = 1:s where s = [1 .. k] ++ zipWith (*) s [k+1..]
-- for single n
mulfac1 k n = product [n, n-k .. 1]
main = mapM_ (print . take 10 . tail . mulfac) [1..5]
{{out}}
[1,2,6,24,120,720,5040,40320,362880,3628800]
[1,2,3,8,15,48,105,384,945,3840]
[1,2,3,4,10,18,28,80,162,280]
[1,2,3,4,5,12,21,32,45,120]
[1,2,3,4,5,6,14,24,36,50]
==Icon and {{header|Unicon}}==
The following is Unicon specific but can be readily translated into Icon:
procedure main(A)
l := integer(A[1]) | 10
every writeRow(n := !l, [: mf(!10,n) :])
end
procedure writeRow(n, r)
writes(right(n,3),": ")
every writes(right(!r,8)|"\n")
end
procedure mf(n, m)
if n <= 0 then return 1
return n*mf(n-m, m)
end
Sample run:
->mf 5
1: 1 2 6 24 120 720 5040 40320 362880 3628800
2: 1 2 3 8 15 48 105 384 945 3840
3: 1 2 3 4 10 18 28 80 162 280
4: 1 2 3 4 5 12 21 32 45 120
5: 1 2 3 4 5 6 14 24 36 50
->
=={{header|IS-BASIC}}==
## J
```J
NB. tacit implementation of the recursive c function
NB. int multifact(int n,int deg){return n<=deg?n:n*multifact(n-deg,deg);}
multifact=: [`([ * - $: ])@.(<~)
(a:,<' degree'),multifact table >:i.10
┌─────────┬──────────────────────────────────────┐
│ │ degree │
├─────────┼──────────────────────────────────────┤
│multifact│ 1 2 3 4 5 6 7 8 9 10│
├─────────┼──────────────────────────────────────┤
│ 1 │ 1 1 1 1 1 1 1 1 1 1│
│ 2 │ 2 2 2 2 2 2 2 2 2 2│
│ 3 │ 6 3 3 3 3 3 3 3 3 3│
│ 4 │ 24 8 4 4 4 4 4 4 4 4│
│ 5 │ 120 15 10 5 5 5 5 5 5 5│
│ 6 │ 720 48 18 12 6 6 6 6 6 6│
│ 7 │ 5040 105 28 21 14 7 7 7 7 7│
│ 8 │ 40320 384 80 32 24 16 8 8 8 8│
│ 9 │ 362880 945 162 45 36 27 18 9 9 9│
│10 │3628800 3840 280 120 50 40 30 20 10 10│
└─────────┴──────────────────────────────────────┘
Java
public class MultiFact {
private static long multiFact(long n, int deg){
long ans = 1;
for(long i = n; i > 0; i -= deg){
ans *= i;
}
return ans;
}
public static void main(String[] args){
for(int deg = 1; deg <= 5; deg++){
System.out.print("degree " + deg + ":");
for(long n = 1; n <= 10; n++){
System.out.print(" " + multiFact(n, deg));
}
System.out.println();
}
}
}
{{out}}
degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
degree 2: 1 2 3 8 15 48 105 384 945 3840
degree 3: 1 2 3 4 10 18 28 80 162 280
degree 4: 1 2 3 4 5 12 21 32 45 120
degree 5: 1 2 3 4 5 6 14 24 36 50
JavaScript
Iterative
{{trans|C}}
function multifact(n, deg){
var result = n;
while (n >= deg + 1){
result *= (n - deg);
n -= deg;
}
return result;
}
function test (n, deg) {
for (var i = 1; i <= deg; i ++) {
var results = '';
for (var j = 1; j <= n; j ++) {
results += multifact(j, i) + ' ';
}
console.log('Degree ' + i + ': ' + results);
}
}
{{out}}
test(10, 5)
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
Recursive
{{trans|C}}
function multifact(n, deg){
return n <= deg ? n : n * multifact(n - deg, deg);
}
Test
function test (n, deg) {
for (var i = 1; i <= deg; i ++) {
var results = '';
for (var j = 1; j <= n; j ++) {
results += multifact(j, i) + ' ';
}
console.log('Degree ' + i + ': ' + results);
}
}
{{Out}}
test(10, 5)
