⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task}} Generate and show here, the first twenty [https://en.wikipedia.org/wiki/Perfect_totient_number Perfect totient numbers].
;Related task: ::* [[Totient function]]
;Also see:
::* the OEIS entry for [http://oeis.org/A082897 perfect totient numbers].
::* mrob [https://mrob.com/pub/seq/a082897.html list of the first 54]
AWK
# syntax: GAWK -f PERFECT_TOTIENT_NUMBERS.AWK
BEGIN {
i = 20
printf("The first %d perfect totient numbers:\n%s\n",i,perfect_totient(i))
exit(0)
}
function perfect_totient(n, count,m,str,sum,tot) {
for (m=1; count<n; m++) {
tot = m
sum = 0
while (tot != 1) {
tot = totient(tot)
sum += tot
}
if (sum == m) {
str = str m " "
count++
}
}
return(str)
}
function totient(n, i,tot) {
tot = n
for (i=2; i*i<=n; i+=2) {
if (n % i == 0) {
while (n % i == 0) {
n /= i
}
tot -= tot / i
}
if (i == 2) {
i = 1
}
}
if (n > 1) {
tot -= tot / n
}
return(tot)
}
{{out}}
The first 20 perfect totient numbers:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571
C
Calculates as many perfect Totient numbers as entered on the command line.
#include<stdio.h>
long totient(long n){
long tot = n,i;
for(i=2;i*i<=n;i+=2){
if(n%i==0){
while(n%i==0)
n/=i;
tot-=tot/i;
}
if(i==2)
i=1;
}
if(n>1)
tot-=tot/n;
return tot;
}
long* perfectTotients(long n){
long *ptList = (long*)malloc(n*sizeof(long)), m,count=0,sum,tot;
for(m=1;count<n;m++){
tot = m;
sum = 0;
while(tot != 1){
tot = totient(tot);
sum += tot;
}
if(sum == m)
ptList[count++] = m;
}
return ptList;
}
long main(long argC, char* argV[])
{
long *ptList,i,n;
if(argC!=2)
printf("Usage : %s <number of perfect Totient numbers required>",argV[0]);
else{
n = atoi(argV[1]);
ptList = perfectTotients(n);
printf("The first %d perfect Totient numbers are : \n[",n);
for(i=0;i<n;i++)
printf(" %d,",ptList[i]);
printf("\b]");
}
return 0;
}
Output for multiple runs, a is the default executable file name produced by GCC
C:\rossetaCode>a 10
The first 10 perfect Totient numbers are :
[ 3, 9, 15, 27, 39, 81, 111, 183, 243, 255]
C:\rossetaCode>a 20
The first 20 perfect Totient numbers are :
[ 3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]
C:\rossetaCode>a 30
The first 30 perfect Totient numbers are :
[ 3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571, 6561, 8751, 15723, 19683, 36759, 46791, 59049, 65535, 140103, 177147]
C:\rossetaCode>a 40
The first 40 perfect Totient numbers are :
[ 3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571, 6561, 8751, 15723, 19683, 36759, 46791, 59049, 65535, 140103, 177147, 208191, 441027, 531441, 1594323, 4190263, 4782969, 9056583, 14348907, 43046721, 57395631]
Factor
USING: formatting kernel lists lists.lazy math
math.primes.factors ;
: perfect? ( n -- ? )
[ 0 ] dip dup [ dup 2 < ] [ totient tuck [ + ] 2dip ] until
drop = ;
20 1 lfrom [ perfect? ] lfilter ltake list>array
"%[%d, %]\n" printf
{{out}}
{ 3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571 }
Go
package main
import "fmt"
func gcd(n, k int) int {
if n < k || k < 1 {
panic("Need n >= k and k >= 1")
}
s := 1
for n&1 == 0 && k&1 == 0 {
n >>= 1
k >>= 1
s <<= 1
}
t := n
if n&1 != 0 {
t = -k
}
for t != 0 {
for t&1 == 0 {
t >>= 1
}
if t > 0 {
n = t
} else {
k = -t
}
t = n - k
}
return n * s
}
func totient(n int) int {
tot := 0
for k := 1; k <= n; k++ {
if gcd(n, k) == 1 {
tot++
