⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Reflection}} [[Category:Programming Tasks]] [[Category:Object oriented]] {{omit from|C}} {{omit from|C++}} {{omit from|Modula-2}} {{omit from|Rust}}
;Task: The goal is to get the properties of an object, as names, values or both.
Some languages support dynamic properties, which in general can only be inspected if a class' public API includes a way of listing them.
C#
{{works with|C sharp|7}}
using System;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;
public static class Reflection
{
public static void Main() {
var t = new TestClass();
var flags = BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance;
foreach (var prop in GetPropertyValues(t, flags)) {
Console.WriteLine(prop);
}
foreach (var field in GetFieldValues(t, flags)) {
Console.WriteLine(field);
}
}
public static IEnumerable<(string name, object value)> GetPropertyValues<T>(T obj, BindingFlags flags) =>
from p in typeof(T).GetProperties(flags)
where p.GetIndexParameters().Length == 0 //To filter out indexers
select (p.Name, p.GetValue(obj, null));
public static IEnumerable<(string name, object value)> GetFieldValues<T>(T obj, BindingFlags flags) =>
typeof(T).GetFields(flags).Select(f => (f.Name, f.GetValue(obj)));
class TestClass
{
private int privateField = 7;
public int PublicNumber { get; } = 4;
private int PrivateNumber { get; } = 2;
}
}
{{out}}
(PublicNumber, 4)
(PrivateNumber, 2)
(privateField, 7)
(<PublicNumber>k__BackingField, 4)
(<PrivateNumber>k__BackingField, 2)
Elena
ELENA 4.1 :
import system'routines;
import system'dynamic;
import extensions;
class MyClass
{
prop int X;
prop string Y;
}
public program()
{
var o := new MyClass::
{
this X := 2;
this Y := "String";
};
MyClass.__getProperties().forEach:(p)
{
console.printLine("o.",p,"=",cast MessageName(p).getPropertyValue(o))
}
}
{{out}}
o.X=2
o.Y=String
Factor
Mirrors present an object's slots and slot values as an associative structure.
USING: assocs kernel math mirrors prettyprint strings ;
TUPLE: foo
{ bar string }
{ baz string initial: "hi" }
{ baxx integer initial: 50 read-only } ;
C: <foo> foo
"apple" "banana" 200 <foo> <mirror>
[ >alist ] [ object-slots ] bi [ . ] bi@
{{out}}
{ { "bar" "apple" } { "baz" "banana" } { "baxx" 200 } }
{
T{ slot-spec
{ name "bar" }
{ offset 2 }
{ class string }
{ initial "" }
}
T{ slot-spec
{ name "baz" }
{ offset 3 }
{ class string }
{ initial "hi" }
}
T{ slot-spec
{ name "baxx" }
{ offset 4 }
{ class integer }
{ initial 50 }
{ read-only t }
}
}
Fortran
Fortran offers services somewhat as desired, at two levels. Suppose X
is the name of some variable. Then, WRITE (6,) X
would send to file unit six (the modern default unit number for "standard output"), the value of X
, whatever its type - be it an array, a complex number, an integer, a character variable, or, (with F90 and later) an aggregate or "structure", all with appropriate formats for each part, single or double precision, ''etc''. This is the "free-format" or "list-directed" style, signified by the asterisk in place of a format code or the label of a FORMAT statement. With arrays, repeated values are shown with a repetition count, as in 66303 meaning sixty-six values of 303. Alas, the @ symbol is not used. Thus, inspection of the style of such output will reveal whether X
was an integer, ''etc''.
The second level requires slightly more effort: a declaration such as NAMELIST /STUFF/ X
enables the use of a statement such as WRITE (6,STUFF)
whereupon each item's value will be prefixed with its name in the style of an assignment statement, as in X = 2.7182818
if X
were to be the name of a simple floating-point variable.
There may be a list of items, not just the lone X
and these proceedings apply to READ statements also.