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
jq
{{works with|jq|1.4}}
# Input: n
# Output: n * (n - d) * (n - 2d) ...
def multifactorial(d):
. as $n
| ($n / d | floor) as $k
| reduce ($n - (d * range(0; $k))) as $i (1; . * $i);
# Print out a d-by-n table of multifactorials neatly:
def table(d; n):
def lpad(i): tostring | (i - length) * " " + .;
def pp(stream): reduce stream as $i (""; . + ($i | lpad(8)));
range(1; d+1) as $d | "Degree \($d): \( pp(range(1; n+1) | multifactorial($d)) )";
The specific task:
table(5; 10)
{{out}}
$ jq -n -r -f Multifactorial.jq
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 1 3 4 5 18 28 40 162 280
Degree 4: 1 1 1 4 5 6 7 32 45 60
Degree 5: 1 1 1 1 5 6 7 8 9 50
Julia
{{works with|Julia|0.6}}
function multifact(n::Integer, k::Integer)
n > 0 && k > 0 || throw(DomainError())
k > 1 || factorial(n)
return prod(n:-k:2)
end
const khi = 5
const nhi = 10
println("Showing multifactorial for n in [1, $nhi] and k in [1, $khi].")
for k = 1:khi
a = multifact.(1:nhi, k)
lab = "n" * "!" ^ k
@printf(" %-6s → %s\n", lab, a)
end
{{out}}
Showing multifactorial for n in [1, 10] and k in [1, 5].
n! → [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
n!! → [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840]
n!!! → [1, 2, 3, 4, 10, 18, 28, 80, 162, 280]
n!!!! → [1, 2, 3, 4, 5, 12, 21, 32, 45, 120]
n!!!!! → [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
Kotlin
fun multifactorial(n: Long, d: Int) : Long {
val r = n % d
return (1..n).filter { it % d == r } .reduce { i, p -> i * p }
}
fun main(args: Array<String>) {
val m = 5
val r = 1..10L
for (d in 1..m) {
print("%${m}s:".format( "!".repeat(d)))
r.forEach { print(" " + multifactorial(it, d)) }
println()
}
}
{{Out}}
!: 1 2 6 24 120 720 5040 40320 362880 3628800
!!: 1 2 3 8 15 48 105 384 945 3840
!!!: 1 2 3 4 10 18 28 80 162 280
!!!!: 1 2 3 4 5 12 21 32 45 120
!!!!!: 1 2 3 4 5 6 14 24 36 50
Lua
function multiFact (n, degree)
local fact = 1
for i = n, 2, -degree do
fact = fact * i
end
return fact
end
print("Degree\t|\tMultifactorials 1 to 10")
print(string.rep("-", 52))
for d = 1, 5 do
io.write(" " .. d, "\t| ")
for n = 1, 10 do
io.write(multiFact(n, d) .. " ")
end
print()
end
{{out}}
Degree | Multifactorials 1 to 10
----------------------------------------------------
1 | 1 2 6 24 120 720 5040 40320 362880 3628800
2 | 1 2 3 8 15 48 105 384 945 3840
3 | 1 2 3 4 10 18 28 80 162 280
4 | 1 2 3 4 5 12 21 32 45 120
5 | 1 2 3 4 5 6 14 24 36 50
Maple
{{output?|Maple}}
f := proc (n, m)
local fac, i;
fac := 1;
for i from n by -m to 1 do
fac := fac*i;
end do;
return fac;
end proc:
a:=Matrix(5,10):
for i from 1 to 5 do
for j from 1 to 10 do
a[i,j]:=f(j,i);
end do;
end do;
a;
Mathematica
Multifactorial[n_, m_] := Abs[ Apply[ Times, Range[-n, -1, m]]]
Table[ Multifactorial[j, i], {i, 5}, {j, 10}] // TableForm
{{out}}
1: 1 2 6 24 120 720 5040 40320 362880 3628800
2: 1 2 3 8 15 48 105 384 945 3840
3: 1 2 3 4 10 18 28 80 162 280
4: 1 2 3 4 5 12 21 32 45 120
5: 1 2 3 4 5 6 14 24 36 50
min
{{works with|min|0.19.3}}
(:d (dup 0 <=) (pop 1) (dup d -) (*) linrec) :multifactorial
(:d 1 (dup d multifactorial print! " " print! succ) 10 times newline pop) :row
