⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}} A perfect shuffle (or [https://en.wikipedia.org/wiki/Faro_shuffle faro/weave shuffle]) means splitting a deck of cards into equal halves, and perfectly interleaving them - so that you end up with the first card from the left half, followed by the first card from the right half, and so on:
:::When you repeatedly perform perfect shuffles on an even-sized deck of unique cards, it will at some point arrive back at its original order. How many shuffles this takes, depends solely on the number of cards in the deck - for example for a deck of eight cards it takes three shuffles:
::::: {| style="border-spacing:0.5em 0;border-collapse:separate;margin:0 1em;text-align:right" |- | ''original:'' || 1 2 3 4 5 6 7 8 |- | ''after 1st shuffle:'' || 1 5 2 6 3 7 4 8 |- | ''after 2nd shuffle:'' || 1 3 5 7 2 4 6 8 |- | ''after 3rd shuffle:'' || 1 2 3 4 5 6 7 8 |}'''''The Task'''''
Write a function that can perform a perfect shuffle on an even-sized list of values.
Call this function repeatedly to count how many shuffles are needed to get a deck back to its original order, for each of the deck sizes listed under "Test Cases" below.
#* You can use a list of numbers (or anything else that's convenient) to represent a deck; just make sure that all "cards" are unique within each deck. #* Print out the resulting shuffle counts, to demonstrate that your program passes the test-cases.
'''''Test Cases'''''
::::: {| class="wikitable" |- ! input ''(deck size)'' !! output ''(number of shuffles required)'' |- | 8 || 3 |- | 24 || 11 |- | 52 || 8 |- | 100 || 30 |- | 1020 || 1018 |- | 1024 || 10 |- | 10000 || 300 |}
Ada
with ada.text_io;use ada.text_io;
procedure perfect_shuffle is
function count_shuffle (half_size : Positive) return Positive is
subtype index is Natural range 0..2 * half_size - 1;
subtype index_that_move is index range index'first+1..index'last-1;
type deck is array (index) of index;
initial, d, next : deck;
count : Natural := 1;
begin
for i in index loop initial (i) := i; end loop;
d := initial;
loop
for i in index_that_move loop
next (i) := (if d (i) mod 2 = 0 then d(i)/2 else d(i)/2 + half_size);
end loop;
exit when next (index_that_move)= initial(index_that_move);
d := next;
count := count + 1;
end loop;
return count;
end count_shuffle;
test : array (Positive range <>) of Positive := (8, 24, 52, 100, 1020, 1024, 10_000);
begin
for size of test loop
put_line ("For" & size'img & " cards, there are "& count_shuffle (size / 2)'img & " shuffles needed.");
end loop;
end perfect_shuffle;
{{out}}
For 8 cards, there are 3 shuffles needed.
For 24 cards, there are 11 shuffles needed.
For 52 cards, there are 8 shuffles needed.
For 100 cards, there are 30 shuffles needed.
For 1020 cards, there are 1018 shuffles needed.
For 1024 cards, there are 10 shuffles needed.
For 10000 cards, there are 300 shuffles needed.
ALGOL 68
# returns an array of the specified length, initialised to an ascending sequence of integers #
OP DECK = ( INT length )[]INT:
BEGIN
[ 1 : length ]INT result;
FOR i TO UPB result DO result[ i ] := i OD;
result
END # DECK # ;
# in-place shuffles the deck as per the task requirements #
# LWB deck is assumed to be 1 #
PROC shuffle = ( REF[]INT deck )VOID:
BEGIN
[ 1 : UPB deck ]INT result;
INT left pos := 1;
INT right pos := ( UPB deck OVER 2 ) + 1;
FOR i FROM 2 BY 2 TO UPB result DO
result[ left pos ] := deck[ i - 1 ];
result[ right pos ] := deck[ i ];
left pos +:= 1;
right pos +:= 1
OD;
FOR i TO UPB deck DO deck[ i ] := result[ i ] OD
END # SHUFFLE # ;
# compares two integer arrays for equality #
OP = = ( []INT a, b )BOOL:
IF LWB a /= LWB b OR UPB a /= UPB b
THEN # the arrays have different bounds #
FALSE
ELSE
BOOL result := TRUE;
FOR i FROM LWB a TO UPB a WHILE result := a[ i ] = b[ i ] DO SKIP OD;
result
FI # = # ;
# compares two integer arrays for inequality #
OP /= = ( []INT a, b )BOOL: NOT ( a = b );
# returns the number of shuffles required to return a deck of the specified length #
# back to its original state #
PROC count shuffles = ( INT length )INT:
BEGIN
[] INT original deck = DECK length;
[ 1 : length ]INT shuffled deck := original deck;
INT count := 1;
WHILE shuffle( shuffled deck );
shuffled deck /= original deck
DO
count +:= 1
OD;
count
END # count shuffles # ;
# test the shuffling #
[]INT lengths = ( 8, 24, 52, 100, 1020, 1024, 10 000 );
FOR l FROM LWB lengths TO UPB lengths DO
print( ( whole( lengths[ l ], -8 ) + ": " + whole( count shuffles( lengths[ l ] ), -6 ), newline ) )
OD
{{out}}
8: 3
24: 11
52: 8
100: 30
1020: 1018
1024: 10
10000: 300
AutoHotkey
Shuffle(cards){
n := cards.MaxIndex()/2, res := []
loop % n
res.push(cards[A_Index]), res.push(cards[round(A_Index + n)])
return res
}
Examples:
test := [8, 24, 52, 100, 1020, 1024, 10000]
for each, val in test
{
cards := [], original:=rep:=""
loop, % val
cards.push(A_Index), original .= (original?", ":"") A_Index
while (res <> original)
{
res := ""
for k, v in (cards := Shuffle(cards))
res .= (res?", ":"") v
rep := A_Index
}
result .= val "`t" rep "`n"
}
MsgBox % result
return
Outputs:
8 3
24 11
52 8
100 30
1020 1018
1024 10
10000 300
C
/*
### > INCLUDES <=========================================================
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
/*
### > CONSTANTS <========================================================
*/
#define N_DECKS 7
const int kDecks[N_DECKS] = { 8, 24, 52, 100, 1020, 1024, 10000 };
/*
### > FUNCTION PROTOTYPES <==============================================
*/
int CreateDeck( int **deck, int nCards );
void InitDeck( int *deck, int nCards );
int DuplicateDeck( int **dest, const int *orig, int nCards );
int InitedDeck( int *deck, int nCards );
int ShuffleDeck( int *deck, int nCards );
void FreeDeck( int **deck );
/*
### > FUNCTION DEFINITIONS <=============================================
*/
int main() {
int i, nCards, nShuffles;
int *deck = NULL;
for( i=0; i<N_DECKS; ++i ) {
nCards = kDecks[i];
if( !CreateDeck(&deck,nCards) ) {
fprintf( stderr, "Error: malloc() failed!\n" );
return 1;
}
InitDeck( deck, nCards );
nShuffles = 0;
do {
ShuffleDeck( deck, nCards );
++nShuffles;
} while( !InitedDeck(deck,nCards) );
printf( "Cards count: %d, shuffles required: %d.\n", nCards, nShuffles );
FreeDeck( &deck );
}
return 0;
}
int CreateDeck( int **deck, int nCards ) {
int *tmp = NULL;
if( deck != NULL )
tmp = malloc( nCards*sizeof(*tmp) );
return tmp!=NULL ? (*deck=tmp)!=NULL : 0; /* (?success) (:failure) */
}
void InitDeck( int *deck, int nCards ) {
if( deck != NULL ) {
int i;
for( i=0; i<nCards; ++i )
deck[i] = i;
}
}
int DuplicateDeck( int **dest, const int *orig, int nCards ) {
if( orig != NULL && CreateDeck(dest,nCards) ) {
memcpy( *dest, orig, nCards*sizeof(*orig) );
return 1; /* success */
}
else {
return 0; /* failure */
}
}
int InitedDeck( int *deck, int nCards ) {
int i;
for( i=0; i<nCards; ++i )
if( deck[i] != i )
return 0; /* not inited */
return 1; /* inited */
}
int ShuffleDeck( int *deck, int nCards ) {
int *copy = NULL;
if( DuplicateDeck(©,deck,nCards) ) {
int i, j;
for( i=j=0; i<nCards/2; ++i, j+=2 ) {
deck[j] = copy[i];
deck[j+1] = copy[i+nCards/2];
}
FreeDeck( © );
return 1; /* success */
}
else {
return 0; /* failure */
}
}
void FreeDeck( int **deck ) {
if( *deck != NULL ) {
free( *deck );
*deck = NULL;
}
}
{{out}}
Cards count: 8, shuffles required: 3.
