⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Checksums}} '''[[wp:SHA-256|SHA-256]]''' is the recommended stronger alternative to [[SHA-1]]. See [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf FIPS PUB 180-4] for implementation details.
Either by using a dedicated library or implementing the algorithm in your language, show that the SHA-256 digest of the string "Rosetta code" is: 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
AutoHotkey
Source: [https://github.com/jNizM/AutoHotkey_Scripts/tree/master/Functions/Checksums SHA-256 @github] by jNizM
str := "Rosetta code"
MsgBox, % "File:`n" (file) "`n`nSHA-256:`n" FileSHA256(file)
; SHA256
### ======================================================================
SHA256(string, encoding = "utf-8")
{
return CalcStringHash(string, 0x800c, encoding)
}
; CalcAddrHash
### ================================================================
CalcAddrHash(addr, length, algid, byref hash = 0, byref hashlength = 0)
{
static h := [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "A", "B", "C", "D", "E", "F"]
static b := h.minIndex()
o := ""
if (DllCall("advapi32\CryptAcquireContext", "Ptr*", hProv, "Ptr", 0, "Ptr", 0, "UInt", 24, "UInt", 0xF0000000))
{
if (DllCall("advapi32\CryptCreateHash", "Ptr", hProv, "UInt", algid, "UInt", 0, "UInt", 0, "Ptr*", hHash))
{
if (DllCall("advapi32\CryptHashData", "Ptr", hHash, "Ptr", addr, "UInt", length, "UInt", 0))
{
if (DllCall("advapi32\CryptGetHashParam", "Ptr", hHash, "UInt", 2, "Ptr", 0, "UInt*", hashlength, "UInt", 0))
{
VarSetCapacity(hash, hashlength, 0)
if (DllCall("advapi32\CryptGetHashParam", "Ptr", hHash, "UInt", 2, "Ptr", &hash, "UInt*", hashlength, "UInt", 0))
{
loop, % hashlength
{
v := NumGet(hash, A_Index - 1, "UChar")
o .= h[(v >> 4) + b] h[(v & 0xf) + b]
}
}
}
}
DllCall("advapi32\CryptDestroyHash", "Ptr", hHash)
}
DllCall("advapi32\CryPtreleaseContext", "Ptr", hProv, "UInt", 0)
}
return o
}
; CalcStringHash
### ==============================================================
CalcStringHash(string, algid, encoding = "utf-8", byref hash = 0, byref hashlength = 0)
{
chrlength := (encoding = "cp1200" || encoding = "utf-16") ? 2 : 1
length := (StrPut(string, encoding) - 1) * chrlength
VarSetCapacity(data, length, 0)
StrPut(string, &data, floor(length / chrlength), encoding)
return CalcAddrHash(&data, length, algid, hash, hashlength)
}
{{out}}
String: Rosetta code
SHA-256: 764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF
AWK
Using the system function as a 'library'.
{
("echo -n " $0 " | sha256sum") | getline sha;
gsub(/[^0-9a-zA-Z]/, "", sha);
print sha;
}
{{out}}
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
BaCon
PRAGMA LDFLAGS -lcrypto
OPTION MEMTYPE unsigned char
DECLARE result TYPE unsigned char*
result = SHA256("Rosetta code", 12, 0)
FOR i = 0 TO SHA256_DIGEST_LENGTH-1
PRINT PEEK(result+i) FORMAT "%02x"
NEXT
PRINT
{{out}}
user@host $ bacon sha256
Converting 'sha256.bac'... done, 14 lines were processed in 0.002 seconds.
Compiling 'sha256.bac'... cc -c sha256.bac.c
cc -o sha256 sha256.bac.o -lbacon -lm -lcrypto
Done, program 'sha256' ready.
