⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Basic language learning}} [[Category:Probability and statistics]] [[Category:Randomness]] {{omit from|GUISS}} {{omit from|UNIX Shell|From the shell, we simply invoke the awk solution}}
;Task: Generate a collection filled with '''1000''' normally distributed random (or pseudo-random) numbers with a mean of '''1.0''' and a [[wp:Standard_deviation|standard deviation]] of '''0.5'''
Many libraries only generate uniformly distributed random numbers.
If so, use [[wp:Normal_distribution#Generating_values_from_normal_distribution|this formula]] to convert them to a normal distribution.
;Related task:
- [[Standard deviation]]
Ada
with Ada.Numerics; use Ada.Numerics;
with Ada.Numerics.Float_Random; use Ada.Numerics.Float_Random;
with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
procedure Normal_Random is
function Normal_Distribution
( Seed : Generator;
Mu : Float := 1.0;
Sigma : Float := 0.5
) return Float is
begin
return
Mu + (Sigma * Sqrt (-2.0 * Log (Random (Seed), 10.0)) * Cos (2.0 * Pi * Random (Seed)));
end Normal_Distribution;
Seed : Generator;
Distribution : array (1..1_000) of Float;
begin
Reset (Seed);
for I in Distribution'Range loop
Distribution (I) := Normal_Distribution (Seed);
end loop;
end Normal_Random;
ALGOL 68
{{trans|C}}
{{works with|ALGOL 68|Revision 1 - no extensions to language used}}
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}} {{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of FORMATted transput}}
PROC random normal = REAL: # normal distribution, centered on 0, std dev 1 #
(
sqrt(-2*log(random)) * cos(2*pi*random)
);
test:(
[1000]REAL rands;
FOR i TO UPB rands DO
rands[i] := 1 + random normal/2
OD;
INT limit=10;
printf(($"("n(limit-1)(-d.6d",")-d.5d" ... )"$, rands[:limit]))
)
{{out}}
( 0.693461, 0.948424, 0.482261, 1.045939, 0.890818, 1.467935, 0.604153, 0.804811, 0.690227, 0.83462 ... )
AutoHotkey
contributed by Laszlo on the ahk [http://www.autohotkey.com/forum/post-276261.html#276261 forum]
Loop 40
R .= RandN(1,0.5) "`n" ; mean = 1.0, standard deviation = 0.5
MsgBox %R%
RandN(m,s) { ; Normally distributed random numbers of mean = m, std.dev = s by Box-Muller method
Static i, Y
If (i := !i) { ; every other call
Random U, 0, 1.0
Random V, 0, 6.2831853071795862
U := sqrt(-2*ln(U))*s
Y := m + U*sin(V)
Return m + U*cos(V)
}
Return Y
}
AWK
'''One-liner:'''
$ awk 'func r(){return sqrt(-2*log(rand()))*cos(6.2831853*rand())}BEGIN{for(i=0;i<1000;i++)s=s" "1+0.5*r();print s}'
'''Readable version:'''
function r() {
return sqrt( -2*log( rand() ) ) * cos(6.2831853*rand() )
}
BEGIN {
n=1000
for(i=0;i<n;i++) {
x = 1 + 0.5*r()
s = s" "x
}
print s
}
{{out}} first few values only
0.783753 1.16682 1.17989 1.14975 1.34784 0.29296 0.979227 1.04402 0.567835 1.58812 0.465559 1.27186 0.324533 0.725827 -0.0626549 0.632273 1.0145 1.3387 0.861667 1.04147 1.2576 1.02497 0.58453 0.9619 1.26902 0.851048 -0.126259 0.863256
...
BASIC
{{works with|QuickBasic|4.5}} RANDOMIZE TIMER 'seeds random number generator with the system time pi = 3.141592653589793# DIM a(1 TO 1000) AS DOUBLE CLS FOR i = 1 TO 1000 a(i) = 1 + SQR(-2 * LOG(RND)) * COS(2 * pi * RND) NEXT i
BBC BASIC
DIM array(999)
FOR number% = 0 TO 999
array(number%) = 1.0 + 0.5 * SQR(-2*LN(RND(1))) * COS(2*PI*RND(1))
NEXT
mean = SUM(array()) / (DIM(array(),1) + 1)
array() -= mean
stdev = MOD(array()) / SQR(DIM(array(),1) + 1)
PRINT "Mean = " ; mean
PRINT "Standard deviation = " ; stdev
{{out}}
Mean = 1.01848064
Standard deviation = 0.503551814
C
#include <iostream>
#include <math.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
double drand() /* uniform distribution, (0..1] */
{
return (rand()+1.0)/(RAND_MAX+1.0);
}
double random_normal() /* normal distribution, centered on 0, std dev 1 */
{
return sqrt(-2*log(drand())) * cos(2*M_PI*drand());
}
int main()
{
int i;
double rands[1000];
for (i=0; i<1000; i++)
rands[i] = 1.0 + 0.5*random_normal();
return 0;
}
C#
{{trans|JavaScript}}
private static double randomNormal()
{
return Math.Cos(2 * Math.PI * tRand.NextDouble()) * Math.Sqrt(-2 * Math.Log(tRand.NextDouble()));
}
Then the methods in [[Random numbers#Metafont]] are used to calculate the average and the Standard Deviation:
static Random tRand = new Random();
static void Main(string[] args)
{
double[] a = new double[1000];
double tAvg = 0;
for (int x = 0; x < a.Length; x++)
{
a[x] = randomNormal() / 2 + 1;
tAvg += a[x];
}
tAvg /= a.Length;
Console.WriteLine("Average: " + tAvg.ToString());
double s = 0;
for (int x = 0; x < a.Length; x++)
{
s += Math.Pow((a[x] - tAvg), 2);
}
s = Math.Sqrt(s / 1000);
Console.WriteLine("Standard Deviation: " + s.ToString());
Console.ReadLine();
}
An example result:
Average: 1,00510073053613
Standard Deviation: 0,502540443430955
C++
{{works with|C++11}}
The new C++ standard looks very similar to the Boost library example below.
#include <random>
#include <functional>
#include <vector>
#include <algorithm>
using namespace std;
int main()
{
random_device seed;
mt19937 engine(seed());
normal_distribution<double> dist(1.0, 0.5);
auto rnd = bind(dist, engine);
vector<double> v(1000);
generate(v.begin(), v.end(), rnd);
return 0;
}
{{works with|C++03}}
#include <cstdlib> // for rand
#include <cmath> // for atan, sqrt, log, cos
#include <algorithm> // for generate_n
double const pi = 4*std::atan(1.0);
// simple functor for normal distribution
class normal_distribution
{
public:
normal_distribution(double m, double s): mu(m), sigma(s) {}
double operator() const // returns a single normally distributed number
{
double r1 = (std::rand() + 1.0)/(RAND_MAX + 1.0); // gives equal distribution in (0, 1]
double r2 = (std::rand() + 1.0)/(RAND_MAX + 1.0);
return mu + sigma * std::sqrt(-2*std::log(r1))*std::cos(2*pi*r2);
}
private:
const double mu, sigma;
};
int main()
{
double array[1000];
std::generate_n(array, 1000, normal_distribution(1.0, 0.5));
return 0;
}
{{libheader|Boost}}
This example used Mersenne Twister generator. It can be changed by changing the typedef.
#include <vector>
#include "boost/random.hpp"
#include "boost/generator_iterator.hpp"
#include <boost/random/normal_distribution.hpp>
#include <algorithm>
typedef boost::mt19937 RNGType; ///< mersenne twister generator
int main() {
RNGType rng;
boost::normal_distribution<> rdist(1.0,0.5); /**< normal distribution
with mean of 1.0 and standard deviation of 0.5 */
boost::variate_generator< RNGType, boost::normal_distribution<> >
get_rand(rng, rdist);
std::vector<double> v(1000);
generate(v.begin(),v.end(),get_rand);
return 0;
}
Clojure
(import '(java.util Random))
(def normals
(let [r (Random.)]
(take 1000 (repeatedly #(-> r .nextGaussian (* 0.5) (+ 1.0))))))
Common Lisp
(loop for i from 1 to 1000
collect (1+ (* (sqrt (* -2 (log (random 1.0)))) (cos (* 2 pi (random 1.0))) 0.5)))
D
import std.stdio, std.random, std.math;
struct NormalRandom {
double mean, stdDev;
// Necessary because it also defines an opCall.
this(in double mean_, in double stdDev_) pure nothrow {
this.mean = mean_;
this.stdDev = stdDev_;
}
double opCall() const /*nothrow*/ {
immutable r1 = uniform01, r2 = uniform01; // Not nothrow.
return mean + stdDev * sqrt(-2 * r1.log) * cos(2 * PI * r2);
}
}
void main() {
double[1000] array;
auto nRnd = NormalRandom(1.0, 0.5);
foreach (ref x; array)
//x = nRnd;
x = nRnd();
}
Alternative Version
(Untested) {{libheader|tango}}
import tango.math.random.Random;
void main() {
double[1000] list;
auto r = new Random();
foreach (ref l; list) {
r.normalSource!(double)()(l);
l = 1.0 + 0.5 * l;
}
}
Delphi
Delphi has RandG function which generates random numbers with normal distribution using Marsaglia-Bray algorithm:
program Randoms;
{$APPTYPE CONSOLE}
uses
Math;
var
Values: array[0..999] of Double;
I: Integer;
begin
// Randomize; Commented to obtain reproducible results
for I:= Low(Values) to High(Values) do
Values[I]:= RandG(1.0, 0.5); // Mean = 1.0, StdDev = 0.5
Writeln('Mean = ', Mean(Values):6:4);
Writeln('Std Deviation = ', StdDev(Values):6:4);
Readln;
end.