Cards count: 24, shuffles required: 11.
Cards count: 52, shuffles required: 8.
Cards count: 100, shuffles required: 30.
Cards count: 1020, shuffles required: 1018.
Cards count: 1024, shuffles required: 10.
Cards count: 10000, shuffles required: 300.
Press "Enter" to quit...
C++
#include <iostream>
#include <algorithm>
#include <vector>
int pShuffle( int t ) {
std::vector<int> v, o, r;
for( int x = 0; x < t; x++ ) {
o.push_back( x + 1 );
}
r = o;
int t2 = t / 2 - 1, c = 1;
while( true ) {
v = r;
r.clear();
for( int x = t2; x > -1; x-- ) {
r.push_back( v[x + t2 + 1] );
r.push_back( v[x] );
}
std::reverse( r.begin(), r.end() );
if( std::equal( o.begin(), o.end(), r.begin() ) ) return c;
c++;
}
}
int main() {
int s[] = { 8, 24, 52, 100, 1020, 1024, 10000 };
for( int x = 0; x < 7; x++ ) {
std::cout << "Cards count: " << s[x] << ", shuffles required: ";
std::cout << pShuffle( s[x] ) << ".\n";
}
return 0;
}
{{out}}
Cards count: 8, shuffles required: 3.
Cards count: 24, shuffles required: 11.
Cards count: 52, shuffles required: 8.
Cards count: 100, shuffles required: 30.
Cards count: 1020, shuffles required: 1018.
Cards count: 1024, shuffles required: 10.
Cards count: 10000, shuffles required: 300.
C#
{{works with|C sharp|6}}
using System;
using System.Collections.Generic;
using System.Linq;
public static class PerfectShuffle
{
static void Main()
{
foreach (int input in new [] {8, 24, 52, 100, 1020, 1024, 10000}) {
int[] numbers = Enumerable.Range(1, input).ToArray();
Console.WriteLine($"{input} cards: {ShuffleThrough(numbers).Count()}");
}
IEnumerable<T[]> ShuffleThrough<T>(T[] original) {
T[] copy = (T[])original.Clone();
do {
yield return copy = Shuffle(copy);
} while (!Enumerable.SequenceEqual(original, copy));
}
}
public static T[] Shuffle<T>(T[] array) {
if (array.Length % 2 != 0) throw new ArgumentException("Length must be even.");
int half = array.Length / 2;
T[] result = new T[array.Length];
for (int t = 0, l = 0, r = half; l < half; t+=2, l++, r++) {
result[t] = array[l];
result[t+1] = array[r];
}
return result;
}
}
{{out}}
8 cards: 3
24 cards: 11
52 cards: 8
100 cards: 30
1020 cards: 1018
1024 cards: 10
10000 cards: 300
Clojure
(defn perfect-shuffle [deck]
(let [half (split-at (/ (count deck) 2) deck)]
(interleave (first half) (last half))))
(defn solve [deck-size]
(let [original (range deck-size)
trials (drop 1 (iterate perfect-shuffle original))
predicate #(= original %)]
(println (format "%5s: %s" deck-size
(inc (some identity (map-indexed (fn [i x] (when (predicate x) i)) trials)))))))
(map solve [8 24 52 100 1020 1024 10000])
{{out}}
8: 3
24: 11
52: 8
100: 30
1020: 1018
1024: 10
10000: 300
Common Lisp
(defun perfect-shuffle (deck)
(let* ((half (floor (length deck) 2))
(left (subseq deck 0 half))
(right (nthcdr half deck)))
(mapcan #'list left right)))
(defun solve (deck-size)
(loop with original = (loop for n from 1 to deck-size collect n)
for trials from 1
for deck = original then shuffled
for shuffled = (perfect-shuffle deck)
until (equal shuffled original)
finally (format t "~5D: ~4D~%" deck-size trials)))
(solve 8)
(solve 24)
(solve 52)
(solve 100)
(solve 1020)
(solve 1024)
(solve 10000)
{{out}}
8: 3
24: 11
52: 8
100: 30
1020: 1018
1024: 10
10000: 300
D
{{trans|Java}}
import std.stdio;
void main() {
auto sizes = [8, 24, 52, 100, 1020, 1024, 10_000];
foreach(s; sizes) {
writefln("%5s : %5s", s, perfectShuffle(s));
}
}
int perfectShuffle(int size) {
import std.exception : enforce;
enforce(size%2==0);
import std.algorithm : copy, equal;
import std.range;
int[] orig = iota(0, size).array;
int[] process;
process.length = size;
copy(orig, process);
for(int count=1; true; count++) {
process = roundRobin(process[0..$/2], process[$/2..$]).array;
if (equal(orig, process)) {
return count;
}
}
assert(false, "How did this get here?");
}
{{out}}
8 : 3
24 : 11
52 : 8
100 : 30
1020 : 1018
1024 : 10
10000 : 300
Dyalect
{{trans|C#}}
func shuffle(arr) {
if arr.len() % 2 != 0 {
throw "Length must be even."
