⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{draft task}}
;Introduction
Calculate the resistance of any resistor network.
- The network is stated with a string.
- The resistors are separated by a vertical dash.
- Each resistor has ** a starting node ** an ending node ** a resistance
;Background [https://physics.stackexchange.com/questions/19295/how-calculate-resistance-between-two-points-for-arbitrary-resistor-grid Arbitrary Resistor Grid]
;Regular 3x3 mesh, using twelve one ohm resistors 0 - 1 - 2 | | | 3 - 4 - 5 | | | 6 - 7 - 8
Battery connection nodes: 0 and 8
assert 3/2 == network(9,0,8,"0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1")
;Regular 4x4 mesh, using 24 one ohm resistors
0 - 1 - 2 - 3
| | | |
4 - 5 - 6 - 7
| | | |
8 - 9 -10 -11
| | | |
12 -13 -14 -15
Battery connection nodes: 0 and 15
assert 13/7 == network(16,0,15,"0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1")
;Ten resistor network
[https://photos.google.com/photo/AF1QipPfPkOrrBpJq-KFwWR-BVlfzM5VKklKWnP31nC_ Picture]
Battery connection nodes: 0 and 1
assert 10 == network(7,0,1,"0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8")
;Wheatstone network
[https://photos.google.com/photo/AF1QipP7yjK4gA5_xKMTo4IiO6-taHNEzelGtAIkGgE0 Picture]
This network is not possible to solve using the previous [http://www.rosettacode.org/wiki/Resistance_Calculator Resistance Calculator] as there is no natural starting point.
assert 180 == network(4,0,3,"0 1 150|0 2 50|1 3 300|2 3 250")
Go
{{trans|Python}}
package main
import (
"fmt"
"math"
"strconv"
"strings"
)
func argmax(m [][]float64, i int) int {
col := make([]float64, len(m))
max, maxx := -1.0, -1
for x := 0; x < len(m); x++ {
col[x] = math.Abs(m[x][i])
if col[x] > max {
max = col[x]
maxx = x
}
}
return maxx
}
func gauss(m [][]float64) []float64 {
n, p := len(m), len(m[0])
for i := 0; i < n; i++ {
k := i + argmax(m[i:n], i)
m[i], m[k] = m[k], m[i]
t := 1 / m[i][i]
for j := i + 1; j < p; j++ {
m[i][j] *= t
}
for j := i + 1; j < n; j++ {
t = m[j][i]
for l := i + 1; l < p; l++ {
m[j][l] -= t * m[i][l]
}
}
}
for i := n - 1; i >= 0; i-- {
for j := 0; j < i; j++ {
m[j][p-1] -= m[j][i] * m[i][p-1]
}
}
col := make([]float64, len(m))
for x := 0; x < len(m); x++ {
col[x] = m[x][p-1]
}
return col
}
func network(n, k0, k1 int, s string) float64 {
m := make([][]float64, n)
for i := 0; i < n; i++ {
m[i] = make([]float64, n+1)
}
for _, resistor := range strings.Split(s, "|") {
rarr := strings.Fields(resistor)
a, _ := strconv.Atoi(rarr[0])
b, _ := strconv.Atoi(rarr[1])
ri, _ := strconv.Atoi(rarr[2])
r := 1.0 / float64(ri)
m[a][a] += r
m[b][b] += r
if a > 0 {
m[a][b] -= r
}
if b > 0 {
m[b][a] -= r
}
}
m[k0][k0] = 1
m[k1][n] = 1
return gauss(m)[k1]
}
func main() {
var fa [4]float64
fa[0] = network(7, 0, 1, "0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8")
fa[1] = network(9, 0, 8, "0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1")
fa[2] = network(16, 0, 15, "0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1")
fa[3] = network(4, 0, 3, "0 1 150|0 2 50|1 3 300|2 3 250")
for _, f := range fa {
fmt.Printf("%.6g\n", f)
}
}
{{out}}
10
1.5
1.85714
180
Julia
{{trans|Python}}
function gauss(m)
n, p = length(m), length(m[1])
for i in 1:n
_, k = findmax(map(x -> abs(m[x][i]), i:n)) .+ (i - 1)
m[i], m[k] = m[k], m[i]
t = 1 // m[i][i]
for j in i+1:p
m[i][j] *= t
end
for j in i+1:n
t = m[j][i]
for k in i+1:p
m[j][k] -= t * m[i][k]
end
end
end
for i in n:-1:1, j in 1:i-1; m[j][end] -= m[j][i] * m[i][end]; end
return [row[end] for row in m]
end
function network(n, k0, k1, s)
m = [[0//1 for i in 1:n + 1] for j in 1:n]
resistors = split(s, "|")
for resistor in resistors
astr, bstr, rstr = split(resistor, " ")
a, b, r = parse(Int, astr), parse(Int, bstr), 1 // parse(Int, rstr)
m[a + 1][a + 1] += r
m[b + 1][b + 1] += r
if a > 0; m[a + 1][b + 1] -= r end
if b > 0; m[b + 1][a + 1] -= r end
end
m[k0+1][k0+1] = m[k1+1][end] = 1 // 1
return gauss(m)[k1+1]
end
@assert(10 == network(7,0,1,"0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8"))
@assert(3//2 == network(3*3,0,3*3-1,"0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1"))
@assert(13//7 == network(4*4,0,4*4-1,"0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1"))
@assert(180 == network(4,0,3,"0 1 150|0 2 50|1 3 300|2 3 250"))
No assertion errors.