{{out}}
Mean = 1.0098
Std deviation = 0.5016
DWScript
var values : array [0..999] of Float;
var i : Integer;
for i := values.Low to values.High do
values[i] := RandG(1, 0.5);
E
accum [] for _ in 1..1000 { _.with(entropy.nextGaussian()) }
EasyLang
## Eiffel
```eiffel
class
APPLICATION
inherit
ARGUMENTS
create
make
feature {NONE} -- Initialization
l_time: TIME
l_seed: INTEGER
math:DOUBLE_MATH
rnd:RANDOM
Size:INTEGER
once
Result:= 1000
end
make
-- Run application.
local
ergebnis:ARRAY[DOUBLE]
tavg: DOUBLE
x: INTEGER
tmp: DOUBLE
text : STRING
do
-- initialize random generator
create l_time.make_now
l_seed := l_time.hour
l_seed := l_seed * 60 + l_time.minute
l_seed := l_seed * 60 + l_time.second
l_seed := l_seed * 1000 + l_time.milli_second
create rnd.set_seed (l_seed)
-- initialize random number container and math
create ergebnis.make_filled (0.0, 1, size)
tavg := 0;
create math
from
x := 1
until
x > ergebnis.count
loop
tmp := randomNormal / 2 + 1
tavg := tavg + tmp
ergebnis.enter (tmp , x)
x := x + 1
end
tavg := tavg / ergebnis.count
text := "Average: "
text.append_double (tavg)
text.append ("%N")
print(text)
tmp := 0
from
x:= 1
until
x > ergebnis.count
loop
tmp := tmp + (ergebnis.item (x) - tavg)^2
x := x + 1
end
tmp := math.sqrt (tmp / ergebnis.count)
text := "Standard Deviation: "
text.append_double (tmp)
text.append ("%N")
print(text)
end
randomNormal:DOUBLE
local
first: DOUBLE
second: DOUBLE
do
rnd.forth
first := rnd.double_item
rnd.forth
second := rnd.double_item
Result := math.cosine (2 * math.pi * first) * math.sqrt (-2 * math.log (second))
end
end
Example Result
Average: 1.0079398405028137
Standard Deviation: 0.49042787564453988
Elena
{{trans|C#}} ELENA 4.1 :
import extensions;
import extensions'math;
randomNormal()
{
^ cos(2 * Pi_value * randomGenerator.nextReal())
* sqrt(-2 * ln(randomGenerator.nextReal()))
}
public program()
{
real[] a := new real[](1000);
real tAvg := 0;
for (int x := 0, x < a.Length, x += 1)
{
a[x] := (randomNormal()) / 2 + 1;
tAvg += a[x]
};
tAvg /= a.Length;
console.printLine("Average: ", tAvg);
real s := 0;
for (int x := 0, x < a.Length, x += 1)
{
s += power(a[x] - tAvg, 2)
};
s := sqrt(s / 1000);
console.printLine("Standard Deviation: ", s);
console.readChar()
}
{{out}}
Average: 0.9842420481571
Standard Deviation: 0.5109070975558
Elixir
defmodule Random do
def normal(mean, sd) do
{a, b} = {:rand.uniform, :rand.uniform}
mean + sd * (:math.sqrt(-2 * :math.log(a)) * :math.cos(2 * :math.pi * b))
end
end
std_dev = fn (list) ->
mean = Enum.sum(list) / length(list)
sd = Enum.reduce(list, 0, fn x,acc -> acc + (x-mean)*(x-mean) end) / length(list)
|> :math.sqrt
IO.puts "Mean: #{mean},\tStdDev: #{sd}"
end
xs = for _ <- 1..1000, do: Random.normal(1.0, 0.5)
std_dev.(xs)
{{out}}
Mean: 1.009079383094275, StdDev: 0.4991894476975088
used Erlang function :rand.normal
xs = for _ <- 1..1000, do: 1.0 + :rand.normal * 0.5
std_dev.(xs)
{{out}}
Mean: 0.9955701150615597, StdDev: 0.5036412260426065
Erlang
{{works with|Erlang}}
mean(Values) ->
mean(tl(Values), hd(Values), 1).
mean([], Acc, Length) ->
Acc / Length;
mean(Values, Acc, Length) ->
mean(tl(Values), hd(Values)+Acc, Length+1).
variance(Values) ->
Mean = mean(Values),
variance(Values, Mean, 0) / length(Values).
variance([], _, Acc) ->
Acc;
variance(Values, Mean, Acc) ->
Diff = hd(Values) - Mean,
DiffSqr = Diff * Diff,
variance(tl(Values), Mean, Acc + DiffSqr).
stddev(Values) ->
math:sqrt(variance(Values)).
normal(Mean, StdDev) ->
U = random:uniform(),
V = random:uniform(),
Mean + StdDev * ( math:sqrt(-2 * math:log(U)) * math:cos(2 * math:pi() * V) ). % Erlang's math:log is the natural logarithm.
main(_) ->
X = [ normal(1.0, 0.5) || _ <- lists:seq(1, 1000) ],
io:format("mean = ~w\n", [mean(X)]),
io:format("stddev = ~w\n", [stddev(X)]).
{{out}}
mean = 1.0118289913718608
stddev = 0.5021636849524854
ERRE
! ! for rosettacode.org !
! formulas taken from TI-59 Master Library manual
CONST NUM_ITEM=1000
!VAR SUMX#,SUMX2#,R1#,R2#,Z#,I%
DIM A#[1000]
BEGIN ! seeds random number generator with system time RANDOMIZE(TIMER)
PRINT(CHR$(12);) !CLS SUMX#=0 SUMX2#=0
FOR I%=1 TO NUM_ITEM DO R1#=RND(1) R2#=RND(1) Z#=SQR(-2LOG(R1#))COS(2πR2#) A#[I%]=Z#/2+1 ! I want a normal distribution with ! mean=1 and std.dev=0.5 SUMX#+=A#[I%] SUMX2#+=A#[I%]*A#[I%] END FOR
Z#=SUMX#/NUM_ITEM
PRINT("Average is";Z#) PRINT("Standard dev. is";SQR(SUMX2#/NUM_ITEM-Z#*Z#))
END PROGRAM
## Euler Math Toolbox
```Euler Math Toolbox
>v=normal(1,1000)*0.5+1;
>mean(v), dev(v)
1.00291801071
0.498226876528
Euphoria
{{trans|PureBasic}}
include misc.e
function RandomNormal()
atom x1, x2
x1 = rand(999999) / 1000000
x2 = rand(999999) / 1000000
return sqrt(-2*log(x1)) * cos(2*PI*x2)
end function
constant n = 1000
sequence s
s = repeat(0,n)
for i = 1 to n do
s[i] = 1 + 0.5 * RandomNormal()
end for
=={{header|F_Sharp|F#}}==
let n = MathNet.Numerics.Distributions.Normal(1.0,0.5)
List.init 1000 (fun _->n.Sample())
{{out}}
[0.734433576; 1.54225304; 0.4407528678; 1.177675412; 0.4318617021;
0.6026656337; 0.769764924; 1.104693934; 0.6297500925; 0.9594598077;
1.684736389; 1.160376323; 0.883354356; 0.9513968363; 0.9727698268;
0.5315570949; 0.9599239266; 1.564976755; 0.7232002879; 1.084139442;
1.220914517; 0.3553085946; 1.112549824; 1.989443553; 0.5752307543;
1.156682549; 0.7886670467; 0.02050745923; 1.532060208; 1.18789591;
1.408946777; 1.038812004; 1.724679503; 1.671565045; 1.266831442;
1.363611654; 1.705819067; 0.5772366328; 0.4503488498; 1.496891481;
0.9831877282; 0.3845460366; 0.8253240671; 1.298969969; 0.4265904553;
0.9303696876; 0.445003361; 0.753175816; 0.6143534043; 1.059982235;
0.7143206784; 0.2233328038; 1.005178481; 0.7697392436; 0.5904948577;
0.5127953044; 0.6467346747; 0.7929387604; -0.1501790761; 0.8750780903;
0.941704369; 1.37941579; 0.4739006145; 1.998886344; 1.219428519;
0.06270791476; 1.097739804; 0.7584232803; 1.042177217; 1.166561247;
1.502357164; 1.171525776; 0.1528807432; 0.2289389756; 1.36208422;
0.3714421124; 1.299571092; 1.171553369; 1.317807265; 1.616662281;
1.724223246; 1.059580642; 1.270520918; -0.1827677907; 1.938593232;
1.420362143; 1.888357595; 0.7851629936; 0.7080554899; 0.7747215818;
1.403719877; 0.5765950249; 1.275206565; 0.6292054813; 1.525562798;
0.6224640457; 0.8524078517; 0.7646595627; 0.6799834691; 0.773111053; ...]
