⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|recursion}}
Two functions are said to be mutually recursive if the first calls the second, and in turn the second calls the first.
Write two mutually recursive functions that compute members of the [[wp:Hofstadter sequence#Hofstadter Female and Male sequences|Hofstadter Female and Male sequences]] defined as: :
(If a language does not allow for a solution using mutually recursive functions then state this rather than give a solution by other means).
ABAP
This works for ABAP Version 7.40 and can be implemented in procedural ABAP as well, but with classes it is much more readable. As this allows a method with a returning value to be an input for a subsequent method call.
report z_mutual_recursion.
class hoffstadter_sequences definition.
public section.
class-methods:
f
importing
n type int4
returning
value(result) type int4,
m
importing
n type int4
returning
value(result) type int4.
endclass.
class hoffstadter_sequences implementation.
method f.
result = cond int4(
when n eq 0
then 1
else n - m( f( n - 1 ) ) ).
endmethod.
method m.
result = cond int4(
when n eq 0
then 0
else n - f( m( n - 1 ) ) ).
endmethod.
endclass.
start-of-selection.
write: |{ reduce string(
init results = |f(0 - 19): { hoffstadter_sequences=>f( 0 ) }|
for i = 1 while i < 20
next results = |{ results }, { hoffstadter_sequences=>f( i ) }| ) }|, /.
write: |{ reduce string(
init results = |m(0 - 19): { hoffstadter_sequences=>m( 0 ) }|
for i = 1 while i < 20
next results = |{ results }, { hoffstadter_sequences=>m( i ) }| ) }|, /.
{{output}}
f(0 - 19): 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12
m(0 - 19): 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12
ACL2
(mutual-recursion
(defun f (n)
(declare (xargs :mode :program))
(if (zp n)
1
(- n (m (f (1- n))))))
(defun m (n)
(declare (xargs :mode :program))
(if (zp n)
0
(- n (f (m (1- n)))))))
Ada
with Ada.Text_Io; use Ada.Text_Io;
procedure Mutual_Recursion is
function M(N : Integer) return Integer;
function F(N : Integer) return Integer is
begin
if N = 0 then
return 1;
else
return N - M(F(N - 1));
end if;
end F;
function M(N : Integer) return Integer is
begin
if N = 0 then
return 0;
else
return N - F(M(N-1));
end if;
end M;
begin
for I in 0..19 loop
Put_Line(Integer'Image(F(I)));
end loop;
New_Line;
for I in 0..19 loop
Put_Line(Integer'Image(M(I)));
end loop;
end Mutual_recursion;
{{Works with|Ada 2012}}
with Ada.Text_Io; use Ada.Text_Io;
procedure Mutual_Recursion is
function M(N: Natural) return Natural;
function F(N: Natural) return Natural;
function M(N: Natural) return Natural is
(if N = 0 then 0 else N – F(M(N–1)));
function F(N: Natural) return Natural is
(if N =0 then 1 else N – M(F(N–1)));
begin
for I in 0..19 loop
Put_Line(Integer'Image(F(I)));
end loop;
New_Line;
for I in 0..19 loop
Put_Line(Integer'Image(M(I)));
end loop;
end Mutual_recursion;
Aime
{{trans|C}}
integer F(integer n);
integer M(integer n);
integer F(integer n)
{
integer r;
if (n) {
r = n - M(F(n - 1));
} else {
r = 1;
}
return r;
}
integer M(integer n)
{
integer r;
if (n) {
r = n - F(M(n - 1));
} else {
r = 0;
}
return r;
}
integer main(void)
{
integer i;
i = 0;
while (i < 20) {
o_winteger(3, F(i));
i += 1;
}
o_byte('\n');
i = 0;
while (i < 20) {
o_winteger(3, M(i));
i += 1;
}
o_byte('\n');
return 0;
}
ALGOL 68
{{trans|C}}
{{works with|ALGOL 68|Standard - no extensions to language used}} {{works with|ALGOL 68G|Any - tested with release mk15-0.8b.fc9.i386}} {{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386}}
PROC (INT)INT m; # ONLY required for ELLA ALGOL 68RS - an official subset OF full ALGOL 68 #
PROC f = (INT n)INT:
IF n = 0 THEN 1
ELSE n - m(f(n-1)) FI;
m := (INT n)INT:
IF n = 0 THEN 0
ELSE n - f(m(n-1)) FI;
main:
(
FOR i FROM 0 TO 19 DO
print(whole(f(i),-3))
OD;
new line(stand out);
FOR i FROM 0 TO 19 DO
print(whole(m(i),-3))
OD;
new line(stand out)
)
{{out}}
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
ALGOL W
begin
% define mutually recursive funtions F and M that compute the elements %
% of the Hofstadter Female and Male sequences %
integer procedure F ( integer value n ) ;
if n = 0 then 1 else n - M( F( n - 1 ) );
integer procedure M ( integer value n ) ;
if n = 0 then 0 else n - F( M( n - 1 ) );
% print the first few elements of the sequences %
i_w := 2; s_w := 1; % set I/O formatting %
write( "F: " );
for i := 0 until 20 do writeon( F( i ) );
write( "M: " );
for i := 0 until 20 do writeon( M( i ) );
end.
AppleScript
-- f :: Int -> Int
on f(x)
if x = 0 then
1
else
x - m(f(x - 1))
end if
end f
-- m :: Int -> Int
on m(x)
if x = 0 then
0
else
x - f(m(x - 1))
end if
end m
-- TEST
on run
set xs to range(0, 19)
{map(f, xs), map(m, xs)}
end run
-- GENERIC FUNCTIONS
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to lambda(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property lambda : f
end script
end if
end mReturn
-- range :: Int -> Int -> [Int]
on range(m, n)
if n < m then
set d to -1
else
set d to 1
end if
set lst to {}
repeat with i from m to n by d
set end of lst to i
end repeat
return lst
end range
{{Out}}
{{1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12},
{0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12}}
AutoHotkey
Loop 20
i := A_Index-1, t .= "`n" i "`t " M(i) "`t " F(i)
MsgBox x`tmale`tfemale`n%t%
F(n) {
Return n ? n - M(F(n-1)) : 1
}
M(n) {
Return n ? n - F(M(n-1)) : 0
}
{{trans|C}}
This one is an alternative to the above.
main()
Return
F(n)
{
If (n == 0)
Return 1
Else
Return n - M(F(n-1))
}
M(n)
{
If (n == 0)
Return 0
Else
Return n - F(M(n-1)) ;
}
main()
{
i = 0
While, i < 20
{
male .= M(i) . "`n"
female .= F(i) . "`n"
i++
}
MsgBox % "male:`n" . male
MsgBox % "female:`n" . female
}
AWK
In AWK it is enough that both functions are defined somewhere. It matters not whether the BEGIN block is before or after the function definitions.
cat mutual_recursion.awk:
#!/usr/local/bin/gawk -f
# User defined functions
function F(n)
{ return n == 0 ? 1 : n - M(F(n-1)) }
function M(n)
{ return n == 0 ? 0 : n - F(M(n-1)) }
BEGIN {
for(i=0; i <= 20; i++) {
printf "%3d ", F(i)
}
print ""
for(i=0; i <= 20; i++) {
printf "%3d ", M(i)
}
print ""
}
{{out}}
$ awk -f mutual_recursion.awk
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
BaCon
' Mutually recursive
FUNCTION F(int n) TYPE int
RETURN IIF(n = 0, 1, n - M(F(n -1)))
END FUNCTION
FUNCTION M(int n) TYPE int
RETURN IIF(n = 0, 0, n - F(M(n - 1)))
END FUNCTION
' Get iteration limit, default 20
SPLIT ARGUMENT$ BY " " TO arg$ SIZE args
limit = IIF(args > 1, VAL(arg$[1]), 20)
FOR i = 0 TO limit
PRINT F(i) FORMAT "%2d "
NEXT
PRINT
FOR i = 0 TO limit
PRINT M(i) FORMAT "%2d "
NEXT
PRINT
{{out}}
prompt$ ./mutually-recursive
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
BASIC
{{works with|QBasic}}
DECLARE FUNCTION f! (n!)
DECLARE FUNCTION m! (n!)
FUNCTION f! (n!)
IF n = 0 THEN
f = 1
ELSE
f = m(f(n - 1))
END IF
END FUNCTION
FUNCTION m! (n!)
IF n = 0 THEN
m = 0
ELSE
m = f(m(n - 1))
END IF
END FUNCTION
=
BBC BASIC
=
@% = 3 : REM Column width
PRINT "F sequence:"
FOR i% = 0 TO 20
PRINT FNf(i%) ;
NEXT
PRINT
PRINT "M sequence:"
FOR i% = 0 TO 20
PRINT FNm(i%) ;
NEXT
PRINT
END
DEF FNf(n%) IF n% = 0 THEN = 1 ELSE = n% - FNm(FNf(n% - 1))
DEF FNm(n%) IF n% = 0 THEN = 0 ELSE = n% - FNf(FNm(n% - 1))
{{out}}
F sequence:
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M sequence:
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
==={{header|IS-BASIC}}===
## Bc
```bc
cat mutual_recursion.bc:
define f(n) {
if ( n == 0 ) return(1);
return(n - m(f(n-1)));
}
define m(n) {
if ( n == 0 ) return(0);
return(n - f(m(n-1)));
}
{{works with|GNU bc}} {{works with|OpenBSD bc}} POSIX bc doesn't have the print statement.