Go
package main
import (
"fmt"
"image"
"reflect"
)
// A type definition
type t struct {
X int
next *t
}
func main() {
report(t{})
report(image.Point{})
}
func report(x interface{}) {
t := reflect.TypeOf(x)
n := t.NumField()
fmt.Printf("Type %v has %d fields:\n", t, n)
fmt.Println("Name Type Exported")
for i := 0; i < n; i++ {
f := t.Field(i)
fmt.Printf("%-8s %-8v %-8t\n",
f.Name,
f.Type,
f.PkgPath == "",
)
}
fmt.Println()
}
{{out}}
Type main.t has 2 fields:
Name Type Exported
X int true
next *main.t false
Type image.Point has 2 fields:
Name Type Exported
X int true
Y int true
Groovy
{{trans|Java}}
import java.lang.reflect.Field
@SuppressWarnings("unused")
class ListProperties {
public int examplePublicField = 42
private boolean examplePrivateField = true
static void main(String[] args) {
ListProperties obj = new ListProperties()
Class clazz = obj.class
println "All public fields (including inherited):"
(clazz.fields).each { Field f ->
printf "%s\t%s\n", f, f.get(obj)
}
println()
println "All declared fields (excluding inherited):"
clazz.getDeclaredFields().each { Field f ->
f.accessible = true
printf "%s\t%s\n", f, f.get(obj)
}
}
}
{{out}}
All public fields (including inherited):
public int ListProperties.examplePublicField 42
public static transient boolean ListProperties.__$stMC false
All declared fields (excluding inherited):
public int ListProperties.examplePublicField 42
private boolean ListProperties.examplePrivateField true
private static org.codehaus.groovy.reflection.ClassInfo ListProperties.$staticClassInfo org.codehaus.groovy.reflection.ClassInfo@400cff1a
public static transient boolean ListProperties.__$stMC false
private transient groovy.lang.MetaClass ListProperties.metaClass groovy.lang.MetaClassImpl@275710fc[class ListProperties]
private static org.codehaus.groovy.reflection.ClassInfo ListProperties.$staticClassInfo$ null
private static java.lang.ref.SoftReference ListProperties.$callSiteArray java.lang.ref.SoftReference@525f1e4e
J
http://rosettacode.org/wiki/Reflection/List_methods#J Please observe that names&>i.4 lists nouns (pronouns that store data), adverbs (names of verb modifiers returning any of these four parts of speech), conjunctions (which can take three or four arguments, two of which can any part of these four parts of speech and two nouns), and proverbs (names of verbs, which you might call "functions").
Java
import java.lang.reflect.Field;
public class ListFields {
public int examplePublicField = 42;
private boolean examplePrivateField = true;
public static void main(String[] args) throws IllegalAccessException {
ListFields obj = new ListFields();
Class clazz = obj.getClass();
System.out.println("All public fields (including inherited):");
for (Field f : clazz.getFields()) {
System.out.printf("%s\t%s\n", f, f.get(obj));
}
System.out.println();
System.out.println("All declared fields (excluding inherited):");
for (Field f : clazz.getDeclaredFields()) {
System.out.printf("%s\t%s\n", f, f.get(obj));
}
}
}
{{out}}
All public fields (including inherited):
public int ListFields.examplePublicField 42
All declared fields (excluding inherited):
public int ListFields.examplePublicField 42
private boolean ListFields.examplePrivateField true
JavaScript
There are multiple ways of getting property names, each of which include different subsets of an object's properties, such as enumerable or inherited properties. Properties in JavaScript can be enumerable or non-enumerable; enumerable properties are accessable when looping over the object with for
. Object.getOwnPropertyNames()
.