Factor
USING: random ;
1000 [ 1.0 0.5 normal-random-float ] replicate
=={{header|Falcon|}}==
a = []
for i in [0:1000] : a+= norm_rand_num()
function norm_rand_num()
pi = 2*acos(0)
return 1 + (cos(2 * pi * random()) * pow(-2 * log(random()) ,1/2)) /2
end
Fantom
Two solutions. The first uses Fantom's random-number generator, which produces a uniform distribution. So, convert to a normal distribution using a formula:
class Main
{
static const Float PI := 0.0f.acos * 2 // we need to precompute PI
static Float randomNormal ()
{
return (Float.random * PI * 2).cos * (Float.random.log * -2).sqrt
}
public static Void main ()
{
mean := 1.0f
sd := 0.5f
Float[] values := [,] // this is the collection to fill with random numbers
1000.times { values.add (randomNormal * sd + mean) }
}
}
The second calls out to Java's Gaussian random-number generator:
using [java] java.util::Random
class Main
{
Random generator := Random()
Float randomNormal ()
{
return generator.nextGaussian
}
public static Void main ()
{
rnd := Main() // create an instance of Main class, which holds the generator
mean := 1.0f
sd := 0.5f
Float[] values := [,] // this is the collection to fill with random numbers
1000.times { values.add (rnd.randomNormal * sd + mean) }
}
}
Forth
{{works with|gforth|0.6.2}}
require random.fs
here to seed
-1. 1 rshift 2constant MAX-D \ or s" MAX-D" ENVIRONMENT? drop
: frnd ( -- f ) \ uniform distribution 0..1
rnd rnd dabs d>f MAX-D d>f f/ ;
: frnd-normal ( -- f ) \ centered on 0, std dev 1
frnd pi f* 2e f* fcos
frnd fln -2e f* fsqrt f* ;
: ,normals ( n -- ) \ store many, centered on 1, std dev 0.5
0 do frnd-normal 0.5e f* 1e f+ f, loop ;
create rnd-array 1000 ,normals
For newer versions of gforth (tested on 0.7.3), it seems you need to use HERE SEED ! instead of HERE TO SEED, because SEED has been made a variable instead of a value.
Fortran
{{works with|Fortran|90 and later}}
PROGRAM Random
INTEGER, PARAMETER :: n = 1000
INTEGER :: i
REAL :: array(n), pi, temp, mean = 1.0, sd = 0.5
pi = 4.0*ATAN(1.0)
CALL RANDOM_NUMBER(array) ! Uniform distribution
! Now convert to normal distribution
DO i = 1, n-1, 2
temp = sd * SQRT(-2.0*LOG(array(i))) * COS(2*pi*array(i+1)) + mean
array(i+1) = sd * SQRT(-2.0*LOG(array(i))) * SIN(2*pi*array(i+1)) + mean
array(i) = temp
END DO
! Check mean and standard deviation
mean = SUM(array)/n
sd = SQRT(SUM((array - mean)**2)/n)
WRITE(*, "(A,F8.6)") "Mean = ", mean
WRITE(*, "(A,F8.6)") "Standard Deviation = ", sd
END PROGRAM Random
{{out}}
Mean = 0.995112
Standard Deviation = 0.503373
FreeBASIC
' FB 1.05.0 Win64
Const pi As Double = 3.141592653589793
Randomize
' Generates normally distributed random numbers with mean 0 and standard deviation 1
Function randomNormal() As Double
Return Cos(2.0 * pi * Rnd) * Sqr(-2.0 * Log(Rnd))
End Function
Dim r(0 To 999) As Double
Dim sum As Double = 0.0
' Generate 1000 normally distributed random numbers
' with mean 1 and standard deviation 0.5
' and calculate their sum
For i As Integer = 0 To 999
r(i) = 1.0 + randomNormal/2.0
sum += r(i)
Next
Dim mean As Double = sum / 1000.0
Dim sd As Double
sum = 0.0
' Now calculate their standard deviation
For i As Integer = 0 To 999
sum += (r(i) - mean) ^ 2.0
Next
sd = Sqr(sum/1000.0)
Print "Mean is "; mean
Print "Standard Deviation is"; sd
Print
Print "Press any key to quit"
Sleep
Sample result: {{out}}
Mean is 1.000763573902885
Standard Deviation is 0.500653063426955
Free Pascal
Free Pascal provides the '''randg''' function in the RTL math unit that produces Gaussian-distributed random numbers with the Box-Müller algorithm.
function randg(mean,stddev: float): float;
=={{header|F_Sharp|F#}}==
let gaussianRand count =
let o = new System.Random()
let pi = System.Math.PI
let gaussrnd =
(fun _ -> 1. + 0.5 * sqrt(-2. * log(o.NextDouble())) * cos(2. * pi * o.NextDouble()))
[ for i in {0 .. (int count)} -> gaussrnd() ]
Go
This solution uses math/rand package in the standard library. See also though the subrepository rand package at https://godoc.org/golang.org/x/exp/rand, which also has a NormFloat64 and has a rand source with a number of advantages over the one in standard library.
package main
import (
"fmt"
"math"
"math/rand"
"strings"
"time"
)
const mean = 1.0
const stdv = .5
const n = 1000
func main() {
var list [n]float64
rand.Seed(time.Now().UnixNano())
for i := range list {
list[i] = mean + stdv*rand.NormFloat64()
}
// show computed mean and stdv of list
var s, sq float64
for _, v := range list {
s += v
}
cm := s / n
for _, v := range list {
d := v - cm
sq += d * d
}
fmt.Printf("mean %.3f, stdv %.3f\n", cm, math.Sqrt(sq/(n-1)))
// show histogram by hdiv divisions per stdv over +/-hrange stdv
const hdiv = 3
const hrange = 2
var h [1 + 2*hrange*hdiv]int
for _, v := range list {
bin := hrange*hdiv + int(math.Floor((v-mean)/stdv*hdiv+.5))
if bin >= 0 && bin < len(h) {
h[bin]++
}
}
const hscale = 10
for _, c := range h {
fmt.Println(strings.Repeat("*", (c+hscale/2)/hscale))
}
}
{{out}}
mean 0.995, stdv 0.503
**
****
******
********
************
************
*************
************
**********
********
*****
***
**
FutureBasic
Note: To generate the random number, rather than using FB's native "rnd" function, this code wraps C code into the RandomZeroToOne function.
include "ConsoleWindow"
local fn RandomZeroToOne as double
dim as double result
BeginCCode
result = (double)( (rand() % 100000 ) * 0.00001 );
EndC
end fn = result
local fn RandomGaussian as double
dim as double r
r = fn RandomZeroToOne
end fn = 1 + .5 * ( sqr( -2 * log(r) ) * cos( 2 * pi * r ) )
dim as long i
dim as double mean, std, a(1000)
for i = 1 to 1000
a(i) = fn RandomGaussian
mean += a(i)
next
mean = mean / 1000
for i = 1 to 1000
std += ( a(i) - mean )^2
next
std = std / 1000
print " Average:"; mean
print "Standard Deviation:"; std
Output:
Average: 1.0258434498
Standard Deviation: 0.2771047023
Groovy
rnd = new Random()
result = (1..1000).inject([]) { r, i -> r << rnd.nextGaussian() }
Haskell
import System.Random
pairs :: [a] -> [(a,a)]
pairs (x:y:zs) = (x,y):pairs zs
pairs _ = []
gauss mu sigma (r1,r2) =
mu + sigma * sqrt (-2 * log r1) * cos (2 * pi * r2)
gaussians :: (RandomGen g, Random a, Floating a) => Int -> g -> [a]
gaussians n g = take n $ map (gauss 1.0 0.5) $ pairs $ randoms g
result :: IO [Double]
result = getStdGen >>= \g -> return $ gaussians 1000 g
Or using Data.Random from random-fu package:
replicateM 1000 $ normal 1 0.5
To print them:
import Data.Random
import Control.Monad
thousandRandomNumbers :: RVar [Double]
thousandRandomNumbers = replicateM 1000 $ normal 1 0.5
main = do
x <- sample thousandRandomNumbers
print x
HicEst
REAL :: n=1000, m=1, s=0.5, array(n)
pi = 4 * ATAN(1)
array = s * (-2*LOG(RAN(1)))^0.5 * COS(2*pi*RAN(1)) + m
=={{header|Icon}} and {{header|Unicon}}== The seed '''&random''' may be assigned in either language; either to randomly seed or to pick a fixed starting point. ?i is the random number generator, returning an integer from 0 to i - 1 for non-zero integer i. As a special case, ?0 yields a random floating point number from 0.0 <= r < 1.0
Note that Unicon randomly seeds it's generator.
procedure main()
local L
L := list(1000)
every L[1 to 1000] := 1.0 + 0.5 * sqrt(-2.0 * log(?0)) * cos(2.0 * &pi * ?0)
every write(!L)
end
IDL
result = 1.0 + 0.5*randomn(seed,1000)
J
'''Solution:'''
urand=: ?@$ 0:
zrand=: (2 o. 2p1 * urand) * [: %: _2 * [: ^. urand
1 + 0.5 * zrand 100
'''Alternative Solution:'''
Using the normal script from the [[j:Addons/stats/distribs|stats/distribs addon]].
require 'stats/distribs/normal'
1 0.5 rnorm 1000
1.44868803 1.21548637 0.812460657 1.54295452 1.2470606 ...
