⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Prime Numbers}}
;Task: Generate a sequence of primes by means of trial division.
Trial division is an algorithm where a candidate number is tested for being a prime by trying to divide it by other numbers.
You may use primes, or any numbers of your choosing, as long as the result is indeed a sequence of primes.
The sequence may be bounded (i.e. up to some limit), unbounded, starting from the start (i.e. 2) or above some given value.
Organize your function as you wish, in particular, it might resemble a filtering operation, or a sieving operation.
If you want to use a ready-made is_prime
function, use one from the [[Primality by trial division]] page (i.e., add yours there if it isn't there already).
;Related tasks:
- [[count in factors]]
- [[prime decomposition]]
- [[factors of an integer]]
- [[Sieve of Eratosthenes]]
- [[primality by trial division]]
- [[factors of a Mersenne number]]
- [[trial factoring of a Mersenne number]]
- [[partition an integer X into N primes]]
Ada
Use the generic function Prime_Numbers.Is_Prime, as specified in [[Prime decomposition#Ada]]. The program reads two numbers A and B from the command line and prints all primes between A and B (inclusive).
with Prime_Numbers, Ada.Text_IO, Ada.Command_Line;
procedure Sequence_Of_Primes is
package Integer_Numbers is new
Prime_Numbers (Natural, 0, 1, 2);
use Integer_Numbers;
Start: Natural := Natural'Value(Ada.Command_Line.Argument(1));
Stop: Natural := Natural'Value(Ada.Command_Line.Argument(2));
begin
for I in Start .. Stop loop
if Is_Prime(I) then
Ada.Text_IO.Put(Natural'Image(I));
end if;
end loop;
end Sequence_Of_Primes;
{{out}}
>./sequence_of_primes 50 99
53 59 61 67 71 73 79 83 89 97
ALGOL 68
Simple bounded sequence using the "is prime" routine from [[Primality by trial division#ALGOL 68]]
# is prime PROC from the primality by trial division task #
MODE ISPRIMEINT = INT;
PROC is prime = ( ISPRIMEINT p )BOOL:
IF p <= 1 OR ( NOT ODD p AND p/= 2) THEN
FALSE
ELSE
BOOL prime := TRUE;
FOR i FROM 3 BY 2 TO ENTIER sqrt(p)
WHILE prime := p MOD i /= 0 DO SKIP OD;
prime
FI;
# end of code from the primality by trial division task #
# returns an array of n primes >= start #
PROC prime sequence = ( INT start, INT n )[]INT:
BEGIN
[ n ]INT seq;
INT prime count := 0;
FOR p FROM start WHILE prime count < n DO
IF is prime( p ) THEN
prime count +:= 1;
seq[ prime count ] := p
FI
OD;
seq
END; # prime sequence #
# find 20 primes >= 30 #
[]INT primes = prime sequence( 30, 20 );
print( ( "20 primes starting at 30: " ) );
FOR p FROM LWB primes TO UPB primes DO
print( ( " ", whole( primes[ p ], 0 ) ) )
OD;
print( ( newline ) )
{{out}}
20 primes starting at 30: 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
=={{header|ALGOL-M}}==
BEGIN
COMMENT
PRIME NUMBER GENERATOR IN ALGOL-M.
ONLY ODD NUMBERS ARE CHECKED, AND ONLY THE PRIME NUMBERS
PREVIOUSLY FOUND (UP TO THE SQUARE ROOT OF THE NUMBER
CURRENTLY UNDER EXAMINATION) ARE TESTED AS DIVISORS;
INTEGER I, K, M, N, S, NPRIMES, DIVISIBLE, FALSE, TRUE;
COMMENT COMPUTE P MOD Q;
INTEGER FUNCTION MOD (P, Q);
INTEGER P, Q;
BEGIN
MOD := P - Q * (P / Q);
END;
COMMENT MAIN PROGRAM BEGINS HERE;
WRITE ("How many primes do you want to generate?");
READ (NPRIMES);
BEGIN
INTEGER ARRAY P[1:NPRIMES];
FALSE := 0;
TRUE := -1;
COMMENT INITIALIZE P WITH FIRST PRIME NUMBER AND DISPLAY IT;
P[1] := 2;
WRITE (1, ":", P[1]);
I := 1; % COUNT OF PRIME NUMBERS FOUND SO FAR %
K := 1; % INDEX OF LARGEST PRIME <= SQRT OF N %
N := 3; % CURRENT NUMBER BEING CHECKED %
WHILE I < NPRIMES DO
BEGIN
S := P[K] * P[k];
IF S <= N THEN K := K + 1;
DIVISIBLE := FALSE;
M := 1; % INDEX OF POSSIBLE DIVISORS %
WHILE M <= K AND DIVISIBLE = FALSE DO
BEGIN
IF MOD(N, P[M]) = 0 THEN DIVISIBLE := TRUE;
M := M + 1;
END;
IF DIVISIBLE = FALSE THEN
BEGIN
I := I + 1;
P[I] := N;
WRITE (I, ":", N);
END;
N := N + 2;
END;
END;
WRITE("All done. Goodbye");
END
ALGOL W
Uses the ALGOL W isPrime procedure from the Primality by Trial Division task.
begin
% use the isPrime procedure from the Primality by Trial Division task %
logical procedure isPrime ( integer value n ) ; algol "isPrime" ;
% sets the elements of p to the first n primes. p must have bounds 1 :: n %
procedure getPrimes ( integer array p ( * )
; integer value n
) ;
if n > 0 then begin
% have room for at least oe prime %
integer pPos, possiblePrime;
p( 1 ) := 2;
pPos := 2;
possiblePrime := 3;
while pPos <= n do begin
if isPrime( possiblePrime ) then begin
p( pPos ) := possiblePrime;
pPos := pPos + 1;
end;
possiblePrime := possiblePrime + 1
end
end getPrimes ;
begin % test getPrimes %
integer array p( 1 :: 100 );
getPrimes( p, 100 );
for i := 1 until 100 do begin
if i rem 20 = 1 then write( i_w := 4, s_w := 1, p( i ) )
else writeon( i_w := 4, s_w := 1, p( i ) )
end for_i
end
end.