}
var half = arr.len() / 2
var result = Array.empty(size: arr.len())
var (t, l, r) = (0, 0, half)
while l < half {
result[t] = arr[l]
result[t+1] = arr[r]
l += 1
r += 1
t += 2
}
result
}
func arrayEqual(xs, ys) {
if xs.len() != ys.len() {
return false
}
for i in xs.indices() {
if xs[i] != ys[i] {
return false
}
}
return true
}
func shuffleThrough(original) {
var copy = original.clone()
while true {
yield (copy = shuffle(copy))
if arrayEqual(original, copy) {
break
}
}
}
for input in { 8, 24, 52, 100, 1020, 1024, 10000} {
var numbers = [1..input]
print("\(input) cards: \(shuffleThrough(numbers).len())");
}
{{out}}
8 cards: 3
24 cards: 11
52 cards: 8
100 cards: 30
1020 cards: 1018
1024 cards: 10
10000 cards: 300
EchoLisp
;; shuffler : a permutation vector which interleaves both halves of deck
(define (make-shuffler n)
(let ((s (make-vector n)))
(for ((i (in-range 0 n 2))) (vector-set! s i (/ i 2)))
(for ((i (in-range 0 n 2))) (vector-set! s (1+ i) (+ (/ n 2) (vector-ref s i))))
s))
;; output : (n . # of shuffles needed to go back)
(define (magic-shuffle n)
(when (odd? n) (error "magic-shuffle:odd input" n))
(let [(deck (list->vector (iota n))) ;; (0 1 ... n-1)
(dock (list->vector (iota n))) ;; keep trace or init deck
(shuffler (make-shuffler n))]
(cons n (1+
(for/sum ((i Infinity)) ; (in-naturals missing in EchoLisp v2.9)
(vector-permute! deck shuffler) ;; permutes in place
#:break (eqv? deck dock) ;; compare to first
1)))))
{{out}}
map magic-shuffle '(8 24 52 100 1020 1024 10000))
→ ((8 . 3) (24 . 11) (52 . 8) (100 . 30) (1020 . 1018) (1024 . 10) (10000 . 300))
;; Let's look in the On-line Encyclopedia of Integer Sequences
;; Given a list of numbers, the (oeis ...) function looks for a sequence
(lib 'web)
Lib: web.lib loaded.
map magic-shuffle (range 2 18 2))
→ ((2 . 1) (4 . 2) (6 . 4) (8 . 3) (10 . 6) (12 . 10) (14 . 12) (16 . 4))
(oeis '(1 2 4 3 6 10 12 4))
→ Sequence A002326 found
Elixir
{{trans|Ruby}}
defmodule Perfect do
def shuffle(n) do
start = Enum.to_list(1..n)
m = div(n, 2)
shuffle(start, magic_shuffle(start, m), m, 1)
end
defp shuffle(start, start, _, step), do: step
defp shuffle(start, deck, m, step) do
shuffle(start, magic_shuffle(deck, m), m, step+1)
end
defp magic_shuffle(deck, len) do
{left, right} = Enum.split(deck, len)
Enum.zip(left, right)
|> Enum.map(&Tuple.to_list/1)
|> List.flatten
end
end
Enum.each([8, 24, 52, 100, 1020, 1024, 10000], fn n ->
step = Perfect.shuffle(n)
IO.puts "#{n} : #{step}"
end)
{{out}}
8 : 3
24 : 11
52 : 8
100 : 30
1020 : 1018
1024 : 10
10000 : 300
=={{header|F_Sharp|F#}}==
let perfectShuffle xs =
let h = (List.length xs) / 2
xs
|> List.mapi (fun i x->(if i<h then i * 2 else ((i-h) * 2) + 1), x)
|> List.sortBy fst
|> List.map snd
let orderCount n =
let xs = [1..n]
let rec spin count ys =
if xs=ys then count
else ys |> perfectShuffle |> spin (count + 1)
xs |> perfectShuffle |> spin 1
[ 8; 24; 52; 100; 1020; 1024; 10000 ] |> List.iter (fun n->n |> orderCount |> printfn "%d %d" n)
{{out}}
8 3
24 11
52 8
100 30
1020 1018
1024 10
10000 300
Factor
USING: arrays formatting kernel math prettyprint sequences
sequences.merged ;
IN: rosetta-code.perfect-shuffle
CONSTANT: test-cases { 8 24 52 100 1020 1024 10000 }
: shuffle ( seq -- seq' ) halves 2merge ;
: shuffle-count ( n -- m )
<iota> >array 0 swap dup [ 2dup = ] [ shuffle [ 1 + ] 2dip ]
do until 2drop ;
"Deck size" "Number of shuffles required" "%-11s %-11s\n" printf
test-cases [ dup shuffle-count "%-11d %-11d\n" printf ] each
{{out}}
Deck size Number of shuffles required
8 3
24 11
52 8
100 30
1020 1018
1024 10
10000 300
Go
package main
import "fmt"
type Deck struct {
Cards []int
length int
}
func NewDeck(deckSize int) (res *Deck){
if deckSize % 2 != 0{
panic("Deck size must be even")
}
res = new(Deck)
res.Cards = make([]int, deckSize)
res.length = deckSize
for i,_ := range res.Cards{
res.Cards[i] = i
}
return
}
func (d *Deck)shuffleDeck(){
tmp := make([]int,d.length)
for i := 0;i <d.length/2;i++ {
tmp[i*2] = d.Cards[i]
tmp[i*2+1] = d.Cards[d.length / 2 + i]
}
d.Cards = tmp
}
func (d *Deck) isEqualTo(c Deck) (res bool) {
if d.length != c.length {
panic("Decks aren't equally sized")
}
res = true
for i, v := range d.Cards{
if v != c.Cards[i] {
res = false
}
}
return
}
func main(){
for _,v := range []int{8,24,52,100,1020,1024,10000} {
fmt.Printf("Cards count: %d, shuffles required: %d\n",v,ShufflesRequired(v))
}
}
func ShufflesRequired(deckSize int)(res int){
deck := NewDeck(deckSize)
Ref := *deck
deck.shuffleDeck()
res++
for ;!deck.isEqualTo(Ref);deck.shuffleDeck(){
res++
}
return
}
{{out}}
Cards count: 8, shuffles required: 3
Cards count: 24, shuffles required: 11
Cards count: 52, shuffles required: 8
Cards count: 100, shuffles required: 30
Cards count: 1020, shuffles required: 1018
Cards count: 1024, shuffles required: 10
Cards count: 10000, shuffles required: 300
Haskell
shuffle :: [a] -> [a]
shuffle lst = let (a,b) = splitAt (length lst `div` 2) lst
in foldMap (\(x,y) -> [x,y]) $ zip a b
findCycle :: Eq a => (a -> a) -> a -> [a]
findCycle f x = takeWhile (/= x) $ iterate f (f x)
main = mapM_ report [ 8, 24, 52, 100, 1020, 1024, 10000 ]
where
report n = putStrLn ("deck of " ++ show n ++ " cards: "
++ show (countSuffles n) ++ " shuffles!")
countSuffles n = 1 + length (findCycle shuffle [1..n])
{{out}}
deck of 8 cards: 3 shuffles!
deck of 24 cards: 11 shuffles!
deck of 52 cards: 8 shuffles!
deck of 100 cards: 30 shuffles!
deck of 1020 cards: 1018 shuffles!
deck of 1024 cards: 10 shuffles!
deck of 10000 cards: 300 shuffles!
J
The shuffle routine:
shuf=: /: $ /:@$ 0 1"_
Here, the phrase ($ $ 0 1"_) would generate a sequence of 0s and 1s the same length as the argument sequence:
($ $ 0 1"_) 'abcdef'
0 1 0 1 0 1
And we can use ''grade up'' (/:)
to find the indices which would sort the argument sequence so that the values in the positions corresponding to our generated zeros would come before the values in the positions corresponding to our ones.
/: ($ $ 0 1"_) 'abcdef'
0 2 4 1 3 5
But we can use ''grade up'' again to find what would have been the original permutation (''grade up'' is a self inverting function for this domain).
/:/: ($ $ 0 1"_) 'abcdef'
0 3 1 4 2 5
And, that means it can also sort the original sequence into that order:
shuf 'abcdef'
adbecf
shuf 'abcdefgh'
aebfcgdh
And this will work for sequences of arbitrary length.