}
}
return tot
}
func main() {
var perfect []int
for n := 1; len(perfect) < 20; n += 2 {
tot := n
sum := 0
for tot != 1 {
tot = totient(tot)
sum += tot
}
if sum == n {
perfect = append(perfect, n)
}
}
fmt.Println("The first 20 perfect totient numbers are:")
fmt.Println(perfect)
}
{{out}}
The first 20 perfect totient numbers are:
[3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571]
The following much quicker version uses Euler's product formula rather than repeated invocation of the gcd function to calculate the totient:
package main
import "fmt"
func totient(n int) int {
tot := n
for i := 2; i*i <= n; i += 2 {
if n%i == 0 {
for n%i == 0 {
n /= i
}
tot -= tot / i
}
if i == 2 {
i = 1
}
}
if n > 1 {
tot -= tot / n
}
return tot
}
func main() {
var perfect []int
for n := 1; len(perfect) < 20; n += 2 {
tot := n
sum := 0
for tot != 1 {
tot = totient(tot)
sum += tot
}
if sum == n {
perfect = append(perfect, n)
}
}
fmt.Println("The first 20 perfect totient numbers are:")
fmt.Println(perfect)
}
The output is the same as before.
Haskell
import Data.Bool (bool)
perfectTotients :: [Int]
perfectTotients =
[2 ..] >>=
((bool [] . return) <*>
((==) <*> (succ . sum . tail . takeWhile (1 /=) . iterate φ)))
φ :: Int -> Int
φ = memoize (\n -> length (filter ((1 ==) . gcd n) [1 .. n]))
memoize :: (Int -> a) -> (Int -> a)
memoize f = (map f [0 ..] !!)
main :: IO ()
main = print $ take 20 perfectTotients
{{Out}}
[3,9,15,27,39,81,111,183,243,255,327,363,471,729,2187,2199,3063,4359,4375,5571]
J
Until =: conjunction def 'u^:(0 -: v)^:_'
Filter =: (#~`)(`:6)
totient =: 5&p:
totient_chain =: [: }. (, totient@{:)Until(1={:)
ptnQ =: (= ([: +/ totient_chain))&>
With these definitions I've found the first 28 perfect totient numbers
PTN =: ptnQ Filter >: i.99999
#PTN
28
PTN
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571 6561 8751 15723 19683 36759 46791 59049 65535
JavaScript
(() => {
'use strict';
// main :: IO ()
const main = () =>
showLog(
take(20, perfectTotients())
);
// perfectTotients :: Generator [Int]
function* perfectTotients() {
const
phi = memoized(
n => length(
filter(
k => 1 === gcd(n, k),
enumFromTo(1, n)
)
)
),
imperfect = n => n !== sum(
tail(iterateUntil(
x => 1 === x,
phi,
n
))
);
let ys = dropWhileGen(imperfect, enumFrom(1))
while (true) {
yield ys.next().value - 1;
ys = dropWhileGen(imperfect, ys)
}
}
// GENERIC FUNCTIONS ----------------------------
// abs :: Num -> Num
const abs = Math.abs;
// dropWhileGen :: (a -> Bool) -> Gen [a] -> [a]
const dropWhileGen = (p, xs) => {
let
nxt = xs.next(),
v = nxt.value;
while (!nxt.done && p(v)) {
nxt = xs.next();
v = nxt.value;
}
return xs;
};
// enumFrom :: Int -> [Int]
function* enumFrom(x) {
let v = x;
while (true) {
yield v;
v = 1 + v;
}
}
// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = (m, n) =>
m <= n ? iterateUntil(
x => n <= x,
x => 1 + x,
m
) : [];
// filter :: (a -> Bool) -> [a] -> [a]
const filter = (f, xs) => xs.filter(f);
// gcd :: Int -> Int -> Int
const gcd = (x, y) => {
const
_gcd = (a, b) => (0 === b ? a : _gcd(b, a % b)),
abs = Math.abs;
return _gcd(abs(x), abs(y));
};
// iterateUntil :: (a -> Bool) -> (a -> a) -> a -> [a]
const iterateUntil = (p, f, x) => {
const vs = [x];
let h = x;
while (!p(h))(h = f(h), vs.push(h));
return vs;
};
// Returns Infinity over objects without finite length.
