⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{draft task}}
Sometimes you want to find all permutations of elements where some elements are repeated, e.g. you have 3 red balls, 2 blue balls and one black ball.
If you just do all permutations of the 6 elements, each permutation will be duplicated 12 times where you can't tell that the identical elements have switched places.
Given an input of the form [a1, a2, ···, ak] where ak denotes how many duplicates of element k you should have,
each ak > 0 and the sum of all ak is '''n'''.
You should get n! / (a1! × a2! ... × ak!) permutations as a result.
(You may, of course, denote the elements 0..k-1 if that works better.)
For example, the input [2,1] should give results (1,1,2), (1,2,1) and (2,1,1).
Alternatively, if zero-based: (0,0,1), (0,1,0) and (1,0,0).
;Task: List the permutations you get from the input [2, 3, 1].
Optionally output the permutations as strings where the first element is represented by '''A''', the second by '''B''' and the third by '''C'''
(the example result would then be '''AAB''', '''ABA''' and '''BAA''').
;Related tasks:
- [[Anagrams]]
- [[Permutations]]
- [[Permutations/Derangements]]
Dart
{{trans|Tailspin}}
import 'dart:io';
void main() {
stdout.writeln(distinctPerms([2,3,1]).map((p) => alpha("ABC", p)).toList());
}
String alpha(String alphabet, List<int> perm) {
return perm.map((i) => alphabet[i]).join("");
}
Iterable<List<int>> distinctPerms(List<int> reps) sync* {
Iterable<List<int>> perms(List<List<int>> elements) sync* {
if (elements.length == 1) {
yield List.of(elements[0]);
} else {
for (int k = 0; k < elements.length; k++) {
List<List<int>> tail = [];
for (int i = 0; i < elements.length; i++) {
if (i == k) {
if (elements[i].length > 1) {
tail.add(List.of(elements[i].skip(1)));
}
} else {
tail.add(elements[i]);
}
}
yield* perms(tail).map((t) {
t.insert(0, elements[k][0]);
return t;
});
}
}
}
List<List<int>> elements = [];
for (int i = 0; i < reps.length; i++) {
elements.add(List.filled(reps[i], i));
}
yield* perms(elements);
}
{{out}}
[AABBBC, AABBCB, AABCBB, AACBBB, ABABBC, ABABCB, ABACBB, ABBABC, ABBACB, ABBBAC, ABBBCA, ABBCAB, ABBCBA, ABCABB, ABCBAB, ABCBBA, ACABBB, ACBABB, ACBBAB, ACBBBA, BAABBC, BAABCB, BAACBB, BABABC, BABACB, BABBAC, BABBCA, BABCAB, BABCBA, BACABB, BACBAB, BACBBA, BBAABC, BBAACB, BBABAC, BBABCA, BBACAB, BBACBA, BBBAAC, BBBACA, BBBCAA, BBCAAB, BBCABA, BBCBAA, BCAABB, BCABAB, BCABBA, BCBAAB, BCBABA, BCBBAA, CAABBB, CABABB, CABBAB, CABBBA, CBAABB, CBABAB, CBABBA, CBBAAB, CBBABA, CBBBAA]
Factor
Removing duplicates from the list of all permutations:
USING: arrays grouping math math.combinatorics prettyprint
sequences sets ;
: distinct-permutations ( seq -- seq )
[ CHAR: A + <array> ] map-index "" concat-as <permutations>
members ;
{ 2 3 1 } distinct-permutations 10 group simple-table.