Java
double[] list = new double[1000];
double mean = 1.0, std = 0.5;
Random rng = new Random();
for(int i = 0;i<list.length;i++) {
list[i] = mean + std * rng.nextGaussian();
}
JavaScript
function randomNormal() {
return Math.cos(2 * Math.PI * Math.random()) * Math.sqrt(-2 * Math.log(Math.random()))
}
var a = []
for (var i=0; i < 1000; i++){
a[i] = randomNormal() / 2 + 1
}
jq
{{works with|jq|1.4}}
Since jq is a purely functional language, it is convenient to define the pseudo-random number generator functions as filters whose inputs and outputs are arrays containing a "seed".
The following uses the same pseudo-random number generator as the Microsoft C Runtime (see [[Linear congruential generator]]).
''''A Pseudo-Random Number Generator''''
# 15-bit integers generated using the same formula as rand() from the Microsoft C Runtime.
# The random numbers are in [0 -- 32767] inclusive.
# Input: an array of length at least 2 interpreted as [count, state, ...]
# Output: [count+1, newstate, r] where r is the next pseudo-random number.
def next_rand_Microsoft:
.[0] as $count | .[1] as $state
| ( (214013 * $state) + 2531011) % 2147483648 # mod 2^31
| [$count+1 , ., (. / 65536 | floor) ] ;
''''Box-Muller Method''''
# Generate a single number following the normal distribution with mean 0, variance 1,
# using the Box-Muller method: X = sqrt(-2 ln U) * cos(2 pi V) where U and V are uniform on [0,1].
# Input: [n, state]
# Output [n+1, nextstate, r]
def next_rand_normal:
def u: next_rand_Microsoft | .[2] /= 32767;
u as $u1
| ($u1 | u) as $u2
| ((( (8*(1|atan)) * $u1[2]) | cos)
* ((-2 * (($u2[2]) | log)) | sqrt)) as $r
| [ (.[0]+1), $u2[1], $r] ;
# Generate "count" arrays, each containing a random normal variate with the given mean and standard deviation.
# Input: [count, state]
# Output: [updatedcount, updatedstate, rnv]
# where "state" is a seed and "updatedstate" can be used as a seed.
def random_normal_variate(mean; sd; count):
next_rand_normal
| recurse( if .[0] < count then next_rand_normal else empty end)
| .[2] = (.[2] * sd) + mean;
'''Example''' The task can be completed using: [0,1] | random_normal_variate(1; 0.5; 1000) | .[2]
We show just the sample average and standard deviation:
def summary:
length as $l | add as $sum | ($sum/$l) as $a
| reduce .[] as $x (0; . + ( ($x - $a) | .*. ))
| [ $a, (./$l | sqrt)] ;
[ [0,1] | random_normal_variate(1; 0.5; 1000) | .[2] ] | summary
{{out}} $ jq -n -c -f Random_numbers.jq [0.9932830741018853,0.4977760644490579]
Julia
Julia's standard library provides a randn
function to generate normally distributed random numbers (with mean 0 and standard deviation 0.5, which can be easily rescaled to any desired values):
randn(1000) * 0.5 + 1
Kotlin
// version 1.0.6
import java.util.Random
fun main(args: Array<String>) {
val r = Random()
val da = DoubleArray(1000)
for (i in 0 until 1000) da[i] = 1.0 + 0.5 * r.nextGaussian()
// now check actual mean and SD
val mean = da.average()
val sd = Math.sqrt(da.map { (it - mean) * (it - mean) }.average())
println("Mean is $mean")
println("S.D. is $sd")
}
Sample output: {{out}}
Mean is 1.0071784073168768
S.D. is 0.48567118114896807
LabVIEW
{{works with|LabVIEW|8.6}} [[File:LV_array_of_randoms_with_given_mean_and_stdev.png]]
Liberty BASIC
dim a(1000)
mean =1
sd =0.5
for i = 1 to 1000 ' throw 1000 normal variates
a( i) =mean +sd *( sqr( -2 * log( rnd( 0))) * cos( 2 * pi * rnd( 0)))
next i
Logo
{{works with|UCB Logo}} The earliest Logos only have a RANDOM function for picking a random non-negative integer. Many modern Logos have floating point random generators built-in.
to random.float ; 0..1
localmake "max.int lshift -1 -1
output quotient random :max.int :max.int
end
to random.gaussian
output product cos random 360 sqrt -2 / ln random.float
end
make "randoms cascade 1000 [fput random.gaussian / 2 + 1 ?] []
Lingo
-- Returns a random float value in range 0..1
on randf ()
n = random(the maxinteger)-1
return n / float(the maxinteger-1)
end
normal = []
repeat with i = 1 to 1000
normal.add(1 + sqrt(-2 * log(randf())) * cos(2 * PI * randf()) / 2)
end repeat
Lua
local list = {}
for i = 1, 1000 do
list[i] = 1 + math.sqrt(-2 * math.log(math.random())) * math.cos(2 * math.pi * math.random()) / 2
end
M2000 Interpreter
M2000 use a Wichmann - Hill Pseudo Random Number Generator.
Module CheckIt {
Function StdDev (A()) {
\\ A() has a copy of values
N=Len(A())
if N<1 then Error "Empty Array"
M=Each(A())
k=0
\\ make sum, dev same type as A(k)
sum=A(k)-A(k)
dev=sum
\\ find mean
While M {
sum+=Array(M)
}
Mean=sum/N
\\ make a pointet to A()
P=A()
\\ subtruct from each item
P-=Mean
M=Each(P)
While M {
dev+=Array(M)*Array(M)
}
\\ as pointer to arrray
=(if(dev>0->Sqrt(dev/N), 0), Mean)
}
Function randomNormal {
\\ by default all numbers are double
\\ cos() get degrees
=1+Cos(360 * rnd) * Sqrt(-2 * Ln(rnd)) /2
}
\\ fill array calling randomNormal() for each item
Dim A(1000)<<randomNormal()
\\ we can pass a pointer to array and place it to stack of values
DisplayMeanAndStdDeviation(A()) ' mean ~ 1 std deviation ~0.5
\\ check M2000 rnd only
Dim B(1000)<<rnd
DisplayMeanAndStdDeviation(B()) ' mean ~ 0.5 std deviation ~0.28
DisplayMeanAndStdDeviation((0,0,14,14)) ' mean = 7 std deviation = 7
DisplayMeanAndStdDeviation((0,6,8,14)) ' mean = 7 std deviation = 5
DisplayMeanAndStdDeviation((6,6,8,8)) ' mean = 7 std deviation = 1
Sub DisplayMeanAndStdDeviation(A)
\\ push to stack all items of an array (need an array pointer)
Push ! StdDev(A)
\\ read from strack two numbers
Print "Mean is "; Number
Print "Standard Deviation is "; Number
End Sub
}
Checkit
Maple
with(Statistics):
Sample(Normal(1, 0.5), 1000);
Mathematica
Built-in function RandomReal with built-in distribution NormalDistribution as an argument:
RandomReal[NormalDistribution[1, 1/2], 1000]
MATLAB
Native support :
mu = 1; sd = 0.5;
x = randn(1000,1) * sd + mu;
The statistics toolbox provides this function
x = normrnd(mu, sd, [1000,1]);
This script uses the Box-Mueller Transform to transform a number from the uniform distribution to a normal distribution of mean = mu0 and standard deviation = chi2.
function randNum = randNorm(mu0,chi2, sz)
radiusSquared = +Inf;
while (radiusSquared >= 1)
u = ( 2 * rand(sz) ) - 1;
v = ( 2 * rand(sz) ) - 1;
radiusSquared = u.^2 + v.^2;
end
scaleFactor = sqrt( ( -2*log(radiusSquared) )./ radiusSquared );
randNum = (v .* scaleFactor .* chi2) + mu0;
end
Output:
randNorm(1,.5, [1000,1])
ans =
0.693984121077029
Maxima
load(distrib)$
random_normal(1.0, 0.5, 1000);
MAXScript
arr = #()
for i in 1 to 1000 do
(
a = random 0.0 1.0
b = random 0.0 1.0
c = 1.0 + 0.5 * sqrt (-2*log a) * cos (360*b) -- Maxscript cos takes degrees
append arr c
)
Metafont
Metafont has normaldeviate
which produces pseudorandom normal distributed numbers with mean 0 and variance one. So the following complete the task:
numeric col[];
m := 0; % m holds the mean, for testing purposes
for i = 1 upto 1000:
col[i] := 1 + .5normaldeviate;
m := m + col[i];
endfor
% testing
m := m / 1000; % finalize the computation of the mean
s := 0; % in s we compute the standard deviation
for i = 1 upto 1000:
s := s + (col[i] - m)**2;
endfor
s := sqrt(s / 1000);
show m, s; % and let's show that really they get what we wanted
end
A run gave
>> 0.99947
>> 0.50533
Assigning a value to the special variable '''randomseed''' will allow to have always the same sequence of pseudorandom numbers
Mirah
import java.util.Random
list = double[999]
mean = 1.0
std = 0.5
rng = Random.new
0.upto(998) do | i |
list[i] = mean + std * rng.nextGaussian
end
=={{header|MK-61/52}}==
- sin * ИП7 + С/П БП 05
''Input'': РY - variance, РX - expectation.