/* GNU bc */
for(i=0; i < 19; i++) {
print f(i); print " ";
}
print "\n";
for(i=0; i < 19; i++) {
print m(i); print " ";
}
print "\n";
quit
{{out}}
GNU bc mutual_recursion.bc
bc 1.06.95
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
Bracmat
(F=.!arg:0&1|!arg+-1*M$(F$(!arg+-1)));
(M=.!arg:0&0|!arg+-1*F$(M$(!arg+-1)));
-1:?n&whl'(!n+1:~>20:?n&put$(F$!n " "))&put$\n
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
-1:?n&whl'(!n+1:~>20:?n&put$(M$!n " "))&put$\n
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
Brat
female = null #yes, this is necessary
male = { n |
true? n == 0
{ 0 }
{ n - female male(n - 1) }
}
female = { n |
true? n == 0
{ 1 }
{ n - male female(n - 1 ) }
}
p 0.to(20).map! { n | female n }
p 0.to(20).map! { n | male n }
C
To let C see functions that will be used, it is enough to declare them. Normally this is done in a header file; in this example we do it directly in the code. If we do not declare them explicitly, they get an implicit declaration (if implicit declaration matches the use, everything's fine; but it is better however to write an explicit declaration)
#include <stdio.h>
#include <stdlib.h>
/* let us declare our functions; indeed here we need
really only M declaration, so that F can "see" it
and the compiler won't complain with a warning */
int F(const int n);
int M(const int n);
int F(const int n)
{
return (n == 0) ? 1 : n - M(F(n - 1));
}
int M(const int n)
{
return (n == 0) ? 0 : n - F(M(n - 1));
}
int main(void)
{
int i;
for (i = 0; i < 20; i++)
printf("%2d ", F(i));
printf("\n");
for (i = 0; i < 20; i++)
printf("%2d ", M(i));
printf("\n");
return EXIT_SUCCESS;
}
C++
C++ has prior declaration rules similar to those stated above for [[Mutual Recursion#C|C]], if we would use two functions. Instead here we define M and F as static (class) methods of a class, and specify the bodies inline in the declaration of the class. Inlined methods in the class can still call other methods or access fields in the class, no matter what order they are declared in, without any additional pre-declaration. This is possible because all the possible methods and fields are declared somewhere in the class declaration, which is known the first time the class declaration is parsed.
#include <iostream>
#include <vector>
#include <iterator>
class Hofstadter
{
public:
static int F(int n) {
if ( n == 0 ) return 1;
return n - M(F(n-1));
}
static int M(int n) {
if ( n == 0 ) return 0;
return n - F(M(n-1));
}
};
using namespace std;
int main()
{
int i;
vector<int> ra, rb;
for(i=0; i < 20; i++) {
ra.push_back(Hofstadter::F(i));
rb.push_back(Hofstadter::M(i));
}
copy(ra.begin(), ra.end(),
ostream_iterator<int>(cout, " "));
cout << endl;
copy(rb.begin(), rb.end(),
ostream_iterator<int>(cout, " "));
cout << endl;
return 0;
}
The following version shows better what's going on and why we ''seemingly'' didn't need pre-declaration (like C) when "encapsulating" the functions as static (class) methods.
This version is equivalent to the above but does not inline the definition of the methods into the definition of the class. Here the method declarations in the class definition serves as the "pre-declaration" for the methods, as in C.
class Hofstadter
{
public:
static int F(int n);
static int M(int n);
};
int Hofstadter::F(int n)
{
if ( n == 0 ) return 1;
return n - M(F(n-1));
}
int Hofstadter::M(int n)
{
if ( n == 0 ) return 0;
return n - F(M(n-1));
}
C#
namespace RosettaCode {
class Hofstadter {
static public int F(int n) {
int result = 1;
if (n > 0) {
result = n - M(F(n-1));
}
return result;
}
static public int M(int n) {
int result = 0;
if (n > 0) {
result = n - F(M(n - 1));
}
return result;
}
}
}
Ceylon
Integer f(Integer n)
=> if (n > 0)
then n - m(f(n-1))
else 1;
Integer m(Integer n)
=> if (n > 0)
then n - f(m(n-1))
else 0;
shared void run() {
printAll((0:20).map(f));
printAll((0:20).map(m));
}
{{out}}
1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12
Clojure
(declare F) ; forward reference
(defn M [n]
(if (zero? n)
0
(- n (F (M (dec n))))))
(defn F [n]
(if (zero? n)
1
(- n (M (F (dec n))))))
CoffeeScript
F = (n) ->
if n is 0 then 1 else n - M F n - 1
M = (n) ->
if n is 0 then 0 else n - F M n - 1
console.log [0...20].map F
console.log [0...20].map M
{{out}}
coffee mutual_recurse.coffee [ 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12 ] [ 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12 ]
## Common Lisp
```lisp
(defun m (n)
(if (zerop n)
0
(- n (f (m (- n 1))))))
(defun f (n)
(if (zerop n)
1
(- n (m (f (- n 1))))))
D
import std.stdio, std.algorithm, std.range;
int male(in int n) pure nothrow {
return n ? n - male(n - 1).female : 0;
}
int female(in int n) pure nothrow {
return n ? n - female(n - 1).male : 1;
}
void main() {
20.iota.map!female.writeln;
20.iota.map!male.writeln;
}
{{out}}
[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12]
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12]
=={{header|Déjà Vu}}==
F n:
if n:
- n M F -- n
else:
1
M n:
if n:
- n F M -- n
else:
0
for i range 0 10:
!.( M i F i )
{{out}}
0 1
0 1
1 2
2 2
2 3
3 3
4 4
4 5
5 5
6 6
6 6
Dart
int M(int n) => n==0?1:n-F(M(n-1));
int F(int n) => n==0?0:n-M(F(n-1));
main() {
String f="",m="";
for(int i=0;i<20;i++) {
m+="${M(i)} ";
f+="${F(i)} ";
}
print("M: $m");
print("F: $f");
}
Delphi
unit Hofstadter;
interface
type
THofstadterFemaleMaleSequences = class
public
class function F(n: Integer): Integer;
class function M(n: Integer): Integer;
end;
implementation
class function THofstadterFemaleMaleSequences.F(n: Integer): Integer;
begin
Result:= 1;
if (n > 0) then
Result:= n - M(F(n-1));
end;
class function THofstadterFemaleMaleSequences.M(n: Integer): Integer;
begin
Result:= 0;
if (n > 0) then
Result:= n - F(M(n - 1));
end;
end.
E
In E, nouns (variable names) always refer to preceding definitions, so to have mutual recursion, either one must be forward-declared or we must use a recursive def construct. Either one of these is syntactic sugar for first binding the noun to an E ''promise'' (a reference with an undetermined target), then ''resolving'' the promise to the value.
Recursive def:
def [F, M] := [
fn n { if (n <=> 0) { 1 } else { n - M(F(n - 1)) } },
fn n { if (n <=> 0) { 0 } else { n - F(M(n - 1)) } },
]
Forward declaration:
def M
def F(n) { return if (n <=> 0) { 1 } else { n - M(F(n - 1)) } }
bind M(n) { return if (n <=> 0) { 0 } else { n - F(M(n - 1)) } }
def M
binds M to a promise, and stashes the ''resolver'' for that promise where bind
can get to it. When def F...
is executed, the function F closes over the promise which is the value of M. bind M...
uses the resolver to resolve M to the provided definition. The recursive def operates similarly, except that it constructs promises for every variable on the left side ([F, M]
), executes the right side ([fn ..., fn ...]
) and collects the values, then resolves each promise to its corresponding value.
But you don't have to worry about that to use it.
Eiffel
class
APPLICATION
create
make
feature
make
-- Test of the mutually recursive functions Female and Male.
do
across
0 |..| 19 as c
loop
io.put_string (Female (c.item).out + " ")
end
io.new_line
across
0 |..| 19 as c
loop
io.put_string (Male (c.item).out + " ")
end
end
Female (n: INTEGER): INTEGER
-- Female sequence of the Hofstadter Female and Male sequences.
require
n_not_negative: n >= 0
do
Result := 1
if n /= 0 then
Result := n - Male (Female (n - 1))
end
end
Male (n: INTEGER): INTEGER
-- Male sequence of the Hofstadter Female and Male sequences.
require
n_not_negative: n >= 0
do
Result := 0
if n /= 0 then
Result := n - Female (Male (n - 1))
end
end
end
{{out}}
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
Elena
{{trans|Smalltalk}} ELENA 4.x :
import extensions;
import system'collections;
F = (n => (n == 0) ? 1 : (n - M(F(n-1))) );
M = (n => (n == 0) ? 0 : (n - F(M(n-1))) );
public program()
{
var ra := new ArrayList();
var rb := new ArrayList();
for(int i := 0, i <= 19, i += 1)
{
ra.append(F(i));
rb.append(M(i))
};
console.printLine(ra.asEnumerable());
console.printLine(rb.asEnumerable())
}
{{out}}
1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12
0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12
Elixir
defmodule MutualRecursion do
def f(0), do: 1
def f(n), do: n - m(f(n - 1))
def m(0), do: 0
def m(n), do: n - f(m(n - 1))
end
IO.inspect Enum.map(0..19, fn n -> MutualRecursion.f(n) end)
IO.inspect Enum.map(0..19, fn n -> MutualRecursion.m(n) end)
{{out}}
[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12]
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12]
Erlang
-module(mutrec).