{{out}}
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541
ATS
(*
// Lazy-evaluation:
// sieve for primes
*)
(* ****** ****** *)
//
// How to compile:
// with no GC:
// patscc -D_GNU_SOURCE -DATS_MEMALLOC_LIBC -o sieve sieve.dats
// with Boehm-GC:
// patscc -D_GNU_SOURCE -DATS_MEMALLOC_GCBDW -o sieve sieve.dats -lgc
//
(* ****** ****** *)
//
#include
"share/atspre_staload.hats"
//
(* ****** ****** *)
#define :: stream_cons
#define cons stream_cons
#define nil stream_nil
(* ****** ****** *)
//
fun
from{n:int} (n: int n)
:<!laz> stream (intGte(n)) = $delay (cons{intGte(n)}(n, from (n+1)))
//
(* ****** ****** *)
typedef N2 = intGte(2)
(* ****** ****** *)
fun sieve
(
ns: stream N2
) :<!laz>
stream (N2) = $delay
(
let
val-cons(n, ns) = !ns
in
cons{N2}(n, sieve (stream_filter_cloref<N2> (ns, lam x => g1int_nmod(x, n) > 0)))
end : stream_con (N2)
) // end of [sieve]
//
val primes: stream (N2) = sieve (from(2))
//
macdef prime_get (n) = stream_nth_exn (primes, ,(n))
//
implement
main0 () = begin
//
println! ("prime 1000 = ", prime_get (1000)) ; // = 7927
(*
println! ("prime 5000 = ", prime_get (5000)) ; // = 48619
println! ("prime 10000 = ", prime_get (10000)) ; // = 104743
*)
//
end // end of [main0]
(* ****** ****** *)
AWK
# syntax: GAWK -f SEQUENCE_OF_PRIMES_BY_TRIAL_DIVISION.AWK
BEGIN {
low = 1
high = 100
for (i=low; i<=high; i++) {
if (is_prime(i) == 1) {
printf("%d ",i)
count++
}
}
printf("\n%d prime numbers found in range %d-%d\n",count,low,high)
exit(0)
}
function is_prime(x, i) {
if (x <= 1) {
return(0)
}
for (i=2; i<=int(sqrt(x)); i++) {
if (x % i == 0) {
return(0)
}
}
return(1)
}
{{out}}
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
25 prime numbers found in range 1-100
Batch File
@echo off
::Prime list using trial division
:: Unbounded (well, up to 2^31-1, but you'll kill it before :)
:: skips factors of 2 and 3 in candidates and in divisors
:: uses integer square root to find max divisor to test
:: outputs numbers in rows of 10 right aligned primes
setlocal enabledelayedexpansion
cls
echo prime list
set lin= 0:
set /a num=1, inc1=4, cnt=0
call :line 2
call :line 3
:nxtcand
set /a num+=inc1, inc1=6-inc1,div=1, inc2=4
call :sqrt2 %num% & set maxdiv=!errorlevel!
:nxtdiv
set /a div+=inc2, inc2=6-inc2, res=(num%%div)
if %div% gtr !maxdiv! call :line %num% & goto nxtcand
if %res% equ 0 (goto :nxtcand ) else ( goto nxtdiv)
:sqrt2 [num] calculates integer square root
if %1 leq 0 exit /b 0
set /A "x=%1/(11*1024)+40, x=(%1/x+x)>>1, x=(%1/x+x)>>1, x=(%1/x+x)>>1, x=(%1/x+x)>>1, x=(%1/x+x)>>1, x+=(%1-x*x)>>31,sq=x*x
if sq gtr %1 set x-=1
exit /b !x!
goto:eof
:line formats output in 10 right aligned columns
set num1= %1
set lin=!lin!%num1:~-7%
set /a cnt+=1,res1=(cnt%%10)
if %res1% neq 0 goto:eof
echo %lin%
set cnt1= !cnt!
set lin=!cnt1:~-5!:
goto:eof
{{Out}}
prime list
0: 2 3 5 7 11 13 17 19 23 29
10: 31 37 41 43 47 53 59 61 67 71
20: 73 79 83 89 97 101 103 107 109 113
30: 127 131 137 139 149 151 157 163 167 173
40: 179 181 191 193 197 199 211 223 227 229
50: 233 239 241 251 257 263 269 271 277 281
60: 283 293 307 311 313 317 331 337 347 349
70: 353 359 367 373 379 383 389 397 401 409
80: 419 421 431 433 439 443 449 457 461 463
90: 467 479 487 491 499 503 509 521 523 541
100: 547 557 563 569 571 577 587 593 599 601
110: 607 613 617 619 631 641 643 647 653 659
120: 661 673 677 683 691 701 709 719 727 733
130: 739 743 751 757 761 769 773 787 797 809
140: 811 821 823 827 829 839 853 857 859 863
150: 877 881 883 887 907 911 919 929 937 941
160: 947 953 967 971 977 983 991 997 1009 1013
170: 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
180: 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151
190: 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223
200: 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291
210: 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
220: 1381 1399 1409 1423 1427 1429 1433 1439 1447 1451
230: 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
240: 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583
250: 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
260: 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733
270: 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811
280: 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889
Befunge
Based on the test in the [[Primality_by_trial_division#Befunge|Primality by trial division]] task, this list all primes between 2 and 1,000,000.
:::"}"8*:*>`#@_48*:**2v
v_v#`\*:%*:*84\/*:*84::+<
v#>::48*:*/\48*:*%%!#v_1^
<^+1$_.#<5#<5#<+#<,#<<0:\
{{out}}
2
3
5
7
11
13
.
.
.
999931
999953
999959
999961
999979
999983
C
#include<stdio.h>
int isPrime(unsigned int n)
{
unsigned int num;
if ( n < 2||!(n & 1))
return n == 2;
for (num = 3; num <= n/num; num += 2)
if (!(n % num))
return 0;
return 1;
}
int main()
{
unsigned int l,u,i,sum=0;
printf("Enter lower and upper bounds: ");
scanf("%ld%ld",&l,&u);
for(i=l;i<=u;i++){
if(isPrime(i)==1)
{
printf("\n%ld",i);
sum++;
}
}
printf("\n\nPrime numbers found in [%ld,%ld] : %ld",l,u,sum);
return 0;
}
Output :
Enter lower and upper bounds: 1 100
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97
Prime numbers found in [1,100] : 25
C#
using System;
using System.Collections.Generic;
using System.Linq;
public class Program
{
static void Main() {
Console.WriteLine(string.Join(" ", Primes(100)));
}
static IEnumerable<int> Primes(int limit) => Enumerable.Range(2, limit-2).Where(IsPrime);
static bool IsPrime(int n) => Enumerable.Range(2, (int)Math.Sqrt(n)-1).All(i => n % i != 0);
}
{{out}}
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
C++
#include <math.h>
#include <iostream>
#include <iomanip>
bool isPrime( unsigned u ) {
if( u < 4 ) return u > 1;
if( /*!( u % 2 ) ||*/ !( u % 3 ) ) return false;
unsigned q = static_cast<unsigned>( sqrt( static_cast<long double>( u ) ) ),
c = 5;
while( c <= q ) {
if( !( u % c ) || !( u % ( c + 2 ) ) ) return false;
c += 6;
}
return true;
}
int main( int argc, char* argv[] )
{
unsigned mx = 100000000,
wid = static_cast<unsigned>( log10( static_cast<long double>( mx ) ) ) + 1;
std::cout << "[" << std::setw( wid ) << 2 << " ";
unsigned u = 3, p = 1; // <- start computing from 3
while( u < mx ) {
if( isPrime( u ) ) { std::cout << std::setw( wid ) << u << " "; p++; }
u += 2;
}
std::cout << "]\n\n Found " << p << " primes.\n\n";
return 0;
}
{{out}}
[ 2 3 5 7 11 13 17 19
23 29 31 37 41 43 47 53
59 61 67 71 73 79 83 89
97 ...