user@host $ ./sha256
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
BBC BASIC
Library
{{works with|BBC BASIC for Windows}}
PRINT FNsha256("Rosetta code")
END
DEF FNsha256(message$)
LOCAL buflen%, buffer%, hcont%, hprov%, hhash%, hash$, i%
CALG_SHA_256 = &800C
HP_HASHVAL = 2
CRYPT_NEWKEYSET = 8
PROV_RSA_AES = 24
buflen% = 128
DIM buffer% LOCAL buflen%-1
SYS "CryptAcquireContext", ^hcont%, 0, \
\ "Microsoft Enhanced RSA and AES Cryptographic Provider", \
\ PROV_RSA_AES, CRYPT_NEWKEYSET
SYS "CryptAcquireContext", ^hprov%, 0, 0, PROV_RSA_AES, 0
SYS "CryptCreateHash", hprov%, CALG_SHA_256, 0, 0, ^hhash%
SYS "CryptHashData", hhash%, message$, LEN(message$), 0
SYS "CryptGetHashParam", hhash%, HP_HASHVAL, buffer%, ^buflen%, 0
SYS "CryptDestroyHash", hhash%
SYS "CryptReleaseContext", hprov%
SYS "CryptReleaseContext", hcont%
FOR i% = 0 TO buflen%-1
hash$ += RIGHT$("0" + STR$~buffer%?i%, 2)
NEXT
= hash$
'''Output:'''
764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF
Native
{{works with|BBC BASIC for Windows}}
REM SHA-256 calculation by Richard Russell in BBC BASIC for Windows
REM Must run in FLOAT64 mode:
*FLOAT64
REM Test message for validation:
message$ = "Rosetta code"
REM Initialize variables:
h0% = &6A09E667
h1% = &BB67AE85
h2% = &3C6EF372
h3% = &A54FF53A
h4% = &510E527F
h5% = &9B05688C
h6% = &1F83D9AB
h7% = &5BE0CD19
REM Create table of constants:
DIM k%(63) : k%() = \
\ &428A2F98, &71374491, &B5C0FBCF, &E9B5DBA5, &3956C25B, &59F111F1, &923F82A4, &AB1C5ED5, \
\ &D807AA98, &12835B01, &243185BE, &550C7DC3, &72BE5D74, &80DEB1FE, &9BDC06A7, &C19BF174, \
\ &E49B69C1, &EFBE4786, &0FC19DC6, &240CA1CC, &2DE92C6F, &4A7484AA, &5CB0A9DC, &76F988DA, \
\ &983E5152, &A831C66D, &B00327C8, &BF597FC7, &C6E00BF3, &D5A79147, &06CA6351, &14292967, \
\ &27B70A85, &2E1B2138, &4D2C6DFC, &53380D13, &650A7354, &766A0ABB, &81C2C92E, &92722C85, \
\ &A2BFE8A1, &A81A664B, &C24B8B70, &C76C51A3, &D192E819, &D6990624, &F40E3585, &106AA070, \
\ &19A4C116, &1E376C08, &2748774C, &34B0BCB5, &391C0CB3, &4ED8AA4A, &5B9CCA4F, &682E6FF3, \
\ &748F82EE, &78A5636F, &84C87814, &8CC70208, &90BEFFFA, &A4506CEB, &BEF9A3F7, &C67178F2
Length% = LEN(message$)*8
REM Pre-processing:
REM append the bit '1' to the message:
message$ += CHR$&80
REM append k bits '0', where k is the minimum number >= 0 such that
REM the resulting message length (in bits) is congruent to 448 (mod 512)
WHILE (LEN(message$) MOD 64) <> 56
message$ += CHR$0
ENDWHILE
REM append length of message (before pre-processing), in bits, as
REM 64-bit big-endian integer:
FOR I% = 56 TO 0 STEP -8
message$ += CHR$(Length% >>> I%)
NEXT
REM Process the message in successive 512-bit chunks:
REM break message into 512-bit chunks, for each chunk
REM break chunk into sixteen 32-bit big-endian words w[i], 0 <= i <= 15
DIM w%(63)
FOR chunk% = 0 TO LEN(message$) DIV 64 - 1
FOR i% = 0 TO 15
w%(i%) = !(!^message$ + 64*chunk% + 4*i%)
SWAP ?(^w%(i%)+0),?(^w%(i%)+3)
SWAP ?(^w%(i%)+1),?(^w%(i%)+2)
NEXT i%
REM Extend the sixteen 32-bit words into sixty-four 32-bit words:
FOR i% = 16 TO 63
s0% = FNrr(w%(i%-15),7) EOR FNrr(w%(i%-15),18) EOR (w%(i%-15) >>> 3)
s1% = FNrr(w%(i%-2),17) EOR FNrr(w%(i%-2),19) EOR (w%(i%-2) >>> 10)
w%(i%) = FN32(w%(i%-16) + s0% + w%(i%-7) + s1%)
NEXT i%
REM Initialize hash value for this chunk:
a% = h0%
b% = h1%
c% = h2%
d% = h3%
e% = h4%
f% = h5%