// This enables zip and zipWith to choose the shorter
// argument when one is non-finite, like cycle, repeat etc
// length :: [a] -> Int
const length = xs =>
(Array.isArray(xs) || 'string' === typeof xs) ? (
xs.length
) : Infinity;
// memoized :: (a -> b) -> (a -> b)
const memoized = f => {
const dctMemo = {};
return x => {
const v = dctMemo[x];
return undefined !== v ? v : (dctMemo[x] = f(x));
};
};
// showLog :: a -> IO ()
const showLog = (...args) =>
console.log(
args
.map(JSON.stringify)
.join(' -> ')
);
// sum :: [Num] -> Num
const sum = xs => xs.reduce((a, x) => a + x, 0);
// tail :: [a] -> [a]
const tail = xs => 0 < xs.length ? xs.slice(1) : [];
// take :: Int -> [a] -> [a]
// take :: Int -> String -> String
const take = (n, xs) =>
'GeneratorFunction' !== xs.constructor.constructor.name ? (
xs.slice(0, n)
) : [].concat.apply([], Array.from({
length: n
}, () => {
const x = xs.next();
return x.done ? [] : [x.value];
}));
// MAIN ---
main();
})();
{{Out}}
[3,9,15,27,39,81,111,183,243,255,327,363,471,729,2187,2199,3063,4359,4375,5571]
Julia
using Primes
eulerphi(n) = (r = one(n); for (p,k) in factor(abs(n)) r *= p^(k-1)*(p-1) end; r)
const phicache = Dict{Int, Int}()
cachedphi(n) = (if !haskey(phicache, n) phicache[n] = eulerphi(n) end; phicache[n])
function perfecttotientseries(n)
perfect = Vector{Int}()
i = 1
while length(perfect) < n
tot = i
tsum = 0
while tot != 1
tot = cachedphi(tot)
tsum += tot
end
if tsum == i
push!(perfect, i)
end
i += 1
end
perfect
end
println("The first 20 perfect totient numbers are: $(perfecttotientseries(20))")
println("The first 40 perfect totient numbers are: $(perfecttotientseries(40))")
{{output}}
The first 20 perfect totient numbers are: [3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]
The first 40 perfect totient numbers are: [3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571, 6561, 8751, 15723, 19683, 36759, 46791, 59049, 65535, 140103, 177147, 208191, 441027, 531441, 1594323, 4190263, 4782969, 9056583, 14348907, 43046721, 57395631]
Kotlin
{{trans|Go}}
// Version 1.3.21
fun totient(n: Int): Int {
var tot = n
var nn = n
var i = 2
while (i * i <= nn) {
if (nn % i == 0) {
while (nn % i == 0) nn /= i
tot -= tot / i
}
if (i == 2) i = 1
i += 2
}
if (nn > 1) tot -= tot / nn
return tot
}
fun main() {
val perfect = mutableListOf<Int>()
var n = 1
while (perfect.size < 20) {
var tot = n
var sum = 0
while (tot != 1) {
tot = totient(tot)
sum += tot
}
if (sum == n) perfect.add(n)
n += 2
}
println("The first 20 perfect totient numbers are:")
println(perfect)
}
{{output}}
The first 20 perfect totient numbers are:
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]
Maple
iterated_totient := proc(n::posint, total)
if NumberTheory:-Totient(n) = 1 then
return total + 1;
else
return iterated_totient(NumberTheory:-Totient(n), total + NumberTheory:-Totient(n));
end if;
end proc:
isPerfect := n -> evalb(iterated_totient(n, 0) = n):
count := 0:
num_list := []:
for i while count < 20 do
if isPerfectTotient(i) then
num_list := [op(num_list), i];
count := count + 1;
end if;
end do;
num_list;
{{output}}
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]
Pascal
I am using a really big array to calculate the Totient of every number up to 1.162.261.467, the 46.te perfect totient number.