var obj = Object.create({
name: 'proto',
proto: true,
doNothing: function() {}
}, {
name: {value: 'obj', writable: true, configurable: true, enumerable: true},
obj: {value: true, writable: true, configurable: true, enumerable: true},
'non-enum': {value: 'non-enumerable', writable: true, enumerable: false},
doStuff: {value: function() {}, enumerable: true}
});
// get enumerable properties on an object and its ancestors
function get_property_names(obj) {
var properties = [];
for (var p in obj) {
properties.push(p);
}
return properties;
}
get_property_names(obj);
//["name", "obj", "doStuff", "proto", "doNothing"]
Object.getOwnPropertyNames(obj);
//["name", "obj", "non-enum", "doStuff"]
Object.keys(obj);
//["name", "obj", "doStuff"]
Object.entries(obj);
//[["name", "obj"], ["obj", true], ["doStuff", function()]]
Julia
{{works with|Julia|0.6}}
for obj in (Int, 1, 1:10, collect(1:10), now())
println("\nObject: $obj\nDescription:")
dump(obj)
end
{{out}}
Object: Int64
Description:
Int64 <: Signed
Object: 1
Description:
Int64 1
Object: 1:10
Description:
UnitRange{Int64}
start: Int64 1
stop: Int64 10
Object: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Description:
Array{Int64}((10,)) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Object: 2017-10-04T18:03:33.691
Description:
DateTime
instant: Base.Dates.UTInstant{Base.Dates.Millisecond}
periods: Base.Dates.Millisecond
value: Int64 63642823413691
Kotlin
// version 1.1
import kotlin.reflect.full.memberProperties
import kotlin.reflect.jvm.isAccessible
open class BaseExample(val baseProp: String) {
protected val protectedProp: String = "inherited protected value"
}
class Example(val prop1: String, val prop2: Int, baseProp: String) : BaseExample(baseProp) {
private val privateProp: String = "private value"
val prop3: String
get() = "property without backing field"
val prop4 by lazy { "delegated value" }
}
fun main(args: Array<String>) {
val example = Example(prop1 = "abc", prop2 = 1, baseProp = "inherited public value")
val props = Example::class.memberProperties
for (prop in props) {
prop.isAccessible = true // makes non-public properties accessible
println("${prop.name.padEnd(13)} -> ${prop.get(example)}")
}
}
{{out}}
privateProp -> private value
prop1 -> abc
prop2 -> 1
prop3 -> property without backing field
prop4 -> delegated value
baseProp -> inherited public value
protectedProp -> inherited protected value
Lingo
obj = script("MyClass").new()
obj.foo = 23
obj.bar = 42
-- ...
-- show obj's property names and values
cnt = obj.count
repeat with i = 1 to cnt
put obj.getPropAt(i)&" = "&obj[i]
end repeat
{{Out}}
-- "bar = 42"
-- "foo = 23"
=={{header|Objective-C}}==
#import <objc/runtime.h>
@interface Foo : NSObject {
int exampleIvar;
}
@property (nonatomic) double exampleProperty;
@end
@implementation Foo
- (instancetype)init {
self = [super init];
if (self) {
exampleIvar = 42;
_exampleProperty = 3.14;
}
return self;
}
@end
int main() {
id obj = [[Foo alloc] init];
Class clazz = [obj class];
NSLog(@"\Instance variables:");
unsigned int ivarCount;
Ivar *ivars = class_copyIvarList(clazz, &ivarCount);
for (unsigned int i = 0; i < ivarCount; i++) {
Ivar ivar = ivars[i];
const char *name = ivar_getName(ivar);
const char *typeEncoding = ivar_getTypeEncoding(ivar);
// for simple types we can use Key-Value Coding to access it
// but in general we will have to use object_getIvar and cast it to the right type of function
// corresponding to the type of the instance variable
id value = [obj valueForKey:@(name)];
NSLog(@"%s\t%s\t%@", name, typeEncoding, value);
}
free(ivars);
NSLog(@"");
NSLog(@"Properties:");
unsigned int propCount;
objc_property_t *properties = class_copyPropertyList([Foo class], &propCount);
for (unsigned int i = 0; i < propCount; i++) {
objc_property_t p = properties[i];
const char *name = property_getName(p);
const char *attributes = property_getAttributes(p);
// for simple types we can use Key-Value Coding to access it
// but in general we will have to use objc_msgSend to call the getter,
// casting objc_msgSend to the right type of function corresponding to the type of the getter
id value = [obj valueForKey:@(name)];
NSLog(@"%s\t%s\t%@", name, attributes, value);
}
free(properties);
return 0;
}
{{out}}
Instance variables:
exampleIvar i 42
_exampleProperty d 3.14
Properties:
exampleProperty Td,N,V_exampleProperty 3.14
ooRexx
Whereas in PL/I variables habe a (declared) type, in REXX and ooRexx a "typeless" variable can be assigned a string or object, respectively.
The datatype builtin function can be used to determine the data type of a given string.
