⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Probability and statistics}}
;Task:
(Given an equal-probability generator of one of the integers 1 to 5
as dice5
), create dice7
that generates a pseudo-random integer from
1 to 7 in equal probability using only dice5
as a source of random
numbers, and check the distribution for at least one million calls using the function created in [[Verify distribution uniformity/Naive|Simple Random Distribution Checker]].
'''Implementation suggestion:'''
dice7
might call dice5
twice, re-call if four of the 25
combinations are given, otherwise split the other 21 combinations
into 7 groups of three, and return the group index from the rolls.
(Task adapted from an answer [http://stackoverflow.com/questions/90715/what-are-the-best-programming-puzzles-you-came-across here])
Ada
The specification of a package Random_57:
package Random_57 is
type Mod_7 is mod 7;
function Random7 return Mod_7;
-- a "fast" implementation, minimazing the calls to the Random5 generator
function Simple_Random7 return Mod_7;
-- a simple implementation
end Random_57;
Implementation of Random_57:
with Ada.Numerics.Discrete_Random;
package body Random_57 is
type M5 is mod 5;
package Rand_5 is new Ada.Numerics.Discrete_Random(M5);
Gen: Rand_5.Generator;
function Random7 return Mod_7 is
N: Natural;
begin
loop
N := Integer(Rand_5.Random(Gen))* 5 + Integer(Rand_5.Random(Gen));
-- N is uniformly distributed in 0 .. 24
if N < 21 then
return Mod_7(N/3);
else -- (N-21) is in 0 .. 3
N := (N-21) * 5 + Integer(Rand_5.Random(Gen)); -- N is in 0 .. 19
if N < 14 then
return Mod_7(N / 2);
else -- (N-14) is in 0 .. 5
N := (N-14) * 5 + Integer(Rand_5.Random(Gen)); -- N is in 0 .. 29
if N < 28 then
return Mod_7(N/4);
else -- (N-28) is in 0 .. 1
N := (N-28) * 5 + Integer(Rand_5.Random(Gen)); -- 0 .. 9
if N < 7 then
return Mod_7(N);
else -- (N-7) is in 0, 1, 2
N := (N-7)* 5 + Integer(Rand_5.Random(Gen)); -- 0 .. 14
if N < 14 then
return Mod_7(N/2);
else -- (N-14) is 0. This is not useful for us!
null;
end if;
end if;
end if;
end if;
end if;
end loop;
end Random7;
function Simple_Random7 return Mod_7 is
N: Natural :=
Integer(Rand_5.Random(Gen))* 5 + Integer(Rand_5.Random(Gen));
-- N is uniformly distributed in 0 .. 24
begin
while N > 20 loop
N := Integer(Rand_5.Random(Gen))* 5 + Integer(Rand_5.Random(Gen));
end loop; -- Now I <= 20
return Mod_7(N / 3);
end Simple_Random7;
begin
Rand_5.Reset(Gen);
end Random_57;
A main program, using the Random_57 package:
with Ada.Text_IO, Random_57;
procedure R57 is
use Random_57;
type Fun is access function return Mod_7;
function Rand return Mod_7 renames Random_57.Random7;
-- change this to "... renames Random_57.Simple_Random;" if you like
procedure Test(Sample_Size: Positive; Rand: Fun; Precision: Float := 0.3) is
Counter: array(Mod_7) of Natural := (others => 0);
Expected: Natural := Sample_Size/7;
Small: Mod_7 := Mod_7'First;
Large: Mod_7 := Mod_7'First;
Result: Mod_7;
begin
Ada.Text_IO.New_Line;
Ada.Text_IO.Put_Line("Sample Size: " & Integer'Image(Sample_Size));
Ada.Text_IO.Put( " Bins:");
for I in 1 .. Sample_Size loop
Result := Rand.all;
Counter(Result) := Counter(Result) + 1;
end loop;
for J in Mod_7 loop
Ada.Text_IO.Put(Integer'Image(Counter(J)));
if Counter(J) < Counter(Small) then Small := J; end if;
if Counter(J) > Counter(Large) then Large := J; end if;
end loop;
Ada.Text_IO.New_Line;
Ada.Text_IO.Put_Line(" Small Bin:" & Integer'Image(Counter(Small)));
Ada.Text_IO.Put_Line(" Large Bin: " & Integer'Image(Counter(Large)));
if Float(Counter(Small)*7) * (1.0+Precision) < Float(Sample_Size) then
Ada.Text_IO.Put_Line("Failed! Small too small!");
elsif Float(Counter(Large)*7) * (1.0-Precision) > Float(Sample_Size) then
Ada.Text_IO.Put_Line("Failed! Large too large!");
else
Ada.Text_IO.Put_Line("Passed");
end if;
end Test;
begin
Test( 10_000, Rand'Access, 0.08);
Test( 100_000, Rand'Access, 0.04);
Test( 1_000_000, Rand'Access, 0.02);
Test(10_000_000, Rand'Access, 0.01);
end R57;
{{out}}
Sample Size: 10000
Bins: 1368 1404 1435 1491 1483 1440 1379
Small Bin: 1368
Large Bin: 1491
Passed
Sample Size: 100000
Bins: 14385 14110 14362 14404 14362 14206 14171
Small Bin: 14110
Large Bin: 14404
Passed
Sample Size: 1000000
Bins: 143765 142384 142958 142684 142799 142956 142454
Small Bin: 142384
Large Bin: 143765
Passed
Sample Size: 10000000
Bins: 1429266 1428214 1428753 1427032 1428418 1428699 1429618
Small Bin: 1427032
Large Bin: 1429618
Passed
ALGOL 68
{{trans|C}} - note: This specimen retains the original [[Seven-sided dice from five-sided dice#C|C]] coding style. {{works with|ALGOL 68|Revision 1 - no extensions to language used}} {{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}} {{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d]}} C's version using no multiplications, divisions, or mod operators:
PROC dice5 = INT:
1 + ENTIER (5*random);
PROC mulby5 = (INT n)INT:
ABS (BIN n SHL 2) + n;
PROC dice7 = INT: (
INT d55 := 0;
INT m := 1;
WHILE
m := ABS ((2r1 AND BIN m) SHL 2) + ABS (BIN m SHR 1); # repeats 4 - 2 - 1 #
d55 := mulby5(mulby5(d55)) + mulby5(dice5) + dice5 - 6;
# WHILE # d55 < m DO SKIP OD;
m := 1;
WHILE d55>0 DO
d55 +:= m;
m := ABS (BIN d55 AND 2r111); # modulas by 8 #
d55 := ABS (BIN d55 SHR 3) # divide by 8 #
OD;
m
);
PROC distcheck = (PROC INT dice, INT count, upb)VOID: (
[upb]INT sum; FOR i TO UPB sum DO sum[i] := 0 OD;
FOR i TO count DO sum[dice]+:=1 OD;
FOR i TO UPB sum WHILE print(whole(sum[i],0)); i /= UPB sum DO print(", ") OD;
print(new line)
);
main:
(
distcheck(dice5, 1000000, 5);
distcheck(dice7, 1000000, 7)
)
{{out}}
200598, 199852, 199939, 200602, 199009
143529, 142688, 142816, 142747, 142958, 142802, 142460
AutoHotkey
dice5()
{ Random, v, 1, 5
Return, v
}
dice7()
{ Loop
{ v := 5 * dice5() + dice5() - 6
IfLess v, 21, Return, (v // 3) + 1
}
}
Distribution check:
Total elements = 10000
Margin = 3% --> Lbound = 1386, Ubound = 1471
Bucket 1 contains 1450 elements.