( I can only test up to 1.5e9 before I get - out of memory ( 6.5 GB ) ).
I'm doing this, by using only prime numbers to calculate the Totientnumbers.
After that I sum up the totient numbers Tot[i] := Tot[i]+Tot[Tot[i]];
Tot[Tot[i]] is always < Tot[i], so it is already calculated. So I needn't calculations going trough so whole array ending up in Tot[2].
With limit 57395631 it takes "real 0m2,025s "
The c-program takes "real 3m12,481s"
A test with using floating point/SSE is by 2 seconds faster for 46.th perfect totient number, with the coming new Version of Freepascal 3.2.0
program Perftotient;
{$IFdef FPC}
{$MODE DELPHI} {$CodeAlign proc=32,loop=1}
{$IFEND}
uses
sysutils;
const
cLimit = 57395631;//177147;//4190263;//57395631;//1162261467;//
//global
var
TotientList : array of LongWord;
Sieve : Array of byte;
SolList : array of LongWord;
T1,T0 : INt64;
procedure SieveInit(svLimit:NativeUint);
var
pSieve:pByte;
i,j,pr :NativeUint;
Begin
svlimit := (svLimit+1) DIV 2;
setlength(sieve,svlimit+1);
pSieve := @Sieve[0];
For i := 1 to svlimit do
Begin
IF pSieve[i]= 0 then
Begin
pr := 2*i+1;
j := (sqr(pr)-1) DIV 2;
IF j> svlimit then
BREAK;
repeat
pSieve[j]:= 1;
inc(j,pr);
until j> svlimit;
end;
end;
pr := 0;
j := 0;
For i := 1 to svlimit do
Begin
IF pSieve[i]= 0 then
Begin
pSieve[j] := i-pr;
inc(j);
pr := i;
end;
end;
setlength(sieve,j);
end;
procedure TotientInit(len: NativeUint);
var
pTotLst : pLongWord;
pSieve : pByte;
test : double;
i: NativeInt;
p,j,k,svLimit : NativeUint;
Begin
SieveInit(len);
T0:= GetTickCount64;
setlength(TotientList,len+12);
pTotLst := @TotientList[0];
//Fill totient with simple start values for odd and even numbers
//and multiples of 3
j := 1;
k := 1;// k == j DIV 2
p := 1;// p == j div 3;
repeat
pTotLst[j] := j;//1
pTotLst[j+1] := k;//2 j DIV 2; //2
inc(k);
inc(j,2);
pTotLst[j] := j-p;//3
inc(p);
pTotLst[j+1] := k;//4 j div 2
inc(k);
inc(j,2);
pTotLst[j] := j;//5
pTotLst[j+1] := p;//6 j DIV 3 <= (div 2) * 2 DIV/3
inc(j,2);
inc(p);
inc(k);
until j>len+6;
//correct values of totient by prime factors
svLimit := High(sieve);
p := 3;// starting after 3
pSieve := @Sieve[svLimit+1];
i := -svlimit;
repeat
p := p+2*pSieve[i];
j := p;
// Test := (1-1/p);
while j <= cLimit do
Begin
// pTotLst[j] := trunc(pTotLst[j]*Test);
k:= pTotLst[j];
pTotLst[j]:= k-(k DIV p);
inc(j,p);
end;
inc(i);
until i=0;
T1:= GetTickCount64;
writeln('totient calculated in ',T1-T0,' ms');
setlength(sieve,0);
end;
function GetPerfectTotient(len: NativeUint):NativeUint;
var
pTotLst : pLongWord;
i,sum: NativeUint;
Begin
T0:= GetTickCount64;
pTotLst := @TotientList[0];
setlength(SolList,100);
result := 0;
For i := 3 to Len do
Begin
sum := pTotLst[i];