Many of these options are also supported by other REXX implementations.
/* REXX demonstrate uses of datatype() */
/* test values */
d.1=''
d.2='a23'
d.3='101'
d.4='123'
d.5='12345678901234567890'
d.6='abc'
d.7='aBc'
d.8='1'
d.9='0'
d.10='Walter'
d.11='ABC'
d.12='f23'
d.13='123'
/* supported options */
t.1='A' /* Alphanumeric */
t.2='B' /* Binary */
t.3='I' /* Internal whole number */
t.4='L' /* Lowercase */
t.5='M' /* Mixed case */
t.6='N' /* Number */
t.7='O' /* lOgical */
t.8='S' /* Symbol */
t.9='U' /* Uppercase */
t.10='V' /* Variable */
t.11='W' /* Whole number */
t.12='X' /* heXadecimal */
t.13='9' /* 9 digits */
hdr=left('',20)
Do j=1 To 13
hdr=hdr t.j
End
hdr=hdr 'datatype(v)'
Say hdr
Do i=1 To 13
ol=left(d.i,20)
Do j=1 To 13
ol=ol datatype(d.i,t.j)
End
ol=ol datatype(d.i)
Say ol
End
Say hdr
{{out}}
A B I L M N O S U V W X 9 datatype(v)
0 1 0 0 0 0 0 0 0 0 0 1 0 CHAR
a23 1 0 0 0 0 0 0 1 0 1 0 1 0 CHAR
101 1 1 1 0 0 1 0 1 0 0 1 1 1 NUM
123 1 0 1 0 0 1 0 1 0 0 1 1 1 NUM
12345678901234567890 1 0 0 0 0 1 0 1 0 0 0 1 0 NUM
abc 1 0 0 1 1 0 0 1 0 1 0 1 0 CHAR
aBc 1 0 0 0 1 0 0 1 0 1 0 1 0 CHAR
1 1 1 1 0 0 1 1 1 0 0 1 1 1 NUM
0 1 1 1 0 0 1 1 1 0 0 1 1 1 NUM
Walter 1 0 0 0 1 0 0 1 0 1 0 0 0 CHAR
ABC 1 0 0 0 1 0 0 1 1 1 0 1 0 CHAR
f23 1 0 0 0 0 0 0 1 0 1 0 1 0 CHAR
123 1 0 1 0 0 1 0 1 0 0 1 1 1 NUM
A B I L M N O S U V W X 9 datatype(v)
Perl
In Perl's bare-bones native OO system, an object is sometimes nothing more than a hash blessed into a class. It's properties could be simply listed by iterating over the keys. However more complex data structures can be present, so the safest option is always to use Data::Dumper
to examine an object.
{
package Point;
use Class::Spiffy -base;
field 'x';
field 'y';
}
{
package Circle;
use base qw(Point);
field 'r';
}
my $p1 = Point->new(x => 8, y => -5);
my $c1 = Circle->new(r => 4);
my $c2 = Circle->new(x => 1, y => 2, r => 3);
use Data::Dumper;
say Dumper $p1;
say Dumper $c1;
say Dumper $c2;
{{out}}
$VAR1 = bless( {
'x' => 8,
'y' => -5
}, 'Point' );
$VAR1 = bless( {
'r' => 4
}, 'Circle' );
$VAR1 = bless( {
'r' => 3,
'x' => 1,
'y' => 2
}, 'Circle' );
Perl 6
You can get a list of an object's attributes (instance variables) using .^attributes, which is part of the [https://docs.perl6.org/type/Metamodel$COLON$COLONClassHOW Meta Object Protocol]..
Each is represented as an Attribute object that contains a bunch of info:
class Foo {
has $!a = now;
has Str $.b;
has Int $.c is rw;
}
my $object = Foo.new: b => "Hello", c => 42;
for $object.^attributes {
say join ", ", .name, .readonly, .container.^name, .get_value($object);
}
{{out}}
$!a, True, Any, Instant:1470517602.295992
$!b, True, Str, Hello
$!c, False, Int, 42
Public attributes (in this case, $.b and $.c) are really just attributes for which the compiler also auto-generates a method of the same name. See [[Reflection/List_methods#Perl_6]].