-export([mutrec/0, f/1, m/1]).
f(0) -> 1;
f(N) -> N - m(f(N-1)).
m(0) -> 0;
m(N) -> N - f(m(N-1)).
mutrec() -> lists:map(fun(X) -> io:format("~w ", [f(X)]) end, lists:seq(0,19)),
io:format("~n", []),
lists:map(fun(X) -> io:format("~w ", [m(X)]) end, lists:seq(0,19)),
io:format("~n", []).
Euphoria
integer idM, idF
function F(integer n)
if n = 0 then
return 1
else
return n - call_func(idM,{F(n-1)})
end if
end function
idF = routine_id("F")
function M(integer n)
if n = 0 then
return 0
else
return n - call_func(idF,{M(n-1)})
end if
end function
idM = routine_id("M")
=={{header|F_Sharp|F#}}==
let rec f n =
match n with
| 0 -> 1
| _ -> n - (m (f (n-1)))
and m n =
match n with
| 0 -> 0
| _ -> n - (f (m (n-1)))
Like OCaml, the let '''rec''' ''f'' .. '''and''' ''m'' ...
construct indicates that the functions call themselves ('''rec'''
) and each other ('''and'''
).
Factor
In Factor, if you need a word before it's defined, you have to DEFER:
it.
## FALSE
```false
[$[$1-f;!m;!-1-]?1+]f:
[$[$1-m;!f;!- ]? ]m:
[0[$20\>][\$@$@!." "1+]#%%]t:
f; t;!"
"m; t;!
Fantom
class Main
{
static Int f (Int n)
{
if (n <= 0) // ensure n > 0
return 1
else
return n - m(f(n-1))
}
static Int m (Int n)
{
if (n <= 0) // ensure n > 0
return 0
else
return n - f(m(n-1))
}
public static Void main ()
{
50.times |Int n| { echo (f(n)) }
}
}
=={{header|Fōrmulæ}}==
In [http://wiki.formulae.org/Mutual_recursion this] page you can see the solution of this task.
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text ([http://wiki.formulae.org/Editing_F%C5%8Drmul%C3%A6_expressions more info]). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.
The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.
Forth
Forward references required for mutual recursion may be set up using DEFER.
defer m
: f ( n -- n )
dup 0= if 1+ exit then
dup 1- recurse m - ;
:noname ( n -- n )
dup 0= if exit then
dup 1- recurse f - ;
is m
: test ( xt n -- ) cr 0 do i over execute . loop drop ;
' m defer@ 20 test \ 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
' f 20 test \ 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
Fortran
As long as the code of the two functions is inside the same "block" (module or program) we don't need special care. Otherwise, we should "load" at least the interface of the other function (each module will load mutually the other; of course the compiler won't enter in a infinite loop), e.g. by using a "use" (we do that if M and F function are inside different modules)
{{works with|Fortran|95 and later}}
module MutualRec
implicit none
contains
pure recursive function m(n) result(r)
integer :: r
integer, intent(in) :: n
if ( n == 0 ) then
r = 0
return
end if
r = n - f(m(n-1))
end function m
pure recursive function f(n) result(r)
integer :: r
integer, intent(in) :: n
if ( n == 0 ) then
r = 1
return
end if
r = n - m(f(n-1))
end function f
end module
I've added the attribute pure so that we can use them in a forall statement.
program testmutrec
use MutualRec
implicit none
integer :: i
integer, dimension(20) :: a = (/ (i, i=0,19) /), b = (/ (i, i=0,19) /)
integer, dimension(20) :: ra, rb
forall(i=1:20)
ra(i) = m(a(i))
rb(i) = f(b(i))
end forall
write(*,'(20I3)') rb
write(*,'(20I3)') ra
end program testmutrec
FreeBASIC
' FB 1.05.0 Win64
' Need forward declaration of M as it's used
' by F before its defined
Declare Function M(n As Integer) As Integer
Function F(n As Integer) As Integer
If n = 0 Then
Return 1
End If
Return n - M(F(n - 1))
End Function
Function M(n As Integer) As Integer
If n = 0 Then
Return 0
End If
Return n - F(M(n - 1))
End Function
Dim As Integer n = 24
Print "n :";
For i As Integer = 0 to n : Print Using "###"; i; : Next
Print
Print String(78, "-")
Print "F :";
For i As Integer = 0 To n : Print Using "###"; F(i); : Next
Print
Print "M :";
For i As Integer = 0 To n : Print Using "###"; M(i); : Next
Print
Print "Press any key to quit"
Sleep
{{out}}
n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
------------------------------------------------------------------------------
F : 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 13 14 14 15
M : 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15
Go
It just works. No special pre-declaration is necessary.
package main
import "fmt"
func F(n int) int {
if n == 0 { return 1 }
return n - M(F(n-1))
}
func M(n int) int {
if n == 0 { return 0 }
return n - F(M(n-1))
}
func main() {
for i := 0; i < 20; i++ {
fmt.Printf("%2d ", F(i))
}
fmt.Println()
for i := 0; i < 20; i++ {
fmt.Printf("%2d ", M(i))
}
fmt.Println()
}
Groovy
Solution:
def f, m // recursive closures must be declared before they are defined
f = { n -> n == 0 ? 1 : n - m(f(n-1)) }
m = { n -> n == 0 ? 0 : n - f(m(n-1)) }
Test program:
println 'f(0..20): ' + (0..20).collect { f(it) }
println 'm(0..20): ' + (0..20).collect { m(it) }
{{out}}
f(0..20): [1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13]
m(0..20): [0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12]
Haskell
Haskell's definitions constructs (at the top level, or inside a let
or where
construct) are always mutually-recursive:
f 0 = 1
f n | n > 0 = n - m (f $ n-1)
m 0 = 0
m n | n > 0 = n - f (m $ n-1)
main = do
print $ map f [0..19]
print $ map m [0..19]
=={{header|Icon}} and {{header|Unicon}}==
procedure main(arglist)
every write(F(!arglist)) # F of all arguments
end
procedure F(n)
if integer(n) >= 0 then
return (n = 0, 1) | n - M(F(n-1))
end
procedure M(n)
if integer(n) >= 0 then
return (0 = n) | n - F(M(n-1))
end
Idris
mutual {
F : Nat -> Nat
F Z = (S Z)
F (S n) = (S n) `minus` M(F(n))
M : Nat -> Nat
M Z = Z
M (S n) = (S n) `minus` F(M(n))
}
Io
f := method(n, if( n == 0, 1, n - m(f(n-1))))
m := method(n, if( n == 0, 0, n - f(m(n-1))))
Range
0 to(19) map(n,f(n)) println
0 to(19) map(n,m(n)) println
{{out}}
list(1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12)
list(0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12)
J
F =: 1:`(- M @ $: @ <:) @.* M."0
M =: 0:`(- F @ $: @ <:) @.* M."0
Example use:
F i. 20
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
That said, note that numbers are defined recursively, so other some approaches using numbers which give equivalent results should be acceptable.
Java
{{trans|C}}
public static int f(final int n)
{
return n == 0 ? 1 : n - m(f(n - 1));
}
public static int m(final int n)
{
return n == 0 ? 0 : n - f(m(n - 1));
}
public static void main(final String args[])
{
for (int i = 0; i < 20; i++)
System.out.println(f(i));
System.out.println();
for (i = 0; i < 20; i++)
System.out.println(m(i));
}
JavaScript
function f(num) {
return (num === 0) ? 1 : num - m(f(num - 1));
}
function m(num) {
return (num === 0) ? 0 : num - f(m(num - 1));
}
function range(m, n) {
return Array.apply(null, Array(n - m + 1)).map(
function (x, i) { return m + i; }
);
}
var a = range(0, 19);
//return a new array of the results and join with commas to print
console.log(a.map(function (n) { return f(n); }).join(', '));
console.log(a.map(function (n) { return m(n); }).join(', '));
{{out}}
1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12
0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12
ES6 implementation
(num === 0) ? 1 : num - m(f(num - 1));
var m = num => (num === 0) ? 0 : num - f(m(num - 1));
function range(m, n) {
return Array.apply(null, Array(n - m + 1)).map(
function (x, i) { return m + i; }
);
}
var a = range(0, 19);
//return a new array of the results and join with commas to print
console.log(a.map(n => f(n)).join(', '));
console.log(a.map(n => m(n)).join(', '));
More ES6 implementation
var range = (m, n) => Array(... Array(n - m + 1)).map((x, i) => m + i)
jq
jq supports mutual recursion but requires functions to be defined before they are used. In the present case, this can be accomplished by defining an inner function.