Clojure
(ns test-p.core
(:require [clojure.math.numeric-tower :as math]))
(defn prime? [a]
" Uses trial division to determine if number is prime "
(or (= a 2)
(and (> a 2)
(> (mod a 2) 0)
(not (some #(= 0 (mod a %))
(range 3 (inc (int (Math/ceil (math/sqrt a)))) 2))))))
; 3 to sqrt(a) stepping by 2
(defn primes-below [n]
" Finds primes below number n "
(for [a (range 2 (inc n))
:when (prime? a)]
a))
(println (primes-below 100))
{{Output}}
(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97)
Common Lisp
(defun primes-up-to (max-number)
"Compute all primes up to MAX-NUMBER using trial division"
(loop for n from 2 upto max-number
when (notany (evenly-divides n) primes)
collect n into primes
finally (return primes)))
(defun evenly-divides (n)
"Create a function that checks whether its input divides N evenly"
(lambda (x) (integerp (/ n x))))
(print (primes-up-to 100))
Output:
(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97)
D
{{trans|Haskell}} This is a quite inefficient prime generator.
import std.stdio, std.range, std.algorithm, std.traits,
std.numeric, std.concurrency;
Generator!(ForeachType!R) nubBy(alias pred, R)(R items) {
return new typeof(return)({
ForeachType!R[] seen;
OUTER: foreach (x; items) {
foreach (y; seen)
if (pred(x, y))
continue OUTER;
yield(x);
seen ~= x;
}
});
}
void main() /*@safe*/ {
sequence!q{n + 2}
.nubBy!((x, y) => gcd(x, y) > 1)
.take(20)
.writeln;
}
{{out}}
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]
EchoLisp
Trial division
(lib 'sequences)
(define (is-prime? p)
(cond
[(< p 2) #f]
[(zero? (modulo p 2)) (= p 2)]
[else
(for/and ((d [3 5 .. (1+ (sqrt p))] )) (!zero? (modulo p d)))]))
(is-prime? 101) → #t
===Bounded - List filter ===
(filter is-prime? (range 1 100))
→ (2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97)
=== Unbounded - Sequence filter ===
(define f-primes (filter is-prime? [2 .. ]))
→ # 👓 filter: #sequence [2 3 .. Infinity[
(take f-primes 25)
→ (2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97)
=== Unbounded - Stream ===
(define (s-next-prime n) ;; n odd
(for ((p [n (+ n 2) .. ] ))
#:break (is-prime? p) => (cons p (+ p 2))))
(define s-primes (stream-cons 2 (make-stream s-next-prime 3)))
(take s-primes 25)
→ (2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97)
=== Unbounded - Generator ===
(define (g-next-prime n)
(define next
(for ((p [n .. ] )) #:break (is-prime? p) => p ))
(yield next)
(1+ next))
(define g-primes (make-generator g-next-prime 2))
(take g-primes 25)
→ (2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97)
=== Unbounded - Background task ===
(lib 'tasks)
(lib 'bigint)
(define (t-next-prime n)
(define next
(for ((p [n .. ] )) #:break (is-prime? p) => p ))
(writeln next) ;; or whatever action here
(1+ next)) ;; unbounded : return #f to stop or CTRL-C
(define t-primes (make-task t-next-prime 1_000_000_000_000))
(task-run t-primes)
→ #task:id:95:running
1000000000039
1000000000061
1000000000063
1000000000091
1000000000121
1000000000163
*stopped*
Eiffel
class
APPLICATION
create
make
feature
make
do
sequence (1, 27)
end
sequence (lower, upper: INTEGER)
-- Sequence of primes from 'lower' to 'upper'.
require
lower_positive: lower > 0
upper_positive: upper > 0
lower_smaller: lower < upper
local
i: INTEGER
do
io.put_string ("Sequence of primes from " + lower.out + " up to " + upper.out + ".%N")
i := lower
if i \\ 2 = 0 then
i := i + 1
end
from
until
i > upper
loop
if is_prime (i) then
io.put_integer (i)
io.put_new_line
end
i := i + 2
end
end
feature {NONE}
is_prime (n: INTEGER): BOOLEAN
-- Is 'n' a prime number?
require
positiv_input: n > 0
local
i: INTEGER
max: REAL_64
math: DOUBLE_MATH
do
create math
if n = 2 then
Result := True
elseif n <= 1 or n \\ 2 = 0 then
Result := False
else
Result := True
max := math.sqrt (n)
from
i := 3
until
i > max
loop
if n \\ i = 0 then
Result := False
end
i := i + 2
end
end
end
end
{{out}}
Sequence of primes from 1 to 27.)
3
5
7
11
13
17
19
23
Elena
ELENA 4.x :
import extensions;
import system'routines;
import system'math;
isPrime =
(n => new Range(2,(n.sqrt() - 1).RoundedInt).allMatchedBy:(i => n.mod:i != 0));
Primes =
(n => new Range(2, n - 2).filterBy:isPrime);
public program()
{
console.printLine(Primes(100))
}
{{out}}
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
Elixir
defmodule Prime do
def sequence do
Stream.iterate(2, &(&1+1)) |> Stream.filter(&is_prime/1)
end
def is_prime(2), do: true
def is_prime(n) when n<2 or rem(n,2)==0, do: false
def is_prime(n), do: is_prime(n,3)
defp is_prime(n,k) when n<k*k, do: true
defp is_prime(n,k) when rem(n,k)==0, do: false
defp is_prime(n,k), do: is_prime(n,k+2)
end
IO.inspect Prime.sequence |> Enum.take(20)
{{out}}
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]
ERRE
PROGRAM PRIME_GENERATOR
!$DOUBLE
BEGIN
PRINT(CHR$(12);) !CLS
N=1
LOOP
N+=1
FOR F=2 TO N DO
IF F=N THEN PRINT(N;) EXIT END IF
EXIT IF N=F*INT(N/F)
END FOR
END LOOP
END PROGRAM
You must press Ctrl+Break to stop the program. {{out}}
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73
79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157
163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241
251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347
349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439
443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547
557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643
647 653 659 661 673 677 683 691 701 709 719 727 733 739 743 751
757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859
863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977
983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061
1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153
1163 1171 1181 1187 1193 1201 1213 1217 1223 1229 1231 1237 1249
1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 1327
1361 1367 1373 1381 1399 1409 1423 1427 1429 1433 1439 1447 1451
1453 1459 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531 1543
1549 1553 1559 1567 1571 1579 1583 1597 1601 ^C
F Sharp
(*
Nigel Galloway April 7th., 2017.
*)
let SofE =
let rec fg ng = seq{
let n = Seq.item 0 ng
yield n; yield! fg (Seq.cache(Seq.filter (fun g->g%n<>0) (Seq.skip 1 ng)))}
fg (Seq.initInfinite(id)|>Seq.skip 2)
Let's print the sequence Prime[23] to Prime[42]. {{out}}
[23..42] |> Seq.iter(fun n->printf "%d " (Seq.item n SofE))
89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191
Factor
USING: combinators kernel lists lists.lazy math math.functions
math.ranges prettyprint sequences ;
: prime? ( n -- ? )
{
{ [ dup 2 < ] [ drop f ] }
{ [ dup even? ] [ 2 = ] }
[ 3 over sqrt 2 <range> [ mod 0 > ] with all? ]
} cond ;
! Create an infinite lazy list of primes.
: primes ( -- list ) 0 lfrom [ prime? ] lfilter ;
! Show the first fifteen primes.
15 primes ltake list>array .
{{out}}
{ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 }
FileMaker
(*
Menno van Beek May 10th., 2018.