{{out}}
AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC
ABBBCA ABBCAB ABBCBA ABCABB ABCBAB ABCBBA ACABBB ACBABB ACBBAB ACBBBA
BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCAB BABCBA BACABB
BACBAB BACBBA BBAABC BBAACB BBABAC BBABCA BBACAB BBACBA BBBAAC BBBACA
BBBCAA BBCAAB BBCABA BBCBAA BCAABB BCABAB BCABBA BCBAAB BCBABA BCBBAA
CAABBB CABABB CABBAB CABBBA CBAABB CBABAB CBABBA CBBAAB CBBABA CBBBAA
Generating distinct permutations directly (more efficient in time and space): {{trans|Go}}
USING: arrays io kernel locals math math.ranges sequences ;
IN: rosetta-code.distinct-permutations
: should-swap? ( start curr seq -- ? )
[ nipd nth ] [ <slice> member? not ] 3bi ;
:: .find-permutations ( seq index n -- )
index n >= [ seq write bl ] [
index n [a,b) [
:> i
index i seq should-swap? [
index i seq exchange
seq index 1 + n .find-permutations
index i seq exchange
] when
] each
] if ;
: first-permutation ( nums charset -- seq )
[ <array> ] 2map "" concat-as ;
: .distinct-permutations ( nums charset -- )
first-permutation 0 over length .find-permutations nl ;
: main ( -- )
{ 2 1 } "12"
{ 2 3 1 } "123"
{ 2 3 1 } "ABC"
[ .distinct-permutations ] 2tri@ ;
MAIN: main
{{out}}
112 121 211
112223 112232 112322 113222 121223 121232 121322 122123 122132 122213 122231 122321 122312 123221 123212 123122 132221 132212 132122 131222 211223 211232 211322 212123 212132 212213 212231 212321 212312 213221 213212 213122 221123 221132 221213 221231 221321 221312 222113 222131 222311 223121 223112 223211 231221 231212 231122 232121 232112 232211 312221 312212 312122 311222 321221 321212 321122 322121 322112 322211
AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC ABBBCA ABBCBA ABBCAB ABCBBA ABCBAB ABCABB ACBBBA ACBBAB ACBABB ACABBB BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCBA BABCAB BACBBA BACBAB BACABB BBAABC BBAACB BBABAC BBABCA BBACBA BBACAB BBBAAC BBBACA BBBCAA BBCABA BBCAAB BBCBAA BCABBA BCABAB BCAABB BCBABA BCBAAB BCBBAA CABBBA CABBAB CABABB CAABBB CBABBA CBABAB CBAABB CBBABA CBBAAB CBBBAA
Go
This is based on the C++ code [https://www.geeksforgeeks.org/distinct-permutations-string-set-2/ here].
package main
import "fmt"
func shouldSwap(s []byte, start, curr int) bool {
for i := start; i < curr; i++ {
if s[i] == s[curr] {
return false
}
}
return true
}
func findPerms(s []byte, index, n int, res *[]string) {
if index >= n {
*res = append(*res, string(s))
return
}
for i := index; i < n; i++ {
check := shouldSwap(s, index, i)
if check {
s[index], s[i] = s[i], s[index]
findPerms(s, index+1, n, res)
s[index], s[i] = s[i], s[index]
}
}
}
func createSlice(nums []int, charSet string) []byte {
var chars []byte
for i := 0; i < len(nums); i++ {
for j := 0; j < nums[i]; j++ {
chars = append(chars, charSet[i])
}
}
return chars
}
func main() {
var res, res2, res3 []string
nums := []int{2, 1}
s := createSlice(nums, "12")
findPerms(s, 0, len(s), &res)
fmt.Println(res)
fmt.Println()
nums = []int{2, 3, 1}
s = createSlice(nums, "123")
findPerms(s, 0, len(s), &res2)
fmt.Println(res2)
fmt.Println()
s = createSlice(nums, "ABC")
findPerms(s, 0, len(s), &res3)
fmt.Println(res3)
}
{{out}}
[112 121 211]