He we define F and M as arity-0 filters:
def M:
def F: if . == 0 then 1 else . - ((. - 1) | F | M) end;
if . == 0 then 0 else . - ((. - 1) | M | F) end;
def F:
if . == 0 then 1 else . - ((. - 1) | F | M) end;
Example:
[range(0;20) | F],
[range(0;20) | M]
$ jq -n -c -f Mutual_recursion.jq
[1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12]
[0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12]
Jsish
/* Mutual recursion, is jsish */
function f(num):number { return (num === 0) ? 1 : num - m(f(num - 1)); }
function m(num):number { return (num === 0) ? 0 : num - f(m(num - 1)); }
function range(n=10, start=0, step=1):array {
var a = Array(n).fill(0);
for (var i in a) a[i] = start+i*step;
return a;
}
var a = range(21);
puts(a.map(function (n) { return f(n); }).join(', '));
puts(a.map(function (n) { return m(n); }).join(', '));
/*
=!EXPECTSTART!=
1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12
=!EXPECTEND!=
*/
{{out}}
prompt$ jsish -u mutual-recursion.jsi
[PASS] mutual-recursion.jsi
prompt$ jsish mutual-recursion.jsi
1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12
Julia
F(n) = n < 1 ? one(n) : n - M(F(n - 1))
M(n) = n < 1 ? zero(n) : n - F(M(n - 1))
{{out}}
julia> [F(i) for i = 0:19], [M(i) for i = 0:19]
([1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12],[0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12])
Kotlin
// version 1.0.6
fun f(n: Int): Int =
when {
n == 0 -> 1
else -> n - m(f(n - 1))
}
fun m(n: Int): Int =
when {
n == 0 -> 0
else -> n - f(m(n - 1))
}
fun main(args: Array<String>) {
val n = 24
print("n :")
for (i in 0..n) print("%3d".format(i))
println()
println("-".repeat(78))
print("F :")
for (i in 0..24) print("%3d".format(f(i)))
println()
print("M :")
for (i in 0..24) print("%3d".format(m(i)))
println()
}
{{out}}
n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
------------------------------------------------------------------------------
F : 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 13 14 14 15
M : 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15
Liberty BASIC
print "F sequence."
for i = 0 to 20
print f(i);" ";
next
print
print "M sequence."
for i = 0 to 20
print m(i);" ";
next
end
function f(n)
if n = 0 then
f = 1
else
f = n - m(f(n - 1))
end if
end function
function m(n)
if n = 0 then
m = 0
else
m = n - f(m(n - 1))
end if
end function
{{out}}
F sequence.
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M sequence.
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
LibreOffice Basic
'// LibreOffice Basic Implementation of Hofstadter Female-Male sequences
'// Utility functions
sub setfont(strfont)
ThisComponent.getCurrentController.getViewCursor.charFontName = strfont
end sub
sub newline
oVC = thisComponent.getCurrentController.getViewCursor
oText = oVC.text
oText.insertControlCharacter(oVC, com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, False)
end sub
sub out(sString)
oVC = ThisComponent.getCurrentController.getViewCursor
oText = oVC.text
oText.insertString(oVC, sString, false)
end sub
sub outln(optional sString)
if not ismissing (sString) then out(sString)
newline
end sub
function intformat(n as integer,nlen as integer) as string
dim nstr as string
nstr = CStr(n)
while len(nstr) < nlen
nstr = " " & nstr
wend
intformat = nstr
end function
'// Hofstadter Female-Male function definitions
function F(n as long) as long
if n = 0 Then
F = 1
elseif n > 0 Then
F = n - M(F(n - 1))
endif
end function
function M(n)
if n = 0 Then
M = 0
elseif n > 0 Then
M = n - F(M(n - 1))
endif
end function
'// Hofstadter Female Male sequence demo routine
sub Hofstadter_Female_Male_Demo
'// Introductory Text
setfont("LM Roman 10")
outln("Rosetta Code Hofstadter Female and Male Sequence Challenge")
outln
out("Two functions are said to be mutually recursive if the first calls the second,")
outln(" and in turn the second calls the first.")
out("Write two mutually recursive functions that compute members of the Hofstadter")
outln(" Female and Male sequences defined as:")
outln
setfont("LM Mono Slanted 10")
outln(chr(9)+"F(0) = 1 ; M(0)=0")
outln(chr(9)+"F(n) = n - M(F(n-1)), n > 0")
outln(chr(9)+"M(n) = n - F(M(n-1)), n > 0")
outln
'// Sequence Generation
const nmax as long = 20
dim n as long
setfont("LM Mono 10")
out("n = "
for n = 0 to nmax
out(" " + intformat(n, 2))
next n
outln
out("F(n) = "
for n = 0 to nmax
out(" " + intformat(F(n),2))
next n
outln
out("M(n) = "
for n = 0 to nmax
out(" " + intformat(M(n), 2))
next n
outln
end sub
------------------------------
Output
------------------------------
n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
F(n) = 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M(n) = 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
Logo
Like Lisp, symbols in Logo are late-bound so no special syntax is required for forward references.
to m :n
if 0 = :n [output 0]
output :n - f m :n-1
end
to f :n
if 0 = :n [output 1]
output :n - m f :n-1
end
show cascade 20 [lput m #-1 ?] []
[1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12]
show cascade 20 [lput f #-1 ?] []
[0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12]
LSL
To test it yourself; rez a box on the ground, and add the following as a New Script.
integer iDEPTH = 100;
integer f(integer n) {
if(n==0) {
return 1;
} else {
return n-m(f(n - 1));
}
}
integer m(integer n) {
if(n==0) {
return 0;
} else {
return n-f(m(n - 1));
}
}
default {
state_entry() {
integer x = 0;
string s = "";
for(x=0 ; x<iDEPTH ; x++) {
s += (string)(f(x))+" ";
}
llOwnerSay(llList2CSV(llParseString2List(s, [" "], [])));
s = "";
for(x=0 ; x<iDEPTH ; x++) {
s += (string)(m(x))+" ";
}
llOwnerSay(llList2CSV(llParseString2List(s, [" "], [])));
}
}
{{out}}
1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 34, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45, 46, 46, 47, 48, 48, 49, 50, 50, 51, 51, 52, 53, 53, 54, 55, 55, 56, 56, 57, 58, 58, 59, 59, 60, 61, 61
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45, 46, 46, 47, 48, 48, 49, 50, 50, 51, 51, 52, 53, 53, 54, 54, 55, 56, 56, 57, 58, 58, 59, 59, 60, 61, 61
Lua
function m(n) return n > 0 and n - f(m(n-1)) or 0 end
function f(n) return n > 0 and n - m(f(n-1)) or 1 end
It is important to note, that if m and f are to be locally scoped functions rather than global, that they would need to be forward declared:
local m,n
function m(n) return n > 0 and n - f(m(n-1)) or 0 end
function f(n) return n > 0 and n - m(f(n-1)) or 1 end
M2000 Interpreter
A function can call a global function and must be global to call it again by the second function
A group's function can call sibling function from same group. We can use This.F() or simply .f() to use group's f() member.
We can use subroutines, which can call each other, in a module, and we can use the modules stack of values to get results from subs. Subs running as parts of module, and see same variables and same stack of values. Arguments are local to sub, and we can define local variables too.
Last module export to clipboard and that used for output here.
\\ set console 70 characters by 40 lines
Form 70, 40
Module CheckSubs {
Flush
Document one$, two$
For i =0 to 20
Print format$("{0::-3}",i);
f(i)
\\ number pop then top value of stack
one$=format$("{0::-3}",number)
m(i)
two$=format$("{0::-3}",number)
Next i
Print
Print one$
Print two$
Sub f(x)
if x<=0 then Push 1 : Exit sub
f(x-1) ' leave result to for m(x)
m()
push x-number
End Sub
Sub m(x)
if x<=0 then Push 0 : Exit sub
m(x-1)
f()
push x-number
End Sub
}
CheckSubs
Module Checkit {
Function global f(n) {
if n=0 then =1: exit
if n>0 then =n-m(f(n-1))
}
Function global m(n) {
if n=0 then =0
if n>0 then =n-f(m(n-1))
}
Document one$, two$
For i =0 to 20
Print format$("{0::-3}",i);
one$=format$("{0::-3}",f(i))
two$=format$("{0::-3}",m(i))
Next i
Print
Print one$
Print two$
}
Checkit
Module Checkit2 {
Group Alfa {
function f(n) {
if n=0 then =1: exit
if n>0 then =n-.m(.f(n-1))
}
function m(n) {
if n=0 then =0
if n>0 then =n-.f(.m(n-1))
}
}
Document one$, two$
For i =0 to 20
Print format$("{0::-3}",i);
one$=format$("{0::-3}",Alfa.f(i))
two$=format$("{0::-3}",Alfa.m(i))
Next i
Print
Print one$
Print two$
Clipboard one$+{
}+two$
}
Checkit2
{{out}}
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
M4
define(`female',`ifelse(0,$1,1,`eval($1 - male(female(decr($1))))')')dnl
define(`male',`ifelse(0,$1,0,`eval($1 - female(male(decr($1))))')')dnl
define(`loop',`ifelse($1,$2,,`$3($1) loop(incr($1),$2,`$3')')')dnl
loop(0,20,`female')
loop(0,20,`male')
Maple
female_seq := proc(n)
if (n = 0) then
return 1;
else
return n - male_seq(female_seq(n-1));
end if;
end proc;
male_seq := proc(n)
if (n = 0) then
return 0;
else
return n - female_seq(male_seq(n-1));
end if;
end proc;
seq(female_seq(i), i=0..10);
seq(male_seq(i), i=0..10);
{{Out|Output}}
1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6
Mathematica
Without caching:
f[0]:=1
m[0]:=0
f[n_]:=n-m[f[n-1]]
m[n_]:=n-f[m[n-1]]
With caching:
f[0]:=1
m[0]:=0
f[n_]:=f[n]=n-m[f[n-1]]
m[n_]:=m[n]=n-f[m[n-1]]
Example finding f(1) to f(30) and m(1) to m(30):
m /@ Range[30]
f /@ Range[30]
gives back:
{0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12,12,13,14,14,15,16,16,17,17,18,19}
{1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12,13,13,14,14,15,16,16,17,17,18,19}
MATLAB
female.m:
function Fn = female(n)
if n == 0
Fn = 1;
return
end
Fn = n - male(female(n-1));
end
male.m:
function Mn = male(n)
if n == 0
Mn = 0;
return
end
Mn = n - female(male(n-1));
end
{{out}}
n = (0:10);
>> arrayfun(@female,n)
ans =
1 1 2 2 3 3 4 5 5 6 6
>> arrayfun(@male,n)
ans =
0 0 1 2 2 3 4 4 5 6 6
Maxima
f[0]: 1$
m[0]: 0$
f[n] := n - m[f[n - 1]]$
m[n] := n - f[m[n - 1]]$
makelist(f[i], i, 0, 10);
[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6]
makelist(m[i], i, 0, 10);
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6]
remarray(m, f)$
f(n) := if n = 0 then 1 else n - m(f(n - 1))$
m(n) := if n = 0 then 0 else n - f(m(n - 1))$
makelist(f(i), i, 0, 10);
[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6]
makelist(m(i), i, 0, 10);
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6]
remfunction(f, m)$
Mercury
:- import_module io. :- pred main(io::di, io::uo) is det.