1 (dup "Degree " print! print ": " print! row succ) 5 times
{{out}}
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
=={{header|MK-61/52}}==
Instruction: ''number'' ^ ''degree'' В/О С/П
## Nim
```nim
# Recursive
proc multifact(n, deg): int =
result = (if n <= deg: n else: n * multifact(n - deg, deg))
# Iterative
proc multifactI(n, deg): int =
result = n
var n = n
while n >= deg + 1:
result *= n - deg
n -= deg
for i in 1..5:
stdout.write "\nDegree ", i, ": "
for j in 1..10:
stdout.write multifactI(j, i), " "
Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
Objeck
{{trans|C}}
class Multifact {
function : MultiFact(n : Int, deg : Int) ~ Int {
result := n;
while (n >= deg + 1){
result *= (n - deg);
n -= deg;
};
return result;
}
function : Main(args : String[]) ~ Nil {
for (i := 1; i <= 5; i+=1;){
IO.Console->Print("Degree ")->Print(i)->Print(": ");
for (j := 1; j <= 10; j+=1;){
IO.Console->Print(' ')->Print(MultiFact(j, i));
};
IO.Console->PrintLine();
};
}
}
Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
Oforth
: multifact(n, deg) 1 while( n 0 > ) [ n * n deg - ->n ] ;
: printMulti
| i |
5 loop: i [ System.Out i << " : " << 10 seq map(#[ i multifact]) << cr ] ;
{{out}}
1 : [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
2 : [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840]
3 : [1, 2, 3, 4, 10, 18, 28, 80, 162, 280]
4 : [1, 2, 3, 4, 5, 12, 21, 32, 45, 120]
5 : [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
PARI/GP
fac(n,d)=prod(k=0,(n-1)\d,n-k*d)
for(k=1,5,for(n=1,10,print1(fac(n,k)" "));print)
1 2 6 24 120 720 5040 40320 362880 3628800
1 2 3 8 15 48 105 384 945 3840
1 2 3 4 10 18 28 80 162 280
1 2 3 4 5 12 21 32 45 120
1 2 3 4 5 6 14 24 36 50
Perl
{ # <-- scoping the cache and bigint clause
my @cache;
use bigint;
sub mfact {
my ($s, $n) = @_;
return 1 if $n <= 0;
$cache[$s][$n] //= $n * mfact($s, $n - $s);
}
}
for my $s (1 .. 10) {
print "step=$s: ";
print join(" ", map(mfact($s, $_), 1 .. 10)), "\n";
}
{{out}}
step=1: 1 2 6 24 120 720 5040 40320 362880 3628800
step=2: 1 2 3 8 15 48 105 384 945 3840
step=3: 1 2 3 4 10 18 28 80 162 280
step=4: 1 2 3 4 5 12 21 32 45 120
step=5: 1 2 3 4 5 6 14 24 36 50
step=6: 1 2 3 4 5 6 7 16 27 40
step=7: 1 2 3 4 5 6 7 8 18 30
step=8: 1 2 3 4 5 6 7 8 9 20
step=9: 1 2 3 4 5 6 7 8 9 10
step=10: 1 2 3 4 5 6 7 8 9 10
We can also do this iteratively. ntheory's vecprod makes bigint products if needed, so we don't have to worry about it. {{libheader|ntheory}}
use ntheory qw/vecprod/;
sub mfac {
my($n,$d) = @_;
vecprod(map { $n - $_*$d } 0 .. int(($n-1)/$d));
}
for my $degree (1..5) {
say "$degree: ",join(" ",map{mfac($_,$degree)} 1..10);
}
{{out}}
1: 1 2 6 24 120 720 5040 40320 362880 3628800
2: 1 2 3 8 15 48 105 384 945 3840
3: 1 2 3 4 10 18 28 80 162 280
4: 1 2 3 4 5 12 21 32 45 120
5: 1 2 3 4 5 6 14 24 36 50
Perl 6
for 1 .. 5 -> $degree {
sub mfact($n) { [*] $n, *-$degree ...^ * <= 0 };
say "$degree: ", map &mfact, 1..10
}
{{out}}
1: 1 2 6 24 120 720 5040 40320 362880 3628800
2: 1 2 3 8 15 48 105 384 945 3840
3: 1 2 3 4 10 18 28 80 162 280
4: 1 2 3 4 5 12 21 32 45 120
5: 1 2 3 4 5 6 14 24 36 50
Phix