g% = h6%
h% = h7%
REM Main loop:
FOR i% = 0 TO 63
s0% = FNrr(a%,2) EOR FNrr(a%,13) EOR FNrr(a%,22)
maj% = (a% AND b%) EOR (a% AND c%) EOR (b% AND c%)
t2% = FN32(s0% + maj%)
s1% = FNrr(e%,6) EOR FNrr(e%,11) EOR FNrr(e%,25)
ch% = (e% AND f%) EOR ((NOT e%) AND g%)
t1% = FN32(h% + s1% + ch% + k%(i%) + w%(i%))
h% = g%
g% = f%
f% = e%
e% = FN32(d% + t1%)
d% = c%
c% = b%
b% = a%
a% = FN32(t1% + t2%)
NEXT i%
REM Add this chunk's hash to result so far:
h0% = FN32(h0% + a%)
h1% = FN32(h1% + b%)
h2% = FN32(h2% + c%)
h3% = FN32(h3% + d%)
h4% = FN32(h4% + e%)
h5% = FN32(h5% + f%)
h6% = FN32(h6% + g%)
h7% = FN32(h7% + h%)
NEXT chunk%
REM Produce the final hash value (big-endian):
hash$ = FNhex(h0%) + " " + FNhex(h1%) + " " + FNhex(h2%) + " " + FNhex(h3%) + \
\ " " + FNhex(h4%) + " " + FNhex(h5%) + " " + FNhex(h6%) + " " + FNhex(h7%)
PRINT hash$
END
DEF FNrr(A%,I%) = (A% >>> I%) OR (A% << (32-I%))
DEF FNhex(A%) = RIGHT$("0000000"+STR$~A%,8)
DEF FN32(n#)
WHILE n# > &7FFFFFFF : n# -= 2^32 : ENDWHILE
WHILE n# < &80000000 : n# += 2^32 : ENDWHILE
= n#
'''Output:'''
764FAF5C 61AC315F 1497F9DF A5427139 65B785E5 CC2F707D 6468D7D1 124CDFCF
C
Requires OpenSSL, compile flag: -lssl -lcrypto
#include <stdio.h>
#include <string.h>
#include <openssl/sha.h>
int main (void) {
const char *s = "Rosetta code";
unsigned char *d = SHA256(s, strlen(s), 0);
int i;
for (i = 0; i < SHA256_DIGEST_LENGTH; i++)
printf("%02x", d[i]);
putchar('\n');
return 0;
}
C++
Uses [https://www.cryptopp.com/ crypto++]. Compile it with -lcryptopp
#include <iostream>
#include <cryptopp/filters.h>
#include <cryptopp/hex.h>
#include <cryptopp/sha.h>
int main(int argc, char **argv){
CryptoPP::SHA256 hash;
std::string digest;
std::string message = "Rosetta code";
CryptoPP::StringSource s(message, true,
new CryptoPP::HashFilter(hash,
new CryptoPP::HexEncoder(
new CryptoPP::StringSink(digest))));
std::cout << digest << std::endl;
return 0;
}
C#
using System;
using System.Security.Cryptography;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace RosettaCode.SHA256
{
[TestClass]
public class SHA256ManagedTest
{
[TestMethod]
public void TestComputeHash()
{
var buffer = Encoding.UTF8.GetBytes("Rosetta code");
var hashAlgorithm = new SHA256Managed();
var hash = hashAlgorithm.ComputeHash(buffer);
Assert.AreEqual(
"76-4F-AF-5C-61-AC-31-5F-14-97-F9-DF-A5-42-71-39-65-B7-85-E5-CC-2F-70-7D-64-68-D7-D1-12-4C-DF-CF",
BitConverter.ToString(hash));
}
}
}
=={{header|Caché ObjectScript}}==
USER>set hash=$System.Encryption.SHAHash(256, "Rosetta code")
USER>zzdump hash
0000: 76 4F AF 5C 61 AC 31 5F 14 97 F9 DF A5 42 71 39
0010: 65 B7 85 E5 CC 2F 70 7D 64 68 D7 D1 12 4C DF CF
Clojure
{{libheader|pandect}}
(use 'pandect.core)
(sha256 "Rosetta code")
{{Out}}
"764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"
Common Lisp
{{libheader|Ironclad}}
(ql:quickload 'ironclad)
(defun sha-256 (str)
(ironclad:byte-array-to-hex-string
(ironclad:digest-sequence :sha256
(ironclad:ascii-string-to-byte-array str))))
(sha-256 "Rosetta code")
{{Out}}
"764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"
D
Standard Version
void main() {
import std.stdio, std.digest.sha;
writefln("%-(%02x%)", "Rosetta code".sha256Of);
}
{{out}}
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
Simple Implementation
// Copyright (C) 2005, 2006 Free Software Foundation, Inc. GNU License.