pTotLst[i] := sum+pTotLst[sum];
end;
//Check for solution ( IF ) in seperate loop ,reduces time consuption ~ 12% for this function
For i := 3 to Len do
IF pTotLst[i] =i then
Begin
SolList[result] := i;
inc(result);
end;
T1:= GetTickCount64;
setlength(SolList,result);
writeln('calculated totientsum in ',T1-T0,' ms');
writeln('found ',result,' perfect totient numbers');
end;
var
j,k : NativeUint;
Begin
TotientInit(climit);
GetPerfectTotient(climit);
k := 0;
For j := 0 to High(Sollist) do
Begin
inc(k);
if k > 4 then
Begin
writeln(Sollist[j]);
k := 0;
end
else
write(Sollist[j],',');
end;
end.
;OutPut:
compiled with fpc 3.0.4 -O3 "Perftotient.pas"
totient calculated in 32484 ms
calculated totientsum in 8244 ms
found 46 perfect totient numbers
3,9,15,27,39
81,111,183,243,255
327,363,471,729,2187
2199,3063,4359,4375,5571
6561,8751,15723,19683,36759
46791,59049,65535,140103,177147
208191,441027,531441,1594323,4190263
4782969,9056583,14348907,43046721,57395631
129140163,172186887,236923383,387420489,918330183
1162261467,
real 0m47,690s
*
found 40 perfect totient numbers
...
real 0m2,025s
Perl
{{libheader|ntheory}}
use ntheory qw(euler_phi);
sub phi_iter {
my($p) = @_;
euler_phi($p) + ($p == 2 ? 0 : phi_iter(euler_phi($p)));
}
my @perfect;
for (my $p = 2; @perfect < 20 ; ++$p) {
push @perfect, $p if $p == phi_iter($p);
}
printf "The first twenty perfect totient numbers:\n%s\n", join ' ', @perfect;
{{out}}
The first twenty Perfect totient numbers:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571
Perl 6
{{works with|Rakudo|2018.11}}
my \𝜑 = Nil, |(1..*).hyper.map: -> $t { +(^$t).grep: * gcd $t == 1 };
my \𝜑𝜑 = Nil, |(2..*).grep: -> $p { $p == sum 𝜑[$p], { 𝜑[$_] } … 1 };
put "The first twenty Perfect totient numbers:\n", 𝜑𝜑[1..20];
{{out}}
The first twenty Perfect totient numbers:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571
Phix
{{trans|Go}}
function totient(integer n)
integer tot = n, i = 2
while i*i<=n do
if mod(n,i)=0 then
while true do
n /= i
if mod(n,i)!=0 then exit end if
end while
tot -= tot/i
end if
i += iff(i=2?1:2)
end while
if n>1 then
tot -= tot/n
end if
return tot
end function
sequence perfect = {}
integer n = 1
while length(perfect)<20 do
integer tot = n,
tsum = 0
while tot!=1 do
tot = totient(tot)
tsum += tot
end while
if tsum=n then
perfect &= n
end if
n += 2
end while
printf(1,"The first 20 perfect totient numbers are:\n")
?perfect
{{out}}
The first 20 perfect totient numbers are:
{3,9,15,27,39,81,111,183,243,255,327,363,471,729,2187,2199,3063,4359,4375,5571}
PicoLisp
(gc 16)
(de gcd (A B)
(until (=0 B)
(let M (% A B)
(setq A B B M) ) )
(abs A) )
(de totient (N)
(let C 0
(for I N
(and (=1 (gcd N I)) (inc 'C)) )