function multifactorial(integer n, integer order)
atom res = 1
if n>0 then
res = n*multifactorial(n-order,order)
end if
return res
end function
sequence s = repeat(0,10)
for i=1 to 5 do
for j=1 to 10 do
s[j] = multifactorial(j,i)
end for
?s
end for
{{out}}
{1,2,6,24,120,720,5040,40320,362880,3628800}
{1,2,3,8,15,48,105,384,945,3840}
{1,2,3,4,10,18,28,80,162,280}
{1,2,3,4,5,12,21,32,45,120}
{1,2,3,4,5,6,14,24,36,50}
PicoLisp
{{trans|C}}
(de multifact (N Deg)
(let Res N
(while (> N Deg)
(setq Res (* Res (dec 'N Deg))) )
Res ) )
(for I 5
(prin "Degree " I ":")
(for J 10
(prin " " (multifact J I)) )
(prinl) )
Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
PL/I
do i = 1 to 5; put skip edit (substr(text, 1, i+1), '=' ) (A, COLUMN(8)); do n = 1 to 10; put edit ( trim( multifactorial(n,i) ) ) (X(1), A); end; end;
multifactorial: procedure (n, j) returns (fixed(15)); declare (n, j) fixed binary; declare f fixed (15), m fixed(15);
f, m = n;
do while (m > j); f = f * (m-fixed(j)); m = m - j; end;
return (f);
end multifactorial;
end multi;
Output:
```txt
n! = 1 2 6 24 120 720 5040 40320 362880 3628800
n!! = 1 2 3 8 15 48 105 384 945 3840
n!!! = 1 2 3 4 10 18 28 80 162 280
n!!!! = 1 2 3 4 5 12 21 32 45 120
n!!!!! = 1 2 3 4 5 6 14 24 36 50
plainTeX
Works with an etex engine.
\long\def\antefi#1#2\fi{#2\fi#1}
\def\fornum#1=#2to#3(#4){%
\edef#1{\number\numexpr#2}\edef\fornumtemp{\noexpand\fornumi\expandafter\noexpand\csname fornum\string#1\endcsname
{\number\numexpr#3}{\ifnum\numexpr#4<0 <\else>\fi}{\number\numexpr#4}\noexpand#1}\fornumtemp
}
\long\def\fornumi#1#2#3#4#5#6{\def#1{\unless\ifnum#5#3#2\relax\antefi{#6\edef#5{\number\numexpr#5+(#4)\relax}#1}\fi}#1}
\newcount\result
\def\multifact#1#2{%
\result=1
\fornum\multifactiter=#1 to 1(-#2){\multiply\result\multifactiter}%
\number\result
}
\fornum\degree=1 to 5(+1){Degree \degree: \fornum\ii=1 to 10(+1){\multifact\ii\degree\space\space}\par}
\bye
Output pdf looks like:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
Python
Python: Iterative
from functools import reduce
>>> from operator import mul
>>> def mfac(n, m): return reduce(mul, range(n, 0, -m))
>>> for m in range(1, 11): print("%2i: %r" % (m, [mfac(n, m) for n in range(1, 11)]))
1: [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
2: [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840]
3: [1, 2, 3, 4, 10, 18, 28, 80, 162, 280]
4: [1, 2, 3, 4, 5, 12, 21, 32, 45, 120]
5: [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
6: [1, 2, 3, 4, 5, 6, 7, 16, 27, 40]
7: [1, 2, 3, 4, 5, 6, 7, 8, 18, 30]
8: [1, 2, 3, 4, 5, 6, 7, 8, 9, 20]
9: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
10: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>>
Python: Recursive
def mfac2(n, m): return n if n <= (m + 1) else n * mfac2(n - m, m)
>>> for m in range(1, 6): print("%2i: %r" % (m, [mfac2(n, m) for n in range(1, 11)]))
1: [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
2: [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840]
3: [1, 2, 3, 4, 10, 18, 28, 80, 162, 280]
4: [1, 2, 3, 4, 5, 12, 21, 32, 45, 120]
5: [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
>>>
R
#x is Input