// Translated to D language. Only lightly tested, not for serious use.
import core.stdc.string: memcpy;
import core.bitop: bswap;
struct SHA256 {
enum uint BLOCK_SIZE = 4096;
static assert(BLOCK_SIZE % 64 == 0, "Invalid BLOCK_SIZE.");
uint[8] state;
uint[2] total;
uint bufLen;
union {
uint[32] buffer;
ubyte[buffer.sizeof] bufferB;
}
alias TResult = ubyte[256 / 8];
version(WORDS_BIGENDIAN) {
static uint bswap(in uint n) pure nothrow @safe @nogc { return n; }
}
// Bytes used to pad the buffer to the next 64-byte boundary.
static immutable ubyte[64] fillBuf = [0x80, 0 /* , 0, 0, ... */];
/** Initialize structure containing state of computation.
Takes a pointer to a 256 bit block of data (eight 32 bit ints) and
intializes it to the start constants of the SHA256 algorithm. This
must be called before using hash in the call to sha256_hash. */
void init() pure nothrow @safe @nogc {
state = [0x6a09e667U, 0xbb67ae85U, 0x3c6ef372U, 0xa54ff53aU,
0x510e527fU, 0x9b05688cU, 0x1f83d9abU, 0x5be0cd19U];
total[] = 0;
bufLen = 0;
}
/** Starting with the result of former calls of this function (or
the initialization function) update the context for the next LEN
bytes starting at BUFFER.
It is not required that LEN is a multiple of 64. */
void processBytes(in ubyte[] inBuffer) pure nothrow @nogc {
// When we already have some bits in our internal
// buffer concatenate both inputs first.
const(ubyte)* inBufferPtr = inBuffer.ptr;
auto len = inBuffer.length;
if (bufLen != 0) {
immutable size_t left_over = bufLen;
immutable size_t add = (128 - left_over > len) ?
len :
128 - left_over;
memcpy(&bufferB[left_over], inBufferPtr, add);
bufLen += add;
if (bufLen > 64) {
processBlock(bufferB[0 .. bufLen & ~63]);
bufLen &= 63;
// The regions in the following copy operation cannot overlap.
memcpy(bufferB.ptr, &bufferB[(left_over + add) & ~63], bufLen);
}
inBufferPtr += add;
len -= add;
}
// Process available complete blocks.
if (len >= 64) {
processBlock(inBufferPtr[0 .. len & ~63]);
inBufferPtr += (len & ~63);
len &= 63;
}
// Move remaining bytes in internal buffer.
if (len > 0) {
size_t left_over = bufLen;
memcpy(&bufferB[left_over], inBufferPtr, len);
left_over += len;
if (left_over >= 64) {
processBlock(bufferB[0 .. 64]);
left_over -= 64;
memcpy(bufferB.ptr, &bufferB[64], left_over);
}
bufLen = left_over;
}
}
/** Starting with the result of former calls of this function
(or the initialization function) update the context ctx for
the next len bytes starting at buffer.
It is necessary that len is a multiple of 64. */
void processBlock(in ubyte[] inBuffer)
pure nothrow @nogc in {
assert(inBuffer.length % 64 == 0);
} body {
// Round functions.
static uint F1(in uint e, in uint f, in uint g) pure nothrow @safe @nogc {
return g ^ (e & (f ^ g));
}
static uint F2(in uint a, in uint b, in uint c) pure nothrow @safe @nogc {
return (a & b) | (c & (a | b));
}
immutable len = inBuffer.length;
auto words = cast(uint*)inBuffer.ptr;
immutable size_t nWords = len / uint.sizeof;
const uint* endp = words + nWords;
uint[16] x = void;
auto a = state[0];
auto b = state[1];
auto c = state[2];
auto d = state[3];
auto e = state[4];
auto f = state[5];
auto g = state[6];
auto h = state[7];
// First increment the byte count. FIPS PUB 180-2 specifies the
// possible length of the file up to 2^64 bits. Here we only
// compute the number of bytes. Do a double word increment.