(The rest of the implementation of shuf
is pure syntactic sugar - you can use J's [[j:Vocabulary/Dissect|dissect]] and [[j:Scripts/Tracer|trace]] facilities to see the details if you are trying to learn the language.)
Meanwhile, the cycle length routine could look like this:
shuflen=: [: *./ #@>@C.@shuf@i.
Here, we first generate a list of integers of the required length in their natural order. We then reorder them using our shuf
function, find the [[j:Vocabulary/ccapdot|cycles]] which result, find the lengths of each of these cycles then find the least common multiple of those lengths.
So here is the task example (with most of the middle trimmed out to avoid crashing the rosettacode wiki implementation):
shuflen"0 }.2*i.5000
1 2 4 3 6 10 12 4 8 18 6 11 20 18 28 5 10 12 36 12 20 14 12 23 21 8 52 20 18 ... 4278 816 222 1332 384
Task example:
('deck size';'required shuffles'),(; shuflen)&> 8 24 52 100 1020 1024 10000
┌─────────┬─────────────────┐
│deck size│required shuffles│
├─────────┼─────────────────┤
│8 │3 │
├─────────┼─────────────────┤
│24 │11 │
├─────────┼─────────────────┤
│52 │8 │
├─────────┼─────────────────┤
│100 │30 │
├─────────┼─────────────────┤
│1020 │1018 │
├─────────┼─────────────────┤
│1024 │10 │
├─────────┼─────────────────┤
│10000 │300 │
└─────────┴─────────────────┘
Note that the implementation of shuf
defines a behavior for odd length "decks". Experimentation shows that cycle length for an odd length deck is often the same as the cycle length for an even length deck which is one "card" longer.
Java
{{works with|Java|8}}
import java.util.Arrays;
import java.util.stream.IntStream;
public class PerfectShuffle {
public static void main(String[] args) {
int[] sizes = {8, 24, 52, 100, 1020, 1024, 10_000};
for (int size : sizes)
System.out.printf("%5d : %5d%n", size, perfectShuffle(size));
}
static int perfectShuffle(int size) {
if (size % 2 != 0)
throw new IllegalArgumentException("size must be even");
int half = size / 2;
int[] a = IntStream.range(0, size).toArray();
int[] original = a.clone();
int[] aa = new int[size];
for (int count = 1; true; count++) {
System.arraycopy(a, 0, aa, 0, size);
for (int i = 0; i < half; i++) {
a[2 * i] = aa[i];
a[2 * i + 1] = aa[i + half];
}
if (Arrays.equals(a, original))
return count;
}
}
}
8 : 3
24 : 11
52 : 8
100 : 30
1020 : 1018
1024 : 10
10000 : 300
JavaScript
ES6
(() => {
'use strict';
// shuffleCycleLength :: Int -> Int
const shuffleCycleLength = deckSize =>
firstCycle(shuffle, range(1, deckSize))
.all.length;
// shuffle :: [a] -> [a]
const shuffle = xs =>
concat(zip.apply(null, splitAt(div(length(xs), 2), xs)));
// firstycle :: Eq a => (a -> a) -> a -> [a]
const firstCycle = (f, x) =>
until(
m => EqArray(x, m.current),
m => {
const fx = f(m.current);
return {
current: fx,
all: m.all.concat([fx])
};
}, {
current: f(x),
all: [x]
}
);
// Two arrays equal ?
// EqArray :: [a] -> [b] -> Bool
const EqArray = (xs, ys) => {
const [nx, ny] = [xs.length, ys.length];
return nx === ny ? (
nx > 0 ? (
xs[0] === ys[0] && EqArray(xs.slice(1), ys.slice(1))
) : true
) : false;
};
// GENERIC FUNCTIONS
// zip :: [a] -> [b] -> [(a,b)]
const zip = (xs, ys) =>
xs.slice(0, Math.min(xs.length, ys.length))
.map((x, i) => [x, ys[i]]);
// concat :: [[a]] -> [a]
const concat = xs => [].concat.apply([], xs);
// splitAt :: Int -> [a] -> ([a],[a])
const splitAt = (n, xs) => [xs.slice(0, n), xs.slice(n)];
// div :: Num -> Num -> Int
const div = (x, y) => Math.floor(x / y);
// until :: (a -> Bool) -> (a -> a) -> a -> a
const until = (p, f, x) => {
const go = x => p(x) ? x : go(f(x));
return go(x);
}
// range :: Int -> Int -> [Int]
const range = (m, n) =>
Array.from({
length: Math.floor(n - m) + 1
}, (_, i) => m + i);
// length :: [a] -> Int
// length :: Text -> Int
const length = xs => xs.length;
// maximumBy :: (a -> a -> Ordering) -> [a] -> a
const maximumBy = (f, xs) =>
xs.reduce((a, x) => a === undefined ? x : (
f(x, a) > 0 ? x : a
), undefined);
// transpose :: [[a]] -> [[a]]
const transpose = xs =>
xs[0].map((_, iCol) => xs.map((row) => row[iCol]));
// show :: a -> String
const show = x => JSON.stringify(x, null, 2);
// replicateS :: Int -> String -> String
const replicateS = (n, s) => {
let v = s,
o = '';
if (n < 1) return o;
while (n > 1) {
if (n & 1) o = o.concat(v);
n >>= 1;
v = v.concat(v);
}
return o.concat(v);
};
// justifyRight :: Int -> Char -> Text -> Text
const justifyRight = (n, cFiller, strText) =>
n > strText.length ? (
(replicateS(n, cFiller) + strText)
.slice(-n)
) : strText;
// TEST
return transpose(transpose([
['Deck', 'Shuffles']
].concat(
[8, 24, 52, 100, 1020, 1024, 10000]
.map(n => [n.toString(), shuffleCycleLength(n)
.toString()
])))
.map(col => { // Right-justified number columns
const width = length(
maximumBy((a, b) => length(a) - length(b), col)
) + 2;
return col.map(x => justifyRight(width, ' ', x));
}))
.map(row => row.join(''))
.join('\n');
})();
{{Out}}
Deck Shuffles
8 3
24 11
52 8
100 30
1020 1018
1024 10
10000 300
Julia
# v0.6
function perfect_shuffle(a::Array)::Array
if isodd(length(a)) error("cannot perform perfect shuffle on odd-length array") end
rst = zeros(a)
mid = div(length(a), 2)
for i in 1:mid
rst[2i-1], rst[2i] = a[i], a[mid+i]
end
return rst
end
function count_perfect_shuffles(decksize::Int)::Int