#n is Factorial Number
multifactorial=function(x,n){
if(x<=n+1){
return(x)
}else{
return(x*multifactorial(x-n,n))
}
}
Racket
#lang racket
(define (multi-factorial-fn m)
(lambda (n)
(let inner ((acc 1) (n n))
(if (<= n m) (* acc n)
(inner (* acc n) (- n m))))))
;; using (multi-factorial-fn m) as a first-class function
(for*/list ([m (in-range 1 (add1 5))] [mf-m (in-value (multi-factorial-fn m))])
(for/list ([n (in-range 1 (add1 10))])
(mf-m n)))
(define (multi-factorial m n) ((multi-factorial-fn m) n))
(for/list ([m (in-range 1 (add1 5))])
(for/list ([n (in-range 1 (add1 10))])
(multi-factorial m n)))
Output:
'((1 2 6 24 120 720 5040 40320 362880 3628800)
(1 2 3 8 15 48 105 384 945 3840)
(1 2 3 4 10 18 28 80 162 280)
(1 2 3 4 5 12 21 32 45 120)
(1 2 3 4 5 6 14 24 36 50))
'((1 2 6 24 120 720 5040 40320 362880 3628800)
(1 2 3 8 15 48 105 384 945 3840)
(1 2 3 4 10 18 28 80 162 280)
(1 2 3 4 5 12 21 32 45 120)
(1 2 3 4 5 6 14 24 36 50))
REXX
This version also handles zero as well as positive integers.
/*REXX program calculates and displays K-fact (multifactorial) of non-negative integers.*/
numeric digits 1000 /*get ka-razy with the decimal digits. */
parse arg num deg . /*get optional arguments from the C.L. */
if num=='' | num=="," then num=15 /*Not specified? Then use the default.*/
if deg=='' | deg=="," then deg=10 /* " " " " " " */
say '═══showing multiple factorials (1 ──►' deg") for numbers 1 ──►" num
say
do d=1 for deg /*the factorializing (degree) of !'s.*/
_= /*the list of factorials (so far). */
do f=1 for num /* ◄── perform a ! from 1 ───► number.*/
_=_ Kfact(f, d) /*build a list of factorial products.*/
end /*f*/ /* [↑] D can default to unity. */
say right('n'copies("!", d), 1+deg) right('['d"]", 2+length(num) )':' _
end /*d*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
Kfact: procedure; !=1; do j=arg(1) to 2 by -word(arg(2) 1,1); !=!*j; end; return !
'''output''' when using the default input:
═══showing multiple factorials (1 ──► 10) for numbers 1 ──► 15
n! [1]: 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 1307674368000
n!! [2]: 1 2 3 8 15 48 105 384 945 3840 10395 46080 135135 645120 2027025
n!!! [3]: 1 2 3 4 10 18 28 80 162 280 880 1944 3640 12320 29160
n!!!! [4]: 1 2 3 4 5 12 21 32 45 120 231 384 585 1680 3465
n!!!!! [5]: 1 2 3 4 5 6 14 24 36 50 66 168 312 504 750
n!!!!!! [6]: 1 2 3 4 5 6 7 16 27 40 55 72 91 224 405
n!!!!!!! [7]: 1 2 3 4 5 6 7 8 18 30 44 60 78 98 120
n!!!!!!!! [8]: 1 2 3 4 5 6 7 8 9 20 33 48 65 84 105
n!!!!!!!!! [9]: 1 2 3 4 5 6 7 8 9 10 22 36 52 70 90
n!!!!!!!!!! [10]: 1 2 3 4 5 6 7 8 9 10 11 24 39 56 75
Ring
see "Degree " + "|" + " Multifactorials 1 to 10" + nl
see copy("-", 52) + nl
for d = 1 to 5
see "" + d + " " + "| "
for n = 1 to 10
see "" + multiFact(n, d) + " "
next
see nl
next
func multiFact n, degree
fact = 1
for i = n to 2 step -degree
fact = fact * i
next
return fact
Output:
Degree | Multifactorials 1 to 10
----------------------------------------------------
1 | 1 2 6 24 120 720 5040 40320 362880 3628800
2 | 1 2 3 8 15 48 105 384 945 3840
3 | 1 2 3 4 10 18 28 80 162 280
4 | 1 2 3 4 5 12 21 32 45 120
5 | 1 2 3 4 5 6 14 24 36 50
Ruby