*)
Set Error Capture [On]
Allow User Abort [Off]
# Set default number of minutes
Set Variable [$maxduration; Value:1]
# Ask user for a desired duration of the test
Show Custom Dialog [ "Setup";
"Enter the number of minutes (0,1-15, 6s increments) you would like this test to run.¶" &
"Hit any of the modifier-keys until the result-dialog appears, when you wish to break off the test.";
$maxduration ]
If [Get ( LastMessageChoice ) = 1]
# Set all start-variables
Set Variable [
$result;
Value: Let ( [
$start = Get ( CurrentTimeUTCMilliseconds ) ;
x = Ceiling ( Abs ( 10 * $maxduration ) ) / 10 ;
y = Case ( x < ,1 ; ,1 ; x > 15 ; 15 ; x ) ;
$time = y * 60000 ; // 1 minute = 60000 milliseconds
$number = 1 ;
$primenumbers = 2 ;
$duration = ""
] ;
""
)]
Loop
# Increase each iteration by 2 (besides 2 there are no even prime numbers)
# exit after duration is exceeded or when a modifier-key is actuated
Exit Loop If [ Let ( [
$number = $number + 2 ;
$i = 1
] ;
$duration > $time or
Get ( ActiveModifierKeys ) ≥ 1
)]
Loop
# Loop until it is determined that a number is or isn't a prime number or the duration is exceeded
# supplement $primenumbers each time one is found, update $duration each iteration
Exit Loop If [ Let ( [
$x = GetValue ( $primenumbers ; ValueCount ( $primenumbers ) - $i ) ;
$d = If ( $x > 0 ; $number / $x ) ;
$e = If ( Floor ( $d ) = $d ; $d ) ;
$i = $i + 1 ;
s = ( $x - 1 ) > $number/2 and $e = "" ;
$primenumbers = If ( $x = "" or s ;
List ( $primenumbers ; $number ) ;
$primenumbers ) ;
$duration = Get ( CurrentTimeUTCMilliseconds ) - $start
] ;
$x = "" or $e > 0 or s or $duration > $time
)]
End Loop
End Loop
# Count the number of primes found
Set Variable [
$result;
Value: Let ( [
$n = ValueCount ( $primenumbers ) ;
$$array = $primenumbers
] ;
""
)]
# Show results to user
Show Custom Dialog [ "Result";
List (
"Prime numbers found: " & $n ;
"Largest prime number: " & GetValue ( $primenumbers ; 1 ) ;
"Duration of test (ms): " & $duration )]
End If
#
Fortran
This version was written for an IBM1130, which offered 16-bit integers. Storage size was 32K words. It was written before the revised dogma that one is not a prime number became common. With punched-card input, using only capital letters was normal. This system offered Fortran IV which lacks the many later developments such as ''if ... then'' style statements, thus the profusion of statement labels and arithmetic if-statements. In ''if (expression) negative,zero,positive'' the sign of the expression is examined to choose the appropriate label to jump to. Labels can only be numbers, alas. There was also no MOD function for determining the remainder.
This routine does ''not'' attempt a calculation of sqrt(n), a time-consuming and also potentially inacurrate scheme. For instance, using Trunc(Log10(n)) + 1 to determine how many digits are needed to print ''n'' seems an obvious ad-hoc ploy, and gave 1 for ''n'' = 1 to 9, but it also gave 1 for ''n'' = 10, because Log10(10) was calculated as 0.9999964 or so (single precision on an IBM 390 system), which truncates to zero.
Instead, since many successive numbers are to be tested for primality, advantage can be taken of the fact that prime numbers only up to PRIME(LP) need be tried as factors all the way up to N = PRIME(LP + 1)**2 = XP2. This is similar to starting a pass through a Sieve of Eratoshenes at PP rather than at 2P. Thus, 5 is the largest factor to try, even beyond 55, all the way up to 49, because, if the number were divisible by 7, 72 would already have been checked because of 2, 73 because of 3, and so on. Only when 77 is needed will a further possible factor have to be tried. Likewise, although the last possible factor to try for N up to the integer limit of 32767 is 181 because the square of the next prime (191) exceeds 32767, in order for the method to be able to know this, the PRIME array must have space for this surplus prime. However, it does not know this properly because the square of 191 ''does'' exceed 32767 and so its value in XP2 will be incorrect, but this doesn't matter because only equality to XP2 is checked for and there will never be call to try 191 as a factor because 181 suffices up to the integer limit and the iteration will stop by then. Fortunately, 32767 is not divisible by three so that value will not be excluded as a possible candidate for N, and so the search can correctly end after inspecting the largest possible integer - finding it divisible by seven.
This method avoids considering multiples of two and three, leading to the need to pre-load array PRIME and print the first few values explicitly rather than flounder about with special startup tricks. Even so, in order not to pre-load with 7, and to correctly start the factor testing with 5, the first few primes are found with some wasted effort because 5 is not needed at the start. Storing the primes as found has the obvious advantage of enabling divisions only by prime numbers, but care with the startup is needed to ensure that primes have indeed been stored before they are called for.
CONCOCTED BY R.N.MCLEAN, APPLIED MATHS COURSE, AUCKLAND UNIVERSITY, MCMLXXI.
INTEGER ENUFF,PRIME(44)
CALCULATION SHOWS PRIME(43) = 181, AND PRIME(44) = 191.
INTEGER N,F,Q,XP2
INTEGER INC,IP,LP,PP
INTEGER ALINE(20),LL,I
DATA ENUFF/44/
DATA PP/4/
DATA PRIME(1),PRIME(2),PRIME(3),PRIME(4)/1,2,3,5/
COPY THE KNOWN PRIMES TO THE OUTPUT LINE.
DO 1 I = 1,PP
1 ALINE(I) = PRIME(I)
LL = PP
LP = 3
XP2 = PRIME(LP + 1)**2
N = 5
INC = 4
CONSIDER ANOTHER CANDIDATE. VIA INC, DODGE MULTIPLES OF 2 AND 3.
10 INC = 6 - INC
N = N + INC
IF (N - XP2) 20,11,20
11 LP = LP + 1
XP2 = PRIME(LP + 1)**2
GO TO 40
CHECK SUCCESSIVE PRIMES AS FACTORS, STARTING WITH PRIME(4) = 5.
20 IP = 4
21 F = PRIME(IP)
Q = N/F
IF (Q*F - N) 22,40,22
22 IP = IP + 1
IF (IP - LP) 21,21,30
CAUGHT ANOTHER PRIME.
30 IF (PP - ENUFF) 31,32,32
31 PP = PP + 1
PRIME(PP) = N
32 IF (LL - 20) 35,33,33
33 WRITE (6,34) (ALINE(I), I = 1,LL)
34 FORMAT (20I6)
LL = 0
35 LL = LL + 1
ALINE(LL) = N
COMPLETED?
40 IF (N - 32767) 10,41,41
41 WRITE (6,34) (ALINE(I), I = 1,LL)
END
Start of output: 1 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213 1217 etc. and ends 32423 32429 32441 32443 32467 32479 32491 32497 32503 32507 32531 32533 32537 32561 32563 32569 32573 32579 32587 32603 32609 32611 32621 32633 32647 32653 32687 32693 32707 32713 32717 32719 32749
FreeBASIC
' FB 1.05.0 Win64
Function isPrime(n As Integer) As Boolean
If n < 2 Then Return False
If n = 2 Then Return True
If n Mod 2 = 0 Then Return False
Dim limit As Integer = Sqr(n)
For i As Integer = 3 To limit Step 2
If n Mod i = 0 Then Return False
Next
Return True
End Function
' Print all primes from 101 to 999
For i As Integer = 101 To 999
If isPrime(i) Then
Print Str(i); " ";
End If
Next
Print : Print
Print "Press any key to quit"
Sleep
{{out}}
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197
199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313
317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439
443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571
577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691
701 709 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 829
839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977
983 991 997
Go
An unbounded cascading filtering method using channels, adapted from the classic concurrent prime sieve example in the "Try Go" window at http://golang.org/, improved by postponing the initiation of the filtering by a prime until the prime's square is seen in the input.
package main
import "fmt"
func NumsFromBy(from int, by int, ch chan<- int) {
for i := from; ; i+=by {
ch <- i
}
}
func Filter(in <-chan int, out chan<- int, prime int) {
for {
i := <-in
if i%prime != 0 { // here is the trial division
out <- i
}
}
}
func Sieve(out chan<- int) {
out <- 3
q := 9
ps := make(chan int)
go Sieve(ps) // separate primes supply
p := <-ps
nums := make(chan int)
go NumsFromBy(5,2,nums) // end of setup
for i := 0; ; i++ {
n := <-nums
if n < q {
out <- n // n is prime
} else {
ch1 := make(chan int) // n == q == p*p
go Filter(nums, ch1, p) // creation of a filter by p, at p*p
nums = ch1
p = <-ps // next prime
q = p*p // and its square
}
}
}
func primes (c chan<- int) {
c <- 2
go Sieve(c)
}
func main() {
ch := make(chan int)
go primes(ch)
fmt.Print("First twenty:")
for i := 0; i < 20; i++ {
fmt.Print(" ", <-ch)
}
fmt.Println()
}
{{out}}
First twenty: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
A simple iterative method, also unbounded and starting with 2.
package main
import "fmt"
func newP() func() int {
n := 1
return func() int {
for {
n++
// Trial division as naïvely as possible. For a candidate n,
// numbers between 1 and n are checked to see if they divide n.