PHP
<?
class Foo {
}
$obj = new Foo();
$obj->bar = 42;
$obj->baz = true;
var_dump(get_object_vars($obj));
?>
{{out}}
array(2) {
["bar"]=>
int(42)
["baz"]=>
bool(true)
}
PL/I
PUT DATA(X)
will send to SYSOUT the value(s) of X prefixed by the name(s), formatted appropriately for single/double bit/integer/real/complex, character, ''etc.'' whether X
is a single datum, an array, a data structure, ''etc.'' A list of items may be specified, not just the single X
and for input, the word is GET
. Similarly, PUT STRING(TEXT) DATA(X)
will place such output in a character variable, which may have to be large...
PowerShell
In PowerShell '''everything''' is an object. To find any type of member of any object use the Get-Member
Cmdlet.
Here we find the properties of a [DateTime]
object:
Get-Date | Get-Member -MemberType Property
{{Out}}
TypeName: System.DateTime
Name MemberType Definition
---- ---------- ----------
Date Property datetime Date {get;}
Day Property int Day {get;}
DayOfWeek Property System.DayOfWeek DayOfWeek {get;}
DayOfYear Property int DayOfYear {get;}
Hour Property int Hour {get;}
Kind Property System.DateTimeKind Kind {get;}
Millisecond Property int Millisecond {get;}
Minute Property int Minute {get;}
Month Property int Month {get;}
Second Property int Second {get;}
Ticks Property long Ticks {get;}
TimeOfDay Property timespan TimeOfDay {get;}
Year Property int Year {get;}
The "Add" methods of a [DateTime]
object:
Get-Date | Get-Member -MemberType Method -Name Add*
{{Out}}
TypeName: System.DateTime
Name MemberType Definition
---- ---------- ----------
Add Method datetime Add(timespan value)
AddDays Method datetime AddDays(double value)
AddHours Method datetime AddHours(double value)
AddMilliseconds Method datetime AddMilliseconds(double value)
AddMinutes Method datetime AddMinutes(double value)
AddMonths Method datetime AddMonths(int months)
AddSeconds Method datetime AddSeconds(double value)
AddTicks Method datetime AddTicks(long value)
AddYears Method datetime AddYears(int value)
Python
The [https://docs.python.org/3.5/library/functions.html#dir dir()]
function and Python's [https://docs.python.org/3.5/library/inspect.html#module-inspect inspect]
module both will list properties.
class Parent(object):
__priv = 'private'
def __init__(self, name):
self.name = name
def __repr__(self):
return '%s(%s)' % (type(self).__name__, self.name)
def doNothing(self):
pass
import re
class Child(Parent):
# prefix for "private" fields
__rePrivate = re.compile('^_(Child|Parent)__')
# used when setting dynamic property values
__reBleh = re.compile('\Wbleh$')
@property
def reBleh(self):
return self.__reBleh
def __init__(self, name, *args):
super(Child, self).__init__(name)
self.args = args
def __dir__(self):
myDir = filter(
# filter out private fields
lambda p: not self.__rePrivate.match(p),
list(set( \
sum([dir(base) for base in type(self).__bases__], []) \
+ type(self).__dict__.keys() \
+ self.__dict__.keys() \
)))
return myDir + map(
# dynamic properties
lambda p: p + '_bleh',
filter(
# don't add dynamic properties for methods and other special properties
lambda p: (p[:2] != '__' or p[-2:] != '__') and not callable(getattr(self, p)),
myDir))
def __getattr__(self, name):
if name[-5:] == '_bleh':
# dynamic '_bleh' properties
return str(getattr(self, name[:-5])) + ' bleh'
if hasattr(super(Child, chld), '__getattr__'):
return super(Child, self).__getattr__(name)
raise AttributeError("'%s' object has no attribute '%s'" % (type(self).__name__, name))
def __setattr__(self, name, value):
if name[-5:] == '_bleh':
# skip backing properties that are methods
if not (hasattr(self, name[:-5]) and callable(getattr(self, name[:-5]))):
setattr(self, name[:-5], self.reBleh.sub('', value))
elif hasattr(super(Child, self), '__setattr__'):
super(Child, self).__setattr__(name, value)