[112223 112232 112322 113222 121223 121232 121322 122123 122132 122213 122231 122321 122312 123221 123212 123122 132221 132212 132122 131222 211223 211232 211322 212123 212132 212213 212231 212321 212312 213221 213212 213122 221123 221132 221213 221231 221321 221312 222113 222131 222311 223121 223112 223211 231221 231212 231122 232121 232112 232211 312221 312212 312122 311222 321221 321212 321122 322121 322112 322211]
[AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC ABBBCA ABBCBA ABBCAB ABCBBA ABCBAB ABCABB ACBBBA ACBBAB ACBABB ACABBB BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCBA BABCAB BACBBA BACBAB BACABB BBAABC BBAACB BBABAC BBABCA BBACBA BBACAB BBBAAC BBBACA BBBCAA BBCABA BBCAAB BBCBAA BCABBA BCABAB BCAABB BCBABA BCBAAB BCBBAA CABBBA CABBAB CABABB CAABBB CBABBA CBABAB CBAABB CBBABA CBBAAB CBBBAA]
Julia
====With the Combinatorics package, create all permutations and filter out the duplicates====
using Combinatorics
catlist(spec) = mapreduce(i -> repeat([i], spec[i]), vcat, 1:length(spec))
alphastringfromintvector(v) = String([Char(Int('A') + i - 1) for i in v])
function testpermwithident(spec)
println("\nTesting $spec yielding:")
for (i, p) in enumerate(unique(collect(permutations(catlist(spec)))))
print(alphastringfromintvector(p), " ", i % 10 == 0 ? "\n" : "")
end
end
testpermwithident([2, 3, 1])
{{out}}
Testing [2, 3, 1] yielding:
AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC
ABBBCA ABBCAB ABBCBA ABCABB ABCBAB ABCBBA ACABBB ACBABB ACBBAB ACBBBA
BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCAB BABCBA BACABB
BACBAB BACBBA BBAABC BBAACB BBABAC BBABCA BBACAB BBACBA BBBAAC BBBACA
BBBCAA BBCAAB BBCABA BBCBAA BCAABB BCABAB BCABBA BCBAAB BCBABA BCBBAA
CAABBB CABABB CABBAB CABBBA CBAABB CBABAB CBABBA CBBAAB CBBABA CBBBAA
=Generate directly=
{{trans|Tailspin}}
alpha(s, v) = map(i -> s[i], v)
function distinctPerms(spec)
function perm(elements)
if length(elements) == 1
deepcopy(elements)
else
[pushfirst!(p, elements[k][1]) for k in 1:length(elements) for p in perm(filter(dups -> length(dups) != 0,
[ if i == k dups[2:end] else dups end
for (i, dups) in enumerate(elements)]))
]
end
end
elements = [fill(x...) for x in enumerate(spec)]
perm(elements)
end
println(map(p -> join(alpha("ABC", p), ""), distinctPerms([2, 3, 1])))
{{out}}
["AABBBC", "AABBCB", "AABCBB", "AACBBB", "ABABBC", "ABABCB", "ABACBB", "ABBABC", "ABBACB", "ABBBAC", "ABBBCA", "ABBCAB", "ABBCBA", "ABCABB", "ABCBAB", "ABCBBA", "ACABBB", "ACBABB", "ACBBAB", "ACBBBA", "BAABBC", "BAABCB", "BAACBB", "BABABC", "BABACB", "BABBAC", "BABBCA", "BABCAB", "BABCBA", "BACABB", "BACBAB", "BACBBA", "BBAABC", "BBAACB", "BBABAC", "BBABCA", "BBACAB", "BBACBA", "BBBAAC", "BBBACA", "BBBCAA", "BBCAAB", "BBCABA", "BBCBAA", "BCAABB", "BCABAB", "BCABBA", "BCBAAB", "BCBABA", "BCBBAA", "CAABBB", "CABABB", "CABBAB", "CABBBA", "CBAABB", "CBABAB", "CBABBA", "CBBAAB", "CBBABA", "CBBBAA"]
MiniZinc
%Permutations with some identical elements. Nigel Galloway, September 9th., 2019
include "count.mzn";
enum N={A,B,C};
array [1..6] of var N: G; constraint count(G,A,2) /\ count(G,C,1);
output [show(G)]
{{out}} minizinc --all-solutions produces:
[C, B, B, B, A, A]
----------
[B, C, B, B, A, A]
----------
[B, B, C, B, A, A]
----------
[B, B, B, C, A, A]
----------
[C, B, B, A, A, B]
----------
[B, C, B, A, A, B]
----------
[B, B, C, A, A, B]
----------
[B, B, B, A, A, C]
----------
[C, B, A, B, A, B]
----------
[B, C, A, B, A, B]
----------