// If no number divides n, n is prime.
for f := 2; ; f++ {
if f == n {
return n
}
if n%f == 0 { // here is the trial division
break
}
}
}
}
}
func main() {
p := newP()
fmt.Print("First twenty:")
for i := 0; i < 20; i++ {
fmt.Print(" ", p())
}
fmt.Println()
}
{{out}}
First twenty: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
Haskell
The most basic:
[n | n <- [2..], []==[i | i <- [2..n-1], rem n i == 0]]
With trial division emulated by additions (the seeds of Sieve):
[n | n <- [2..], []==[i | i <- [2..n-1], j <- [i,i+i..n], j==n]]
With recursive filtering (in wrong order, from bigger to smaller natural numbers):
foldr (\x r -> x : filter ((> 0).(`rem` x)) r) [] [2..]
With iterated sieving (in right order, from smaller to bigger primes):
Data.List.unfoldr (\(x:xs) -> Just (x, filter ((> 0).(`rem` x)) xs)) [2..]
A proper [[Primality by trial division#Haskell|primality testing by trial division]] can be used to produce short ranges of primes more efficiently:
primesFromTo n m = filter isPrime [n..m]
The standard optimal trial division version has isPrime
in the above inlined:
-- primes = filter isPrime [2..]
primes = 2 : [n | n <- [3..], foldr (\p r-> p*p > n || rem n p > 0 && r)
True primes]
It is easy to amend this to test only odd numbers by only odd primes, or automatically skip the multiples of ''3'' (also, ''5'', etc.) by construction as well (a ''wheel factorization'' technique):
primes = 2 : 3 : [n | n <- [5,7..], foldr (\p r-> p*p > n || rem n p > 0 && r)
True (drop 1 primes)]
= [2,3,5] ++ [n | n <- scanl (+) 7 (cycle [4,2]),
foldr (\p r-> p*p > n || rem n p > 0 && r)
True (drop 2 primes)]
-- = [2,3,5,7] ++ [n | n <- scanl (+) 11 (cycle [2,4,2,4,6,2,6,4]), ... (drop 3 primes)]
Sieve by trial division
The classic David Turner's 1983 (1976? 1975?) SASL code repeatedly ''sieves'' a stream of candidate numbers from those divisible by a prime at a time, and works even for unbounded streams, thanks to lazy evaluation:
primesT = sieve [2..]
where
sieve (p:xs) = p : sieve [x | x <- xs, rem x p /= 0]
-- map head
-- . iterate (\(p:xs) -> filter ((> 0).(`rem` p)) xs) $ [2..]
As shown in Melissa O'Neill's paper [http://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf "The Genuine Sieve of Eratosthenes"], its complexity is quadratic in number of primes produced whereas that of optimal trial division is , and of true SoE it is , in ''n'' primes produced.
Indeed as Eratosthenes sieve works by counting, ''its'' removal step could be prototyped as ((p:xs)-> minus xs [p,p+p..])
, where minus xs ys == xs Data.List.\ ys
for any finite and increasing ''xs'' and ''ys''.
Bounded sieve by trial division
Bounded formulation has normal trial division complexity, because it can stop early via an explicit guard:
primesTo m = sieve [2..m]
where
sieve (p:xs) | p*p > m = p : xs
| otherwise = p : sieve [x | x <- xs, rem x p /= 0]
-- (\(a,b:_) -> map head a ++ b) . span ((< m).(^2).head)
-- $ iterate (\(p:xs) -> filter ((>0).(`rem`p)) xs) [2..m]
Postponed sieve by trial division
{{trans|Racket}} To make it unbounded, the guard cannot be simply discarded. The firing up of a filter by a prime should be ''postponed'' until its ''square'' is seen amongst the candidates (so a bigger chunk of input numbers are taken straight away as primes, between each opening up of a new filter, instead of just one head element in the non-postponed algorithm):
primesPT = sieve primesPT [2..]
where
sieve ~(p:ps) (x:xs) = x : after (p*p) xs
(sieve ps . filter ((> 0).(`rem` p)))
after q (x:xs) f | x < q = x : after q xs f
| otherwise = f (x:xs)
-- fix $ concatMap (fst.fst) . iterate (\((_,t),p:ps) ->
-- (span (< head ps^2) [x | x <- t, rem x p > 0], ps)) . (,) ([2,3],[4..])
~(p:ps)
is a lazy pattern: the matching will be delayed until any of its variables are actually needed. Here it means that on the very first iteration the head of primesPT
will be safely accessed only after it is already defined (by x : after (p*p) ...
).
Segmented Generate and Test
Explicating the run-time list of ''filters'' (created implicitly by the sieves above) as a list of ''factors to test by'' on each segment between the consecutive squares of primes (so that no testing is done prematurely), and rearranging to avoid recalculations, leads to the following:
import Data.List (inits)
primesST = 2 : 3 : sieve 5 9 (drop 2 primesST) (inits $ tail primesST)
where
sieve x q ps (fs:ft) = filter (\y-> all ((/=0).rem y) fs) [x,x+2..q-2]
++ sieve (q+2) (head ps^2) (tail ps) ft
inits
makes a stream of (progressively growing) prefixes of an input stream, starting with an empty prefix, here making the fs
parameter to get a sequence of values [], [3], [3,5], ...
.
Runs at empirical time complexity, in ''n'' primes produced. Can be used as a framework for unbounded segmented sieves, replacing divisibility testing with proper sieve of Eratosthenes on arrays, etc.
The filtering function is equivalent to noDivsBy
[[Primality by trial division#Haskell|defined as part of isPrime
function]], except that the comparisons testing for the square root are no longer needed and so are spared.
J
{{eff note|J|(#~ 1&p:)}}
Implementation:
primTrial=:3 :0
try=. i.&.(p:inv) %: >./ y
candidate=. (y>1)*y=<.y
y #~ candidate*(y e.try) = +/ 0= try|/ y
)
Example use:
primTrial 1e6+i.100
1000003 1000033 1000037 1000039 1000081 1000099
Note that this is a filter - it selects values from its argument which are prime. If no suitable values are found the resulting sequence of primes will be empty.
Note: if you instead want an iterator, 4&p: y returns the next prime after y.