Bucket 2 contains 1374 elements. Skewed.
Bucket 3 contains 1412 elements.
Bucket 4 contains 1465 elements.
Bucket 5 contains 1370 elements. Skewed.
Bucket 6 contains 1485 elements. Skewed.
Bucket 7 contains 1444 elements.
BBC BASIC
{{works with|BBC BASIC for Windows}}
MAXRND = 7
FOR r% = 2 TO 5
check% = FNdistcheck(FNdice7, 10^r%, 0.1)
PRINT "Over "; 10^r% " runs dice7 ";
IF check% THEN
PRINT "failed distribution check with "; check% " bin(s) out of range"
ELSE
PRINT "passed distribution check"
ENDIF
NEXT
END
DEF FNdice7
LOCAL x% : x% = FNdice5 + 5*FNdice5
IF x%>26 THEN = FNdice7 ELSE = (x%+1) MOD 7 + 1
DEF FNdice5 = RND(5)
DEF FNdistcheck(RETURN func%, repet%, delta)
LOCAL i%, m%, r%, s%, bins%()
DIM bins%(MAXRND)
FOR i% = 1 TO repet%
r% = FN(^func%)
bins%(r%) += 1
IF r%>m% m% = r%
NEXT
FOR i% = 1 TO m%
IF bins%(i%)/(repet%/m%) > 1+delta s% += 1
IF bins%(i%)/(repet%/m%) < 1-delta s% += 1
NEXT
= s%
{{out}}
Over 100 runs dice7 failed distribution check with 4 bin(s) out of range
Over 1000 runs dice7 failed distribution check with 2 bin(s) out of range
Over 10000 runs dice7 passed distribution check
Over 100000 runs dice7 passed distribution check
C
int rand5()
{
int r, rand_max = RAND_MAX - (RAND_MAX % 5);
while ((r = rand()) >= rand_max);
return r / (rand_max / 5) + 1;
}
int rand5_7()
{
int r;
while ((r = rand5() * 5 + rand5()) >= 27);
return r / 3 - 1;
}
int main()
{
printf(check(rand5, 5, 1000000, .05) ? "flat\n" : "not flat\n");
printf(check(rand7, 7, 1000000, .05) ? "flat\n" : "not flat\n");
return 0;
}
{{out}}
flat
flat
C++
This solution tries to minimize calls to the underlying d5 by reusing information from earlier calls.
template<typename F>
class fivetoseven
{
public:
fivetoseven(F f): d5(f), rem(0), max(1) {}
int operator()();
private:
F d5;
int rem, max;
};
template<typename F>
int fivetoseven<F>::operator()()
{
while (rem/7 == max/7)
{
while (max < 7)
{
int rand5 = d5()-1;
max *= 5;
rem = 5*rem + rand5;
}
int groups = max / 7;
if (rem >= 7*groups)
{
rem -= 7*groups;
max -= 7*groups;
}
}
int result = rem % 7;
rem /= 7;
max /= 7;
return result+1;
}
int d5()
{
return 5.0*std::rand()/(RAND_MAX + 1.0) + 1;
}
fivetoseven<int(*)()> d7(d5);
int main()
{
srand(time(0));
test_distribution(d5, 1000000, 0.001);
test_distribution(d7, 1000000, 0.001);
}
C#
{{trans|Java}}
using System;
public class SevenSidedDice
{
Random random = new Random();
static void Main(string[] args)
{
SevenSidedDice sevenDice = new SevenSidedDice();
Console.WriteLine("Random number from 1 to 7: "+ sevenDice.seven());
Console.Read();
}
int seven()
{
int v=21;
while(v>20)
v=five()+five()*5-6;
return 1+v%7;
}
int five()
{
return 1 + random.Next(5);
}
}
Clojure
Uses the verify function defined in [[Verify distribution uniformity/Naive#Clojure]]
(def dice5 #(rand-int 5))
(defn dice7 []
(quot (->> dice5 ; do the following to dice5
(repeatedly 2) ; call it twice
(apply #(+ %1 (* 5 %2))) ; d1 + 5*d2 => 0..24
#() ; wrap that up in a function
repeatedly ; make infinite sequence of the above
(drop-while #(> % 20)) ; throw away anything > 20
first) ; grab first acceptable element
3)) ; divide by three rounding down
(doseq [n [100 1000 10000] [num count okay?] (verify dice7 n)]
(println "Saw" num count "times:"
(if okay? "that's" " not") "acceptable"))
Saw 0 10 times: not acceptable
Saw 1 19 times: not acceptable
Saw 2 12 times: not acceptable
Saw 3 15 times: that's acceptable
Saw 4 11 times: not acceptable
Saw 5 11 times: not acceptable
Saw 6 22 times: not acceptable
Saw 0 142 times: that's acceptable
Saw 1 158 times: not acceptable
Saw 2 151 times: that's acceptable
Saw 3 153 times: that's acceptable
Saw 4 118 times: not acceptable
Saw 5 139 times: that's acceptable
Saw 6 139 times: that's acceptable
Saw 0 1498 times: that's acceptable
Saw 1 1411 times: that's acceptable
Saw 2 1436 times: that's acceptable
Saw 3 1434 times: that's acceptable
Saw 4 1414 times: that's acceptable
Saw 5 1408 times: that's acceptable
Saw 6 1399 times: that's acceptable
Common Lisp
{{trans|C}}
(defun d5 ()
(1+ (random 5)))
(defun d7 ()
(loop for d55 = (+ (* 5 (d5)) (d5) -6)
until (< d55 21)
finally (return (1+ (mod d55 7)))))
> (check-distribution 'd7 1000)
Distribution potentially skewed for 1: expected around 1000/7 got 153.
Distribution potentially skewed for 2: expected around 1000/7 got 119.
Distribution potentially skewed for 3: expected around 1000/7 got 125.
Distribution potentially skewed for 7: expected around 1000/7 got 156.
T
#<EQL Hash Table{7} 200B5A53>
> (check-distribution 'd7 10000)
NIL
#<EQL Hash Table{7} 200CB5BB>
D
{{trans|C++}}
import std.random;
import verify_distribution_uniformity_naive: distCheck;
/// Generates a random number in [1, 5].
int dice5() /*pure nothrow*/ @safe {
return uniform(1, 6);
}
/// Naive, generates a random number in [1, 7] using dice5.
int fiveToSevenNaive() /*pure nothrow*/ @safe {
immutable int r = dice5() + dice5() * 5 - 6;
return (r < 21) ? (r % 7) + 1 : fiveToSevenNaive();
}
/**
Generates a random number in [1, 7] using dice5,
minimizing calls to dice5.