def multifact(n, d)
n.step(1, -d).inject( :* )
end
(1..5).each {|d| puts "Degree #{d}: #{(1..10).map{|n| multifact(n, d)}.join "\t"}"}
'''output'''
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50 ``` = ## Run BASIC = ```runbasic print "Degree " + "|" + " Multifactorials 1 to 10" + nl print copy("-", 52) + nl for d = 1 to 5 print "" + d + " " + "| " for n = 1 to 10 print "" + multiFact(n, d) + " "; next print next function multiFact(n,degree) fact = 1 for i = n to 2 step -degree fact = fact * i next multiFact = fact end function ``` ```txt Degree | Multifactorials 1 to 10 --------|--------------------------------------------- 1 | 1 2 6 24 120 720 5040 40320 362880 3628800 2 | 1 2 3 8 15 48 105 384 945 3840 3 | 1 2 3 4 10 18 28 80 162 280 4 | 1 2 3 4 5 12 21 32 45 120 5 | 1 2 3 4 5 6 14 24 36 50 ``` ## Scala ```scala def multiFact(n : BigInt, degree : BigInt) = (n to 1 by -degree).product for{ degree <- 1 to 5 str = (1 to 10).map(n => multiFact(n, degree)).mkString(" ") } println(s"Degree $degree: $str") ``` {{out}} ```txt Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50 ``` ## Scheme ```scheme (import (scheme base) (scheme write) (srfi 1)) (define (multi-factorial n m) (fold * 1 (iota (ceiling (/ n m)) n (- m)))) (for-each (lambda (degree) (display (string-append "degree " (number->string degree) ": ")) (for-each (lambda (num) (display (string-append (number->string (multi-factorial num degree)) " "))) (iota 10 1)) (newline)) (iota 5 1)) ``` {{out}} ```txt degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 degree 2: 1 2 3 8 15 48 105 384 945 3840 degree 3: 1 2 3 4 10 18 28 80 162 280 degree 4: 1 2 3 4 5 12 21 32 45 120 degree 5: 1 2 3 4 5 6 14 24 36 50 ``` ## Seed7 ```seed7 $ include "seed7_05.s7i"; const func integer: multiFact (in var integer: num, in integer: degree) is func result var integer: multiFact is 1; begin while num > 1 do multiFact *:= num; num -:= degree; end while; end func; const proc: main is func local var integer: degree is 0; var integer: num is 0; begin for degree range 1 to 5 do write("Degree " <& degree <& ": "); for num range 1 to 10 do write(multiFact(num, degree) <& " "); end for; writeln; end for; end func; ``` {{out}} ```txt Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50 ``` ## Sidef ```ruby func mfact(s, n) { n > 0 ? (n * mfact(s, n-s)) : 1 } { |s| say "step=#{s}: #{{|n| mfact(s, n)}.map(1..10).join(' ')}" } << 1..10 ``` {{out}} ```txt step=1: 1 2 6 24 120 720 5040 40320 362880 3628800 step=2: 1 2 3 8 15 48 105 384 945 3840 step=3: 1 2 3 4 10 18 28 80 162 280 step=4: 1 2 3 4 5 12 21 32 45 120 step=5: 1 2 3 4 5 6 14 24 36 50 step=6: 1 2 3 4 5 6 7 16 27 40 step=7: 1 2 3 4 5 6 7 8 18 30 step=8: 1 2 3 4 5 6 7 8 9 20 step=9: 1 2 3 4 5 6 7 8 9 10 step=10: 1 2 3 4 5 6 7 8 9 10 ``` ## Swift ```swift func multiFactorial(_ n: Int, k: Int) -> Int { return stride(from: n, to: 0, by: -k).reduce(1, *) } let multis = (1...5).map({degree in (1...10).map({member in multiFactorial(member, k: degree) }) }) for (i, degree) in multis.enumerated() { print("Degree \(i + 1): \(degree)") } ``` {{out}} ```txt Degree 1: [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800] Degree 