Perl
use strict;
use warnings;
sub gauss {
our @m; local *m = shift;
my ($lead, $rows, $cols) = (0, scalar(@m), scalar(@{$m[0]}));
foreach my $r (0 .. $rows - 1) {
$lead < $cols or return;
my $i = $r;
until ($m[$i][$lead])
{++$i == $rows or next;
$i = $r;
++$lead == $cols and return;}
@m[$i, $r] = @m[$r, $i];
my $lv = $m[$r][$lead];
$_ /= $lv foreach @{ $m[$r] };
my @mr = @{ $m[$r] };
foreach my $i (0 .. $rows - 1)
{$i == $r and next;
($lv, my $n) = ($m[$i][$lead], -1);
$_ -= $lv * $mr[++$n] foreach @{ $m[$i] };}
++$lead;}
}
sub network {
my($n,$k0,$k1,$grid) = @_;
my @m;
push @m, [(0)x($n+1)] for 1..$n;
for my $resistor (split '\|', $grid) {
my ($a,$b,$r_inv) = split /\s+/, $resistor;
my $r = 1 / $r_inv;
$m[$a][$a] += $r;
$m[$b][$b] += $r;
$m[$a][$b] -= $r if $a > 0;
$m[$b][$a] -= $r if $b > 0;
}
$m[$k0][$k0] = 1;
$m[$k1][ -1] = 1;
gauss(\@m);
return $m[$k1][-1];
}
for (
[ 7, 0, 1, '0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8' ],
[ 3*3, 0, 3*3-1, '0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1' ],
[ 4*4, 0, 4*4-1, '0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13
1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1' ],
[ 4, 0, 3, '0 1 150|0 2 50|1 3 300|2 3 250' ],
) {
printf "%10.3f\n", network(@$_);
}
{{out}}
10.000
1.500
1.857
180.000
Perl 6
{{trans|Python}}
sub gauss ( @m is copy ) {
for @m.keys -> \i {
my \k = max |(i .. @m.end), :by({ @m[$_][i].abs });
@m[i, k] .= reverse if \k != i;
.[i ^.. *] »/=» .[i] given @m[i];
for i ^.. @m.end -> \j {
@m[j][i ^.. *] »-=« ( @m[j][i] «*« @m[i][i ^.. *] );
}
}
for @m.keys.reverse -> \i {
@m[^i]».[*-1] »-=« ( @m[^i]».[i] »*» @m[i][*-1] );
}
return @m».[*-1];
}
sub network ( Int \n, Int \k0, Int \k1, Str \grid ) {
my @m = [0 xx n+1] xx n;
for grid.split('|') -> \resistor {
my ( \a, \b, \r_inv ) = resistor.split(/\s+/, :skip-empty);
my \r = 1 / r_inv;
@m[a][a] += r;
@m[b][b] += r;
@m[a][b] -= r if a > 0;
@m[b][a] -= r if b > 0;
}
@m[k0][k0] = 1;
@m[k1][*-1] = 1;
return gauss(@m)[k1];
}
use Test;
my @tests =
( 10, 7, 0, 1, '0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8' ),
( 3/2, 3*3, 0, 3*3-1, '0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1' ),
( 13/7, 4*4, 0, 4*4-1, '0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1' ),
( 180, 4, 0, 3, '0 1 150|0 2 50|1 3 300|2 3 250' ),
;
plan +@tests;
is .[0], network( |.[1..4] ), .[4].substr(0,10)~'…' for @tests;
Phix
{{trans|Go}}
function argmax(sequence m, integer i)
sequence col := sq_abs(vslice(m,i))
return largest(col,return_index:=true)
end function
function gauss(sequence m)
integer n = length(m),
p = length(m[1])
for i=1 to n do
integer k := i + argmax(m[i..n],i)-1
{m[i], m[k]} = {m[k], m[i]}
atom t := 1/m[i][i]
for j=i+1 to p do m[i][j] *= t end for
for j=i+1 to n do
t = m[j][i]
for l=i+1 to p do m[j][l] -= t * m[i][l] end for
end for
end for
for i=n to 1 by -1 do
atom mip = m[i][p]
for j=1 to i-1 do m[j][p] -= m[j][i] * mip end for