*/
int fiveToSevenSmart() @safe {
static int rem = 0, max = 1;
while (rem / 7 == max / 7) {
while (max < 7) {
immutable int rand5 = dice5() - 1;
max *= 5;
rem = 5 * rem + rand5;
}
immutable int groups = max / 7;
if (rem >= 7 * groups) {
rem -= 7 * groups;
max -= 7 * groups;
}
}
immutable int result = rem % 7;
rem /= 7;
max /= 7;
return result + 1;
}
void main() /*@safe*/ {
enum int N = 400_000;
distCheck(&dice5, N, 1);
distCheck(&fiveToSevenNaive, N, 1);
distCheck(&fiveToSevenSmart, N, 1);
}
{{out}}
1 80365
2 79941
3 80065
4 79784
5 79845
1 57186
2 57201
3 57180
4 57231
5 57124
6 56832
7 57246
1 57367
2 56869
3 57644
4 57111
5 57157
6 56809
7 57043
E
{{trans|Common Lisp}} {{improve|E|Write dice7 in a prettier fashion and use the distribution checker once it's been written.}}
def dice5() {
return entropy.nextInt(5) + 1
}
def dice7() {
var d55 := null
while ((d55 := 5 * dice5() + dice5() - 6) >= 21) {}
return d55 %% 7 + 1
}
def bins := ([0] * 7).diverge()
for x in 1..1000 {
bins[dice7() - 1] += 1
}
println(bins.snapshot())
Elixir
defmodule Dice do
def dice5, do: :rand.uniform( 5 )
def dice7 do
dice7_from_dice5
end
defp dice7_from_dice5 do
d55 = 5*dice5 + dice5 - 6 # 0..24
if d55 < 21, do: rem( d55, 7 ) + 1,
else: dice7_from_dice5
end
end
fun5 = fn -> Dice.dice5 end
IO.inspect VerifyDistribution.naive( fun5, 1000000, 3 )
fun7 = fn -> Dice.dice7 end
IO.inspect VerifyDistribution.naive( fun7, 1000000, 3 )
{{out}}
:ok
:ok
Erlang
-module( dice ).
-export( [dice5/0, dice7/0, task/0] ).
dice5() -> random:uniform( 5 ).
dice7() ->
dice7_small_enough( dice5() * 5 + dice5() - 6 ). % 0 - 24
task() ->
verify_distribution_uniformity:naive( fun dice7/0, 1000000, 1 ).
dice7_small_enough( N ) when N < 21 -> N div 3 + 1;
dice7_small_enough( _N ) -> dice7().
{{out}}
76> dice:task().
ok
Factor
USING: kernel random sequences assocs locals sorting prettyprint
math math.functions math.statistics math.vectors math.ranges ;
IN: rosetta-code.dice7
! Output a random integer 1..5.
: dice5 ( -- x )
5 [1,b] random
;
! Output a random integer 1..7 using dice5 as randomness source.
: dice7 ( -- x )
0 [ dup 21 < ] [ drop dice5 5 * dice5 + 6 - ] do until
7 rem 1 +
;
! Roll the die by calling the quotation the given number of times and return
! an array with roll results.
! Sample call: 1000 [ dice7 ] roll
: roll ( times quot: ( -- x ) -- array )
[ call( -- x ) ] curry replicate
;
! Input array contains outcomes of a number of die throws. Each die result is
! an integer in the range 1..X. Calculate and return the number of each
! of the results in the array so that in the first position of the result
! there is the number of ones in the input array, in the second position
! of the result there is the number of twos in the input array, etc.
: count-dice-outcomes ( X array -- array )
histogram
swap [1,b] [ over [ 0 or ] change-at ] each
sort-keys values
;
! Verify distribution uniformity/Naive. Delta is the acceptable deviation
! from the ideal number of items in each bucket, expressed as a fraction of
! the total count. Sides is the number of die sides. Die-func is a word that
! produces a random number on stack in the range [1..sides], times is the
! number of times to call it.
! Sample call: 0.02 7 [ dice7 ] 100000 verify
:: verify ( delta sides die-func: ( -- random ) times -- )
sides
times die-func roll
count-dice-outcomes
dup .
times sides / :> ideal-count
ideal-count v-n vabs
times v/n
delta [ < ] curry all?
[ "Random enough" . ] [ "Not random enough" . ] if
;
! Call verify with 1, 10, 100, ... 1000000 rolls of 7-sided die.
: verify-all ( -- )
{ 1 10 100 1000 10000 100000 1000000 }
[| times | 0.02 7 [ dice7 ] times verify ] each
;
{{out}}
USE: rosetta-code.dice7 verify-all
{ 0 0 0 1 0 0 0 }
"Not random enough"
{ 0 2 3 1 1 1 2 }
"Not random enough"
{ 17 12 15 11 13 13 19 }
"Not random enough"
{ 140 130 141 148 143 155 143 }
"Random enough"
{ 1457 1373 1427 1433 1443 1382 1485 }
"Random enough"
{ 14225 14320 14216 14326 14415 14084 14414 }
"Random enough"
{ 142599 141910 142524 143029 143353 142696 143889 }
"Random enough"
Forth
{{works with|GNU Forth}}
require random.fs
: d5 5 random 1+ ;
: discard? 5 = swap 1 > and ;
: d7
begin d5 d5 2dup discard? while 2drop repeat
1- 5 * + 1- 7 mod 1+ ;
{{out}}
cr ' d7 1000000 7 1 check-distribution .
lower bound = 141429 upper bound = 144285
1 : 143241 ok
2 : 142397 ok
3 : 143522 ok
4 : 142909 ok
5 : 142001 ok
6 : 142844 ok
7 : 143086 ok
-1
Fortran
{{works with|Fortran|95 and later}}
module rand_mod
implicit none
contains
function rand5()
integer :: rand5
real :: r
call random_number(r)
rand5 = 5*r + 1
end function
function rand7()
integer :: rand7
do
rand7 = 5*rand5() + rand5() - 6
if (rand7 < 21) then
rand7 = rand7 / 3 + 1
return
end if
end do
end function
end module
program Randtest
use rand_mod
implicit none
integer, parameter :: samples = 1000000
call distcheck(rand7, samples, 0.005)
write(*,*)
call distcheck(rand7, samples, 0.001)
end program
{{out}}
Distribution Uniform
Distribution potentially skewed for bucket 1 Expected: 142857 Actual: 143142
Distribution potentially skewed for bucket 2 Expected: 142857 Actual: 143454
Distribution potentially skewed for bucket 3 Expected: 142857 Actual: 143540
Distribution potentially skewed for bucket 4 Expected: 142857 Actual: 142677
Distribution potentially skewed for bucket 5 Expected: 142857 Actual: 142511
Distribution potentially skewed for bucket 6 Expected: 142857 Actual: 142163
Distribution potentially skewed for bucket 7 Expected: 142857 Actual: 142513
Go
package main
import (
"fmt"
"math"
"math/rand"
"time"
)
// "given"
func dice5() int {
return rand.Intn(5) + 1
}
// function specified by task "Seven-sided dice from five-sided dice"
func dice7() (i int) {
for {
i = 5*dice5() + dice5()
if i < 27 {
break
}
}
return (i / 3) - 1
}
// function specified by task "Verify distribution uniformity/Naive"
//
// Parameter "f" is expected to return a random integer in the range 1..n.
// (Values out of range will cause an unceremonious crash.)
// "Max" is returned as an "indication of distribution achieved."
// It is the maximum delta observed from the count representing a perfectly
// uniform distribution.