See also: [[Sieve_of_Eratosthenes#J|Sieve of Eratosthenes]]
Java
{{works with|Java|8}}
import java.util.stream.IntStream;
public class Test {
static IntStream getPrimes(int start, int end) {
return IntStream.rangeClosed(start, end).filter(n -> isPrime(n));
}
public static boolean isPrime(long x) {
if (x < 3 || x % 2 == 0)
return x == 2;
long max = (long) Math.sqrt(x);
for (long n = 3; n <= max; n += 2) {
if (x % n == 0) {
return false;
}
}
return true;
}
public static void main(String[] args) {
getPrimes(0, 100).forEach(p -> System.out.printf("%d, ", p));
}
}
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
Julia
{{works with|Julia|0.6}}
I've chosen to solve this task by creating a new iterator type, TDPrimes. TDPrimes contains the upper limit of the sequence. The iteration state is the list of computed primes, and the item returned with each iteration is the current prime. The core of the solution is the next method for TDPrimes, which computes the next prime by trial division of the previously determined primes contained in the iteration state.
struct TDPrimes{T<:Integer}
uplim::T
end
Base.start{T<:Integer}(pl::TDPrimes{T}) = 2ones(T, 1)
Base.done{T<:Integer}(pl::TDPrimes{T}, p::Vector{T}) = p[end] > pl.uplim
function Base.next{T<:Integer}(pl::TDPrimes{T}, p::Vector{T})
pr = npr = p[end]
ispr = false
while !ispr
npr += 1
ispr = all(npr % d != 0 for d in p)
end
push!(p, npr)
return pr, p
end
println("Primes ≤ 100: ", join((p for p in TDPrimes(100)), ", "))
{{out}}
Primes ≤ 100: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
jq
{{works with|jq|1.4}}
This entry uses is_prime/0 as defined at [[Primality_by_trial_division#jq]].
# Produce a (possibly empty) stream of primes in the range [m,n], i.e. m <= p <= n
def primes(m; n):
([m,2] | max) as $m
| if $m > n then empty
elif $m == 2 then 2, primes(3;n)
else (1 + (2 * range($m/2 | floor; (n + 1) /2 | floor))) | select( is_prime )
end;
'''Examples:'''
primes(0;10)
2
3
5
7
Produce an array of primes, p, satisfying 50 <= p <= 99:
[primes(50;99)]
[53,59,61,67,71,73,79,83,89,97]
Kotlin
// version 1.0.6
fun isPrime(n: Int): Boolean {
if (n < 2) return false
if (n % 2 == 0) return n == 2
if (n % 3 == 0) return n == 3
var d : Int = 5
while (d * d <= n) {
if (n % d == 0) return false
d += 2
if (n % d == 0) return false
d += 4
}
return true
}
fun main(args: Array<String>) {
// print all primes below 2000 say
var count = 1
print(" 2")
for (i in 3..1999 step 2)
if (isPrime(i)) {
count++
print("%5d".format(i))
if (count % 15 == 0) println()
}
}
{{out}}
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173 179 181 191 193 197
199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379
383 389 397 401 409 419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541 547 557 563 569 571
577 587 593 599 601 607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733 739 743 751 757 761
769 773 787 797 809 811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941 947 953 967 971 977
983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187
1193 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291
1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1423 1427
1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613
1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733
1741 1747 1753 1759 1777 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867
1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987
1993 1997 1999
Lambdatalk
{def prime
{def prime.rec
{lambda {:m :n}
{if {> {* :m :m} :n}
then :n
else {if {= {% :n :m} 0}
then
else {prime.rec {+ :m 1} :n} }}}}
{lambda {:n}
{prime.rec 2 :n} }}
{map prime {serie 3 100 2}}
-> 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
{map prime {serie 9901 10000 2}}
-> 9901 9907 9923 9929 9931 9941 9949 9967 9973
More to see in [http://epsilonwiki.free.fr/lambdaway/?view=primes2]
Liberty BASIC
print "Rosetta Code - Sequence of primes by trial division"
print: print "Prime numbers between 1 and 50"
for x=1 to 50
if isPrime(x) then print x
next x
[start]
input "Enter an integer: "; x
if x=0 then print "Program complete.": end
if isPrime(x) then print x; " is prime" else print x; " is not prime"
goto [start]
function isPrime(p)
p=int(abs(p))
if p=2 or then isPrime=1: exit function 'prime
if p=0 or p=1 or (p mod 2)=0 then exit function 'not prime
for i=3 to sqr(p) step 2
if (p mod i)=0 then exit function 'not prime
next i
isPrime=1
end function
{{out}}
Rosetta Code - Primality by trial division
Prime numbers between 1 and 50
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
Enter an integer: 1
1 is not prime
Enter an integer: 2
2 is prime
Enter an integer:
Program complete.
Lua
-- Returns true if x is prime, and false otherwise
function isprime (x)
if x < 2 then return false end
if x < 4 then return true end
if x % 2 == 0 then return false end
for d = 3, math.sqrt(x), 2 do
if x % d == 0 then return false end
end
return true
end
-- Returns table of prime numbers (from lo, if specified) up to hi
function primes (lo, hi)
local t = {}
if not hi then
hi = lo
lo = 2
end
for n = lo, hi do
if isprime(n) then table.insert(t, n) end
end
return t
end
-- Show all the values of a table in one line
function show (x)
for _, v in pairs(x) do io.write(v .. " ") end
print()
end
-- Main procedure
show(primes(100))
show(primes(50, 150))
{{out}}
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149
MATLAB
function primeList = sieveOfEratosthenes(lastNumber)
list = (2:lastNumber); %Construct list of numbers
primeList = []; %Preallocate prime list
while( list(1)^2 <lastNumber )
primeList = [primeList list(1)]; %add prime to the prime list
list( mod(list,list(1))==0 ) = []; %filter out all multiples of the current prime
end
primeList = [primeList list]; %The rest of the numbers in the list are primes
end
{{out|Sample Output}} sieveOfEratosthenes(30)
ans =
2 3 5 7 11 13 17 19 23 29
Oforth
isPrime function is from Primality by trial division page
: primeSeq(n) n seq filter(#isPrime) ;
PARI/GP
trial(n)={
if(n < 4, return(n > 1)); /* Handle negatives */
forprime(p=2,sqrt(n),
if(n%p == 0, return(0))
);
1
};
select(trial, [1..100])
Pascal
{{libheader|primTrial}} {{works with|Free Pascal}} Hiding the work in a existing unit.
program PrimeRng;
uses
primTrial;
var
Range : ptPrimeList;
i : integer;
Begin
Range := PrimeRange(1000*1000*1000,1000*1000*1000+100);
For i := Low(Range) to High(Range) do
write(Range[i]:12);
writeln;
end.