:- implementation. :- import_module int, list.
main(!IO) :- io.write(list.map(f, 0..19), !IO), io.nl(!IO), io.write(list.map(m, 0..19), !IO), io.nl(!IO).
:- func f(int) = int.
f(N) = ( if N = 0 then 1 else N - m(f(N - 1)) ).
:- func m(int) = int.
m(N) = ( if N = 0 then 0 else N - f(m(N - 1)) ).
## MMIX
```mmix
LOC Data_Segment
GREG @
NL BYTE #a,0
GREG @
buf OCTA 0,0
t IS $128
Ja IS $127
LOC #1000
GREG @
// print 2 digits integer with trailing space to StdOut
// reg $3 contains int to be printed
bp IS $71
0H GREG #0000000000203020
prtInt STO 0B,buf % initialize buffer
LDA bp,buf+7 % points after LSD
% REPEAT
1H SUB bp,bp,1 % move buffer pointer
DIV $3,$3,10 % divmod (x,10)
GET t,rR % get remainder
INCL t,'0' % make char digit
STB t,bp % store digit
PBNZ $3,1B % UNTIL no more digits
LDA $255,bp
TRAP 0,Fputs,StdOut % print integer
GO Ja,Ja,0 % 'return'
// Female function
F GET $1,rJ % save return addr
PBNZ $0,1F % if N != 0 then F N
INCL $0,1 % F 0 = 1
PUT rJ,$1 % restore return addr
POP 1,0 % return 1
1H SUBU $3,$0,1 % N1 = N - 1
PUSHJ $2,F % do F (N - 1)
ADDU $3,$2,0 % place result in arg. reg.
PUSHJ $2,M % do M F ( N - 1)
PUT rJ,$1 % restore ret addr
SUBU $0,$0,$2
POP 1,0 % return N - M F ( N - 1 )
// Male function
M GET $1,rJ
PBNZ $0,1F
PUT rJ,$1
POP 1,0 % return M 0 = 0
1H SUBU $3,$0,1
PUSHJ $2,M
ADDU $3,$2,0
PUSHJ $2,F
PUT rJ,$1
SUBU $0,$0,$2
POP 1,0 $ return N - F M ( N - 1 )
// do a female run
Main SET $1,0 % for (i=0; i<25; i++){
1H ADDU $4,$1,0 %
PUSHJ $3,F % F (i)
GO Ja,prtInt % print F (i)
INCL $1,1
CMP t,$1,25
PBNZ t,1B % }
LDA $255,NL
TRAP 0,Fputs,StdOut
// do a male run
SET $1,0 % for (i=0; i<25; i++){
1H ADDU $4,$1,0 %
PUSHJ $3,M % M (i)
GO Ja,prtInt % print M (i)
INCL $1,1
CMP t,$1,25
PBNZ t,1B % }
LDA $255,NL
TRAP 0,Fputs,StdOut
TRAP 0,Halt,0
{{out}} ~/MIX/MMIX/Rosetta> mmix mutualrecurs1 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 13 14 14 15 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15
Nemerle
using System;
using System.Console;
module Hofstadter
{
F(n : int) : int
{
|0 => 1
|_ => n - M(F(n - 1))
}
M(n : int) : int
{
|0 => 0
|_ => n - F(M(n - 1))
}
Main() : void
{
foreach (n in [0 .. 20]) Write("{0} ", F(n));
WriteLine();
foreach (n in [0 .. 20]) Write("{0} ", M(n));
}
}
Nim
proc m(n): int
proc f(n): int =
if n == 0: 1
else: n - m(f(n-1))
proc m(n): int =
if n == 0: 0
else: n - f(m(n-1))
for i in 1 .. 10:
echo f(i)
echo m(i)
=={{header|Objective-C}}==
Objective-C has prior declaration rules similar to those stated above for [[Mutual Recursion#C|C]], for C-like types. In this example we show the use of a two class method; this works since we need an interface block that is like declaration of functions in C code.
@interface Hofstadter : NSObject
+ (int)M: (int)n;
+ (int)F: (int)n;
@end
@implementation Hofstadter
+ (int)M: (int)n
{
if ( n == 0 ) return 0;
return n - [self F: [self M: (n-1)]];
}
+ (int)F: (int)n
{
if ( n == 0 ) return 1;
return n - [self M: [self F: (n-1)]];
}
@end
int main()
{
int i;
for(i=0; i < 20; i++) {
printf("%3d ", [Hofstadter F: i]);
}
printf("\n");
for(i=0; i < 20; i++) {
printf("%3d ", [Hofstadter M: i]);
}
printf("\n");
return 0;
}
Objeck
{{trans|C}}
class MutualRecursion {
function : Main(args : String[]) ~ Nil {
for(i := 0; i < 20; i+=1;) {
f(i)->PrintLine();
};
"---"->PrintLine();
for (i := 0; i < 20; i+=1;) {
m(i)->PrintLine();
};
}
function : f(n : Int) ~ Int {
return n = 0 ? 1 : n - m(f(n - 1));
}
function : m(n : Int) ~ Int {
return n = 0 ? 0 : n - f(m(n - 1));
}
}
OCaml
let rec f = function
| 0 -> 1
| n -> n - m(f(n-1))
and m = function
| 0 -> 0
| n -> n - f(m(n-1))
;;
The let '''rec''' ''f'' ... '''and''' ''m'' ...
construct indicates that the functions call themselves ('''rec'''
) and each other ('''and'''
).
Octave
We don't need to pre-declare or specify in some other way a function that will be defined later; but both must be declared before their use.
(The code is written to handle vectors, as the testing part shows)
function r = F(n)
for i = 1:length(n)
if (n(i) == 0)
r(i) = 1;
else
r(i) = n(i) - M(F(n(i)-1));
endif
endfor
endfunction
function r = M(n)
for i = 1:length(n)
if (n(i) == 0)
r(i) = 0;
else
r(i) = n(i) - F(M(n(i)-1));
endif
endfor
endfunction
# testing
ra = F([0:19]);
rb = M([0:19]);
disp(ra);
disp(rb);
Oforth
Oforth can declare methods objects without any implementation. This allows to implement mutual recursion. This does not work with functions (declaration and implementation must be together).
Method new: M
Integer method: F
self 0 == ifTrue: [ 1 return ]
self self 1 - F M - ;
Integer method: M
self 0 == ifTrue: [ 0 return ]
self self 1 - M F - ;
0 20 seqFrom map(#F) println
0 20 seqFrom map(#M) println
{{out}}
[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13]
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12]
Ol
The letrec
indicates that the definitions can be recursive, and fact that we placed these two in the same letrec block makes them mutually recursive.
(letrec ((F (lambda (n)
(if (= n 0) 1
(- n (M (F (- n 1)))))))
(M (lambda (n)
(if (= n 0) 0
(- n (F (M (- n 1))))))))
(print (F 19)))
; produces 12
Order
Since Order is powered by the C preprocessor, definitions follow the same rule as CPP macros: they can appear in any order relative to each other as long as all are defined before the ORDER_PP block that calls them.
#include <order/interpreter.h>
#define ORDER_PP_DEF_8f \
ORDER_PP_FN(8fn(8N, \
8if(8is_0(8N), \
1, \
8sub(8N, 8m(8f(8dec(8N)))))))
#define ORDER_PP_DEF_8m \
ORDER_PP_FN(8fn(8N, \
8if(8is_0(8N), \
0, \
8sub(8N, 8f(8m(8dec(8N)))))))
//Test
ORDER_PP(8for_each_in_range(8fn(8N, 8print(8f(8N))), 0, 19))
ORDER_PP(8for_each_in_range(8fn(8N, 8print(8m(8N))), 0, 19))
Oz
declare
fun {F N}
if N == 0 then 1
elseif N > 0 then N - {M {F N-1}}
end
end
fun {M N}
if N == 0 then 0
elseif N > 0 then N - {F {M N-1}}
end
end
in
{Show {Map {List.number 0 9 1} F}}
{Show {Map {List.number 0 9 1} M}}
PARI/GP
F(n)=if(n,n-M(F(n-1)),1)
M(n)=if(n,n-F(M(n-1)),0)
Pascal
In Pascal we need to pre-declare functions/procedures; to do so, the forward statement is used.