// Also returned is a boolean, true if "max" is less than threshold
// parameter "delta."
func distCheck(f func() int, n int,
repeats int, delta float64) (max float64, flatEnough bool) {
count := make([]int, n)
for i := 0; i < repeats; i++ {
count[f()-1]++
}
expected := float64(repeats) / float64(n)
for _, c := range count {
max = math.Max(max, math.Abs(float64(c)-expected))
}
return max, max < delta
}
// Driver, produces output satisfying both tasks.
func main() {
rand.Seed(time.Now().UnixNano())
const calls = 1000000
max, flatEnough := distCheck(dice7, 7, calls, 500)
fmt.Println("Max delta:", max, "Flat enough:", flatEnough)
max, flatEnough = distCheck(dice7, 7, calls, 500)
fmt.Println("Max delta:", max, "Flat enough:", flatEnough)
}
{{out}}
Max delta: 356.1428571428696 Flat enough: true
Max delta: 787.8571428571304 Flat enough: false
Groovy
random = new Random()
int rand5() {
random.nextInt(5) + 1
}
int rand7From5() {
def raw = 25
while (raw > 21) {
raw = 5*(rand5() - 1) + rand5()
}
(raw % 7) + 1
}
Test:
def test = {
(1..6). each {
def counts = [0g, 0g, 0g, 0g, 0g, 0g, 0g]
def target = 10g**it
def popSize = 7*target
(0..<(popSize)).each {
def i = rand7From5() - 1
counts[i] = counts[i] + 1g
}
BigDecimal stdDev = (counts.collect { it - target}.collect { it * it }.sum() / popSize) ** 0.5g
def countMap = (0..<counts.size()).inject([:]) { map, index -> map + [(index+1):counts[index]] }
println """\
counts: ${countMap}
population size: ${popSize}
std dev: ${stdDev.round(new java.math.MathContext(3))}
"""
}
}
4.times {
println """
TRIAL #${it+1}
### ========
"""
test(it)
}
{{out}}
TRIAL #1 ### ======== counts: [1:16, 2:10, 3:9, 4:7, 5:12, 6:8, 7:8] population size: 70 std dev: 0.910 counts: [1:85, 2:97, 3:108, 4:110, 5:95, 6:105, 7:100] population size: 700 std dev: 0.800 counts: [1:990, 2:1008, 3:992, 4:1060, 5:1008, 6:997, 7:945] population size: 7000 std dev: 0.995 counts: [1:9976, 2:10007, 3:10009, 4:9858, 5:10109, 6:9988, 7:10053] population size: 70000 std dev: 0.714 counts: [1:100310, 2:99783, 3:99843, 4:100353, 5:99804, 6:99553, 7:100354] population size: 700000 std dev: 0.968 counts: [1:999320, 2:1000942, 3:1000201, 4:1000878, 5:999181, 6:999632, 7:999846] population size: 7000000 std dev: 0.654 TRIAL #2 ### ======== counts: [1:10, 2:8, 3:9, 4:9, 5:14, 6:7, 7:13] population size: 70 std dev: 0.756 counts: [1:104, 2:101, 3:97, 4:108, 5:100, 6:87, 7:103] population size: 700 std dev: 0.619 counts: [1:995, 2:970, 3:1001, 4:953, 5:1006, 6:1081, 7:994] population size: 7000 std dev: 1.18 counts: [1:10013, 2:10063, 3:9843, 4:9984, 5:9986, 6:10059, 7:10052] population size: 70000 std dev: 0.711 counts: [1:100048, 2:99647, 3:100240, 4:100683, 5:99813, 6:100320, 7:99249] population size: 700000 std dev: 1.39 counts: [1:1000579, 2:1000541, 3:999497, 4:1000805, 5:999708, 6:999161, 7:999709] population size: 7000000 std dev: 0.586 TRIAL #3 ### ======== counts: [1:9, 2:8, 3:11, 4:14, 5:10, 6:11, 7:7] population size: 70 std dev: 0.676 counts: [1:100, 2:92, 3:105, 4:107, 5:111, 6:91, 7:94] population size: 700 std dev: 0.733 counts: [1:1010, 2:1053, 3:967, 4:981, 5:1027, 6:959, 7:1003] population size: 7000 std dev: 0.984 counts: [1:9857, 2:10037, 3:9992, 4:10231, 5:9828, 6:10140, 7:9915] population size: 70000 std dev: 1.37 counts: [1:99650, 2:99580, 3:99848, 4:100507, 5:99916, 6:100212, 7:100287] population size: 700000 std dev: 1.01 counts: [1:1001710, 2:999667, 3:1000685, 4:1000411, 5:999369, 6:998469, 7:999689] population size: 7000000 std dev: 0.965 TRIAL #4 ### ======== counts: [1:12, 2:7, 3:11, 4:12, 5:7, 6:9, 7:12] population size: 70 std dev: 0.676 counts: [1:97, 2:96, 3:101, 4:93, 5:96, 6:124, 7:93] population size: 700 std dev: 1.01 counts: [1:985, 2:1023, 3:1018, 4:1023, 5:995, 6:973, 7:983] population size: 7000 std dev: 0.615 counts: [1:9948, 2:9968, 3:10131, 4:10050, 5:9990, 6:10039, 7:9874] population size: 70000 std dev: 0.764 counts: [1:100125, 2:99616, 3:99912, 4:100286, 5:99674, 6:100190, 7:100197] population size: 700000 std dev: 0.787 counts: [1:1001267, 2:999911, 3:1000602, 4:999483, 5:1000549, 6:998725, 7:999463] population size: 7000000 std dev: 0.798 ``` ## Haskell ```haskell import System.Random import Data.List sevenFrom5Dice = do d51 <- randomRIO(1,5) :: IO Int d52 <- randomRIO(1,5) :: IO Int let d7 = 5*d51+d52-6 if d7 > 20 then sevenFrom5Dice else return $ 1 + d7 `mod` 7 ``` {{out}} ```haskell *Main> replicateM 10 sevenFrom5Dice [2,3,1,1,6,2,5,6,5,3] ``` Test: ```haskell *Main> mapM_ print .sort =<< distribCheck sevenFrom5Dice 1000000 3 (1,(142759,True)) (2,(143078,True)) (3,(142706,True)) (4,(142403,True)) (5,(142896,True)) (6,(143028,True)) (7,(143130,True)) ``` =={{header|Icon}} and {{header|Unicon}}== {{trans|Ruby}} Usesverify_uniform
from [[Simple_Random_Distribution_Checker#Icon_and_Unicon|here]]. ```Icon $include "distribution-checker.icn" # return a uniformly distributed number from 1 to 7, # but only using a random number in range 1 to 5. procedure die_7 () while rnd := 5*?5 + ?5 - 6 do { if rnd < 21 then suspend rnd % 7 + 1 } end procedure main () if verify_uniform (create (|die_7()), 1000000, 0.01) then write ("uniform") else write ("skewed") end ``` {{out}} ```txt 5 142870 2 142812 7 142901 4 142960 1 143113 6 142706 3 142638 uniform ``` ## J The first step is to create 7-sided dice rolls from 5-sided dice rolls (rollD5
): ```j>rollD5=: [: : ] ?@$ 5: NB. makes a y shape array of 5s, "rolls" the array and increments. roll2xD5=: [: rollD5 2 ,~ */ NB. rolls D5 twice for each desired D7 roll (y rows, 2 cols) toBase10=: 5 #. <: NB. decrements and converts rows from base 5 to 10 keepGood=: #~ 21&> NB. compress out values not less than 21 groupin3s=: [: >. >: % 3: NB. increments, divides by 3 and takes ceiling getD7=: groupin3s@keepGood@toBase10@roll2xD5 ``` Here are a couple of variations on the theme that achieve the same result: ```j getD7b=: 0 8 -.~ 3 >.@%~ 5 #. [: <:@rollD5 2 ,~ ] getD7c=: [: (#~ 7&>:) 3 >.@%~ [: 5.&.:<:@rollD5 ] , 2: ``` The trouble is that we probably don't have enough D7 rolls yet because we compressed out any double D5 rolls that evaluated to 21 or more. So we need to accumulate some more D7 rolls until we have enough. J has two types of verb definition - tacit (arguments not referenced) and explicit (more conventional function definitions) illustrated below: Here's an explicit definition that accumulates rolls fromgetD7