elif hasattr(self, '__dict__'):
self.__dict__[name] = value
def __repr__(self):
return '%s(%s, %s)' % (type(self).__name__, self.name, str(self.args).strip('[]()'))
def doStuff(self):
return (1+1.0/1e6) ** 1e6
par = Parent('par')
par.parent = True
dir(par)
#['_Parent__priv', '__class__', ..., 'doNothing', 'name', 'parent']
inspect.getmembers(par)
#[('_Parent__priv', 'private'), ('__class__', <class '__main__.Parent'>), ..., ('doNothing', <bound method Parent.doNothing of <__main__.Parent object at 0x100777650>>), ('name', 'par'), ('parent', True)]
chld = Child('chld', 0, 'I', 'two')
chld.own = "chld's own"
dir(chld)
#['__class__', ..., 'args', 'args_bleh', 'doNothing', 'doStuff', 'name', 'name_bleh', 'own', 'own_bleh', 'reBleh', 'reBleh_bleh']
inspect.getmembers(chld)
#[('__class__', <class '__main__.Child'>), ..., ('args', (0, 'I', 'two')), ('args_bleh', "(0, 'I', 'two') bleh"), ('doNothing', <bound method Child.doNothing of Child(chld, 0, 'I', 'two')>), ('doStuff', <bound method Child.doStuff of Child(chld, 0, 'I', 'two')>), ('name', 'chld'), ('name_bleh', 'chld bleh'), ('own', "chld's own"), ('own_bleh', "chld's own bleh"), ('reBleh', <_sre.SRE_Pattern object at 0x10067bd20>), ('reBleh_bleh', '<_sre.SRE_Pattern object at 0x10067bd20> bleh')]
REXX
version 1
(This REXX version is modeled after the '''PL/I''' entry.)
The '''say''' instruction can display a value (its contents) to the console (terminal) as well as its length (the number of characters in its value).
Since ''everything'' in REXX is a character string, the ''type'' of the variable (character) need not be explicitly expressed.
A simplistic example:
j=2
abc.j= -4.12
say 'variable abc.2 (length' length(abc.2)')=' abc.2
version 2
/* REXX shows the "equivalent" to PL/I's PUT DATA for a simple variable */
/* put_data2('a.') to show all a.tail values isn't that easy :-) */
j=2
abc.j= -4.12
Say put_data('abc.2') /* Put Data(abc(2)) */
string=put_data('abc.2') /* Put string(string) Data(abc(2)) */
Say string
Exit
put_data:
Parse Arg variable
return(variable'='''value(variable)'''')
{{out}}
abc.2='-4.12'
abc.2='-4.12'
Ruby
class Foo
@@xyz = nil
def initialize(name, age)
@name, @age = name, age
end
def add_sex(sex)
@sex = sex
end
end
p foo = Foo.new("Angel", 18) #=> #<Foo:0x0000000305a688 @name="Angel", @age=18>
p foo.instance_variables #=> [:@name, :@age]
p foo.instance_variable_defined?(:@age) #=> true
p foo.instance_variable_get(:@age) #=> 18
p foo.instance_variable_set(:@age, 19) #=> 19
p foo #=> #<Foo:0x0000000305a688 @name="Angel", @age=19>
foo.add_sex(:woman)
p foo.instance_variables #=> [:@name, :@age, :@sex]
p foo #=> #<Foo:0x0000000305a688 @name="Angel", @age=19, @sex=:woman>
foo.instance_variable_set(:@bar, nil)
p foo.instance_variables #=> [:@name, :@age, :@sex, :@bar]
p Foo.class_variables #=> [:@@xyz]
p Foo.class_variable_defined?(:@@xyz) #=> true
p Foo.class_variable_get(:@@xyz) #=> nil
p Foo.class_variable_set(:@@xyz, :xyz) #=> :xyz
p Foo.class_variable_get(:@@xyz) #=> :xyz
p Foo.class_variable_set(:@@abc, 123) #=> 123
p Foo.class_variables #=> [:@@xyz, :@@abc]
Scala
Java Interoperability
{{Out}}Best seen running in your browser [https://scastie.scala-lang.org/MdkPxH6yTlS4W8TaXYxSgA Scastie (remote JVM)].
object ListProperties extends App {
private val obj = new {
val examplePublicField: Int = 42
private val examplePrivateField: Boolean = true
}
private val clazz = obj.getClass
println("All public methods (including inherited):")
clazz.getFields.foreach(f => println(s"${f}\t${f.get(obj)}"))
println("\nAll declared fields (excluding inherited):")
clazz.getDeclaredFields.foreach(f => println(s"${f}}"))
}
Tcl
Tcl objects do not have properties exactly (externally visible variables), though a common idiom pioneered by Tk is options exposed by the configure and cget commands.