[B, B, A, C, A, B]
----------
[B, B, A, B, A, C]
----------
[C, A, B, B, A, B]
----------
[B, A, C, B, A, B]
----------
[B, A, B, C, A, B]
----------
[B, A, B, B, A, C]
----------
[A, C, B, B, A, B]
----------
[A, B, C, B, A, B]
----------
[A, B, B, C, A, B]
----------
[A, B, B, B, A, C]
----------
[C, B, B, A, B, A]
----------
[B, C, B, A, B, A]
----------
[B, B, C, A, B, A]
----------
[B, B, B, A, C, A]
----------
[C, B, A, A, B, B]
----------
[B, C, A, A, B, B]
----------
[B, B, A, A, C, B]
----------
[B, B, A, A, B, C]
----------
[C, A, B, A, B, B]
----------
[B, A, C, A, B, B]
----------
[B, A, B, A, C, B]
----------
[B, A, B, A, B, C]
----------
[A, C, B, A, B, B]
----------
[A, B, C, A, B, B]
----------
[A, B, B, A, C, B]
----------
[A, B, B, A, B, C]
----------
[C, B, A, B, B, A]
----------
[B, C, A, B, B, A]
----------
[B, B, A, C, B, A]
----------
[B, B, A, B, C, A]
----------
[C, A, A, B, B, B]
----------
[B, A, A, C, B, B]
----------
[B, A, A, B, C, B]
----------
[B, A, A, B, B, C]
----------
[A, C, A, B, B, B]
----------
[A, B, A, C, B, B]
----------
[A, B, A, B, C, B]
----------
[A, B, A, B, B, C]
----------
[C, A, B, B, B, A]
----------
[B, A, C, B, B, A]
----------
[B, A, B, C, B, A]
----------
[B, A, B, B, C, A]
----------
[A, C, B, B, B, A]
----------
[A, B, C, B, B, A]
----------
[A, B, B, C, B, A]
----------
[A, B, B, B, C, A]
----------
[A, A, C, B, B, B]
----------
[A, A, B, C, B, B]
----------
[A, A, B, B, C, B]
----------
[A, A, B, B, B, C]
----------
### ====
Perl
{{libheader|ntheory}}
;
formultiperm { print join('',@_) . ' ' } [<1 1 2>]; print "\n\n";
formultiperm { print join('',@_) . ' ' } [<1 1 2 2 2 3>]; print "\n\n";
formultiperm { print join('',@_) . ' ' } [split //,'AABBBC']; print "\n";
{{out}}
112 121 211
112223 112232 112322 113222 121223 121232 121322 122123 122132 122213 122231 122312 122321 123122 123212 123221 131222 132122 132212 132221 211223 211232 211322 212123 212132 212213 212231 212312 212321 213122 213212 213221 221123 221132 221213 221231 221312 221321 222113 222131 222311 223112 223121 223211 231122 231212 231221 232112 232121 232211 311222 312122 312212 312221 321122 321212 321221 322112 322121 322211
AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC ABBBCA ABBCAB ABBCBA ABCABB ABCBAB ABCBBA ACABBB ACBABB ACBBAB ACBBBA BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCAB BABCBA BACABB BACBAB BACBBA BBAABC BBAACB BBABAC BBABCA BBACAB BBACBA BBBAAC BBBACA BBBCAA BBCAAB BBCABA BBCBAA BCAABB BCABAB BCABBA BCBAAB BCBABA BCBBAA CAABBB CABABB CABBAB CABBBA CBAABB CBABAB CBABBA CBBAAB CBBABA CBBBAA
Perl 6
{{works with|Rakudo|2019.07}}
sub permutations-with-some-identical-elements ( @elements, @reps = () ) {
with @elements { (@reps ?? flat $_ Zxx @reps !! flat .keys.map(*+1) Zxx .values).permutations».join.unique }
}
for (<2 1>,), (<2 3 1>,), (<A B C>, <2 3 1>), (<🦋 ⚽ 🙄>, <2 2 1>) {
put permutations-with-some-identical-elements |$_;
say '';
}
{{out}}
112 121 211
112223 112232 112322 113222 121223 121232 121322 122123 122132 122213 122231 122312 122321 123122 123212 123221 131222 132122 132212 132221 211223 211232 211322 212123 212132 212213 212231 212312 212321 213122 213212 213221 221123 221132 221213 221231 221312 221321 222113 222131 222311 223112 223121 223211 231122 231212 231221 232112 232121 232211 311222 312122 312212 312221 321122 321212 321221 322112 322121 322211
AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC ABBBCA ABBCAB ABBCBA ABCABB ABCBAB ABCBBA ACABBB ACBABB ACBBAB ACBBBA BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCAB BABCBA BACABB BACBAB BACBBA BBAABC BBAACB BBABAC BBABCA BBACAB BBACBA BBBAAC BBBACA BBBCAA BBCAAB BBCABA BBCBAA BCAABB BCABAB BCABBA BCBAAB BCBABA BCBBAA CAABBB CABABB CABBAB CABBBA CBAABB CBABAB CBABBA CBBAAB CBBABA CBBBAA
🦋🦋⚽⚽🙄 🦋🦋⚽🙄⚽ 🦋🦋🙄⚽⚽ 🦋⚽🦋⚽🙄 🦋⚽🦋🙄⚽ 🦋⚽⚽🦋🙄 🦋⚽⚽🙄🦋 🦋⚽🙄🦋⚽ 🦋⚽🙄⚽🦋 🦋🙄🦋⚽⚽ 🦋🙄⚽🦋⚽ 🦋🙄⚽⚽🦋 ⚽🦋🦋⚽🙄 ⚽🦋🦋🙄⚽ ⚽🦋⚽🦋🙄 ⚽🦋⚽🙄🦋 ⚽🦋🙄🦋⚽ ⚽🦋🙄⚽🦋 ⚽⚽🦋🦋🙄 ⚽⚽🦋🙄🦋 ⚽⚽🙄🦋🦋 ⚽🙄🦋🦋⚽ ⚽🙄🦋⚽🦋 ⚽🙄⚽🦋🦋 🙄🦋🦋⚽⚽ 🙄🦋⚽🦋⚽ 🙄🦋⚽⚽🦋 🙄⚽🦋🦋⚽ 🙄⚽🦋⚽🦋 🙄⚽⚽🦋🦋
Phix
{{trans|Go}}
function shouldSwap(string s, integer start, curr)
for i=start to curr-1 do
if s[i] == s[curr] then
return false
end if
end for
return true
end function
function findPerms(string s, integer i=1, sequence res={})
if i>length(s) then
res = append(res, s)
else
for j=i to length(s) do
if shouldSwap(s, i, j) then
{s[i], s[j]} = {s[j], s[i]}
res = findPerms(s, i+1, res)
{s[i], s[j]} = {s[j], s[i]}
end if
end for
end if
return res
end function
function createSlice(sequence nums, string charSet)
string chars = ""
for i=1 to length(nums) do
chars &= repeat(charSet[i],nums[i])
end for
return chars
end function
pp(findPerms(createSlice({2,1}, "12"))) -- (=== findPerms("112"))
pp(findPerms(createSlice({2,3,1}, "123"))) -- (=== findPerms("112223"))
pp(findPerms(createSlice({2,3,1}, "ABC"))) -- (=== findPerms("AABBBC"))
{{out}}
{`112`, `121`, `211`}
{`112223`, `112232`, `112322`, `113222`, `121223`, `121232`, `121322`,
`122123`, `122132`, `122213`, `122231`, `122321`, `122312`, `123221`,
`123212`, `123122`, `132221`, `132212`, `132122`, `131222`, `211223`,
`211232`, `211322`, `212123`, `212132`, `212213`, `212231`, `212321`,
`212312`, `213221`, `213212`, `213122`, `221123`, `221132`, `221213`,
`221231`, `221321`, `221312`, `222113`, `222131`, `222311`, `223121`,
`223112`, `223211`, `231221`, `231212`, `231122`, `232121`, `232112`,
`232211`, `312221`, `312212`, `312122`, `311222`, `321221`, `321212`,
`321122`, `322121`, `322112`, `322211`}
{`AABBBC`, `AABBCB`, `AABCBB`, `AACBBB`, `ABABBC`, `ABABCB`, `ABACBB`,
`ABBABC`, `ABBACB`, `ABBBAC`, `ABBBCA`, `ABBCBA`, `ABBCAB`, `ABCBBA`,
`ABCBAB`, `ABCABB`, `ACBBBA`, `ACBBAB`, `ACBABB`, `ACABBB`, `BAABBC`,
`BAABCB`, `BAACBB`, `BABABC`, `BABACB`, `BABBAC`, `BABBCA`, `BABCBA`,
`BABCAB`, `BACBBA`, `BACBAB`, `BACABB`, `BBAABC`, `BBAACB`, `BBABAC`,
`BBABCA`, `BBACBA`, `BBACAB`, `BBBAAC`, `BBBACA`, `BBBCAA`, `BBCABA`,
`BBCAAB`, `BBCBAA`, `BCABBA`, `BCABAB`, `BCAABB`, `BCBABA`, `BCBAAB`,
`BCBBAA`, `CABBBA`, `CABBAB`, `CABABB`, `CAABBB`, `CBABBA`, `CBABAB`,
`CBAABB`, `CBBABA`, `CBBAAB`, `CBBBAA`}
REXX
shows permutation list
/*REXX program computes and displays the permutations with some identical elements. */
parse arg g /*obtain optional arguments from the CL*/
if g='' | g="," then g= 2 3 1 /*Not specified? Then use the defaults*/
#= words(g) /*obtain the number of source items. */
@= left('ABCDEFGHIJKLMNOPQRSTUVWXYZ', #) /*@: the (output) letters to be used.*/
LO= /*LO: the start of the sequence. */
HI= /*HI: " end " " " */
do i=1 for #; @.i= word(g, i) /*get number of characters for an arg. */
LO= LO || copies(i, @.i) /*build the LO number for the range. */