C ) )
(de totients (NIL)
(let (C 0 N 1)
(while (> 20 C)
(let (Cur N S 0)
(while (> Cur 1)
(inc 'S (setq Cur (totient Cur))) )
(when (= S N)
(inc 'C)
(prin N " ")
(flush) )
(inc 'N 2) ) )
(prinl) ) )
(totients)
{{out}}
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571
Python
from math import gcd
from functools import lru_cache
from itertools import islice, count
@lru_cache(maxsize=None)
def φ(n):
return sum(1 for k in range(1, n + 1) if gcd(n, k) == 1)
def perfect_totient():
for n0 in count(1):
parts, n = 0, n0
while n != 1:
n = φ(n)
parts += n
if parts == n0:
yield n0
if __name__ == '__main__':
print(list(islice(perfect_totient(), 20)))
{{out}}
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]
Racket
#lang racket
(require math/number-theory)
(define (tot n)
(match n
[1 0]
[n (define t (totient n))
(+ t (tot t))]))
(define (perfect? n)
(= n (tot n)))
(define-values (ns i)
(for/fold ([ns '()] [i 0])
([n (in-naturals 1)]
#:break (= i 20)
#:when (perfect? n))
(values (cons n ns) (+ i 1))))
(reverse ns)
REXX
unoptimized
/*REXX program calculates and displays the first N perfect totient numbers. */
parse arg N . /*obtain optional argument from the CL.*/
if N=='' | N=="," then N= 20 /*Not specified? Then use the default.*/
@.=. /*memoization array of totient numbers.*/
p= 0 /*the count of perfect " " */
$= /*list of the " " " */
do j=3 by 2 until p==N; s= phi(j) /*obtain totient number for a number. */
a= s /* [↓] search for a perfect totient #.*/
do until a==1; a= phi(a); s= s + a
end /*until*/
if s\==j then iterate /*Is J not a perfect totient number? */
p= p + 1 /*bump count of perfect totient numbers*/
$= $ j /*add to perfect totient numbers list. */
end /*j*/
say 'The first ' N " perfect totient numbers:" /*display the header to the terminal. */
say strip($) /* " " list. " " " */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
gcd: parse arg x,y; do until y==0; parse value x//y y with y x; end; return x
/*──────────────────────────────────────────────────────────────────────────────────────*/
phi: procedure expose @.; parse arg z; if @.z\==. then return @.z /*was found before?*/
#= z==1; do m=1 for z-1; if gcd(m, z)==1 then #= # + 1; end /*m*/
@.z= #; return # /*use memoization. */
{{out|output|text= when using the default input of : 20 }}
The first 20 perfect totient numbers:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571
optimized
This REXX version is over ''twice'' as fast as the unoptimized version.
It takes advantage of the fact that all known perfect totient numbers less than '''322''' have one of these factors: '''3''', '''5''', or '''7'''
('''322''' '''=''' '''31,381,059,609''').