Program MutualRecursion;
{M definition comes after F which uses it}
function M(n : Integer) : Integer; forward;
function F(n : Integer) : Integer;
begin
if n = 0 then
F := 1
else
F := n - M(F(n-1));
end;
function M(n : Integer) : Integer;
begin
if n = 0 then
M := 0
else
M := n - F(M(n-1));
end;
var
i : Integer;
begin
for i := 0 to 19 do begin
write(F(i) : 4)
end;
writeln;
for i := 0 to 19 do begin
write(M(i) : 4)
end;
writeln;
end.
Perl
sub F { my $n = shift; $n ? $n - M(F($n-1)) : 1 }
sub M { my $n = shift; $n ? $n - F(M($n-1)) : 0 }
# Usage:
foreach my $sequence (\&F, \&M) {
print join(' ', map $sequence->($_), 0 .. 19), "\n";
}
{{out}}
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
Perl 6
A direct translation of the definitions of and :
multi F(0) { 1 }; multi M(0) { 0 }
multi F(\𝑛) { 𝑛 - M(F(𝑛 - 1)) }
multi M(\𝑛) { 𝑛 - F(M(𝑛 - 1)) }
say map &F, ^20;
say map &M, ^20;
{{out}}
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
Phix
You should normally explicitly declare forward routines (strictly necessary only when using optional or named parameters), since it often makes things easier to understand. There would be no point pre-declaring F, since it is not called before it is defined anyway.
forward function M(integer n)
function F(integer n)
return iff(n?n-M(F(n-1)):1)
end function
function M(integer n)
return iff(n?n-F(M(n-1)):0)
end function
for i=0 to 20 do
printf(1," %d",F(i))
end for
printf(1,"\n")
for i=0 to 20 do
printf(1," %d",M(i))
end for
{{out}}
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
PHP
<?php
function F($n)
{
if ( $n == 0 ) return 1;
return $n - M(F($n-1));
}
function M($n)
{
if ( $n == 0) return 0;
return $n - F(M($n-1));
}
$ra = array();
$rb = array();
for($i=0; $i < 20; $i++)
{
array_push($ra, F($i));
array_push($rb, M($i));
}
echo implode(" ", $ra) . "\n";
echo implode(" ", $rb) . "\n";
?>
PicoLisp
(de f (N)
(if (=0 N)
1
(- N (m (f (dec N)))) ) )
(de m (N)
(if (=0 N)
0
(- N (f (m (dec N)))) ) )
PL/I
test: procedure options (main);
M: procedure (n) returns (fixed) recursive; /* 8/1/2010 */
declare n fixed;
if n <= 0 then return (0);
else return ( n - F(M(n-1)) );
end M;
F: procedure (n) returns (fixed) recursive;
declare n fixed;
if n <= 0 then return (1);
else return ( n - M(F(n-1)) );
end F;
declare i fixed;
do i = 1 to 15;
put skip list ( F(i), M(i) );
end;
end test;
PostScript
/male{ /n exch def n 0 eq {0} { n n 1 sub male female sub }ifelse }def
{{libheader|initlib}}
```postscript
/F {
{
{0 eq} {pop 1} is?
{0 gt} {dup 1 sub F M sub} is?
} cond
}.
/M {
{
{0 eq} {pop 0} is?
{0 gt} {dup 1 sub M F sub} is?
} cond
}.
PowerShell
function F($n) {
if ($n -eq 0) { return 1 }
return $n - (M (F ($n - 1)))
}
function M($n) {
if ($n -eq 0) { return 0 }
return $n - (F (M ($n - 1)))
}
Prolog
female(0,1).
female(N,F) :- N>0,
N1 is N-1,
female(N1,R),
male(R, R1),
F is N-R1.
male(0,0).
male(N,F) :- N>0,
N1 is N-1,
male(N1,R),
female(R, R1),
F is N-R1.
{{works with|GNU Prolog}}
flist(S) :- for(X, 0, S), female(X, R), format('~d ', [R]), fail.
mlist(S) :- for(X, 0, S), male(X, R), format('~d ', [R]), fail.
'''Testing'''
| ?- flist(19).
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
no
| ?- mlist(19).
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
Pure
The Pure definitions very closely maps to the mathematical definitions.
F 0 = 1;
M 0 = 0;
F n = n - M(F(n-1)) if n>0;
M n = n - F(M(n-1)) if n>0;
let females = map F (0..10); females;
[1,1,2,2,3,3,4,5,5,6,6]
> let males = map M (0..10); males;
[0,0,1,2,2,3,4,4,5,6,6]
PureBasic
Declare M(n)
Procedure F(n)
If n = 0
ProcedureReturn 1
ElseIf n > 0
ProcedureReturn n - M(F(n - 1))
EndIf
EndProcedure
Procedure M(n)
If n = 0
ProcedureReturn 0
ElseIf n > 0
ProcedureReturn n - F(M(n - 1))
EndIf
EndProcedure
Define i
If OpenConsole()
For i = 0 To 19
Print(Str(F(i)))
If i = 19
Continue
EndIf
Print(", ")
Next
PrintN("")
For i = 0 To 19
Print(Str(M(i)))
If i = 19
Continue
EndIf
Print(", ")
Next
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
Input()
CloseConsole()
EndIf
{{out}}
1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12
Python
{{works with|Python|3.0}}. {{works with|Python|2.6}}
def F(n): return 1 if n == 0 else n - M(F(n-1))
def M(n): return 0 if n == 0 else n - F(M(n-1))
print ([ F(n) for n in range(20) ])
print ([ M(n) for n in range(20) ])
{{out}}
[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12]
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12]
In python there is no need to pre-declare ''M'' for it to be used in the definition of ''F''. (However ''M'' must be defined before ''F'' calls it).
R
F <- function(n) ifelse(n == 0, 1, n - M(F(n-1)))
M <- function(n) ifelse(n == 0, 0, n - F(M(n-1)))
print.table(lapply(0:19, M))
print.table(lapply(0:19, F))
REBOL
REBOL [
Title: "Mutual Recursion"
URL: http://rosettacode.org/wiki/Mutual_Recursion
References: [http://en.wikipedia.org/wiki/Hofstadter_sequence#Hofstadter_Female_and_Male_sequences]
]
f: func [
"Female."
n [integer!] "Value."
] [either 0 = n [1][n - m f n - 1]]
m: func [
"Male."
n [integer!] "Value."
] [either 0 = n [0][n - f m n - 1]]
fs: [] ms: [] for i 0 19 1 [append fs f i append ms m i]
print ["F:" mold fs crlf "M:" mold ms]
{{out}}
F: [1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12]
M: [0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12]
Racket
#lang racket
(define (F n)
(if (>= 0 n)
1
(- n (M (F (sub1 n))))))
(define (M n)
(if (>= 0 n)
0
(- n (F (M (sub1 n))))))
REXX
vanilla
This version uses vertical formatting of the output.
/*REXX program shows mutual recursion (via the Hofstadter Male and Female sequences). */
parse arg lim .; if lim='' then lim=40; w=length(lim); pad=left('', 20)
do j=0 to lim; jj=right(j, w); ff=right(F(j), w); mm=right(M(j), w)
say pad 'F('jj") =" ff pad 'M('jj") =" mm
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
F: procedure; parse arg n; if n==0 then return 1; return n - M( F(n-1) )
M: procedure; parse arg n; if n==0 then return 0; return n - F( M(n-1) )
'''output''' when using the default input of: 40
F( 0) = 1 M( 0) = 0
F( 1) = 1 M( 1) = 0
F( 2) = 2 M( 2) = 1
F( 3) = 2 M( 3) = 2
F( 4) = 3 M( 4) = 2
F( 5) = 3 M( 5) = 3
F( 6) = 4 M( 6) = 4
F( 7) = 5 M( 7) = 4
F( 8) = 5 M( 8) = 5
F( 9) = 6 M( 9) = 6
F(10) = 6 M(10) = 6
F(11) = 7 M(11) = 7
F(12) = 8 M(12) = 7
F(13) = 8 M(13) = 8
F(14) = 9 M(14) = 9
F(15) = 9 M(15) = 9
F(16) = 10 M(16) = 10
F(17) = 11 M(17) = 11
F(18) = 11 M(18) = 11
F(19) = 12 M(19) = 12
F(20) = 13 M(20) = 12
F(21) = 13 M(21) = 13
F(22) = 14 M(22) = 14
F(23) = 14 M(23) = 14
F(24) = 15 M(24) = 15
F(25) = 16 M(25) = 16
F(26) = 16 M(26) = 16
F(27) = 17 M(27) = 17
F(28) = 17 M(28) = 17
F(29) = 18 M(29) = 18
F(30) = 19 M(30) = 19
F(31) = 19 M(31) = 19
F(32) = 20 M(32) = 20
F(33) = 21 M(33) = 20
F(34) = 21 M(34) = 21
F(35) = 22 M(35) = 22
F(36) = 22 M(36) = 22
F(37) = 23 M(37) = 23
F(38) = 24 M(38) = 24
F(39) = 24 M(39) = 24
F(40) = 25 M(40) = 25
with memoization
This version uses memoization as well as a horizontal (aligned) output format.