HI= copies(i, @.i) || HI /* " " HI " " " " */
end /*i*/
$= /*initialize the output string to null.*/
do j=LO to HI /*generate the enumerated output string*/
if verify(j, LO)\==0 then iterate /*An invalid digital string? Then skip*/
do k=1 for # /*parse string for correct # of digits.*/
if countstr(k, j)\==@.k then iterate j /*Incorrect number of digits? Skip. */
end /*k*/
$= $ j /*append digital string to the list. */
end /*j*/
/*stick a fork in it, we're all done. */
say 'number of permutations: ' words($)
say
say strip(translate($, @, left(123456789, #) ) ) /*display the translated string to term*/
{{out|output|text= when using the inputs of: 2 1 }}
number of permutations: 3
AAB ABA BAA
{{out|output|text= when using the default inputs: 2 3 1 }}
number of permutations: 60
AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC ABBBCA ABBCAB ABBCBA ABCABB ABCBAB ABCBBA ACABBB ACBABB ACBBAB ACBBBA BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCAB BABCBA BACABB BACBAB BACBBA BBAABC BBAACB BBABAC BBABCA BBACAB BBACBA BBBAAC BBBACA BBBCAA BBCAAB BBCABA BBCBAA BCAABB BCABAB BCABBA BCBAAB BCBABA BCBBAA CAABBB CABABB CABBAB CABBBA CBAABB CBABAB CBABBA CBBAAB CBBABA CBBBAA
only shows permutation count
If any of the arguments is negative, the list of the permutations is suppressed, only the permutation count is shown.
/*REXX program computes and displays the permutations with some identical elements. */
parse arg g /*obtain optional arguments from the CL*/
if g='' | g="," then g= 2 3 1 /*Not specified? Then use the defaults*/
#= words(g) /*obtain the number of source items. */
@= left('ABCDEFGHIJKLMNOPQRSTUVWXYZ', #) /*@: the (output) letters to be used.*/
show= 1 /*if = 1, will show permutation list. */
sum= 0
LO= /*LO: the start of the sequence. */
HI= /*HI: " end " " " */
do i=1 for #; y= word(g, i) /*get number of characters for an arg. */
show= show & y>=0; a= abs(y) /*Is it negative? Then don't show list*/
sum= sum + a; @.i= a /*use the absolute value of an argument*/
LO= LO || copies(i, @.i) /*build the LO number for the range. */
HI= copies(i, @.i) || HI /* " " HI " " " " */
end /*i*/
$= /*initialize the output string to null.*/
numeric digits max(9, sum) /*ensure enough numeric decimal digits.*/
do j=LO to HI /*generate the enumerated output string*/
if verify(j, LO)\==0 then iterate /*An invalid digital string? Then skip*/
do k=1 for # /*parse string for correct # of digits.*/
if countstr(k, j)\==@.k then iterate j /*Incorrect number of digits? Skip. */
end /*k*/
$= $ j /*append digital string to the list. */
end /*j*/
/*stick a fork in it, we're all done. */
say 'number of permutations: ' words($) /*# perms with some identical elements.*/
say
if show then say strip(translate($, @, left(123456789, #) ) ) /*display translated str.*/
{{out|output|text= when using the inputs of: -2 3 1 1 1 }}
number of permutations: 3360
{{out|output|text= when using the inputs of: -1 2 1 2 1 }}
number of permutations: 1260
{{out|output|text= when using the inputs of: -1 2 3 2 1 }}
number of permutations: 15120
{{out|output|text= when using the inputs of: -1 1 5 2 }}
number of permutations: 1512
{{out|output|text= when using the inputs of: -1 1 1 1 6 }}
number of permutations: 5040
Sidef
Simple implementation, by filtering out the duplicated permutations.