: ```j rollD7x=: monad define n=. */y NB. product of vector y is total number of D7 rolls required rolls=. '' NB. initialize empty noun rolls while. n > #rolls do. NB. checks if if enough D7 rolls accumulated rolls=. rolls, getD7 >. 0.75 * n NB. calcs 3/4 of required rolls and accumulates getD7 rolls end. y $ rolls NB. shape the result according to the vector y ) ``` Here's a tacit definition that does the same thing: ```j>getNumRolls=: [: . 0.75 * */@[ NB. calc approx 3/4 of the required rolls accumD7Rolls=: ] , getD7@getNumRolls NB. accumulates getD7 rolls isNotEnough=: */@[ > #@] NB. checks if enough D7 rolls accumulated rollD7t=: ] $ (accumD7Rolls ^: isNotEnough ^:_)&'' ``` Theverb1 ^: verb2 ^:_
construct repeatsx verb1 y
whilex verb2 y
is true. It is like saying "Repeat accumD7Rolls while isNotEnough". Example usage: ```j rollD7t 10 NB. 10 rolls of D7 6 4 5 1 4 2 4 5 2 5 rollD7t 2 5 NB. 2 by 5 array of D7 rolls 5 1 5 1 3 3 4 3 5 6 rollD7t 2 3 5 NB. 2 by 3 by 5 array of D7 rolls 4 7 7 5 7 3 7 1 4 5 5 4 5 7 6 1 1 7 6 3 4 4 1 4 4 1 1 1 6 5 NB. check results from rollD7x and rollD7t have same shape ($@rollD7x -: $@rollD7t) 10 1 ($@rollD7x -: $@rollD7t) 2 3 5 1 ``` ## Java {{trans|Python}} ```Java import java.util.Random; public class SevenSidedDice { private static final Random rnd = new Random(); public static void main(String[] args) { SevenSidedDice now=new SevenSidedDice(); System.out.println("Random number from 1 to 7: "+now.seven()); } int seven() { int v=21; while(v>20) v=five()+five()*5-6; return 1+v%7; } int five() { return 1+rnd.nextInt(5); } } ``` ## JavaScript {{trans|Ruby}} ```javascript function dice5() { return 1 + Math.floor(5 * Math.random()); } function dice7() { while (true) { var dice55 = 5 * dice5() + dice5() - 6; if (dice55 < 21) return dice55 % 7 + 1; } } distcheck(dice5, 1000000); print(); distcheck(dice7, 1000000); ``` {{out}} ```txt 1 199792 2 200425 3 199243 4 200407 5 200133 1 143617 2 142209 3 143023 4 142990 5 142894 6 142648 7 142619 ``` ## Julia ```Julia dice5() = rand(1:5) function dice7() r = 5*dice5() + dice5() - 6 r < 21 ? (r%7 + 1) : dice7() end ``` Distribution check: ```txt julia> hist([dice5() for i=1:10^6]) (0:1:5,[199932,200431,199969,199925,199743]) julia> hist([dice7() for i=1:10^6]) (0:1:7,[142390,143032,142837,142999,142800,142642,143300]) ``` ## Kotlin ```scala // version 1.1.3 import java.util.Random val r = Random() fun dice5() = 1 + r.nextInt(5) fun dice7(): Int { while (true) { val t = (dice5() - 1) * 5 + dice5() - 1 if (t >= 21) continue return 1 + t / 3 } } fun checkDist(gen: () -> Int, nRepeats: Int, tolerance: Double = 0.5) { val occurs = mutableMapOf() for (i in 1..nRepeats) { val d = gen() if (occurs.containsKey(d)) occurs[d] = occurs[d]!! + 1 else occurs.put(d, 1) } val expected = (nRepeats.toDouble()/ occurs.size).toInt() val maxError = (expected * tolerance / 100.0).toInt() println("Repetitions = $nRepeats, Expected = $expected") println("Tolerance = $tolerance%, Max Error = $maxError\n") println("Integer Occurrences Error Acceptable") val f = " %d %5d %5d %s" var allAcceptable = true for ((k,v) in occurs.toSortedMap()) { val error = Math.abs(v - expected) val acceptable = if (error <= maxError) "Yes" else "No" if (acceptable == "No") allAcceptable = false println(f.format(k, v, error, acceptable)) } println("\nAcceptable overall: ${if (allAcceptable) "Yes" else "No"}") } fun main(args: Array ) { checkDist(::dice7, 1_400_000) } ``` Sample output: ```txt Repetitions = 1400000, Expected = 200000 Tolerance = 0.5%, Max Error = 1000 Integer Occurrences Error Acceptable 1 199285 715 Yes 2 200247 247 Yes 3 199709 291 Yes 4 199983 17 Yes 5 199990 10 Yes 6 200664 664 Yes 7 200122 122 Yes Acceptable overall: Yes ``` ## Liberty BASIC ```lb n=1000000 '1000000 would take several minutes print "Testing ";n;" times" if not(check(n, 0.05)) then print "Test failed" else print "Test passed" end 'function check(n, delta) is defined at 'http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive#Liberty_BASIC function GENERATOR() 'GENERATOR = int(rnd(0)*10) '0..9 'GENERATOR = 1+int(rnd(0)*5) '1..5: dice5 'dice7() do temp =dice5() *5 +dice5() -6 loop until temp <21 GENERATOR =( temp mod 7) +1 end function function dice5() dice5=1+int(rnd(0)*5) '1..5: dice5 end function ``` {{Out}} ```txt Testing 1000000 times minVal Expected maxVal 135714 142857 150000 Bucket Counter pass/fail 1 143310 2 143500 3 143040 4 145185 5 140998 6 142610 7 141357 Test passed ``` ## Lua ```lua dice5 = function() return math.random(5) end function dice7() x = dice5() * 5 + dice5() - 6 if x > 20 then return dice7() end return x%7 + 1 end ``` ## M2000 Interpreter We make a stack object (is reference type) and pass it as a closure to dice7 lambda function. For each dice7 we pop the top value of stack, and we add a fresh dice5 (random(1,5)) as last value of stack, so stack used as FIFO. Each time z has the sum of 7 random values. We check for uniform numbers using +-5% from expected value. ```M2000 Interpreter Module CheckIt { Def long i, calls, max, min s=stack:=random(1,5),random(1,5), random(1,5), random(1,5), random(1,5), random(1,5), random(1,5) z=0: for i=1 to 7 { z+=stackitem(s, i)} dice7=lambda z, s -> { =((z-1) mod 7)+1 : stack s {z-=Number : data random(1,5): z+=Stackitem(7)} } Dim count(1 to 7)=0& ' long type calls=700000 p=0.05 IsUniform=lambda max=calls/7*(1+p), min=calls/7*(1-p) (a)->{ if len(a)=0 then =false : exit =false m=each(a) while m if array(m) max then break end while =true } For i=1 to calls {count(dice7())++} max=count()#max() expected=calls div 7 min=count()#min() for i=1 to 7 document doc$=format$("{0}{1::-7}",i,count(i))+{ } Next i doc$=format$("min={0} expected={1} max={2}", min, expected, max)+{ }+format$("Verify Uniform:{0}", if$(IsUniform(count())->"uniform", "skewed"))+{ } Print report doc$ clipboard doc$ } CheckIt ``` {{out}} 1 9865 2 10109 3 9868 4 9961 5 9936 6 9922 7 10339 min=9865 expected=10000 max=10339 Verify Uniform:uniform 1 100214 2 100336 3 100049 4 99505 5 99951 6 99729 7 100216 min=99505 expected=100000 max=100336 Verify Uniform:uniform## Mathematica ```Mathematica sevenFrom5Dice := (tmp$ = 5*RandomInteger[{1, 5}] + RandomInteger[{1, 5}] - 6; If [tmp$ < 21, 1 + Mod[tmp$ , 7], sevenFrom5Dice]) ``` ```txt CheckDistribution[sevenFrom5Dice, 1000000, 5] ->Expected: 142857., Generated :{142206,142590,142650,142693,142730,143475,143656} ->"Flat" ``` ## OCaml ```ocaml let dice5() = 1 + Random.int 5 ;; let dice7 = let rolls2answer = Hashtbl.create 25 in let n = ref 0 in for roll1 = 1 to 5 do for roll2 = 1 to 5 do Hashtbl.add rolls2answer (roll1,roll2) (!n / 3 +1); incr n done; done; let rec aux() = let trial = Hashtbl.find rolls2answer (dice5(),dice5()) in if trial <= 7 then trial else aux() in aux ;; ``` ## PARI/GP ```parigp dice5()=random(5)+1; dice7()={ my(t); while((t=dice5()*5+dice5()) > 21,); (t+2)\3 }; ``` ## Perl Using dice5 twice to generate numbers in the range 0 to 24. If we consider these modulo 8 and re-call if we get zero, we have eliminated 4 cases and created the necessary number in the range from 1 to 7. ```perl sub dice5 { 1+int rand(5) } sub dice7 { while(1) { my $d7 = (5*dice5()+dice5()-6) % 8; return $d7 if $d7; } } my %count7; my $n = 1000000; $count7{dice7()}++ for 1..