Or:
<lang>3 10^x П0 ПП 13 2 / 1 + С/П L0 03 С/П
СЧ lg 2 /-/ * КвКор 2 пи ^ СЧ * * cos * В/О
to generate 1000 numbers with a mean of 1.0 and a standard deviation of 0.5.
=={{header|Modula-3}}== {{trans|C}}
MODULE Rand EXPORTS Main;
IMPORT Random;
FROM Math IMPORT log, cos, sqrt, Pi;
VAR rands: ARRAY [1..1000] OF LONGREAL;
(* Normal distribution. *)
PROCEDURE RandNorm(): LONGREAL =
BEGIN
WITH rand = NEW(Random.Default).init() DO
RETURN
sqrt(-2.0D0 * log(rand.longreal())) * cos(2.0D0 * Pi * rand.longreal());
END;
END RandNorm;
BEGIN
FOR i := FIRST(rands) TO LAST(rands) DO
rands[i] := 1.0D0 + 0.5D0 * RandNorm();
END;
END Rand.
NetRexx
/* NetRexx */
options replace format comments java crossref symbols nobinary
import java.math.BigDecimal
import java.math.MathContext
-- prologue
numeric digits 20
-- get input, set defaults
parse arg dp mu sigma ec .
if mu = '' | mu = '.' then mean = 1.0; else mean = mu
if sigma = '' | sigma = '.' then stdDeviation = 0.5; else stdDeviation = sigma
if dp = '' | dp = '.' then displayPrecision = 1; else displayPrecision = dp
if ec = '' | ec = '.' then elements = 1000; else elements = ec
-- set up
RNG = Random()
numberList = java.util.List
numberList = ArrayList()
-- generate list of random numbers
loop for elements
rn = mean + stdDeviation * RNG.nextGaussian()
numberList.add(BigDecimal(rn, MathContext.DECIMAL128))
end
-- report
say "Mean: " mean
say "Standard Deviation:" stdDeviation
say "Precision: " displayPrecision
say
drawBellCurve(numberList, displayPrecision)
return
-- -----------------------------------------------------------------------------
method drawBellCurve(numberList = java.util.List, precision) static
Collections.sort(numberList)
val = BigDecimal
lastN = ''
nextN = ''
loop val over numberList
nextN = Rexx(val.toPlainString()).format(5, precision)
select
when lastN = '' then nop
when lastN \= nextN then say lastN
otherwise nop
end
say '*\-'
lastN = nextN
end val
say lastN
return
{{out}}
Mean: 1.0
Standard Deviation: 0.5
Precision: 1
* 2.7
** 2.5
* 2.4
*** 2.3
***** 2.2
******* 2.1
************* 2.0
************* 1.9
***************************** 1.8
************************* 1.7
************************************* 1.6
****************************************************** 1.5
******************************************** 1.4
******************************************************************** 1.3
***************************************************************** 1.2
************************************************************************** 1.1
********************************************************************************************* 1.0
************************************************************* 0.9
********************************************************************** 0.8
************************************************************** 0.7
*********************************************************************** 0.6
************************************************************** 0.5
****************************************** 0.4
******************************* 0.3
*************************** 0.2
*************** 0.1
********* 0.0
****** -0.1
*** -0.2
*** -0.3
* -0.4
* -0.6
** -0.7
NewLISP
(normal 1 .5 1000)
Nim
import math, strutils
const precisn = 5
var rs: TRunningStat
proc normGauss: float {.inline.} = 1 + 0.76 * cos(2*PI*random(1.0)) * sqrt(-2*log10(random(1.0)))
randomize()
for j in 0..5:
for i in 0..1000:
rs.push(normGauss())
echo("mean: ", $formatFloat(rs.mean,ffDecimal,precisn),
" stdDev: ", $formatFloat(rs.standardDeviation(),ffDecimal,precisn))
{{out}}
mean: 1.01703 stdDev: 0.50324
mean: 1.01187 stdDev: 0.50060
mean: 1.00216 stdDev: 0.49969
mean: 1.00335 stdDev: 0.50184
mean: 1.00120 stdDev: 0.49830
mean: 1.00217 stdDev: 0.49911
Objeck
bundle Default {
class RandomNumbers {
function : Main(args : String[]) ~ Nil {
rands := Float->New[1000];
for(i := 0; i < rands->Size(); i += 1;) {
rands[i] := 1.0 + 0.5 * RandomNormal();
};
each(i : rands) {
rands[i]->PrintLine();
};
}
function : native : RandomNormal() ~ Float {
return (2 * Float->Pi() * Float->Random())->Cos() * (-2 * (Float->Random()->Log()))->SquareRoot();
}
}
}
OCaml
let pi = 4. *. atan 1.;;
let random_gaussian () =
1. +. sqrt (-2. *. log (Random.float 1.)) *. cos (2. *. pi *. Random.float 1.);;
let a = Array.init 1000 (fun _ -> random_gaussian ());;
Octave
p = normrnd(1.0, 0.5, 1000, 1);
disp(mean(p));
disp(sqrt(sum((p - mean(p)).^2)/numel(p)));
{{out}}
1.0209
0.51048
ooRexx
{{trans|REXX}}
version 1
/*REXX pgm gens 1,000 normally distributed #s: mean=1, standard dev.=0.5*/
pi=RxCalcPi() /* get value of pi */
Parse Arg n seed . /* allow specification of N & seed*/
If n==''|n==',' Then
n=1000 /* N is the size of the array. */
If seed\=='' Then
Call random,,seed /* use seed for repeatable RANDOM#*/
mean=1 /* desired new mean (arith. avg.) */
sd=1/2 /* desired new standard deviation.*/
Do g=1 For n /* generate N uniform random nums.*/
n.g=random(0,1e5)/1e5 /* REXX gens uniform rand integers*/
End
Say ' old mean=' mean()
Say 'old standard deviation=' stddev()
Say
Do j=1 To n-1 By 2
m=j+1
/*use Box-Muller method */
_=sd*RxCalcPower(-2*RxCalcLog(n.j),.5)*RxCalcCos(2*pi*n.m,,'R')+mean
n.m=sd*RxCalcpower(-2*RxCalcLog(n.j),.5)*RxCalcSin(2*pi*n.m,,'R')+,
mean /* rand # must be 0???1. */
n.j=_
End /* j */
Say ' new mean=' mean()
Say 'new standard deviation=' stddev()
Exit
mean:
_=0
Do k=1 For n
_=_+n.k
End
Return _/n
stddev:
_avg=mean()
_=0
Do k=1 For n
_=_+(n.k-_avg)**2
End
Return RxCalcPower(_/n,.5)
:: requires rxmath library
{{out}}
old mean= 0.49830002
old standard deviation= 0.283199568
new mean= 1.00377404
new standard deviation= 0.501444536
version 2
Using the nice function names in the algorithm.
/*REXX pgm gens 1,000 normally distributed #s: mean=1, standard dev.=0.5*/
pi=RxCalcPi() /* get value of pi */
Parse Arg n seed . /* allow specification of N & seed*/
If n==''|n==',' Then
n=1000 /* N is the size of the array. */
If seed\=='' Then
Call random,,seed /* use seed for repeatable RANDOM#*/
mean=1 /* desired new mean (arith. avg.) */
sd=1/2 /* desired new standard deviation.*/
Do g=1 For n /* generate N uniform random nums.*/
n.g=random(0,1e5)/1e5 /* REXX gens uniform rand integers*/
End
Say ' old mean=' mean()
Say 'old standard deviation=' stddev()
Say
Do j=1 To n-1 By 2
m=j+1
/*use Box-Muller method */
_=sd*sqrt(-2*ln(n.j))*cos(2*pi*n.m)+mean
n.m=sd*sqrt(-2*ln(n.j))*sin(2*pi*n.m)+mean
n.j=_
End
Say ' new mean=' mean()
Say 'new standard deviation=' stddev()
Exit
mean:
_=0
Do k=1 For n
_=_+n.k
End
Return _/n
stddev:
_avg=mean()
_=0
Do k=1 For n
_=_+(n.k-_avg)**2
End
Return sqrt(_/n)
sqrt: Return RxCalcSqrt(arg(1))
ln: Return RxCalcLog(arg(1))
cos: Return RxCalcCos(arg(1),,'R')
sin: Return RxCalcSin(arg(1),,'R')
:: requires rxmath library
PARI/GP
rnormal()={
my(pr=32*ceil(default(realprecision)*log(10)/log(4294967296)),u1=random(2^pr)*1.>>pr,u2=random(2^pr)*1.>>pr);
sqrt(-2*log(u1))*cos(2*Pi*u1)
\\ Could easily be extended with a second normal at very little cost.