The optimization due to memoization is faster by many orders of magnitude.
/*REXX program shows mutual recursion (via the Hofstadter Male and Female sequences). */
parse arg lim .; if lim=='' then lim=40 /*assume the default for LIM? */
w=length(lim); $m.=.; $m.0=0; $f.=.; $f.0=1; Js=; Fs=; Ms=
do j=0 to lim
Js=Js right(j, w); Fs=Fs right(F(j), w); Ms=Ms right(M(j), w)
end /*j*/
say 'Js=' Js /*display the list of Js to the term.*/
say 'Fs=' Fs /* " " " " Fs " " " */
say 'Ms=' Ms /* " " " " Ms " " " */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
F: procedure expose $m. $f.; parse arg n; if $f.n==. then $f.n=n-M(F(n-1)); return $f.n
M: procedure expose $m. $f.; parse arg n; if $m.n==. then $m.n=n-F(M(n-1)); return $m.n
'''output''' when using the default input of: 99
Js= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
Fs= 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 13 14 14 15 16 16 17 17 18 19 19 20 21 21 22 22 23 24 24 25 25 26 27 27 28 29 29 30 30 31 32 32 33 34 34 35 35 36 37 37 38 38 39 40 40 41 42 42 43 43 44 45 45 46 46 47 48 48 49 50 50 51 51 52 53 53 54 55 55 56 56 57 58 58 59 59 60 61 61
Ms= 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15 16 16 17 17 18 19 19 20 20 21 22 22 23 24 24 25 25 26 27 27 28 29 29 30 30 31 32 32 33 33 34 35 35 36 37 37 38 38 39 40 40 41 42 42 43 43 44 45 45 46 46 47 48 48 49 50 50 51 51 52 53 53 54 54 55 56 56 57 58 58 59 59 60 61 61
===with memoization, specific entry=== This version is identical in function to the previous example, but it also can compute and
display a specific request (indicated by a negative number for the argument).
/*REXX program shows mutual recursion (via the Hofstadter Male and Female sequences). */
/*───────────────── If LIM is negative, a single result is shown for the abs(lim) entry.*/
parse arg lim .; if lim=='' then lim=99; aLim=abs(lim)
w=length(aLim); $m.=.; $m.0=0; $f.=.; $f.0=1; Js=; Fs=; Ms=
do j=0 to Alim
Js=Js right(j, w); Fs=Fs right(F(j), w); Ms=Ms right(M(j), w)
end /*j*/
if lim>0 then say 'Js=' Js; else say 'J('aLim")=" word(Js, aLim+1)
if lim>0 then say 'Fs=' Fs; else say 'F('aLim")=" word(Fs, aLim+1)
if lim>0 then say 'Ms=' Ms; else say 'M('aLim")=" word(Ms, aLim+1)
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
F: procedure expose $m. $f.; parse arg n; if $f.n==. then $f.n=n-M(F(n-1)); return $f.n
M: procedure expose $m. $f.; parse arg n; if $m.n==. then $m.n=n-F(M(n-1)); return $m.n
'''output''' when using the input of: -70000
J(70000)= 70000
F(70000)= 43262
M(70000)= 43262
'''output''' when using the input of a negative ¼ million: -250000
J(250000)= 250000
F(250000)= 154509
M(250000)= 154509
Ring
see "F sequence : "
for i = 0 to 20
see "" + f(i) + " "
next
see nl
see "M sequence : "
for i = 0 to 20
see "" + m(i) + " "
next
func f n
fr = 1
if n != 0 fr = n - m(f(n - 1)) ok
return fr
func m n
mr = 0
if n != 0 mr = n - f(m(n - 1)) ok
return mr
Ruby
def F(n)
n == 0 ? 1 : n - M(F(n-1))
end
def M(n)
n == 0 ? 0 : n - F(M(n-1))
end
p (Array.new(20) {|n| F(n) })
p (Array.new(20) {|n| M(n) })
{{out}}
[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12]
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12]
In ruby there is no need to pre-declare ''M'' for it to be used in the definition of ''F''. (However ''M'' must be defined before ''F'' calls it).
Run BASIC
print "F sequence:";
for i = 0 to 20
print f(i);" ";
next i
print :print "M sequence:";
for i = 0 to 20
print m(i);" ";
next i
end
function f(n)
f = 1
if n <> 0 then f = n - m(f(n - 1))
end function
function m(n)
m = 0
if n <> 0 then m = n - f(m(n - 1))
end function
{{out}}
F sequence:1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M sequence:0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
Rust
fn f(n: u32) -> u32 {
match n {
0 => 1,
_ => n - m(f(n - 1))
}
}
fn m(n: u32) -> u32 {
match n {
0 => 0,
_ => n - f(m(n - 1))
}
}
fn main() {
for i in (0..20).map(f) {
print!("{} ", i);
}
println!("");
for i in (0..20).map(m) {
print!("{} ", i);
}
println!("")
}
{{out}}
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
=={{header|S-lang}}==
define f(n) { if (n == 0) return 1; else if (n < 0) error("oops"); return n - m(f(n - 1)); }
define m(n) { if (n == 0) return 0; else if (n < 0) error("oops"); return n - f(m(n - 1)); }
foreach $1 ([0:19]) () = printf("%d ", f($1)); () = printf("\n"); foreach $1 ([0:19]) () = printf("%d ", m($1)); () = printf("\n");
{{out}}
```txt
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
Sather
class MAIN is
f(n:INT):INT
pre n >= 0
is
if n = 0 then return 1; end;
return n - m(f(n-1));
end;
m(n:INT):INT
pre n >= 0
is
if n = 0 then return 0; end;
return n - f(m(n-1));
end;
main is
loop i ::= 0.upto!(19);
#OUT + #FMT("%2d ", f(i));
end;
#OUT + "\n";
loop i ::= 0.upto!(19);
#OUT + #FMT("%2d ", m(i));
end;
end;
end;
There's no need to pre-declare F or M.
Scala
def F(n:Int):Int =
if (n == 0) 1 else n - M(F(n-1))
def M(n:Int):Int =
if (n == 0) 0 else n - F(M(n-1))
println((0 until 20).map(F).mkString(", "))
println((0 until 20).map(M).mkString(", "))
{{out}}
1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12
Scheme
define
declarations are automatically mutually recursive:
(define (F n)
(if (= n 0) 1
(- n (M (F (- n 1))))))
(define (M n)
(if (= n 0) 0
(- n (F (M (- n 1))))))
If you wanted to use a let
-like construct to create local bindings, you would do the following. The define
construct above is just a syntactic sugar for the following where the entire rest of the scope is used as the body.
(letrec ((F (lambda (n)
(if (= n 0) 1
(- n (M (F (- n 1)))))))
(M (lambda (n)
(if (= n 0) 0
(- n (F (M (- n 1))))))))
(F 19)) # evaluates to 12
The letrec
indicates that the definitions can be recursive, and fact that we placed these two in the same letrec
block makes them mutually recursive.
Seed7
$ include "seed7_05.s7i";
const func integer: m (in integer: n) is forward;
const func integer: f (in integer: n) is func
result
var integer: res is 0;
begin
if n = 0 then
res := 1;
else
res := n - m(f(n - 1));
end if;
end func;
const func integer: m (in integer: n) is func
result
var integer: res is 0;
begin
if n = 0 then
res := 0;
else
res := n - f(m(n - 1));
end if;
end func;
const proc: main is func
local
var integer: i is 0;
begin
for i range 0 to 19 do
write(f(i) lpad 3);
end for;
writeln;
for i range 0 to 19 do
write(m(i) lpad 3);
end for;
writeln;
end func;
{{out}}
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
Sidef
func F(){}
func M(){}
F = func(n) { n > 0 ? (n - M(F(n-1))) : 1 }
M = func(n) { n > 0 ? (n - F(M(n-1))) : 0 }
[F, M].each { |seq|
{|i| seq.call(i)}.map(^20).join(' ').say
}
{{out}}
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
Smalltalk
Using block closure.
|F M ra rb|
F := [ :n |
(n == 0)
ifTrue: [ 1 ]
ifFalse: [ n - (M value: (F value: (n-1))) ]
].
M := [ :n |
(n == 0)
ifTrue: [ 0 ]
ifFalse: [ n - (F value: (M value: (n-1))) ]
].
ra := OrderedCollection new.
rb := OrderedCollection new.
0 to: 19 do: [ :i |
ra add: (F value: i).
rb add: (M value: i)
].
ra displayNl.
rb displayNl.
SNOBOL4
define('f(n)') :(f_end)
f f = eq(n,0) 1 :s(return)
f = n - m(f(n - 1)) :(return)
f_end
define('m(n)') :(m_end)
m m = eq(n,0) 0 :s(return)
m = n - f(m(n - 1)) :(return)
m_end
* # Test and display
L1 s1 = s1 m(i) ' ' ; s2 = s2 f(i) ' '
i = le(i,25) i + 1 :s(L1)
output = 'M: ' s1; output = 'F: ' s2
end
{{out}}
M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15 16 16
F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 13 14 14 15 16 16
SNUSP
The program shown calculates F(3) and demonstrates simple and mutual recursion.
/======\
F==!/=!\?\+# | />-<-\
| \@\-@/@\===?/<#
| | |
$+++/======|====/
! /=/ /+<<-\
| \!/======?\>>=?/<# dup
| \<<+>+>-/
! !