$n; printf "%s: %5.2f%%\n", $_, 100*($count7{$_}/$n*7-1) for sort keys %count7; ``` {{out}} ```txt 1: 0.05% 2: 0.16% 3: -0.43% 4: 0.11% 5: 0.01% 6: -0.15% 7: 0.24% ``` ## Perl 6 {{works with|Rakudo|2018.03}} ```perl6 my $d5 = 1..5; sub d5() { $d5.roll; } # 1d5 sub d7() { my $flat = 21; $flat = 5 * d5() - d5() until $flat < 21; $flat % 7 + 1; } # Testing my @dist; my $n = 1_000_000; my $expect = $n / 7; loop ($_ = $n; $n; --$n) { @dist[d7()]++; } say "Expect\t",$expect.fmt("%.3f"); for @dist.kv -> $i, $v { say "$i\t$v\t" ~ (($v - $expect)/$expect*100).fmt("%+.2f%%") if $v; } ``` {{out}} ```txt Expect 142857.143 1 143088 +0.16% 2 143598 +0.52% 3 141741 -0.78% 4 142832 -0.02% 5 143040 +0.13% 6 142988 +0.09% 7 142713 -0.10% ``` ## Phix replace rand7() in [[Verify_distribution_uniformity/Naive#Phix]] with: ```Phix function dice5() return rand(5) end function function dice7() while true do integer r = dice5()*5+dice5()-3 -- ( ie 3..27, but ) if r<24 then return floor(r/3) end if -- (only 3..23 useful) end while end function ``` {{out}} ```txt 1000000 iterations: flat ``` ## PicoLisp ```PicoLisp (de dice5 () (rand 1 5) ) (de dice7 () (use R (until (> 21 (setq R (+ (* 5 (dice5)) (dice5) -6)))) (inc (% R 7)) ) ) ``` {{out}} ```txt : (let R NIL (do 1000000 (accu 'R (dice7) 1)) (sort R) ) -> ((1 . 142295) (2 . 142491) (3 . 143448) (4 . 143129) (5 . 142701) (6 . 143142) (7 . 142794)) ``` ## PureBasic {{trans|Lua}} ```PureBasic Procedure dice5() ProcedureReturn Random(4) + 1 EndProcedure Procedure dice7() Protected x x = dice5() * 5 + dice5() - 6 If x > 20 ProcedureReturn dice7() EndIf ProcedureReturn x % 7 + 1 EndProcedure ``` ## Python ```python from random import randint def dice5(): return randint(1, 5) def dice7(): r = dice5() + dice5() * 5 - 6 return (r % 7) + 1 if r < 21 else dice7() ``` Distribution check using [[Simple Random Distribution Checker#Python|Simple Random Distribution Checker]]: ```txt >>> distcheck(dice5, 1000000, 1) {1: 200244, 2: 199831, 3: 199548, 4: 199853, 5: 200524} >>> distcheck(dice7, 1000000, 1) {1: 142853, 2: 142576, 3: 143067, 4: 142149, 5: 143189, 6: 143285, 7: 142881} ``` ## Racket ```Racket #lang racket (define (dice5) (add1 (random 5))) (define (dice7) (define res (+ (* 5 (dice5)) (dice5) -6)) (if (< res 21) (+ 1 (modulo res 7)) (dice7))) ``` Checking the uniformity using math library: ```racket -> (require math/statistics) -> (samples->hash (for/list ([i 700000]) (dice7))) '#hash((7 . 100392) (6 . 100285) (5 . 99774) (4 . 100000) (3 . 100000) (2 . 99927) (1 . 99622)) ``` ## R 5-sided die. ```r dice5 <- function(n=1) sample(5, n, replace=TRUE) ``` Simple but slow 7-sided die, using a while loop. ```r dice7.while <- function(n=1) { score <- numeric() while(length(score) < n) { total <- sum(c(5,1) * dice5(2)) - 3 if(total < 24) score <- c(score, total %/% 3) } score } system.time(dice7.while(1e6)) # longer than 4 minutes ``` More complex, but much faster vectorised version. ```r dice7.vec <- function(n=1, checkLength=TRUE) { morethan2n <- 3 * n + 10 + (n %% 2) #need more than 2*n samples, because some are discarded twoDfive <- matrix(dice5(morethan2n), nrow=2) total <- colSums(c(5, 1) * twoDfive) - 3 score <- ifelse(total < 24, total %/% 3, NA) score <- score[!is.na(score)] #If length is less than n (very unlikely), add some more samples if(checkLength) { while(length(score) < n) { score <- c(score, dice7(n, FALSE)) } score[1:n] } else score } system.time(dice7.vec(1e6)) # ~1 sec ``` ## REXX ```rexx /*REXX program simulates a 7─sided die based on a 5─sided throw for a number of trials. */ parse arg trials sample seed . /*obtain optional arguments from the CL*/ if trials=='' | trials="," then trials= 1 /*Not specified? Then use the default.*/ if sample=='' | sample="," then sample= 1000000 /* " " " " " " */ if datatype(seed,'W') then call random ,,seed /*Integer? Then use it as a RAND seed.*/ L= length(trials) /* [↑] one million samples to be used.*/ do #=1 for trials; die.= 0 /*performs the number of desired trials*/ k= 0 do until k==sample; r= 5 * random(1, 5) + random(1, 5) - 6 if r>20 then iterate k= k+1; r=r // 7 + 1; die.r= die.r + 1 end /*until*/ say expect= sample % 7 say center('trial:' right(#, L) " " sample 'samples, expect' expect, 80, "─") do j=1 for 7 say ' side' j "had " die.j ' occurrences', ' difference from expected:'right(die.j - expect, length(sample) ) end /*j*/ end /*#*/ /*stick a fork in it, we're all done. */ ``` {{out|output|text= when using the input of: 11 }} (Shown at five-sixth size.)──────────────────trial: 1 1000000 samples, expect 142857────────────────── side 1 had 142076 occurrences difference from expected: -781 side 2 had 143053 occurrences difference from expected: 196 side 3 had 142342 occurrences difference from expected: -515 side 4 had 142633 occurrences difference from expected: -224 side 5 had 143024 occurrences difference from expected: 167 side 6 had 143827 occurrences difference from expected: 970 side 7 had 143045 occurrences difference from expected: 188 ──────────────────trial: 2 1000000 samples, expect 142857────────────────── side 1 had 143470 occurrences difference from expected: 613 side 2 had 142998 occurrences difference from expected: 141 side 3 had 142654 occurrences difference from expected: -203 side 4 had 142545 occurrences difference from expected: -312 side 5 had 142452 occurrences difference from expected: -405 side 6 had 143144 occurrences difference from expected: 287 side 7 had 142737 occurrences difference from expected: -120 ──────────────────trial: 3 1000000 samples, expect 142857────────────────── side 1 had 142773 occurrences difference from expected: -84 side 2 had 143198 