};
vector(1000,unused,rnormal()/2+1)
Pascal
The following function calculates Gaussian-distributed random numbers with the Box-Müller algorithm:
function rnorm (mean, sd: real): real;
{Calculates Gaussian random numbers according to the Box-Müller approach}
var
u1, u2: real;
begin
u1 := random;
u2 := random;
rnorm := mean * abs(1 + sqrt(-2 * (ln(u1))) * cos(2 * pi * u2) * sd);
end;
[[#Delphi | Delphi]] and [[#Free Pascal|Free Pascal]] support implement a '''randg''' function that delivers Gaussian-distributed random numbers.
Perl
my $PI = 2 * atan2 1, 0;
my @nums = map {
1 + 0.5 * sqrt(-2 * log rand) * cos(2 * $PI * rand)
} 1..1000;
Perl 6
{{works with|Rakudo|#22 "Thousand Oaks"}}
sub randnorm ($mean, $stddev) {
$mean + $stddev * sqrt(-2 * log rand) * cos(2 * pi * rand)
}
my @nums = randnorm(1, 0.5) xx 1000;
# Checking
say my $mean = @nums R/ [+] @nums;
say my $stddev = sqrt $mean**2 R- @nums R/ [+] @nums X** 2;
Phix
{{Trans|Euphoria}}
function RandomNormal()
return sqrt(-2*log(rnd())) * cos(2*PI*rnd())
end function
sequence s = repeat(0,1000)
for i=1 to length(s) do
s[i] = 1 + 0.5 * RandomNormal()
end for
PHP
function random() {
return mt_rand() / mt_getrandmax();
}
$pi = pi(); // Set PI
$a = array();
for ($i = 0; $i < 1000; $i++) {
$a[$i] = 1.0 + ((sqrt(-2 * log(random())) * cos(2 * $pi * random())) * 0.5);
}
PicoLisp
{{trans|C}}
(load "@lib/math.l")
(de randomNormal () # Normal distribution, centered on 0, std dev 1
(*/
(sqrt (* -2.0 (log (rand 0 1.0))))
(cos (*/ 2.0 pi (rand 0 1.0) `(* 1.0 1.0)))
1.0 ) )
(seed (time)) # Randomize
(let Result
(make # Build list
(do 1000 # of 1000 elements
(link (+ 1.0 (/ (randomNormal) 2))) ) )
(for N (head 7 Result) # Print first 7 results
(prin (format N *Scl) " ") ) )
{{out}}
1.500334 1.212931 1.095283 0.433122 0.459116 1.302446 0.402477
PL/I
/* CONVERTED FROM WIKI FORTRAN */
Normal_Random: procedure options (main);
declare (array(1000), pi, temp,
mean initial (1.0), sd initial (0.5)) float (18);
declare (i, n) fixed binary;
n = hbound(array, 1);
pi = 4.0*ATAN(1.0);
array = random(); /* Uniform distribution */
/* Now convert to normal distribution */
DO i = 1 to n-1 by 2;
temp = sd * SQRT(-2.0*LOG(array(i))) * COS(2*pi*array(i+1)) + mean;
array(i+1) = sd * SQRT(-2.0*LOG(array(i))) * SIN(2*pi*array(i+1)) + mean;
array(i) = temp;
END;
/* Check mean and standard deviation */
mean = SUM(array)/n;
sd = SQRT(SUM((array - mean)**2)/n);
put skip edit ( "Mean = ", mean ) (a, F(18,16) );
put skip edit ( "Standard Deviation = ", sd) (a, F(18,16));
END Normal_Random;
{{out}}
Mean = 1.0125630677913652 Standard Deviation = 0.5067289784535284
3 runs with different seeds to random():
Mean = 1.0008390411168471 Standard Deviation = 0.5095810511317908
Mean = 0.9754351286894838 Standard Deviation = 0.4804376530558166
Mean = 1.0177411222687990 Standard Deviation = 0.5165899662493400
PL/SQL
DECLARE
--The desired collection
type t_coll is table of number index by binary_integer;
l_coll t_coll;
c_max pls_integer := 1000;
BEGIN
FOR l_counter IN 1 .. c_max
LOOP
-- dbms_random.normal delivers normal distributed random numbers with a mean of 0 and a variance of 1
-- We just adjust the values and get the desired result:
l_coll(l_counter) := DBMS_RANDOM.normal * 0.5 + 1;
DBMS_OUTPUT.put_line (l_coll(l_counter));
END LOOP;
END;
Pop11
;;; Choose radians as arguments to trigonometic functions
true -> popradians;
;;; procedure generating standard normal distribution
define random_normal() -> result;
lvars r1 = random0(1.0), r2 = random0(1.0);
cos(2*pi*r1)*sqrt(-2*log(r2)) -> result
enddefine;
lvars array, i;
;;; Put numbers on the stack
for i from 1 to 1000 do 1.0+0.5*random_normal() endfor;
;;; collect them into array
consvector(1000) -> array;
PowerShell
Equation adapted from Liberty BASIC
function Get-RandomNormal
{
[CmdletBinding()]
Param ( [double]$Mean, [double]$StandardDeviation )
$RandomNormal = $Mean + $StandardDeviation * [math]::Sqrt( -2 * [math]::Log( ( Get-Random -Minimum 0.0 -Maximum 1.0 ) ) ) * [math]::Cos( 2 * [math]::PI * ( Get-Random -Minimum 0.0 -Maximum 1.0 ) )
return $RandomNormal
}
# Standard deviation function for testing
function Get-StandardDeviation
{
[CmdletBinding()]
param ( [double[]]$Numbers )
$Measure = $Numbers | Measure-Object -Average
$PopulationDeviation = 0
ForEach ($Number in $Numbers) { $PopulationDeviation += [math]::Pow( ( $Number - $Measure.Average ), 2 ) }
$StandardDeviation = [math]::Sqrt( $PopulationDeviation / ( $Measure.Count - 1 ) )
return $StandardDeviation
}
# Test
$RandomNormalNumbers = 1..1000 | ForEach { Get-RandomNormal -Mean 1 -StandardDeviation 0.5 }
$Measure = $RandomNormalNumbers | Measure-Object -Average
$Stats = [PSCustomObject]@{
Count = $Measure.Count
Average = $Measure.Average
StandardDeviation = Get-StandardDeviation -Numbers $RandomNormalNumbers
}
$Stats | Format-List
{{out}}
Count : 1000
Average : 1.01206560135809
StandardDeviation : 0.489099623426272
PureBasic
Procedure.f RandomNormal()
; This procedure can return any real number.
Protected.f x1, x2
; random numbers from the open interval ]0, 1[
x1 = (Random(999998)+1) / 1000000 ; must be > 0 because of Log(x1)
x2 = (Random(999998)+1) / 1000000
ProcedureReturn Sqr(-2*Log(x1)) * Cos(2*#PI*x2)
EndProcedure
Define i, n=1000
Dim a.q(n-1)
For i = 0 To n-1
a(i) = 1 + 0.5 * RandomNormal()
Next
Python
;Using random.gauss:
import random
>>> values = [random.gauss(1, .5) for i in range(1000)]
>>>
;Quick check of distribution:
def quick_check(numbers):
count = len(numbers)
mean = sum(numbers) / count
sdeviation = (sum((i - mean)**2 for i in numbers) / count)**0.5
return mean, sdeviation
>>> quick_check(values)
(1.0140373306786599, 0.49943411329234066)
>>>
Note that the ''random'' module in the Python standard library supports a number of statistical distribution methods.
;Alternatively using random.normalvariate:
values = [ random.normalvariate(1, 0.5) for i in range(1000)]
>>> quick_check(values)
(0.990099111944864, 0.5029847005836282)
>>>
R
result <- rnorm(1000, mean=1, sd=0.5)
Racket
#lang racket
(for/list ([i 1000])
(add1 (* (sqrt (* -2 (log (random)))) (cos (* 2 pi (random))) 0.5)))
Raven
define PI
-1 acos
define rand1
9999999 choose 1 + 10000000.0 /
define randNormal
rand1 PI * 2 * cos
rand1 log -2 * sqrt
*
2 / 1 +
1000 each drop randNormal "%f\n" print
Quick Check (on linux with code in file rand.rv)
raven rand.rv | awk '{sum+=$1; sumsq+=$1*$1;} END {print "stdev = " sqrt(sumsq/NR - (sum/NR)**2); print "mean = " sum/NR}'
stdev = 0.497773
mean = 1.01497
REXX
The REXX language doesn't have any "higher math" functions like SQRT/SIN/COS/LN/LOG/EXP/POW/etc.,
so we ''hoi polloi'' REXX programmers have to roll our own.