a = collect(1:decksize)
b, c = perfect_shuffle(a), 1
while a != b
b = perfect_shuffle(b)
c += 1
end
return c
end
println(" Deck n.Shuffles")
for i in (8, 24, 52, 100, 1020, 1024, 10000, 100000)
count = count_perfect_shuffles(i)
@printf("%7i%7i\n", i, count)
end
{{out}}
Deck n.Shuffles
8 3
24 11
52 8
100 30
1020 1018
1024 10
10000 300
100000 540
Kotlin
// version 1.1.2
fun areSame(a: IntArray, b: IntArray): Boolean {
for (i in 0 until a.size) if (a[i] != b[i]) return false
return true
}
fun perfectShuffle(a: IntArray): IntArray {
var b = IntArray(a.size)
val hSize = a.size / 2
for (i in 0 until hSize) b[i * 2] = a[i]
var j = 1
for (i in hSize until a.size) {
b[j] = a[i]
j += 2
}
return b
}
fun countShuffles(a: IntArray): Int {
require(a.size >= 2 && a.size % 2 == 0)
var b = a
var count = 0
while (true) {
val c = perfectShuffle(b)
count++
if (areSame(a, c)) return count
b = c
}
}
fun main(args: Array<String>) {
println("Deck size Num shuffles")
println("--------- ------------")
val sizes = intArrayOf(8, 24, 52, 100, 1020, 1024, 10000)
for (size in sizes) {
val a = IntArray(size) { it }
val count = countShuffles(a)
println("${"%-9d".format(size)} $count")
}
}
{{out}}
Deck size Num shuffles
--------- ------------
8 3
24 11
52 8
100 30
1020 1018
1024 10
10000 300
Lua
-- Perform weave shuffle
function shuffle (cards)
local pile1, pile2 = {}, {}
for card = 1, #cards / 2 do table.insert(pile1, cards[card]) end
for card = (#cards / 2) + 1, #cards do table.insert(pile2, cards[card]) end
cards = {}
for card = 1, #pile1 do
table.insert(cards, pile1[card])
table.insert(cards, pile2[card])
end
return cards
end
-- Return boolean indicating whether or not the cards are in order
function inOrder (cards)
for k, v in pairs(cards) do
if k ~= v then return false end
end
return true
end
-- Count the number of shuffles needed before the cards are in order again
function countShuffles (deckSize)
local deck, count = {}, 0
for i = 1, deckSize do deck[i] = i end
repeat
deck = shuffle(deck)
count = count + 1
until inOrder(deck)
return count
end
-- Main procedure
local testCases = {8, 24, 52, 100, 1020, 1024, 10000}
print("Input", "Output")
for _, case in pairs(testCases) do print(case, countShuffles(case)) end
{{out}}
Input Output
8 3
24 11
52 8
100 30
1020 1018
1024 10
10000 300
Mathematica
shuffle[deck_] := Apply[Riffle, TakeDrop[deck, Length[deck]/2]];
shuffleCount[n_] := Block[{count=0}, NestWhile[shuffle, shuffle[Range[n]], (count++; OrderedQ[#] )&];count];
Map[shuffleCount, {8, 24, 52, 100, 1020, 1024, 10000}]
{{out}}
{3, 11, 8, 30, 1018, 10, 300}
MATLAB
PerfectShuffle.m:
function [New]=PerfectShuffle(Nitems, Nturns)
if mod(Nitems,2)==0 %only if even number
X=1:Nitems; %define deck
for c=1:Nturns %defines one shuffle
X=reshape(X,Nitems/2,2)'; %split the deck in two and stack halves
X=X(:)'; %mix the halves
end
New=X; %result of multiple shufflings
end
Main:
Result=[]; %vector to store results
Q=[8, 24, 52, 100, 1020, 1024, 10000]; %queries
for n=Q %for each query
Same=0; %initialize comparison
T=0; %initialize number of shuffles
while ~Same %while the result is not the original query
T=T+1; %one more shuffle
R=PerfectShuffle(n,T); %result of shuffling the query
Same=~(any(R-(1:n))); %same vector as the query
end %when getting the same vector
Result=[Result;T]; %collect results
end
disp([Q', Result])
{{out}}
8 3
24 11
52 8
100 30
1020 1018
1024 10
10000 300
=={{header|Modula-2}}== {{trans|C}}
MODULE PerfectShuffle;
FROM FormatString IMPORT FormatString;
FROM Storage IMPORT ALLOCATE,DEALLOCATE;
FROM SYSTEM IMPORT ADDRESS,TSIZE;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
PROCEDURE WriteCard(c : CARDINAL);
VAR buf : ARRAY[0..15] OF CHAR;
BEGIN
FormatString("%c", buf, c);
WriteString(buf)
END WriteCard;
PROCEDURE Init(VAR arr : ARRAY OF INTEGER);
VAR i : CARDINAL;
BEGIN
FOR i:=0 TO HIGH(arr) DO
arr[i] := i + 1
END
END Init;
PROCEDURE PerfectShuffle(VAR arr : ARRAY OF INTEGER);
PROCEDURE Inner(ti : CARDINAL);
VAR
tv : INTEGER;
tp,tn,n : CARDINAL;
BEGIN
n := HIGH(arr);
tn := ti;
tv := arr[ti];
REPEAT
tp := tn;
IF tp MOD 2 = 0 THEN
tn := tp / 2
ELSE
tn := (n+1)/2+tp/2
END;
arr[tp] := arr[tn];
UNTIL tn = ti;
arr[tp] := tv
END Inner;
VAR
done : BOOLEAN;
i,c : CARDINAL;
BEGIN
c := 0;
Init(arr);
REPEAT
i := 1;
WHILE i <= (HIGH(arr)/2) DO
Inner(i);
INC(i,2)
END;
INC(c);
done := TRUE;
FOR i:=0 TO HIGH(arr) DO
IF arr[i] # INT(i+1) THEN
done := FALSE;
BREAK
END
END
UNTIL done;
WriteCard(HIGH(arr)+1);
WriteString(": ");
WriteCard(c);
WriteLn
END PerfectShuffle;
(* Main *)
VAR
v8 : ARRAY[1..8] OF INTEGER;
v24 : ARRAY[1..24] OF INTEGER;
v52 : ARRAY[1..52] OF INTEGER;
v100 : ARRAY[1..100] OF INTEGER;
v1020 : ARRAY[1..1020] OF INTEGER;
v1024 : ARRAY[1..1024] OF INTEGER;
v10000 : ARRAY[1..10000] OF INTEGER;
BEGIN
PerfectShuffle(v8);
PerfectShuffle(v24);
PerfectShuffle(v52);
PerfectShuffle(v100);
PerfectShuffle(v1020);
PerfectShuffle(v1024);
PerfectShuffle(v10000);
ReadChar
END PerfectShuffle.
{{out}}
8: 3
24: 11
52: 8
100: 30
1020: 1018
1024: 10
10000: 300
Oforth
: shuffle(l) l size 2 / dup l left swap l right zip expand ;
: nbShuffles(l) 1 l while( shuffle dup l <> ) [ 1 under+ ] drop ;
{{out}}
>[ 8, 24, 52, 100, 1020, 1024, 10000 ] map(#[ seq nbShuffles ]) .