func permutations_with_some_identical_elements (reps) {
reps.map_kv {|k,v| v.of(k+1)... }.permutations.uniq
}
say permutations_with_some_identical_elements([2,1]).map{.join}.join(' ')
say permutations_with_some_identical_elements([2,3,1]).map{.join}.join(' ')
{{out}}
112 121 211
112223 112232 112322 113222 121223 121232 121322 122123 122132 122213 122231 122312 122321 123122 123212 123221 131222 132122 132212 132221 211223 211232 211322 212123 212132 212213 212231 212312 212321 213122 213212 213221 221123 221132 221213 221231 221312 221321 222113 222131 222311 223112 223121 223211 231122 231212 231221 232112 232121 232211 311222 312122 312212 312221 321122 321212 321221 322112 322121 322211
More efficient approach, by generating the permutations without duplicates:
func next_uniq_perm (array) {
var k = array.end
return ([], false) if (k < 0)
var i = k-1
while ((i >= 0) && (array[i] >= array[i+1])) {
--i
}
return (array.flip, false) if (i == -1)
if (array[i+1] > array[k]) {
array = [array.slice(0, i)..., array.slice(i+1, k).flip...]
}
var j = i+1
while (array[i] >= array[j]) {
j++
}
array.clone!
array.swap(i,j)
return (array, true)
}
func unique_permutations(array, reps=[]) {
var perm = (reps ? reps : array).map_kv {|k,v| v.of { reps ? array[k] : (k+1) }... }
var perms = [perm]
loop {
(perm, var more) = next_uniq_perm(perm)
break if !more
perms << perm
}
return perms
}
for a,b in ([[[2,1]], [[2,3,1]], [%w(A B C), [2,3,1]]]) {
say "\nPermutations with array = #{a}#{b ? \" and reps = #{b}\" : ''}:"
say unique_permutations(a,b).map{.join}.join(' ')
}
{{out}}
Permutations with array = [2, 1]:
112 121 211
Permutations with array = [2, 3, 1]:
112223 112232 112322 113222 121223 121232 121322 122123 122132 122213 122231 122312 122321 123122 123212 123221 131222 132122 132212 132221 211223 211232 211322 212123 212132 212213 212231 212312 212321 213122 213212 213221 221123 221132 221213 221231 221312 221321 222113 222131 222311 223112 223121 223211 231122 231212 231221 232112 232121 232211 311222 312122 312212 312221 321122 321212 321221 322112 322121 322211
Permutations with array = ["A", "B", "C"] and reps = [2, 3, 1]:
AABBBC AABBCB AABCBB AACBBB ABABBC ABABCB ABACBB ABBABC ABBACB ABBBAC ABBBCA ABBCAB ABBCBA ABCABB ABCBAB ABCBBA ACABBB ACBABB ACBBAB ACBBBA BAABBC BAABCB BAACBB BABABC BABACB BABBAC BABBCA BABCAB BABCBA BACABB BACBAB BACBBA BBAABC BBAACB BBABAC BBABCA BBACAB BBACBA BBBAAC BBBACA BBBCAA BBCAAB BBCABA BBCBAA BCAABB BCABAB BCABBA BCBAAB BCBABA BCBBAA CAABBB CABABB CABBAB CABBBA CBAABB CBABAB CBABBA CBBAAB CBBABA CBBBAA
Tailspin
Creates lots of new arrays, which might be wasteful.
templates distinctPerms
templates perms
<[](1)> $(1) !
<>
def elements: $;
1..$::length -> (
def k: $;
def tail: $elements -> [i](
<?($i <$k>)> $ -> (<[](2..)> $(2..-1)!) !
<> $!
);
$tail -> perms -> [$elements($k;1), $...] !