For objects supporting this protocol, you can list all options by invoking the configure method without arguments (result split over multiple lines for readability):
% package require Tk
8.6.5
% . configure
{-bd -borderwidth} {-borderwidth borderWidth BorderWidth 0 0} {-class class Class Toplevel Tclsh}
{-menu menu Menu {} {}} {-relief relief Relief flat flat} {-screen screen Screen {} {}} {-use use Use {} {}}
{-background background Background #d9d9d9 #d9d9d9} {-bg -background} {-colormap colormap Colormap {} {}}
{-container container Container 0 0} {-cursor cursor Cursor {} {}} {-height height Height 0 0}
{-highlightbackground highlightBackground HighlightBackground #d9d9d9 #d9d9d9}
{-highlightcolor highlightColor HighlightColor #000000 #000000}
{-highlightthickness highlightThickness HighlightThickness 0 0} {-padx padX Pad 0 0} {-pady padY Pad 0 0}
{-takefocus takeFocus TakeFocus 0 0} {-visual visual Visual {} {}} {-width width Width 0 0}
Two-element sublists (eg -bd -borderwidth) represent aliases, and five-element sublists are of the form {optionName dbName dbClass defaultValue currentValue}. dbName and dbClass are related to how the option is specified in the option database.
Simply listing the option names is like this:
% lmap o [. configure] {if {[llength $o] == 2} continue else {lindex $o 0}}
-borderwidth -class -menu -relief -screen -use -background -colormap -container -cursor -height
-highlightbackground -highlightcolor -highlightthickness -padx -pady -takefocus -visual -width
Visual Basic .NET
{{trans|C#}}
Imports System.Reflection
Module Module1
Class TestClass
Private privateField = 7
Public ReadOnly Property PublicNumber = 4
Private ReadOnly Property PrivateNumber = 2
End Class
Function GetPropertyValues(Of T)(obj As T, flags As BindingFlags) As IEnumerable
Return From p In obj.GetType().GetProperties(flags)
Where p.GetIndexParameters().Length = 0
Select New With {p.Name, Key .Value = p.GetValue(obj, Nothing)}
End Function
Function GetFieldValues(Of T)(obj As T, flags As BindingFlags) As IEnumerable
Return obj.GetType().GetFields(flags).Select(Function(f) New With {f.Name, Key .Value = f.GetValue(obj)})
End Function
Sub Main()
Dim t As New TestClass()
Dim flags = BindingFlags.Public Or BindingFlags.NonPublic Or BindingFlags.Instance
For Each prop In GetPropertyValues(t, flags)
Console.WriteLine(prop)
Next
For Each field In GetFieldValues(t, flags)
Console.WriteLine(field)
Next
End Sub
End Module
{{out}}
{ Name = PublicNumber, Value = 4 }
{ Name = PrivateNumber, Value = 2 }
{ Name = privateField, Value = 7 }
{ Name = _PublicNumber, Value = 4 }
{ Name = _PrivateNumber, Value = 2 }
zkl
In zkl, properties are static read only informational data.
Every object has a "properties" method, which returns a list of property names [for that object].
properties:=List.properties;
properties.println();
List(1,2,3).property(properties[0]).println(); // get value
List(1,2,3).Property(properties[0])().println(); // method that gets value
List(1,2,3).BaseClass(properties[0]).println(); // another way to get value
{{out}}
L("size","isReadOnly","id","name","fullName","type","otype","oID","itype","typeID","properties","methods","vaultPath","numObjects","isThreadSafe","isContainer","createReturnsSelf")
L(24,32)
L(24,32)
L(24,32)