Programming note: note the range of the random numbers: (0,1]
(that is, random numbers from zero──►unity, excluding zero, including unity).
/*REXX pgm generates 1,000 normally distributed numbers: mean=1, standard deviation=½.*/
numeric digits 20 /*the default decimal digit precision=9*/
parse arg n seed . /*allow specification of N and the seed*/
if n=='' | n=="," then n=1000 /*N: is the size of the array. */
if datatype(seed,'W') then call random ,,seed /*SEED: for repeatable random numbers. */
newMean=1 /*the desired new mean (arithmetic avg)*/
sd=1/2 /*the desired new standard deviation. */
do g=1 for n /*generate N uniform random #'s (0,1].*/
#.g = random(1, 1e5) / 1e5 /*REXX's RANDOM BIF generates integers.*/
end /*g*/ /* [↑] random integers ──► fractions. */
say ' old mean=' mean()
say 'old standard deviation=' stdDev()
call pi; pi2=pi * 2 /*define pi and also 2 * pi. */
say
do j=1 to n-1 by 2; m=j+1 /*step through the iterations by two. */
_=sd * sqrt(ln(#.j) * -2) /*calculate the used-twice expression.*/
#.j=_ * cos(pi2 * #.m) + newMean /*utilize the Box─Muller method. */
#.m=_ * sin(pi2 * #.m) + newMean /*random number must be: (0,1] */
end /*j*/
say ' new mean=' mean()
say 'new standard deviation=' stdDev()
exit /*stick a fork in it, we're all done. */
/*───────────────────────────────────────────────────────────────────────────────────────────────────────────────────*/
mean: _=0; do k=1 for n; _=_ + #.k; end; return _/n
stdDev: _avg=mean(); _=0; do k=1 for n; _=_ + (#.k - _avg)**2; end; return sqrt(_/n)
e: e =2.7182818284590452353602874713526624977572470936999595749669676277240766303535; return e /*digs overkill*/
pi: pi=3.1415926535897932384626433832795028841971693993751058209749445923078164062862; return pi /* " " */
r2r: return arg(1) // (pi() * 2) /*normalize ang*/
sin: procedure; parse arg x;x=r2r(x);numeric fuzz min(5,digits()-3);if abs(x)=pi then return 0;return .sincos(x,x,1)
.sincos:parse arg z,_,i; x=x*x; p=z; do k=2 by 2; _=-_*x/(k*(k+i)); z=z+_; if z=p then leave; p=z; end; return z
/*───────────────────────────────────────────────────────────────────────────────────────────────────────────────────*/
ln: procedure; parse arg x,f; call e; ig= x>1.5; is=1 - 2 * (ig\==1); ii=0; xx=x
do while ig&xx>1.5|\ig&xx<.5;_=e;do k=-1;iz=xx*_**-is;if k>=0&(ig&iz<1|\ig&iz>.5) then leave;_=_*_;izz=iz;end
xx=izz;ii=ii+is*2**k;end;x=x*e**-ii-1;z=0;_=-1;p=z;do k=1;_=-_*x;z=z+_/k;if z=p then leave;p=z;end; return z+ii
/*───────────────────────────────────────────────────────────────────────────────────────────────────────────────────*/
cos: procedure; parse arg x; x=r2r(x); a=abs(x); hpi=pi * .5
numeric fuzz min(6, digits() - 3); if a=pi then return -1
if a=hpi | a=hpi*3 then return 0; if a=pi/3 then return .5
if a=pi * 2/3 then return -.5; return .sinCos(1,1,-1)
/*───────────────────────────────────────────────────────────────────────────────────────────────────────────────────*/
sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); numeric digits; h=d+6
numeric form; parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g * .5'e'_ %2
m.=9; do j=0 while h>9; m.j=h; h=h%2 + 1; end /*j*/
do k=j+5 to 0 by -1; numeric digits m.k; g=(g+x/g)*.5; end /*k*/
numeric digits d; return g/1
'''output''' when using the default inputs:
old mean= 0.5015724
old standard deviation= 0.28652466389342471402
new mean= 0.98807025356443262689
new standard deviation= 0.50002924192766720838
Ring
for i = 1 to 10
see random(i) + nl
next i
Ruby
Array.new(1000) { 1 + Math.sqrt(-2 * Math.log(rand)) * Math.cos(2 * Math::PI * rand) }
Run BASIC
dim a(1000)
pi = 22/7
for i = 1 to 1000
a( i) = 1 + .5 * (sqr(-2 * log(rnd(0))) * cos(2 * pi * rnd(0)))
next i
Rust
{{libheader|rand}} '''Using a for-loop:'''
extern crate rand;
use rand::distributions::{Normal, IndependentSample};
fn main() {
let mut rands = [0.0; 1000];
let normal = Normal::new(1.0, 0.5);
let mut rng = rand::thread_rng();
for num in rands.iter_mut() {
*num = normal.ind_sample(&mut rng);
}
}
'''Using iterators:'''
extern crate rand;
use rand::distributions::{Normal, IndependentSample};
fn main() {
let rands: Vec<_> = {
let normal = Normal::new(1.0, 0.5);
let mut rng = rand::thread_rng();
(0..1000).map(|_| normal.ind_sample(&mut rng)).collect()
};
}
SAS
/* Generate 1000 random numbers with mean 1 and standard deviation 0.5.
SAS version 9.2 was used to create this code.*/
data norm1000;
call streaminit(123456);
/* Set the starting point, so we can replicate results.
If you want different results each time, comment the above line. */
do i=1 to 1000;
r=rand('normal',1,0.5);
output;
end;
run;
Results:
The MEANS Procedure
Analysis Variable : r
Mean Std Dev
----------------------------
0.9907408 0.4844051
----------------------------
Sather
class MAIN is
main is
a:ARRAY{FLTD} := #(1000);
i:INT;
RND::seed(2010);
loop i := 1.upto!(1000) - 1;
a[i] := 1.0d + 0.5d * RND::standard_normal;
end;
-- testing the distribution
mean ::= a.reduce(bind(_.plus(_))) / a.size.fltd;
#OUT + "mean " + mean + "\n";
a.map(bind(_.minus(mean)));
a.map(bind(_.pow(2.0d)));
dev ::= (a.reduce(bind(_.plus(_))) / a.size.fltd).sqrt;
#OUT + "dev " + dev + "\n";
end;
end;
Scala
One liner
List.fill(1000)(1.0 + 0.5 * scala.util.Random.nextGaussian)
Academic
val distrubution = {
def randomNormal = 1.0 + 0.5 * scala.util.Random.nextGaussian
def normalDistribution(a: Double): Stream[Double] = a #:: normalDistribution(randomNormal)
normalDistribution(randomNormal)
}
/*
* Let's test it
*/
def calcAvgAndStddev[T](ts: Iterable[T])(implicit num: Fractional[T]): (T, Double) = {
val mean: T =
num.div(ts.sum, num.fromInt(ts.size)) // Leaving with type of function T
// Root of mean diffs
val stdDev = sqrt(ts.map { x =>
val diff = num.toDouble(num.minus(x, mean))
diff * diff
}.sum / ts.size)
(mean, stdDev)
}
println(calcAvgAndStddev(distrubution.take(1000))) // e.g. (1.0061433267806525,0.5291834867560893)
Scheme
; linear congruential generator given in C99 section 7.20.2.1
(define ((c-rand seed)) (set! seed (remainder (+ (* 1103515245 seed) 12345) 2147483648)) (quotient seed 65536))
; uniform real numbers in open interval (0, 1)
(define (unif-rand seed) (let ((r (c-rand seed))) (lambda () (/ (+ (r) 1) 32769.0))))
; Box-Muller method to generate normal distribution
(define (normal-rand unif m s)
(let ((? #t) (! 0.0) (twopi (* 2.0 (acos -1.0))))
(lambda ()
(set! ? (not ?))
(if ? !
(let ((a (sqrt (* -2.0 (log (unif))))) (b (* twopi (unif))))
(set! ! (+ m (* s a (sin b))))
(+ m (* s a (cos b))))))))
(define rnorm (normal-rand (unif-rand 0) 1.0 0.5))
; auxiliary function to get a list of 'n random numbers from generator 'r
(define (rand-list r n) = (if (zero? n) '() (cons (r) (rand-list r (- n 1)))))
(define v (rand-list rnorm 1000))
v
#|
(-0.27965824722565835
-0.8870860825789542
0.6499618744638194
0.31336141955110863
...