/*REXX program calculates and displays the first N perfect totient numbers. */
parse arg N . /*obtain optional argument from the CL.*/
if N=='' | N=="," then N= 20 /*Not specified? Then use the default.*/
@.=. /*memoization array of totient numbers.*/
p= 0 /*the count of perfect " " */
$= /*list of the " " " */
do j=3 by 2 until p==N /*obtain the totient number for index J*/
if j//3\==0 then if j//5\==0 then if j//7\==0 then iterate
s= phi(j); a= s /* [↑] J must have 1 of these factors*/
do until a==1; if @.a==. then a= phi(a); else a= @.a
s= s + a
end /*until*/
if s\==j then iterate /*Is J not a perfect totient number? */
p= p + 1 /*bump count of perfect totient numbers*/
$= $ j /*add to perfect totient numbers list. */
end /*j*/
say 'The first ' N " perfect totient numbers:" /*display the header to the terminal. */
say strip($) /* " " list. " " " */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
gcd: parse arg x,y; do until y==0; parse value x//y y with y x; end; return x
/*──────────────────────────────────────────────────────────────────────────────────────*/
phi: procedure expose @.; parse arg z; if @.z\==. then return @.z /*was found before?*/
#= z==1; do m=1 for z-1; if gcd(m, z)==1 then #= # + 1; end /*m*/
@.z= #; return # /*use memoization. */
{{out|output|text= is identical to the 1st REXX version.}}
Ruby
require "prime"
class Integer
def φ
prime_division.inject(1) {|res, (pr, exp)| res *= (pr-1) * pr**(exp-1) }
end
def perfect_totient?
f, sum = self, 0
until f == 1 do
f = f.φ
sum += f
end
self == sum
end
end
puts (1..).lazy.select(&:perfect_totient?).first(20).join(", ")
{{Out}}
3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571
Scala
In this example we define a function which determines whether or not a number is a perfect totient number, then use it to construct a lazily evaluated list which contains all perfect totient numbers. Calculating the first n perfect totient numbers only requires taking the first n elements from the list.
//List of perfect totients
def isPerfectTotient(num: Int): Boolean = LazyList.iterate(totient(num))(totient).takeWhile(_ != 1).foldLeft(0L)(_+_) + 1 == num
def perfectTotients: LazyList[Int] = LazyList.from(3).filter(isPerfectTotient)
//Totient Function
@tailrec def scrub(f: Long, num: Long): Long = if(num%f == 0) scrub(f, num/f) else num
def totient(num: Long): Long = LazyList.iterate((num, 2: Long, num)){case (ac, i, n) => if(n%i == 0) (ac*(i - 1)/i, i + 1, scrub(i, n)) else (ac, i + 1, n)}.dropWhile(_._3 != 1).head._1
{{out}}
scala> perfectTotients.take(20).mkString(", ")
res1: String = 3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571
Sidef
func perfect_totient({.<=1}, sum=0) { sum }
func perfect_totient( n, sum=0) { __FUNC__(var(t = n.euler_phi), sum + t) }
say (1..Inf -> lazy.grep {|n| perfect_totient(n) == n }.first(20))
{{out}}
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]
Swift
public func totient(n: Int) -> Int {
var n = n
var i = 2
var tot = n
while i * i <= n {
if n % i == 0 {
while n % i == 0 {
n /= i
}
tot -= tot / i
}
if i == 2 {
i = 1
}
i += 2
}
if n > 1 {
tot -= tot / n
}
return tot
}
public struct PerfectTotients: Sequence, IteratorProtocol {
private var m = 1
public init() { }
public mutating func next() -> Int? {
while true {
defer {
m += 1
}
var tot = m
var sum = 0
while tot != 1 {
tot = totient(n: tot)
sum += tot
}
if sum == m {
return m
}
}
}
}
print("The first 20 perfect totient numbers are:")
print(Array(PerfectTotients().prefix(20)))
{{out}}
The first 20 perfect totient numbers are:
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]
zkl
var totients=List.createLong(10_000,0); // cache
fcn totient(n){ if(phi:=totients[n]) return(phi);
totients[n]=[1..n].reduce('wrap(p,k){ p + (n.gcd(k)==1) })
}
fcn perfectTotientW{ // -->iterator
(1).walker(*).tweak(fcn(z){
parts,n := 0,z;
while(n!=1){ parts+=( n=totient(n) ) }
if(parts==z) z else Void.Skip;
})
}
perfectTotientW().walk(20).println();
{{out}}
L(3,9,15,27,39,81,111,183,243,255,327,363,471,729,2187,2199,3063,4359,4375,5571)