) !
end perms
$ -> [i]([1..$ -> $i] !) -> perms !
end distinctPerms
def alpha: ['ABC'...];
[[2,3,1] -> distinctPerms -> '$alpha($)...;' ] -> !OUT::write
{{out}}
[AABBBC, AABBCB, AABCBB, AACBBB, ABABBC, ABABCB, ABACBB, ABBABC, ABBACB, ABBBAC, ABBBCA, ABBCAB, ABBCBA, ABCABB, ABCBAB, ABCBBA, ACABBB, ACBABB, ACBBAB, ACBBBA, BAABBC, BAABCB, BAACBB, BABABC, BABACB, BABBAC, BABBCA, BABCAB, BABCBA, BACABB, BACBAB, BACBBA, BBAABC, BBAACB, BBABAC, BBABCA, BBACAB, BBACBA, BBBAAC, BBBACA, BBBCAA, BBCAAB, BBCABA, BBCBAA, BCAABB, BCABAB, BCABBA, BCBAAB, BCBABA, BCBBAA, CAABBB, CABABB, CABBAB, CABBBA, CBAABB, CBABAB, CBABBA, CBBAAB, CBBABA, CBBBAA]
Work in place (slightly modified from the Go solution to preserve lexical order) {{trans|Go}}
templates distinctPerms
templates shouldSwap@{start:}
<?($@distinctPerms($start..~$) <~[<$@distinctPerms($)>]>)> $!
end shouldSwap
templates findPerms
<$@distinctPerms::length..> $@distinctPerms !
<>
def index: $;
$index..$@distinctPerms::length -> shouldSwap@{start: $index}
-> (
@findPerms: $;
@distinctPerms([$, $index]): $@distinctPerms([$index, $])...;
$index + 1 -> findPerms !
) !
@distinctPerms([$@findPerms, $index..~$@findPerms]): $@distinctPerms($index..$@findPerms)...;
end findPerms
@: $ -> [i](1..$ -> $i !);
1 -> findPerms !
end distinctPerms
def alpha: ['ABC'...];
[[2,3,1] -> distinctPerms -> '$alpha($)...;' ] -> !OUT::write
{{out}}
[AABBBC, AABBCB, AABCBB, AACBBB, ABABBC, ABABCB, ABACBB, ABBABC, ABBACB, ABBBAC, ABBBCA, ABBCAB, ABBCBA, ABCABB, ABCBAB, ABCBBA, ACABBB, ACBABB, ACBBAB, ACBBBA, BAABBC, BAABCB, BAACBB, BABABC, BABACB, BABBAC, BABBCA, BABCAB, BABCBA, BACABB, BACBAB, BACBBA, BBAABC, BBAACB, BBABAC, BBABCA, BBACAB, BBACBA, BBBAAC, BBBACA, BBBCAA, BBCAAB, BBCABA, BBCBAA, BCAABB, BCABAB, BCABBA, BCBAAB, BCBABA, BCBBAA, CAABBB, CABABB, CABBAB, CABBBA, CBAABB, CBABAB, CBABBA, CBBAAB, CBBABA, CBBBAA]
zkl
// eg ( (2,3,1), "ABC" ) == permute "A","A","B","B","B","C" and remove duplicates
// --> ( "AABBBC", "AABBCB" .. )
// this gets ugly lots sooner than it should
fcn permutationsWithSomeIdenticalElements(ns,abcs){
ns.zipWith(fcn(n,c){ List.createLong(n,c) },abcs).flatten() : # (3,"B")-->("B","B,"B")
Utils.Helpers.permute(_) : Utils.Helpers.listUnique(_)
.apply("concat") // ("A","A","B","B","B","C")-->"AABBCB"
}
permutationsWithSomeIdenticalElements(T(2,1),"123").println();
permutationsWithSomeIdenticalElements(T(2,1),L("\u2192","\u2191")).concat(" ").println();
z:=permutationsWithSomeIdenticalElements(T(2,3,1),"ABC");
println(z.len());
z.pump(Void,T(Void.Read,9,False), // print rows of ten items
fcn{ vm.arglist.concat(" ").println() });
{{out}}
L("112","121","211")
→→↑ →↑→ ↑→→
60
AABBBC AABBCB AABCBB AACBBB ACABBB CAABBB CABABB ACBABB ABCABB ABACBB
ABABCB ABABBC BAABBC BAABCB BAACBB BACABB BCAABB CBAABB ABBABC ABBACB
ABBCAB ABCBAB ACBBAB CABBAB BABABC BABACB BABCAB BACBAB BCABAB CBABAB
CBBAAB BCBAAB BBCAAB BBACAB BBAACB BBAABC CBABBA BCABBA BACBBA BABCBA
BABBCA BABBAC CBBABA BCBABA BBCABA BBACBA BBABCA BBABAC ABBBAC ABBBCA
ABBCBA ABCBBA ACBBBA CABBBA BBBAAC BBBACA BBBCAA BBCBAA BCBBAA CBBBAA