0.5648743998193049
0.8282656735558756
0.6399951934564637
0.7699535302478072)
|#
; check mean and standard deviation
(define (mean-sdev v)
(let loop ((v v) (a 0) (b 0) (n 0))
(if (null? v)
(let ((mean (/ a n)))
(list mean (sqrt (/ (- b (* n mean mean)) (- n 1)))))
(let ((x (car v)))
(loop (cdr v) (+ a x) (+ b (* x x)) (+ n 1))))))
(mean-sdev v)
; (0.9562156817697293 0.5097087109575911)
Seed7
$ include "seed7_05.s7i";
include "float.s7i";
include "math.s7i";
const func float: frand is func # Uniform distribution, (0..1]
result
var float: frand is 0.0;
begin
repeat
frand := rand(0.0, 1.0);
until frand <> 0.0;
end func;
const func float: randomNormal is # Normal distribution, centered on 0, std dev 1
return sqrt(-2.0 * log(frand)) * cos(2.0 * PI * frand);
const proc: main is func
local
var integer: i is 0;
var array float: rands is 1000 times 0.0;
begin
for i range 1 to length(rands) do
rands[i] := 1.0 + 0.5 * randomNormal;
end for;
end func;
Sidef
var arr = 1000.of { 1 + (0.5 * sqrt(-2 * 1.rand.log) * cos(Num.tau * 1.rand)) }
arr.each { .say }
Standard ML
{{works with|SML/NJ}} SML/NJ has two structures for random numbers:
- Rand (a linear congruential generator).
You create the generator by calling
Rand.mkRandom
with a seed (ofword
type). You can call the generator with()
repeatedly to get a word in the range[Rand.randMin, Rand.randMax]
. You can use theRand.norm
function to transform the output into areal
from 0 to 1, or use theRand.range (i,j)
function to transform the output into anint
of the given range.
val seed = 0w42;
val gen = Rand.mkRandom seed;
fun random_gaussian () =
1.0 + Math.sqrt (~2.0 * Math.ln (Rand.norm (gen ()))) * Math.cos (2.0 * Math.pi * Rand.norm (gen ()));
val a = List.tabulate (1000, fn _ => random_gaussian ());
- Random (a subtract-with-borrow generator). You create the generator by calling
Random.rand
with a seed (of a pair ofint
s). You can use theRandom.randInt
function to generate a random int over its whole range;Random.randNat
to generate a non-negative random int;Random.randReal
to generate areal
between 0 and 1; orRandom.randRange (i,j)
to generate anint
in the given range.
val seed = (47,42);
val gen = Random.rand seed;
fun random_gaussian () =
1.0 + Math.sqrt (~2.0 * Math.ln (Random.randReal gen)) * Math.cos (2.0 * Math.pi * Random.randReal gen);
val a = List.tabulate (1000, fn _ => random_gaussian ());
Other implementations of Standard ML have their own random number generators. For example, Moscow ML has a Random
structure that is different from the one from SML/NJ.
{{works with|PolyML}}
The SML Basis Library does not provide a routine for uniform deviate generation, and PolyML does not have one. Using a routine from "Monte Carlo" by Fishman (Springer), in the function uniformdeviate, and avoiding the slow IntInf's:
val urandomlist = fn seed => fn n =>
let
val uniformdeviate = fn seed =>
let
val in31m = (Real.fromInt o Int32.toInt ) (getOpt (Int32.maxInt,0) );
val in31 = in31m +1.0;
val s1 = 41160.0;
val s2 = 950665216.0;
val v = Real.realFloor seed;
val val1 = v*s1;
val val2 = v*s2;
val next1 = Real.fromLargeInt (Real.toLargeInt IEEEReal.TO_NEGINF (val1/in31)) ;
val next2 = Real.rem(Real.realFloor(val2/in31) , in31m );
val valt = val1+val2 - (next1+next2)*in31m;
val nextt = Real.realFloor(valt/in31m);
val valt = valt - nextt*in31m;
in
(valt/in31m,valt)
end;
val store = ref (0.0,0.0);
val rec u = fn S => fn 0 => [] | n=> (store:=uniformdeviate S; (#1 (!store)):: (u (#2 (!store)) (n-1))) ;
in
u seed n
end;
local
open Math
in
val bmconv = fn urand => fn vrand => 1.0+0.5*(sqrt(~2.0*ln urand)*cos (2.0*pi*vrand) )
end;
val rec makeNormals = fn once => fn u::v::[] => [once u v] |
u::v::rm => (once u v )::(makeNormals once rm );
val anyrealseed=1009.0 ;
makeNormals bmconv (urandomlist anyrealseed 2000);
Stata
clear all
set obs 1000
gen x=rnormal(1,0.5)
Mata
a = rnormal(1000,1,1,0.5)
Tcl
package require Tcl 8.5
variable ::pi [expr acos(0)]
proc ::tcl::mathfunc::nrand {} {
expr {sqrt(-2*log(rand())) * cos(2*$::pi*rand())}
}
set mean 1.0
set stddev 0.5
for {set i 0} {$i < 1000} {incr i} {
lappend result [expr {$mean + $stddev*nrand()}]
}
=={{header|TI-83 BASIC}}== Builtin function: randNorm() randNorm(1,.5)
Or by a program:
Calculator symbol translations:
"STO" arrow: →
Square root sign: √
ClrList L1 Radian For(A,1,1000) √(-2ln(rand))cos(2πA)→L1(A) End
TorqueScript
for (%i = 0; %i < 1000; %i++)
%list[%i] = 1 + mSqrt(-2 * mLog(getRandom())) * mCos(2 * $pi * getRandom());
Ursala
There are two ways of interpreting the task, either to simulate sampling a population described by the given statistics, or to construct a sample exhibiting the given statistics. Both are illustrated below. The functions parameterized by the mean and standard deviation take a sample size and return a sample of that size, represented as a list of floating point numbers. The Z library function simulates a draw from a standard normal distribution. Mean and standard deviation library functions are also used in this example.
#import nat
#import flo
pop_stats("mu","sigma") = plus/*"mu"+ times/*"sigma"+ Z*+ iota
sample_stats("mu","sigma") = plus^*D(minus/"mu"+ mean,~&)+ vid^*D(div\"sigma"+ stdev,~&)+ Z*+ iota
#cast %eWL
test =
^(mean,stdev)* <
pop_stats(1.,0.5) 1000,
sample_stats(1.,0.5) 1000>
The output shows the mean and standard deviation for both sample vectors, the latter being exact by construction.
<
(1.004504e+00,4.915525e-01),
(1.000000e+00,5.000000e-01)>
Visual FoxPro
LOCAL i As Integer, m As Double, n As Integer, sd As Double
py = PI()
SET TALK OFF
SET DECIMALS TO 6
CREATE CURSOR gdev (deviate B(6))
RAND(-1)
n = 1000
m = 1
sd = 0.5
CLEAR
FOR i = 1 TO n
INSERT INTO gdev VALUES (GaussDev(m, 1/sd))
ENDFOR
CALCULATE AVG(deviate), STD(deviate) TO m, sd
? "Mean", m, "Std Dev", sd
SET TALK ON
SET DECIMALS TO
FUNCTION GaussDev(mean As Double, sdev As Double) As Double
LOCAL z As Double
z = SQRT(-2*LOG(RAND()))*COS(py*RAND())
IF sdev # 0
z = mean + z/sdev
ENDIF
RETURN z
ENDFUNC
Yorick
Returns array of ''count'' random numbers with mean 0 and standard deviation 1.
func random_normal(count) {
return sqrt(-2*log(random(count))) * cos(2*pi*random(count));
}
Example of basic use:
> nums = random_normal(1000); // create an array 1000 random numbers
> nums(avg); // show the mean
0.00901216
> nums(rms); // show the standard deviation
0.990265
Example with a mean of 1.0 and a standard deviation of 0.5:
> nums = random_normal(1000) * 0.5 + 1;
> nums(avg);
1.00612
> nums(rms);
0.496853
zkl
fcn mkRand(mean,sd){ //normally distributed random w/mean & standard deviation
pi:=(0.0).pi; // using the Box–Muller transform
rz1:=fcn{1.0-(0.0).random(1)} // from [0,1) to (0,1]
return('wrap(){((-2.0*rz1().log()).sqrt() * (2.0*pi*rz1()).cos())*sd + mean })
}
This creates a new random number generator, now to use it:
var g=mkRand(1,0.5);
ns:=(0).pump(1000,List,g); // 1000 rands with mean==1 & sd==1/2
mean:=(ns.sum(0.0)/1000); //-->1.00379
// calc sd of list of numbers:
(ns.reduce('wrap(p,n){p+(n-mean).pow(2)},0.0)/1000).sqrt() //-->0.494844
ZX Spectrum Basic
Here we have converted the QBasic code to suit the ZX Spectrum:
10 RANDOMIZE 0 : REM seeds random number generator based on uptime
20 DIM a(1000)
30 CLS
40 FOR i = 1 TO 1000
50 LET a(i) = 1 + SQR(-2 * LN(RND)) * COS(2 * PI * RND)
60 NEXT i