[3, 11, 8, 30, 1018, 10, 300] ok
PARI/GP
{{improve|PARI/GP|The task description was updated; please update this solution accordingly and then remove this template.}}
magic(v)=vector(#v,i,v[if(i%2,1,#v/2)+i\2]);
shuffles_slow(n)=my(v=[1..n],o=v,s=1);while((v=magic(v))!=o,s++);s;
shuffles(n)=znorder(Mod(2,n-1));
vector(5000,n,shuffles_slow(2*n))
{{out}}
%1 = [1, 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 28, 5, 10, 12, 36, 12,
20, 14, 12, 23, 21, 8, 52, 20, 18, 58, 60, 6, 12, 66, 22, 35, 9, 20, 30, 39, 54
, 82, 8, 28, 11, 12, 10, 36, 48, 30, 100, 51, 12, 106, 36, 36, 28, 44, 12, 24, 1
10, 20, 100, 7, 14, 130, 18, 36, 68, 138, 46, 60, 28, 42, 148, 15, 24, 20, 52, 5
2, 33, 162, 20, 83, 156, 18, 172, 60, 58, 178, 180, 60, 36, 40, 18, 95, 96, 12,
196, 99, 66, 84, 20, 66, 90, 210, 70, 28, 15, 18, 24, 37, 60, 226, 76, 30, 29, 9
2, 78, 119, 24, 162, 84, 36, 82, 50, 110, 8, 16, 36, 84, 131, 52, 22, 268, 135,
12, 20, 92, 30, 70, 94, 36, 60, 136, 48, 292, 116, 90, 132, 42, 100, 60, 102, 10
2, 155, 156, 12, 316, 140, 106, 72, 60, 36, 69, 30, 36, 132, 21, 28, 10, 147, 44
, 346, 348, 36, 88, 140, 24, 179, 342, 110, 36, 183, 60, 156, 372, 100, 84, 378,
14, 191, 60, 42, 388, 88, 130, 156, 44, 18, 200, 60, 108, 180, 204, 68, 174, 16
4, 138, 418, 420, 138, 40, 60, 60, 43, 72, 28, 198, 73, 42, 442, 44, 148, 224, 2
0, 30, 12, 76, 72, 460, 231, 20, 466, 66, 52, 70, 180, 156, 239, 36, 66, 48, 243
, 162, 490, 56, 60, 105, 166, 166, 251, 100, 156, 508, 9, 18, 204, 230, 172, 260
, 522, 60, 40, 253, 174, 60, 212, 178, 210, 540, 180, 36, 546, 60, 252, 39, 36,
556, 84, 40, 562, 28, 54, 284, 114, 190, 220, 144, 96, 246, 260, 12, 586, 90, 19
6, 148, 24, 198, 299, 25, 66, 220, 303, 84, 276, 612, 20, 154, 618, 198, 33, 500
, 90, 72, 45, 210, 28, 84, 210, 64, 214, 28, 323, 290, 30, 652, 260, 18, 658, 66
0, 24, 36, 308, 74, 60, 48, 180, 676, 48, 226, 22, 68, 76, 156, 230, 30, 276, 40
, 58, 700, 36, 92, 300, 708, 78, 55, 60, 238, 359, 51, 24, 140, 121, 486, 56, 24
4, 84, 330, 246, 36, 371, 148, 246, 318, 375, 50, 60, 756, 110, 380, 36, 24, 348
, 384, 16, 772, 20, 36, 180, 70, 252, 52, 786, 262, 84, 60, 52, 796, 184, 66, 90
, 132, 268, 404, 270, 270, 324, 126, 12, 820, 411, 20, 826, 828, 92, 168, 332, 9
0, 419, 812, 70, 156, 330, 94, 396, 852, 36, 428, 858, 60, 431, 172, 136, 390, 1
32, 48, 300, 876, 292, 55, 882, 116, 443, 21, 270, 414, 356, 132, 140, 104,[+++]
(By default gp won't show more than 25 lines of output, though an arbitrary amount can be printed or written to a file; use print
, write
, or default(lines, 100)
to show more.)
Perl
use List::Util qw(all);
sub perfect_shuffle {
my $mid = @_ / 2;
map { @_[$_, $_ + $mid] } 0..($mid - 1);
}
for my $size (8, 24, 52, 100, 1020, 1024, 10000) {
my @shuffled = my @deck = 1 .. $size;
my $n = 0;
do { $n++; @shuffled = perfect_shuffle(@shuffled) }
until all { $shuffled[$_] == $deck[$_] } 0..$#shuffled;
printf "%5d cards: %4d\n", $size, $n;
}
{{out}}
8 cards: 3
24 cards: 11
52 cards: 8
100 cards: 30
1020 cards: 1018
1024 cards: 10
10000 cards: 300
Perl 6
{{trans|Perl}}
sub perfect-shuffle (@deck) {
my $mid = @deck / 2;
flat @deck[0 ..^ $mid] Z @deck[$mid .. *];
}
for 8, 24, 52, 100, 1020, 1024, 10000 -> $size {
my @deck = ^$size;
my $n;
repeat until [<] @deck {
$n++;
@deck = perfect-shuffle @deck;
}
printf "%5d cards: %4d\n", $size, $n;
}
{{out}}
8 cards: 3
24 cards: 11
52 cards: 8
100 cards: 30
1020 cards: 1018
1024 cards: 10
10000 cards: 300
Phix
function perfect_shuffle(sequence deck)
integer mp = length(deck)/2
sequence res = deck
integer k = 1
for i=1 to mp do
res[k] = deck[i] k += 1
res[k] = deck[i+mp] k += 1
end for
return res
end function
constant testsizes = {8, 24, 52, 100, 1020, 1024, 10000}
for i=1 to length(testsizes) do
sequence deck = tagset(testsizes[i])
sequence work = perfect_shuffle(deck)
integer count = 1
while work!=deck do
work = perfect_shuffle(work)
count += 1
end while
printf(1,"%5d cards: %4d\n", {testsizes[i],count})
end for
{{out}}
8 cards: 3
24 cards: 11
52 cards: 8
100 cards: 30
1020 cards: 1018
1024 cards: 10
10000 cards: 300
PicoLisp
(de perfectShuffle (Lst)
(mapcan '((B A) (list A B))
(cdr (nth Lst (/ (length Lst) 2)))
Lst ) )
(for N (8 24 52 100 1020 1024 10000)
(let (Lst (range 1 N) L Lst Cnt 1)
(until (= Lst (setq L (perfectShuffle L)))
(inc 'Cnt) )
(tab (5 6) N Cnt) ) )
Output:
8 3
24 11
52 8
100 30
1020 1018
1024 10
10000 300
Python
import doctest
import random
def flatten(lst):
"""
>>> flatten([[3,2],[1,2]])
[3, 2, 1, 2]
"""
return [i for sublst in lst for i in sublst]
def magic_shuffle(deck):
"""
>>> magic_shuffle([1,2,3,4])
[1, 3, 2, 4]
"""
half = len(deck) // 2
return flatten(zip(deck[:half], deck[half:]))
def after_how_many_is_equal(shuffle_type,start,end):
"""
>>> after_how_many_is_equal(magic_shuffle,[1,2,3,4],[1,2,3,4])
2
"""
start = shuffle_type(start)
counter = 1
while start != end:
start = shuffle_type(start)
counter += 1
return counter
def main():
doctest.testmod()
print("Length of the deck of cards | Perfect shuffles needed to obtain the same deck back")
for length in (8, 24, 52, 100, 1020, 1024, 10000):
deck = list(range(length))
shuffles_needed = after_how_many_is_equal(magic_shuffle,deck,deck)
print("{} | {}".format(length,shuffles_needed))
if __name__ == "__main__":
main()
More functional version of the same code:
"""
Brute force solution for the Perfect Shuffle problem.