2: [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840] Degree 3: [1, 2, 3, 4, 10, 18, 28, 80, 162, 280] Degree 4: [1, 2, 3, 4, 5, 12, 21, 32, 45, 120] Degree 5: [1, 2, 3, 4, 5, 6, 14, 24, 36, 50] ``` ## Tcl {{works with|Tcl|8.6}} ```tcl package require Tcl 8.6 proc mfact {n m} { set mm [expr {-$m}] for {set r $n} {[incr n $mm] > 1} {set r [expr {$r * $n}]} {} return $r } foreach n {1 2 3 4 5 6 7 8 9 10} { puts $n:[join [lmap m {1 2 3 4 5 6 7 8 9 10} {mfact $m $n}] ,] } ``` {{out}} ```txt 1:1,2,6,24,120,720,5040,40320,362880,3628800 2:1,2,3,8,15,48,105,384,945,3840 3:1,2,3,4,10,18,28,80,162,280 4:1,2,3,4,5,12,21,32,45,120 5:1,2,3,4,5,6,14,24,36,50 6:1,2,3,4,5,6,7,16,27,40 7:1,2,3,4,5,6,7,8,18,30 8:1,2,3,4,5,6,7,8,9,20 9:1,2,3,4,5,6,7,8,9,10 10:1,2,3,4,5,6,7,8,9,10 ``` ## uBasic/4tH {{Trans|Run BASIC}}print "Degree | Multifactorials 1 to 10" for x = 1 to 53 : print "-"; : next : print for d = 1 to 5 print d;" ";"| "; for n = 1 to 10 print FUNC(_multiFact(n, d));" "; next print next end _multiFact param (2) local (2) c@ = 1 for d@ = a@ to 2 step -b@ c@ = c@ * d@ next return (c@) ``` {{Out}} ```txt Degree | Multifactorials 1 to 10 ----------------------------------------------------- 1 | 1 2 6 24 120 720 5040 40320 362880 3628800 2 | 1 2 3 8 15 48 105 384 945 3840 3 | 1 2 3 4 10 18 28 80 162 280 4 | 1 2 3 4 5 12 21 32 45 120 5 | 1 2 3 4 5 6 14 24 36 50 0 OK, 0:1063 ``` ## VBScript ```vb Function multifactorial(n,d) If n = 0 Then multifactorial = 1 Else For i = n To 1 Step -d If i = n Then multifactorial = n Else multifactorial = multifactorial * i End If Next End If End Function For j = 1 To 5 WScript.StdOut.Write "Degree " & j & ": " For k = 1 To 10 If k = 10 Then WScript.StdOut.Write multifactorial(k,j) Else WScript.StdOut.Write multifactorial(k,j) & " " End If Next WScript.StdOut.WriteLine Next ``` {{Out}} ```txt Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50 ``` ## Wortel ```wortel @let { facd &[d n]?{<= n d n @prod@range[n 1 @-d]} ; tacit implementation facdt ^(!?(/^> .1 ^(@prod @range ~1jdtShj &^!(@- @id))) @,) ; recursive facdrec &[n d] ?{<= n d n *n !!facdrec -n d d} ; output l @to 10 ~@each @to 5 &n !console.log "Degree {n}: {@join @s !*\facd n l}" } ``` Output ```txt Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50 ``` ## XPL0 ```XPL0 code ChOut=8, CrLf=9, IntOut=11; func MultiFac(N, D); \Return multifactorial of N in degree D int N, D; int F; [F:= 1; repeat F:= F*N; N:= N-D; until N <= 1; return F; ]; int I, J; \generate table of multifactorials for J:= 1 to 5 do [for I:= 1 to 10 do [IntOut(0, MultiFac(I, J)); ChOut(0, 9\tab\)]; CrLf(0); ] ``` {{out}} ```txt 1 2 6 24 120 720 5040 40320 362880 3628800 1 2 3 8 15 48 105 384 945 3840 1 2 3 4 10 18 28 80 162 280 1 2 3 4 5 12 21 32 45 120 1 2 3 4 5 6 14 24 36 50 ``` ## zkl ```zkl fcn mfact(n,m){ [n..1,-m].reduce('*,1) } foreach m in ([1..5]){ println("%d: %s".fmt(m,[1..10].apply(mfact.fp1(m)))) } ``` {{out}} ```txt 1: L(1,2,6,24,120,720,5040,40320,362880,3628800) 2: L(1,2,3,8,15,48,105,384,945,3840) 3: L(1,2,3,4,10,18,28,80,162,280) 4: L(1,2,3,4,5,12,21,32,45,120) 5: L(1,2,3,4,5,6,14,24,36,50) ```