occurrences difference from expected: 341 side 3 had 142296 occurrences difference from expected: -561 side 4 had 142804 occurrences difference from expected: -53 side 5 had 142897 occurrences difference from expected: 40 side 6 had 142382 occurrences difference from expected: -475 side 7 had 143650 occurrences difference from expected: 793 ──────────────────trial: 4 1000000 samples, expect 142857────────────────── side 1 had 143150 occurrences difference from expected: 293 side 2 had 142635 occurrences difference from expected: -222 side 3 had 142763 occurrences difference from expected: -94 side 4 had 142853 occurrences difference from expected: -4 side 5 had 143132 occurrences difference from expected: 275 side 6 had 142403 occurrences difference from expected: -454 side 7 had 143064 occurrences difference from expected: 207 ──────────────────trial: 5 1000000 samples, expect 142857────────────────── side 1 had 143041 occurrences difference from expected: 184 side 2 had 142701 occurrences difference from expected: -156 side 3 had 143416 occurrences difference from expected: 559 side 4 had 142097 occurrences difference from expected: -760 side 5 had 142451 occurrences difference from expected: -406 side 6 had 143332 occurrences difference from expected: 475 side 7 had 142962 occurrences difference from expected: 105 ──────────────────trial: 6 1000000 samples, expect 142857────────────────── side 1 had 142502 occurrences difference from expected: -355 side 2 had 142429 occurrences difference from expected: -428 side 3 had 143146 occurrences difference from expected: 289 side 4 had 142791 occurrences difference from expected: -66 side 5 had 143271 occurrences difference from expected: 414 side 6 had 143415 occurrences difference from expected: 558 side 7 had 142446 occurrences difference from expected: -411 ──────────────────trial: 7 1000000 samples, expect 142857────────────────── side 1 had 142700 occurrences difference from expected: -157 side 2 had 142691 occurrences difference from expected: -166 side 3 had 143067 occurrences difference from expected: 210 side 4 had 141562 occurrences difference from expected: -1295 side 5 had 143316 occurrences difference from expected: 459 side 6 had 143150 occurrences difference from expected: 293 side 7 had 143514 occurrences difference from expected: 657 ──────────────────trial: 8 1000000 samples, expect 142857────────────────── side 1 had 142362 occurrences difference from expected: -495 side 2 had 143298 occurrences difference from expected: 441 side 3 had 142639 occurrences difference from expected: -218 side 4 had 142811 occurrences difference from expected: -46 side 5 had 143275 occurrences difference from expected: 418 side 6 had 142765 occurrences difference from expected: -92 side 7 had 142850 occurrences difference from expected: -7 ──────────────────trial: 9 1000000 samples, expect 142857────────────────── side 1 had 143508 occurrences difference from expected: 651 side 2 had 142650 occurrences difference from expected: -207 side 3 had 142614 occurrences difference from expected: -243 side 4 had 142916 occurrences difference from expected: 59 side 5 had 142944 occurrences difference from expected: 87 side 6 had 143129 occurrences difference from expected: 272 side 7 had 142239 occurrences difference from expected: -618 ──────────────────trial: 10 1000000 samples, expect 142857────────────────── side 1 had 142455 occurrences difference from expected: -402 side 2 had 143112 occurrences difference from expected: 255 side 3 had 143435 occurrences difference from expected: 578 side 4 had 142704 occurrences difference from expected: -153 side 5 had 142376 occurrences difference from expected: -481 side 6 had 142721 occurrences difference from expected: -136 side 7 had 143197 occurrences difference from expected: 340 ──────────────────trial: 11 1000000 samples, expect 142857────────────────── side 1 had 142967 occurrences difference from expected: 110 side 2 had 142204 occurrences difference from expected: -653 side 3 had 142993 occurrences difference from expected: 136 side 4 had 142797 occurrences difference from expected: -60 side 5 had 143081 occurrences difference from expected: 224 side 6 had 142711 occurrences difference from expected: -146 side 7 had 143247 occurrences difference from expected: 390 ``` ## Ring ```ring # Project : Seven-sided dice from five-sided dice for n = 1 to 20 d = dice7() see "" + d + " " next see nl func dice7() x = dice5() * 5 + dice5() - 6 if x > 20 return dice7() ok dc = x % 7 + 1 return dc func dice5() rnd = random(4) + 1 return rnd ``` Output: ```txt 7 6 3 5 2 2 7 1 2 7 3 7 4 4 4 2 3 2 6 1 ``` ## Ruby {{trans|Tcl}} Usesdistcheck
from [[Simple_Random_Distribution_Checker#Ruby|here]]. ```ruby require './distcheck.rb' def d5 1 + rand(5) end def d7 loop do d55 = 5*d5 + d5 - 6 return (d55 % 7 + 1) if d55 < 21 end end distcheck(1_000_000) {d5} distcheck(1_000_000) {d7} ``` {{out}} ```txt 1 200227 2 200264 3 199777 4 199387 5 200345 1 143175 2 143031 3 142731 4 142716 5 142931 6 142605 7 142811 ``` ## Scala {{Out}}Best seen running in your browser either by [https://scalafiddle.io/sf/3RNtNEC/0 ScalaFiddle (ES aka JavaScript, non JVM)] or [https://scastie.scala-lang.org/Y5qSeW52QiC40l5vJCUMRA Scastie (remote JVM)]. ```Scala import scala.util.Random object SevenSidedDice extends App { private val rnd = new Random private def seven = { var v = 21 def five = 1 + rnd.nextInt(5) while (v > 20) v = five + five * 5 - 6 1 + v % 7 } println("Random number from 1 to 7: " + seven) } ``` ## Sidef {{trans|Perl}} ```ruby func dice5 { 1 + 5.rand.int } func dice7 { loop { var d7 = ((5*dice5() + dice5() - 6) % 8); d7 && return d7; } } var count7 = Hash.new; var n = 1e6; n.times { count7{dice7()} := 0 ++ } count7.keys.sort.each { |k| printf("%s: %5.2f%%\n", k, 100*(count7{k}/n * 7 - 1)); } ``` {{out}} ```txt 1: -0.00% 2: 0.02% 3: 0.23% 4: 0.42% 5: -0.23% 6: -0.54% 7: 0.10% ``` ## Tcl Any old D&D hand will know these as a D5 and a D7... ```tcl proc D5 {} {expr {1 + int(5 * rand())}} proc D7 {} { while 1 { set d55 [expr {5 * [D5] + [D5] - 6}] if {$d55 < 21} { return [expr {$d55 % 7 + 1}] } } } ``` Checking: % distcheck D5 1000000 1 199893 2 200162 3 200075 4 199630 5 200240 % distcheck D7 1000000 1 143121 2 142383 3 143353 4 142811 5 142172 6 143291 7 142869 ## VBA The original StackOverflow page doesn't exist any longer. Luckily [https://web.archive.org/web/20100730055051/http://stackoverflow.com:80/questions/137783/given-a-function-which-produces-a-random-integer-in-the-range-1-to-5-write-a-fun archive.org] exists. ```vb Private Function Test4DiscreteUniformDistribution(ObservationFrequencies() As Variant, Significance As Single) As Boolean 'Returns true if the observed frequencies pass the Pearson Chi-squared test at the required significance level. Dim Total As Long, Ei As Long, i As Integer Dim ChiSquared As Double, DegreesOfFreedom As Integer, p_value As Double Debug.Print "[1] ""Data set:"" "; For i = LBound(ObservationFrequencies) To UBound(ObservationFrequencies) Total = Total + ObservationFrequencies(i) Debug.Print ObservationFrequencies(i); " "; Next i DegreesOfFreedom = UBound(ObservationFrequencies) - LBound(ObservationFrequencies) 'This is exactly the number of different categories minus 1 Ei = Total / (DegreesOfFreedom + 1) For i = LBound(ObservationFrequencies) To UBound(ObservationFrequencies) ChiSquared = ChiSquared + (ObservationFrequencies(i) - Ei) ^ 2 / Ei Next i p_value = 1 - WorksheetFunction.ChiSq_Dist(ChiSquared, DegreesOfFreedom, True) Debug.Print Debug.Print "Chi-squared test for given frequencies" Debug.Print "X-squared ="; Format(ChiSquared, "0.0000"); ", "; Debug.Print "df ="; DegreesOfFreedom; ", "; Debug.Print "p-value = "; Format(p_value, "0.0000") Test4DiscreteUniformDistribution = p_value > Significance End Function Private Function Dice5() As Integer Dice5 = Int(5 * Rnd + 1) End Function Private Function Dice7() As Integer Dim i As Integer Do i = 5 * (Dice5 - 1) + Dice5 Loop While i > 21 Dice7 = i Mod 7 + 1 End Function Sub TestDice7() Dim i As Long, roll As Integer Dim Bins(1 To 7) As Variant For i = 1 To 1000000 roll = Dice7 Bins(roll) = Bins(roll) + 1 Next i Debug.Print "[1] ""Uniform? "; Test4DiscreteUniformDistribution(Bins, 0.05); """" End Sub ``` {{out}} ```txt [1] "Data set:" 142418 142898 142940 142573 143030 143139 143002 Chi-squared test for given frequencies X-squared =2.8870, df = 6 , p-value = 0.8229 [1] "Uniform? True" ``` ## VBScript ```vb Option Explicit function dice5 dice5 = int(rnd*5) + 1 end function function dice7 dim j do j = 5 * dice5 + dice5 - 6 loop until j < 21 dice7 = j mod 7 + 1 end function ``` ## Verilog ```verilog /////////////////////////////////////////////////////////////////////////////// /// seven_sided_dice_tb : (testbench) /// /// Check the distribution of the output of a seven sided dice circuit /// /////////////////////////////////////////////////////////////////////////////// module seven_sided_dice_tb; reg [31:0] freq[0:6]; reg clk; wire [2:0] dice_face; reg req; wire valid_roll; integer i; initial begin clk <= 0; forever begin #1; clk <= ~clk; end end initial begin req <= 1'b1; for(i = 0; i < 7; i = i + 1) begin freq[i] <= 32'b0; end repeat(10) @(posedge clk); repeat(7000000) begin @(posedge clk); while(~valid_roll) begin @(posedge clk); end freq[dice_face] <= freq[dice_face] + 32'b1; end $display("********************************************"); $display("*** Seven sided dice distribution: "); $display(" Theoretical distribution is an uniform "); $display(" distribution with (1/7)-probability "); $display(" for each possible outcome, "); $display(" The experimental distribution is: "); for(i = 0; i < 7; i = i + 1) begin if(freq[i] < 32'd1_000_000) begin $display("%d with probability 1/7 - (%d ppm)", i, (32'd1_000_000 - freq[i])/7); end else begin $display("%d with probability 1/7 + (%d ppm)", i, (freq[i] - 32'd1_000_000)/7); end end $finish; end seven_sided_dice DUT( .clk(clk), .req(req), .valid_roll(valid_roll), .dice_face(dice_face) ); endmodule /////////////////////////////////////////////////////////////////////////////// /// seven_sided_dice : /// /// Synthsizeable module that using a 5 sided dice as a black box /// /// is able to reproduce the outcomes if a 7-sided dice /// /////////////////////////////////////////////////////////////////////////////// module seven_sided_dice( input wire clk, input wire req, output reg valid_roll, output reg [2:0] dice_face ); wire [2:0] face1; wire [2:0] face2; reg [4:0] combination; reg req_p1; reg req_p2; reg req_p3; always @(posedge clk) begin req_p1 <= req; req_p2 <= req_p1; end always @(posedge clk) begin if(req_p1) begin combination <= face1 + face2 + {face2, 2'b00}; end if(req_p2) begin case(combination) 5'd0, 5'd1, 5'd2: {valid_roll, dice_face} <= {1'b1, 3'd0}; 5'd3, 5'd4, 5'd5: {valid_roll, dice_face} <= {1'b1, 3'd1}; 5'd6, 5'd7, 5'd8: {valid_roll, dice_face} <= {1'b1, 3'd2}; 5'd9, 5'd10, 5'd11: {valid_roll, dice_face} <= {1'b1, 3'd3}; 5'd12, 5'd13, 5'd14: {valid_roll, dice_face} <= {1'b1, 3'd4}; 5'd15, 5'd16, 5'd17: {valid_roll, dice_face} <= {1'b1, 3'd5}; 5'd18, 5'd19, 5'd20: {valid_roll, dice_face} <= {1'b1, 3'd6}; default: valid_roll <= 1'b0; endcase end end five_sided_dice dice1( .clk(clk), .req(req), .dice_face(face1) ); five_sided_dice dice2( .clk(clk), .req(req), .dice_face(face2) ); endmodule /////////////////////////////////////////////////////////////////////////////// /// five_sided_dice : /// /// A model of the five sided dice component /// /////////////////////////////////////////////////////////////////////////////// module five_sided_dice( input wire clk, input wire req, output reg [2:0] dice_face ); always @(posedge clk) begin if(req) begin dice_face <= $urandom % 5; end end endmodule ``` Compiling with Icarus Verilog ```txt > iverilog seven-sided-dice.v -o seven-sided-dice ``` Running the test ```txt > vvp seven-sided-dice ******************************************** *** Seven sided dice distribution: Theoretical distribution is an uniform distribution with (1/7)-probability for each possible outcome, The experimental distribution is: 0 with probability 1/7 + ( 67 ppm) 1 with probability 1/7 - ( 47 ppm) 2 with probability 1/7 + ( 92 ppm) 3 with probability 1/7 - ( 17 ppm) 4 with probability 1/7 - ( 36 ppm) 5 with probability 1/7 + ( 51 ppm) 6 with probability 1/7 - ( 109 ppm) ``` ## zkl ```zkl var die5=(1).random.fp(6); // [1..5] fcn die7{ while((r:=5*die5() + die5())>=27){} r/3-1 } fcn rtest(N){ //test spread over [0..9] dist:=L(0,0,0,0,0,0,0,0,0,0); do(N){ dist[die7()]+=1 } sum:=dist.sum(); dist=dist.apply('wrap(n){ "%.2f%%".fmt(n.toFloat()/sum*100) }).println(); } println("Looking for ",100.0/7,"%"); rtest(0d1_000_000); ``` {{out}} ```txt Looking for 14.2857% L("0.00%","14.28%","14.36%","14.22%","14.26%","14.34%","14.33%","14.21%","0.00%","0.00%") ```