See http://oeis.org/A002326 for possible improvements
"""
from functools import partial
from itertools import chain
from operator import eq
from typing import (Callable,
Iterable,
Iterator,
List,
TypeVar)
T = TypeVar('T')
def main():
print("Deck length | Shuffles ")
for length in (8, 24, 52, 100, 1020, 1024, 10000):
deck = list(range(length))
shuffles_needed = spin_number(deck, shuffle)
print(f"{length:<11} | {shuffles_needed}")
def shuffle(deck: List[T]) -> List[T]:
"""[1, 2, 3, 4] -> [1, 3, 2, 4]"""
half = len(deck) // 2
return list(chain.from_iterable(zip(deck[:half], deck[half:])))
def spin_number(source: T,
function: Callable[[T], T]) -> int:
"""
Applies given function to the source
until the result becomes equal to it,
returns the number of calls
"""
is_equal_source = partial(eq, source)
spins = repeat_call(function, source)
return next_index(is_equal_source,
spins,
start=1)
def repeat_call(function: Callable[[T], T],
value: T) -> Iterator[T]:
"""(f, x) -> f(x), f(f(x)), f(f(f(x))), ..."""
while True:
value = function(value)
yield value
def next_index(predicate: Callable[[T], bool],
iterable: Iterable[T],
start: int = 0) -> int:
"""
Returns index of the first element of the iterable
satisfying given condition
"""
for index, item in enumerate(iterable, start=start):
if predicate(item):
return index
if __name__ == "__main__":
main()
{{Out}}
Deck length | Shuffles
8 | 3
24 | 11
52 | 8
100 | 30
1020 | 1018
1024 | 10
10000 | 300
Reversed shuffle or just calculate how many shuffles are needed:
def mul_ord2(n):
# directly calculate how many shuffles are needed to restore
# initial order: 2^o mod(n-1) == 1
if n == 2: return 1
n,t,o = n-1,2,1
while t != 1:
t,o = (t*2)%n,o+1
return o
def shuffles(n):
a,c = list(range(n)), 0
b = a
while True:
# Reverse shuffle; a[i] can be taken as the current
# position of the card with value i. This is faster.
a = a[0:n:2] + a[1:n:2]
c += 1
if b == a: break
return c
for n in range(2, 10000, 2):
#print(n, mul_ord2(n))
print(n, shuffles(n))
R
wave.shuffle <- function(n) {
deck <- 1:n ## create the original deck
new.deck <- c(matrix(data = deck, ncol = 2, byrow = TRUE)) ## shuffle the deck once
counter <- 1 ## track the number of loops
## defining a loop that shuffles the new deck until identical with the original one
## and in the same time increses the counter with 1 per loop
while (!identical(deck, new.deck)) { ## logical condition
new.deck <- c(matrix(data = new.deck, ncol = 2, byrow = TRUE)) ## shuffle
counter <- counter + 1 ## add 1 to the number of loops
}
return(counter) ## final result - total number of loops until the condition is met
}
test.values <- c(8, 24, 52, 100, 1020, 1024, 10000) ## the set of the test values
test <- sapply(test.values, wave.shuffle) ## apply the wave.shuffle function on each element
names(test) <- test.values ## name the result
test ## print the result out
> test
8 24 52 100 1020 1024 10000
3 11 8 30 1018 10 300
Racket
#lang racket/base
(require racket/list)
(define (perfect-shuffle l)
(define-values (as bs) (split-at l (/ (length l) 2)))
(foldr (λ (a b d) (list* a b d)) null as bs))
(define (perfect-shuffles-needed n)
(define-values (_ rv)
(for/fold ((d (perfect-shuffle (range n))) (i 1))
((_ (in-naturals))
#:break (apply < d))
(values (perfect-shuffle d) (add1 i))))
rv)
(module+ test
(require rackunit)
(check-equal? (perfect-shuffle '(1 2 3 4)) '(1 3 2 4))
(define (test-perfect-shuffles-needed n e)
(define psn (perfect-shuffles-needed n))
(printf "Deck size:\t~a\tShuffles needed:\t~a\t(~a)~%" n psn e)
(check-equal? psn e))
(for-each test-perfect-shuffles-needed
'(8 24 52 100 1020 1024 10000)
'(3 11 8 30 1018 10 300)))
{{out}}
Deck size: 8 Shuffles needed: 3 (3)
Deck size: 24 Shuffles needed: 11 (11)
Deck size: 52 Shuffles needed: 8 (8)
Deck size: 100 Shuffles needed: 30 (30)
Deck size: 1020 Shuffles needed: 1018 (1018)
Deck size: 1024 Shuffles needed: 10 (10)
Deck size: 10000 Shuffles needed: 300 (300)
REXX
unoptimized
/*REXX program performs a "perfect shuffle" for a number of even numbered decks. */
parse arg X /*optional list of test cases from C.L.*/
if X='' then X=8 24 52 100 1020 1024 10000 /*Not specified? Then use the default.*/
w=length(word(X, words(X))) /*used for right─aligning the numbers. */
do j=1 for words(X); y=word(X,j) /*use numbers in the test suite (list).*/
do k=1 for y; @.k=k; end /*k*/ /*generate a deck to be used (shuffled)*/
do t=1 until eq(); call magic; end /*t*/ /*shuffle until before equals after.*/
say 'deck size:' right(y,w)"," right(t,w) 'perfect shuffles.'
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
eq: do ?=1 for y; if @.?\==? then return 0; end; return 1
/*──────────────────────────────────────────────────────────────────────────────────────*/
magic: z=0 /*set the Z pointer (used as index).*/
h=y%2 /*get the half─way (midpoint) pointer. */
do s=1 for h; z=z+1; h=h+1 /*traipse through the card deck pips. */
!.z=@.s; z=z+1 /*assign left half; then bump pointer. */
!.z=@.h /* " right " */
end /*s*/ /*perform a perfect shuffle of the deck*/
do r=1 for y; @.r=!.r; end /*re─assign to the original card deck. */
return
'''output''' (abbreviated) when using the default input:
deck size: 8, 3 perfect shuffles.
deck size: 24, 11 perfect shuffles.
deck size: 52, 8 perfect shuffles.
deck size: 100, 30 perfect shuffles.
deck size: 1020, 1018 perfect shuffles.
deck size: 1024, 10 perfect shuffles.
deck size: 10000, 300 perfect shuffles.
optimized
This REXX version takes advantage that the 1st and last cards of the deck don't change.
/*REXX program does a "perfect shuffle" for a number of even numbered decks. */
parse arg X /*optional list of test cases from C.L.*/
if X='' then X=8 24 52 100 1020 1024 10000 /*Not specified? Use default.*/
w=length(word(X, words(X))) /*used for right─aligning the numbers. */
do j=1 for words(X); y=word(X,j) /*use numbers in the test suite (list).*/
do k=1 for y; @.k=k; end /*generate a deck to be shuffled (used)*/
do t=1 until eq(); call magic; end /*shuffle until before equals after.*/
say 'deck size:' right(y,w)"," right(t,w) 'perfect shuffles.'
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
eq: do ?=1 for y; if @.?\==? then return 0; end; return 1
/*──────────────────────────────────────────────────────────────────────────────────────*/
magic: z=1; h=y%2 /*H is (half─way) pointer.*/
do L=3 by 2 for h-1; z=z+1; !.L=@.z; end /*assign left half of deck.*/
do R=2 by 2 for h-1; h=h+1; !.R=@.h; end /* " right " " " */
do a=2 for y-2; @.a=!.a; end /*re─assign──►original deck*/
return
'''output''' is the same as the 1st version.