total[0] += len;
if (total[0] < len)
total[1]++;
static uint rol(in uint x, in uint n) pure nothrow @safe @nogc {
return (x << n) | (x >> (32 - n)); }
static uint S0(in uint x) pure nothrow @safe @nogc {
return rol(x, 25) ^ rol(x, 14) ^ (x >> 3); }
static uint S1(in uint x) pure nothrow @safe @nogc {
return rol(x, 15) ^ rol(x, 13) ^ (x >> 10); }
static uint SS0(in uint x) pure nothrow @safe @nogc {
return rol(x, 30) ^ rol(x,19) ^ rol(x, 10); }
static uint SS1(in uint x) pure nothrow @safe @nogc {
return rol(x, 26) ^ rol(x, 21) ^ rol(x, 7); }
uint M(in uint I) pure nothrow @safe @nogc {
immutable uint tm = S1(x[(I - 2) & 0x0f]) +
x[(I - 7) & 0x0f] +
S0(x[(I - 15) & 0x0f]) +
x[I & 0x0f];
x[I & 0x0f] = tm;
return tm;
}
static void R(in uint a, in uint b, in uint c, ref uint d,
in uint e, in uint f, in uint g, ref uint h,
in uint k, in uint m) pure nothrow @safe @nogc {
immutable t0 = SS0(a) + F2(a, b, c);
immutable t1 = h + SS1(e) + F1(e, f, g) + k + m;
d += t1;
h = t0 + t1;
}
// SHA256 round constants.
static immutable uint[64] K = [
0x428a2f98U, 0x71374491U, 0xb5c0fbcfU, 0xe9b5dba5U,
0x3956c25bU, 0x59f111f1U, 0x923f82a4U, 0xab1c5ed5U,
0xd807aa98U, 0x12835b01U, 0x243185beU, 0x550c7dc3U,
0x72be5d74U, 0x80deb1feU, 0x9bdc06a7U, 0xc19bf174U,
0xe49b69c1U, 0xefbe4786U, 0x0fc19dc6U, 0x240ca1ccU,
0x2de92c6fU, 0x4a7484aaU, 0x5cb0a9dcU, 0x76f988daU,
0x983e5152U, 0xa831c66dU, 0xb00327c8U, 0xbf597fc7U,
0xc6e00bf3U, 0xd5a79147U, 0x06ca6351U, 0x14292967U,
0x27b70a85U, 0x2e1b2138U, 0x4d2c6dfcU, 0x53380d13U,
0x650a7354U, 0x766a0abbU, 0x81c2c92eU, 0x92722c85U,
0xa2bfe8a1U, 0xa81a664bU, 0xc24b8b70U, 0xc76c51a3U,
0xd192e819U, 0xd6990624U, 0xf40e3585U, 0x106aa070U,
0x19a4c116U, 0x1e376c08U, 0x2748774cU, 0x34b0bcb5U,
0x391c0cb3U, 0x4ed8aa4aU, 0x5b9cca4fU, 0x682e6ff3U,
0x748f82eeU, 0x78a5636fU, 0x84c87814U, 0x8cc70208U,
0x90befffaU, 0xa4506cebU, 0xbef9a3f7U, 0xc67178f2U];
while (words < endp) {
foreach (ref xi; x) {
xi = bswap(*words);
words++;
}
R(a, b, c, d, e, f, g, h, K[ 0], x[ 0]);
R(h, a, b, c, d, e, f, g, K[ 1], x[ 1]);
R(g, h, a, b, c, d, e, f, K[ 2], x[ 2]);
R(f, g, h, a, b, c, d, e, K[ 3], x[ 3]);
R(e, f, g, h, a, b, c, d, K[ 4], x[ 4]);
R(d, e, f, g, h, a, b, c, K[ 5], x[ 5]);
R(c, d, e, f, g, h, a, b, K[ 6], x[ 6]);
R(b, c, d, e, f, g, h, a, K[ 7], x[ 7]);
R(a, b, c, d, e, f, g, h, K[ 8], x[ 8]);
R(h, a, b, c, d, e, f, g, K[ 9], x[ 9]);
R(g, h, a, b, c, d, e, f, K[10], x[10]);
R(f, g, h, a, b, c, d, e, K[11], x[11]);
R(e, f, g, h, a, b, c, d, K[12], x[12]);
R(d, e, f, g, h, a, b, c, K[13], x[13]);