\======|====\
| | |
| /===|==\ |
M==!\=!\?\#| | |
\@/-@/@/===?\<#
^ \>-<-/
| ^ ^ ^ ^
| | | | subtract from n
| | | mutual recursion
| | recursion
| n-1
check for zero
SPL
f(n)=
? n=0, <= 1
<= n-m(f(n-1))
.
m(n)=
? n=0, <= 0
<= n-f(m(n-1))
.
> i, 0..20
fs += " "+f(i)
ms += " "+m(i)
<
#.output("F:",fs)
#.output("M:",ms)
{{out}}
F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
Standard ML
fun f 0 = 1
| f n = n - m (f (n-1))
and m 0 = 0
| m n = n - f (m (n-1))
;
The '''fun'''
construct creates recursive functions, and the '''and'''
allows a group of functions to call each other. The above is just a shortcut for the following:
1
| n => n - m (f (n-1))
and m = fn 0 => 0
| n => n - f (m (n-1))
;
which indicates that the functions call themselves ('''rec'''
) and each other ('''and'''
).
Swift
It just works. No special pre-declaration is necessary.
func F(n: Int) -> Int {
return n == 0 ? 1 : n - M(F(n-1))
}
func M(n: Int) -> Int {
return n == 0 ? 0 : n - F(M(n-1))
}
for i in 0..20 {
print("\(F(i)) ")
}
println()
for i in 0..20 {
print("\(M(i)) ")
}
println()
Tcl
proc m {n} {
if { $n == 0 } { expr 0; } else {
expr {$n - [f [m [expr {$n-1}] ]]};
}
}
proc f {n} {
if { $n == 0 } { expr 1; } else {
expr {$n - [m [f [expr {$n-1}] ]]};
}
}
for {set i 0} {$i < 20} {incr i} {
puts -nonewline [f $i];
puts -nonewline " ";
}
puts ""
for {set i 0} {$i < 20} {incr i} {
puts -nonewline [m $i];
puts -nonewline " ";
}
puts ""
=={{header|TI-89 BASIC}}==
Define F(n) = when(n=0, 1, n - M(F(n - 1)))
Define M(n) = when(n=0, 0, n - F(M(n - 1)))
TXR
(defun f (n)
(if (>= 0 n)
1
(- n (m (f (- n 1))))))
(defun m (n)
(if (>= 0 n)
0
(- n (f (m (- n 1))))))
(each ((n (range 0 15)))
(format t "f(~s) = ~s; m(~s) = ~s\n" n (f n) n (m n)))
$ txr mutual-recursion.txr
f(0) = 1; m(0) = 0
f(1) = 1; m(1) = 0
f(2) = 2; m(2) = 1
f(3) = 2; m(3) = 2
f(4) = 3; m(4) = 2
f(5) = 3; m(5) = 3
f(6) = 4; m(6) = 4
f(7) = 5; m(7) = 4
f(8) = 5; m(8) = 5
f(9) = 6; m(9) = 6
f(10) = 6; m(10) = 6
f(11) = 7; m(11) = 7
f(12) = 8; m(12) = 7
f(13) = 8; m(13) = 8
f(14) = 9; m(14) = 9
f(15) = 9; m(15) = 9
uBasic/4tH
{{trans|BBC BASIC}}
uBasic/4tH supports mutual recursion. However, the underlying system can't support the stress this puts on the stack - at least not for the full sequence. This version uses [https://en.wikipedia.org/wiki/Memoization memoization] to alleviate the stress and speed up execution.
FOR a@ = 0 TO 200 ' set the array @(a@) = -1 NEXT
PRINT "F sequence:" ' print the F-sequence FOR a@ = 0 TO 20 PRINT FUNC(_f(a@));" "; NEXT PRINT
PRINT "M sequence:" ' print the M-sequence FOR a@ = 0 TO 20 PRINT FUNC(_m(a@));" "; NEXT PRINT
END
_f PARAM(1) ' F-function IF a@ = 0 THEN RETURN (1) ' memoize the solution IF @(a@) < 0 THEN @(a@) = a@ - FUNC(_m(FUNC(_f(a@ - 1)))) RETURN (@(a@)) ' return array element
_m PARAM(1) ' M-function IF a@ = 0 THEN RETURN (0) ' memoize the solution IF @(a@+100) < 0 THEN @(a@+100) = a@ - FUNC(_f(FUNC(_m(a@ - 1)))) RETURN (@(a@+100)) ' return array element
{{out}}
```txt
F sequence:
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M sequence:
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
0 OK, 0:199
UNIX Shell
{{works with|Bourne Again SHell}}
M()
{
local n
n=$1
if [[ $n -eq 0 ]]; then
echo -n 0
else
echo -n $(( n - $(F $(M $((n-1)) ) ) ))
fi
}
F()
{
local n
n=$1
if [[ $n -eq 0 ]]; then
echo -n 1
else
echo -n $(( n - $(M $(F $((n-1)) ) ) ))
fi
}
for((i=0; i < 20; i++)); do
F $i
echo -n " "
done
echo
for((i=0; i < 20; i++)); do
M $i
echo -n " "
done
echo
Ursala
Forward declarations are not an issue in Ursala, which allows any
definition to depend on any symbol declared within the same
scope. However, cyclic dependences are not accepted unless the
programmer explicitly accounts for their semantics. If the recurrence
can be solved using a fixed point combinator, the compiler can be
directed to use one by the #fix
directive as shown, in this case
with one of a family of functional fixed point combinators from
a library. (There are easier ways to define these functions in Ursala
than by mutual recursion, but fixed points are useful for other things as well.)
#import std
#import nat
#import sol
#fix general_function_fixer 0
F = ~&?\1! difference^/~& M+ F+ predecessor
M = ~&?\0! difference^/~& F+ M+ predecessor
This test program applies both functions to the first twenty natural numbers.
#cast %nLW
test = ^(F*,M*) iota 20
{{out}}
(
<1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12>,
<0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12>)
VBA
Private Function F(ByVal n As Integer) As Integer
If n = 0 Then
F = 1
Else
F = n - M(F(n - 1))
End If
End Function
Private Function M(ByVal n As Integer) As Integer
If n = 0 Then
M = 0
Else
M = n - F(M(n - 1))
End If
End Function
Public Sub MR()
Dim i As Integer
For i = 0 To 20
Debug.Print F(i);
Next i
Debug.Print
For i = 0 To 20
Debug.Print M(i);
Next i
End Sub
{{out}}
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
x86 Assembly
{{works with|nasm}}
Since all "labels" (symbols), if not ''local'', can be seen by the whole code in the same source unit, we don't need special care to let the subroutine func_f call func_m. If the function would have been in another source unit, we should have declared it extern (the linker will resolve the symbol), as done for printf.
(It must be linked with the C standard library libc or similar and a startup code; lazyly a gcc mutrec.o works, being mutrec.o produced by e.g. nasm -f elf mutrec.asm)
global main
extern printf
section .text
func_f
mov eax, [esp+4]
cmp eax, 0
jz f_ret
dec eax
push eax
call func_f
mov [esp+0], eax
call func_m
add esp, 4
mov ebx, [esp+4]
sub ebx, eax
mov eax, ebx
ret
f_ret
mov eax, 1
ret
func_m
mov eax, [esp+4]
cmp eax, 0
jz m_ret
dec eax
push eax
call func_m
mov [esp+0], eax
call func_f
add esp, 4
mov ebx, [esp+4]
sub ebx, eax
mov eax, ebx
ret
m_ret
xor eax, eax
ret
main
mov edx, func_f
call output_res
mov edx, func_m
call output_res
ret
output_res
xor ecx, ecx
loop0
push ecx
call edx
push edx
push eax
push form
call printf
add esp, 8
pop edx
pop ecx
inc ecx
cmp ecx, 20
jnz loop0
push newline
call printf
add esp, 4
ret
section .rodata
form
db '%d ',0
newline
db 10,0
end
XPL0
code ChOut=8, CrLf=9, IntOut=11;
ffunc M; \forward-referenced function declaration
func F(N);
int N;
return if N=0 then 1 else N - M(F(N-1));
func M(N);
int N;
return if N=0 then 0 else N - F(M(N-1));
int I;
[for I:= 0 to 19 do [IntOut(0, F(I)); ChOut(0, ^ )];
CrLf(0);
for I:= 0 to 19 do [IntOut(0, M(I)); ChOut(0, ^ )];
CrLf(0);
]
{{out}}
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
Yabasic
{{trans|AWK}}
// User defined functions
sub F(n)
if n = 0 return 1
return n - M(F(n-1))
end sub
sub M(n)
if n = 0 return 0
return n - F(M(n-1))
end sub
for i = 0 to 20
print F(i) using "###";
next
print
for i = 0 to 20
print M(i) using "###";
next
print
zkl
This works if the functions are in a file or on one line (in the REPL) as zkl doesn't like referencing undefined objects. You could also pass/close the other function.
fcn f(n){ if(n==0)return(1); n-m(f(n-1,m),f) }
fcn m(n){ if(n==0)return(0); n-f(m(n-1,f),m) }
[0..19].apply(f).println(); // or foreach n in ([0..19]){ print(f(n)," ") }
[0..19].apply(m).println(); // or foreach n in ([0..19]){ print(m(n)," ") }
{{out}}
L(1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12)
L(0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12)