;output:
1000000007 1000000009 1000000021 1000000033 1000000087 1000000093 1000000097
Perl
sub isprime {
my $n = shift;
return ($n >= 2) if $n < 4;
return unless $n % 2 && $n % 3;
my $sqrtn = int(sqrt($n));
for (my $i = 5; $i <= $sqrtn; $i += 6) {
return unless $n % $i && $n % ($i+2);
}
1;
}
print join(" ", grep { isprime($_) } 0 .. 100 ), "\n";
print join(" ", grep { isprime($_) } 12345678 .. 12345678+100 ), "\n";
{{out}}
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
12345701 12345709 12345713 12345727 12345731 12345743 12345769
Perl 6
Here is a straightforward implementation of the naive algorithm.
constant @primes = 2, 3, { first * %% none(@_), (@_[* - 1], * + 2 ... *) } ... *;
say @primes[^100];
{{out}}
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541
Phix
using is_prime from [[Primality_by_trial_division#Phix]]
sequence s= {}
for i=0 to 100 do
if is_prime(i) then s&=i end if
end for
?s
{{Out}}
{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}
PicoLisp
(de prime? (N)
(or
(= N 2)
(and
(> N 1)
(bit? 1 N)
(let S (sqrt N)
(for (D 3 T (+ D 2))
(T (> D S) T)
(T (=0 (% N D)) NIL) ) ) ) ) )
(de primeseq (A B)
(filter prime? (range A B)) )
(println (primeseq 50 99))
{{out}}
(53 59 61 67 71 73 79 83 89 97)
PowerShell
function eratosthenes ($n) {
if($n -ge 1){
$prime = @(1..($n+1) | foreach{$true})
$prime[1] = $false
$m = [Math]::Floor([Math]::Sqrt($n))
for($i = 2; $i -le $m; $i++) {
if($prime[$i]) {
for($j = $i*$i; $j -le $n; $j += $i) {
$prime[$j] = $false
}
}
}
1..$n | where{$prime[$_]}
} else {
"$n must be equal or greater than 1"
}
}
function sieve-start-end ($start,$end) {
(eratosthenes $end) | where{$_ -ge $start}
}
"$(sieve-start-end 100 200)"
Output:
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
PureBasic
EnableExplicit
#SPC=Chr(32)
#TB=~"\t"
#TBLF=~"\t\n"
Define.i a,b,l,n,count=0
Define *count.Integer=@count
Procedure.i AddCount(*c.Integer) ; *counter: by Ref
*c\i+1
ProcedureReturn *c\i
EndProcedure
Procedure.s FormatStr(tx$,l.i)
Shared *count
If AddCount(*count)%10=0
ProcedureReturn RSet(tx$,l,#SPC)+#TBLF
Else
ProcedureReturn RSet(tx$,l,#SPC)+#TB
EndIf
EndProcedure
Procedure.b Trial(n.i)
Define.i i
For i=3 To Int(Sqr(n)) Step 2
If n%i=0 : ProcedureReturn #False : EndIf
Next
ProcedureReturn #True
EndProcedure
Procedure.b isPrime(n.i)
If (n>1 And n%2<>0 And Trial(n)) Or n=2 : ProcedureReturn #True : EndIf
ProcedureReturn #False
EndProcedure
OpenConsole("Sequence of primes by Trial Division")
PrintN("Input (n1<n2 & n1>0)")
Print("n1 : ") : a=Int(Val(Input()))
Print("n2 : ") : b=Int(Val(Input()))
l=Len(Str(b))
If a<b And a>0
PrintN(~"\nPrime numbers between "+Str(a)+" and "+Str(b))
For n=a To b
If isPrime(n)
Print(FormatStr(Str(n),l))
EndIf
Next
Print(~"\nPrimes= "+Str(*count\i))
Input()
EndIf
{{out}}
Input (n1<n2 & n1>0)
n1 : 10000
n2 : 11000
Prime numbers between 10000 and 11000
10007 10009 10037 10039 10061 10067 10069 10079 10091 10093
10099 10103 10111 10133 10139 10141 10151 10159 10163 10169
10177 10181 10193 10211 10223 10243 10247 10253 10259 10267
10271 10273 10289 10301 10303 10313 10321 10331 10333 10337
10343 10357 10369 10391 10399 10427 10429 10433 10453 10457
10459 10463 10477 10487 10499 10501 10513 10529 10531 10559
10567 10589 10597 10601 10607 10613 10627 10631 10639 10651
10657 10663 10667 10687 10691 10709 10711 10723 10729 10733
10739 10753 10771 10781 10789 10799 10831 10837 10847 10853
10859 10861 10867 10883 10889 10891 10903 10909 10937 10939
10949 10957 10973 10979 10987 10993
Primes= 106
Python
Using the basic ''prime()'' function from: [http://rosettacode.org/wiki/Primality_by_trial_division#Python "Primality by trial division"]
def prime(a):
return not (a < 2 or any(a % x == 0 for x in xrange(2, int(a**0.5) + 1)))
def primes_below(n):
return [i for i in range(n) if prime(i)]
{{out}}
>>> primes_below(100)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
Racket
Infinite list of primes:
Using laziness
This example uses infinite lists (streams) to implement a sieve algorithm that produces all prime numbers.
#lang lazy
(define nats (cons 1 (map add1 nats)))
(define (sift n l) (filter (λ(x) (not (zero? (modulo x n)))) l))
(define (sieve l) (cons (first l) (sieve (sift (first l) (rest l)))))
(define primes (sieve (rest nats)))
(!! (take 25 primes))
= Optimized with postponed processing =
Since a prime's multiples that count start from its square, we should only add them when we reach that square.
#lang lazy
(define nats (cons 1 (map add1 nats)))
(define (sift n l) (filter (λ(x) (not (zero? (modulo x n)))) l))
(define (when-bigger n l f)
(if (< (car l) n) (cons (car l) (when-bigger n (cdr l) f)) (f l)))
(define (sieve l ps)
(cons (car l) (when-bigger (* (car ps) (car ps)) (cdr l)
(λ(t) (sieve (sift (car ps) t) (cdr ps))))))
(define primes (sieve (cdr nats) primes))
(!! (take 25 primes))
Using threads and channels
Same algorithm as above, but now using threads and channels to produce a channel of all prime numbers (similar to newsqueak). The macro at the top is a convenient wrapper around definitions of channels using a thread that feeds them.
#lang racket
(define-syntax (define-thread-loop stx)
(syntax-case stx ()
[(_ (name . args) expr ...)
(with-syntax ([out! (datum->syntax stx 'out!)])
#'(define (name . args)
(define out (make-channel))
(define (out! x) (channel-put out x))
(thread (λ() (let loop () expr ... (loop))))
out))]))
(define-thread-loop (nats) (for ([i (in-naturals 1)]) (out! i)))
(define-thread-loop (filter pred? c)
(let ([x (channel-get c)]) (when (pred? x) (out! x))))
(define (sift n c) (filter (λ(x) (not (zero? (modulo x n)))) c))
(define-thread-loop (sieve c)
(let ([x (channel-get c)]) (out! x) (set! c (sift x c))))
(define primes (let ([ns (nats)]) (channel-get ns) (sieve ns)))
(for/list ([i 25] [x (in-producer (λ() (channel-get primes)))]) x)
Using generators
Yet another variation of the same algorithm as above, this time using generators.
#lang racket
(require racket/generator)
(define nats (generator () (for ([i (in-naturals 1)]) (yield i))))
(define (filter pred g)
(generator () (for ([i (in-producer g #f)] #:when (pred i)) (yield i))))
(define (sift n g) (filter (λ(x) (not (zero? (modulo x n)))) g))
(define (sieve g)
(generator () (let loop ([g g]) (let ([x (g)]) (yield x) (loop (sift x g))))))
(define primes (begin (nats) (sieve nats)))
(for/list ([i 25] [x (in-producer primes)]) x)
REXX
somewhat optimized
This is an open-ended approach and it's a simple implementation and could be optimized more with some easy programming.
The method used is to divided all odd numbers by all previous odd primes up to and including the '''√{{overline| }}''' of the odd number.
Usage note: by using a negative number (for the program's argument), the list of primes is suppressed, but the prime count is still shown.