end for
return vslice(m,p)
end function
function network(integer n, k0, k1, sequence s)
sequence m := repeat(repeat(0,n+1), n)
s = split(s,'|')
for i=1 to length(s) do
integer {{a,b,ri}} = sq_add(scanf(s[i],"%d %d %d"),{{1,1,0}})
atom r = 1/ri
m[a][a] += r
m[b][b] += r
if a > 1 then m[a][b] -= r end if
if b > 1 then m[b][a] -= r end if
end for
k0 += 1; m[k0][k0] = 1
k1 += 1; m[k1][n+1] = 1
return gauss(m)[k1]
end function
printf(1,"%.6g\n",network(7, 0, 1, "0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8"))
printf(1,"%.6g\n",network(9, 0, 8, "0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1"))
printf(1,"%.6g\n",network(16, 0, 15, "0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|"&
"0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1"))
printf(1,"%.6g\n",network(4, 0, 3, "0 1 150|0 2 50|1 3 300|2 3 250"))
{{out}}
10
1.5
1.85714
180
Python
from fractions import Fraction
def gauss(m):
n, p = len(m), len(m[0])
for i in range(n):
k = max(range(i, n), key = lambda x: abs(m[x][i]))
m[i], m[k] = m[k], m[i]
t = 1 / m[i][i]
for j in range(i + 1, p): m[i][j] *= t
for j in range(i + 1, n):
t = m[j][i]
for k in range(i + 1, p): m[j][k] -= t * m[i][k]
for i in range(n - 1, -1, -1):
for j in range(i): m[j][-1] -= m[j][i] * m[i][-1]
return [row[-1] for row in m]
def network(n,k0,k1,s):
m = [[0] * (n+1) for i in range(n)]
resistors = s.split('|')
for resistor in resistors:
a,b,r = resistor.split(' ')
a,b,r = int(a), int(b), Fraction(1,int(r))
m[a][a] += r
m[b][b] += r
if a > 0: m[a][b] -= r
if b > 0: m[b][a] -= r
m[k0][k0] = Fraction(1, 1)
m[k1][-1] = Fraction(1, 1)
return gauss(m)[k1]
assert 10 == network(7,0,1,"0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8")
assert 3/2 == network(3*3,0,3*3-1,"0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1")
assert Fraction(13,7) == network(4*4,0,4*4-1,"0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1")
assert 180 == network(4,0,3,"0 1 150|0 2 50|1 3 300|2 3 250")
zkl
{{libheader|GSL}} GNU Scientific Library This a tweak of [[Resistor_mesh#zkl]]
var [const] GSL=Import.lib("zklGSL"); // libGSL (GNU Scientific Library)
fcn network(n,k0,k1,mesh){
A:=GSL.Matrix(n,n); // zero filled
foreach resistor in (mesh.split("|")){
a,b,r := resistor.split().apply("toInt");
r=1.0/r;
A[a,a]=A[a,a] + r;
A[b,b]=A[b,b] + r;
if(a>0) A[a,b]=A[a,b] - r;
if(b>0) A[b,a]=A[b,a] - r;
}
A[k0,k0]=1;
b:=GSL.Vector(n); // zero filled
b[k1]=1;
A.AxEQb(b)[k1];
}
network(7,0,1,"0 2 6|2 3 4|3 4 10|4 5 2|5 6 8|6 1 4|3 5 6|3 6 6|3 1 8|2 1 8")
.println();
network(3*3,0,3*3-1,"0 1 1|1 2 1|3 4 1|4 5 1|6 7 1|7 8 1|0 3 1|3 6 1|1 4 1|4 7 1|2 5 1|5 8 1")
.println();
network(4*4,0,4*4-1,"0 1 1|1 2 1|2 3 1|4 5 1|5 6 1|6 7 1|8 9 1|9 10 1|10 11 1|12 13 1|13 14 1|14 15 1|0 4 1|4 8 1|8 12 1|1 5 1|5 9 1|9 13 1|2 6 1|6 10 1|10 14 1|3 7 1|7 11 1|11 15 1")
.println();
network(4,0,3,"0 1 150|0 2 50|1 3 300|2 3 250")
.println();
{{out}}
10
1.5
1.85714
180