Ruby
def perfect_shuffle(deck_size = 52)
deck = (0...deck_size).to_a
shuffled_deck = [deck.first(deck_size / 2), deck.last(deck_size / 2)]
1.step do |i|
return i if deck == (shuffled_deck = shuffled_deck.transpose.flatten)
shuffled_deck = [shuffled_deck.shift(deck_size / 2), shuffled_deck]
end
end
[8, 24, 52, 100, 1020, 1024, 10000].each do |i| puts "Perfect Shuffles Required for Deck Size #{i}: #{perfect_shuffle(i)}" end
{{out}}
Perfect Shuffles Required for Deck Size 8: 3
Perfect Shuffles Required for Deck Size 24: 11
Perfect Shuffles Required for Deck Size 52: 8
Perfect Shuffles Required for Deck Size 100: 30
Perfect Shuffles Required for Deck Size 1020: 1018
Perfect Shuffles Required for Deck Size 1024: 10
Perfect Shuffles Required for Deck Size 10000: 300
Rust
extern crate itertools;
fn shuffle<T>(mut deck: Vec<T>) -> Vec<T> {
let index = deck.len() / 2;
let right_half = deck.split_off(index);
itertools::interleave(deck, right_half).collect()
}
fn main() {
for &size in &[8, 24, 52, 100, 1020, 1024, 10_000] {
let original_deck: Vec<_> = (0..size).collect();
let mut deck = original_deck.clone();
let mut iterations = 0;
loop {
deck = shuffle(deck);
iterations += 1;
if deck == original_deck {
break;
}
}
println!("{: >5}: {: >4}", size, iterations);
}
}
{{out}}
8: 3
24: 11
52: 8
100: 30
1020: 1018
1024: 10
10000: 300
Scala
===Imperative, Quick, dirty and ugly=== {{trans|Java}} {{Out}}Best seen running in your browser either by [https://scalafiddle.io/sf/Ux9RKDx/0 ScalaFiddle (ES aka JavaScript, non JVM)] or [https://scastie.scala-lang.org/eWeiDIBbQMGpNIQAmvXfLg Scastie (remote JVM)].
object PerfectShuffle extends App {
private def sizes = Seq(8, 24, 52, 100, 1020, 1024, 10000)
private def perfectShuffle(size: Int): Int = {
require(size % 2 == 0, "Card deck must be even")
val (half, a) = (size / 2, Array.range(0, size))
val original = a.clone
var count = 1
while (true) {
val aa = a.clone
for (i <- 0 until half) {
a(2 * i) = aa(i)
a(2 * i + 1) = aa(i + half)
}
if (a.deep == original.deep) return count
count += 1
}
0
}
for (size <- sizes) println(f"$size%5d : ${perfectShuffle(size)}%5d")
}
Scilab
{{trans|MATLAB}}
Result=[]; Q=[8, 24, 52, 100, 1020, 1024, 10000]; for n=Q Same=0; T=0; Compare=[]; while ~Same T=T+1; R=PerfectShuffle(n,T); Compare = find(R-(1:n)); if Compare == [] then Same = 1; end end Result=[Result;T]; end disp([Q', Result])
{{out}}
```txt
8. 3.
24. 11.
52. 8.
100. 30.
1020. 1018.
1024. 10.
10000. 300.
Sidef
{{trans|Perl}}
func perfect_shuffle(deck) {
deck/2 -> zip.flat
}
[8, 24, 52, 100, 1020, 1024, 10000].each { |size|
var deck = @(1..size)
var shuffled = deck
var n = (1..Inf -> lazy.first {
(shuffled = perfect_shuffle(shuffled)) == deck
})
printf("%5d cards: %4d\n", size, n)
}
{{out}}
8 cards: 3
24 cards: 11
52 cards: 8
100 cards: 30
1020 cards: 1018
1024 cards: 10
10000 cards: 300
Tcl
Using tcltest to include an executable test case ..
namespace eval shuffle {
proc perfect {deck} {
if {[llength $deck]%2} {
return -code error "Deck must be of even length!"
}
set split [expr {[llength $deck]/2}]
set top [lrange $deck 0 $split-1]
set btm [lrange $deck $split end]
foreach a $top b $btm {
lappend res $a $b
}
return $res
}
proc cycle_length {transform deck} {
set d $deck
while 1 {
set d [$transform $d]
incr i
if {$d eq $deck} {return $i}
}
return $i
}
proc range {a {b ""}} {
if {$b eq ""} {
set b $a; set a 0
}
set res {}
while {$a < $b} {
lappend res $a
incr a
}
return $res
}
}
set ::argv {}
package require tcltest
tcltest::test "Test perfect shuffle cycles" {} -body {
lmap size {8 24 52 100 1020 1024 10000} {
shuffle::cycle_length perfect [range $size]
}
} -result {3 11 8 30 1018 10 300}
VBA
Option Explicit
Sub Main()
Dim T, Arr, X As Long, C As Long
Arr = Array(8, 24, 52, 100, 1020, 1024, 10000)
For X = LBound(Arr) To UBound(Arr)
C = 0
Call PerfectShuffle(T, CLng(Arr(X)), C)
Debug.Print Right(String(19, " ") & "For " & Arr(X) & " cards => ", 19) & C & " shuffles needed."
Erase T
Next
End Sub
Private Sub PerfectShuffle(tb, NbCards As Long, Count As Long)
Dim arr1, arr2, StrInit As String, StrTest As String
tb = CreateArray(1, NbCards)
StrInit = Join(tb, " ")
Do
Count = Count + 1
Call DivideArr(tb, arr1, arr2)
tb = RemakeArray(arr1, arr2)
StrTest = Join(tb, " ")
Loop While StrTest <> StrInit
End Sub
Private Function CreateArray(First As Long, Length As Long) As String()
Dim i As Long, T() As String, C As Long
If IsEven(Length) Then
ReDim T(Length - 1)
For i = First To First + Length - 1
T(C) = i
C = C + 1
Next i
CreateArray = T
End If
End Function
Private Sub DivideArr(A, B, C)
Dim i As Long
B = A
ReDim Preserve B(UBound(A) \ 2)
ReDim C(UBound(B))
For i = LBound(C) To UBound(C)
C(i) = A(i + UBound(B) + 1)
Next
End Sub
Private Function RemakeArray(A1, A2) As String()
Dim i As Long, T() As String, C As Long
ReDim T((UBound(A2) * 2) + 1)
For i = LBound(T) To UBound(T) - 1 Step 2
T(i) = A1(C)
T(i + 1) = A2(C)
C = C + 1
Next
RemakeArray = T
End Function
Private Function IsEven(Number As Long) As Boolean
IsEven = (Number Mod 2 = 0)
End Function
{{out}}
For 8 cards => 3 shuffles needed.
For 24 cards => 11 shuffles needed.
For 52 cards => 8 shuffles needed.
For 100 cards => 30 shuffles needed.
For 1020 cards => 1018 shuffles needed.
For 1024 cards => 10 shuffles needed.
For 10000 cards => 300 shuffles needed.
zkl
fcn perfectShuffle(numCards){
deck,shuffle,n,N:=numCards.pump(List),deck,0,numCards/2;
do{ shuffle=shuffle[0,N].zip(shuffle[N,*]).flatten(); n+=1 }
while(deck!=shuffle);
n
}
foreach n in (T(8,24,52,100,1020,1024,10000)){
println("%5d : %d".fmt(n,perfectShuffle(n)));
}
{{out}}
8 : 3
24 : 11
52 : 8
100 : 30
1020 : 1018
1024 : 10
10000 : 300