/*REXX program lists a sequence of primes by testing primality by trial division. */
parse arg n . /*get optional number of primes to find*/
if n=='' | n=="," then n= 26 /*Not specified? Then use the default.*/
tell= (n>0); n= abs(n) /*Is N negative? Then don't display.*/
@.1=2; if tell then say right(@.1, 9) /*display 2 as a special prime case. */
#=1 /*# is number of primes found (so far)*/
/* [↑] N: default lists up to 101 #s.*/
do j=3 by 2 while #<n /*start with the first odd prime. */
/* [↓] divide by the primes. ___ */
do k=2 to # while !.k<=j /*divide J with all primes ≤ √ J */
if j//@.k==0 then iterate j /*÷ by prev. prime? ¬prime ___ */
end /*j*/ /* [↑] only divide up to √ J */
#= #+1 /*bump the count of number of primes. */
@.#= j; !.#= j*j /*define this prime; define its square.*/
if tell then say right(j, 9) /*maybe display this prime ──► terminal*/
end /*j*/ /* [↑] only display N number of primes*/
/* [↓] display number of primes found.*/
say # ' primes found.' /*stick a fork in it, we're all done. */
{{out|output|text= when using the default input: 26 }}
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97
101
26 primes found.
more optimized
This version shows how the REXX program may be optimized further by extending the list of low primes and
the special low prime divisions (the '''//''' tests, which is the ''remainder'' when doing integer division).
/*REXX program lists a sequence of primes by testing primality by trial division. */
parse arg N . /*get optional number of primes to find*/
if N=='' | N=="," then N= 26 /*Not specified? Then assume default.*/
tell= (N>0); N= abs(N) /*N is negative? Then don't display. */
@.1=2; @.2=3; @.3=5; @.4=7; @.5=11; @.6=13; #= 5; s= @.# + 2
/* [↑] is the number of low primes.*/
do p=1 for # while p<=N /* [↓] find primes, and maybe show 'em*/
if tell then say right(@.p, 9) /*display some pre─defined low primes. */
!.p= @.p**2 /*also compute the squared value of P. */
end /*p*/ /* [↑] allows faster loop (below). */
/* [↓] N: default lists up to 101 #s.*/
do j=s by 2 while #<N /*continue on with the next odd prime. */
if j // 3 ==0 then iterate /*is this integer a multiple of three? */
parse var j '' -1 _ /*obtain the last digit of the J var.*/
if _ ==5 then iterate /*is this integer a multiple of five? */
if j // 7 ==0 then iterate /* " " " " " " seven? */
if j //11 ==0 then iterate /* " " " " " " eleven?*/
/* [↓] divide by the primes. ___ */
do k=p to # while !.k<=j /*divide J by other primes ≤ √ J */
if j//@.k ==0 then iterate j /*÷ by prev. prime? ¬prime ___ */
end /*k*/ /* [↑] only divide up to √ J */
#= #+1 /*bump the count of number of primes. */
@.#= j; !.#= j*j /*define this prime; define its square.*/
if tell then say right(j, 9) /*maybe display this prime ──► terminal*/
end /*j*/ /* [↑] only display N number of primes*/
/* [↓] display number of primes found.*/
say # ' primes found.' /*stick a fork in it, we're all done. */
{{out|output|text= is identical to the 1st REXX version.}}
Ring
for i = 1 to 100
if isPrime(i) see "" + i + " " ok
next
see nl
func isPrime n
if n < 2 return false ok
if n < 4 return true ok
if n % 2 = 0 return false ok
for d = 3 to sqrt(n) step 2
if n % d = 0 return false ok
next
return true
Ruby
The Prime class in the standard library has several Prime generators. In some methods it can be specified which generator will be used. The generator can be used on it's own:
require "prime"
pg = Prime::TrialDivisionGenerator.new
p pg.take(10) # => [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
p pg.next # => 31
Scala
===Odds-Only "infinite" primes generator using Streams and Co-Inductive Streams=== Using Streams, [http://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf the "unfaithful sieve"], i.e. '''sub-optimal trial division sieve'''.
def sieve(nums: Stream[Int]): Stream[Int] =
Stream.cons(nums.head, sieve((nums.tail).filter(_ % nums.head != 0)))
val primes = 2 #:: sieve(Stream.from(3, 2))
println(primes take 10 toList) // //List(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)
println(primes takeWhile (_ < 30) toList) //List(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)
{{out}}Both println statements give the same results:
List(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)
The above code is extremely inefficient for larger ranges, both because it tests for primality using computationally expensive divide (modulo) operations and because it sets up deferred tests for division by all of the primes up to each prime candidate, meaning that it has approximately a square law computational complexity with range.
Sidef
Using the ''is_prime()'' function from: [http://rosettacode.org/wiki/Primality_by_trial_division#Sidef "Primality by trial division"]
func prime_seq(amount, callback) {
var (counter, number) = (0, 0);
while (counter < amount) {
if (is_prime(number)) {
callback(number);
++counter;
}
++number;
}
}
prime_seq(100, {|p| say p}); # prints the first 100 primes
Spin
This example uses totally naive looping over test divisors d
of n
up to n-1
until a divisor is found or the range is exhausted. This results in d == n
after the loop if n
is prime.
{{works with|BST/BSTC}}
{{works with|FastSpin/FlexSpin}}
{{works with|HomeSpun}}
{{works with|OpenSpin}}
con
_clkmode = xtal1+pll16x
_clkfreq = 80_000_000
obj
ser : "FullDuplexSerial"
pub main | d, n
ser.start(31, 30, 0, 115200)
repeat n from 2 to 100
repeat d from 2 to n-1
if n // d == 0
quit
if d == n
ser.dec(n)
ser.tx(32)
waitcnt(_clkfreq + cnt)
ser.stop
{{Out}}
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
Swift
import Foundation
extension SequenceType {
func takeWhile(include: Generator.Element -> Bool) -> AnyGenerator<Generator.Element> {
var g = self.generate()
return anyGenerator { g.next().flatMap{include($0) ? $0 : nil }}
}
}
var pastPrimes = [2]
var primes = anyGenerator {
_ -> Int? in
defer {
pastPrimes.append(pastPrimes.last!)
let c = pastPrimes.count - 1
for p in anyGenerator({++pastPrimes[c]}) {
let lim = Int(sqrt(Double(p)))
if (!pastPrimes.takeWhile{$0 <= lim}.contains{p % $0 == 0}) { break }
}
}
return pastPrimes.last
}
Simple version
{{works with|Swift 2 and Swift 3}}
var primes = [2]
func trialPrimes(_ max:Int){
// fill array 'primes' with primes <= max, 1s for small values like 400_000
var cand = 3
while cand <= max {
for p in primes {
if cand % p == 0 {
break
}
if p*p > cand {
primes.append(cand)
break
}
}
cand += 2
}
}
trialPrimes(100)
print(primes)
{{out}}
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
Tcl
As we're generating a sequence of primes, we can use that sequence of primes to describe what we're filtering against.
set primes {}
proc havePrime n {
global primes
foreach p $primes {
# Do the test-by-trial-division
if {$n/$p*$p == $n} {return false}
}
return true
}
for {set n 2} {$n < 100} {incr n} {
if {[havePrime $n]} {
lappend primes $n
puts -nonewline "$n "
}
}
puts ""
{{out}}
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
zkl
The code in [[Extensible prime generator#zkl]] is a much better solution to this problem. {{trans|Python}}
fcn isPrime(p){
(p>=2) and (not [2 .. p.toFloat().sqrt()].filter1('wrap(n){ p%n==0 }))
}
fcn primesBelow(n){ [0..n].filter(isPrime) }
The Method filter1 stops at the first non False result, which, if there is one, is the first found diviser, thus short cutting the rest of the test.
primesBelow(100).toString(*).println();
{{out}}
L(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97)