R(c, d, e, f, g, h, a, b, K[14], x[14]);
R(b, c, d, e, f, g, h, a, K[15], x[15]);
R(a, b, c, d, e, f, g, h, K[16], M(16));
R(h, a, b, c, d, e, f, g, K[17], M(17));
R(g, h, a, b, c, d, e, f, K[18], M(18));
R(f, g, h, a, b, c, d, e, K[19], M(19));
R(e, f, g, h, a, b, c, d, K[20], M(20));
R(d, e, f, g, h, a, b, c, K[21], M(21));
R(c, d, e, f, g, h, a, b, K[22], M(22));
R(b, c, d, e, f, g, h, a, K[23], M(23));
R(a, b, c, d, e, f, g, h, K[24], M(24));
R(h, a, b, c, d, e, f, g, K[25], M(25));
R(g, h, a, b, c, d, e, f, K[26], M(26));
R(f, g, h, a, b, c, d, e, K[27], M(27));
R(e, f, g, h, a, b, c, d, K[28], M(28));
R(d, e, f, g, h, a, b, c, K[29], M(29));
R(c, d, e, f, g, h, a, b, K[30], M(30));
R(b, c, d, e, f, g, h, a, K[31], M(31));
R(a, b, c, d, e, f, g, h, K[32], M(32));
R(h, a, b, c, d, e, f, g, K[33], M(33));
R(g, h, a, b, c, d, e, f, K[34], M(34));
R(f, g, h, a, b, c, d, e, K[35], M(35));
R(e, f, g, h, a, b, c, d, K[36], M(36));
R(d, e, f, g, h, a, b, c, K[37], M(37));
R(c, d, e, f, g, h, a, b, K[38], M(38));
R(b, c, d, e, f, g, h, a, K[39], M(39));
R(a, b, c, d, e, f, g, h, K[40], M(40));
R(h, a, b, c, d, e, f, g, K[41], M(41));
R(g, h, a, b, c, d, e, f, K[42], M(42));
R(f, g, h, a, b, c, d, e, K[43], M(43));
R(e, f, g, h, a, b, c, d, K[44], M(44));
R(d, e, f, g, h, a, b, c, K[45], M(45));
R(c, d, e, f, g, h, a, b, K[46], M(46));
R(b, c, d, e, f, g, h, a, K[47], M(47));
R(a, b, c, d, e, f, g, h, K[48], M(48));
R(h, a, b, c, d, e, f, g, K[49], M(49));
R(g, h, a, b, c, d, e, f, K[50], M(50));
R(f, g, h, a, b, c, d, e, K[51], M(51));
R(e, f, g, h, a, b, c, d, K[52], M(52));
R(d, e, f, g, h, a, b, c, K[53], M(53));
R(c, d, e, f, g, h, a, b, K[54], M(54));
R(b, c, d, e, f, g, h, a, K[55], M(55));
R(a, b, c, d, e, f, g, h, K[56], M(56));
R(h, a, b, c, d, e, f, g, K[57], M(57));
R(g, h, a, b, c, d, e, f, K[58], M(58));
R(f, g, h, a, b, c, d, e, K[59], M(59));
R(e, f, g, h, a, b, c, d, K[60], M(60));
R(d, e, f, g, h, a, b, c, K[61], M(61));
R(c, d, e, f, g, h, a, b, K[62], M(62));
R(b, c, d, e, f, g, h, a, K[63], M(63));
a = state[0] += a;
b = state[1] += b;
c = state[2] += c;
d = state[3] += d;
e = state[4] += e;
f = state[5] += f;
g = state[6] += g;
h = state[7] += h;
}
}
/** Process the remaining bytes in the internal buffer and the
usual prolog according to the standard and write the result to
resBuf.
Important: On some systems it is required that resBuf is correctly
aligned for a 32-bit value. */
void conclude() pure nothrow @nogc {
// Take yet unprocessed bytes into account.
immutable bytes = bufLen;
immutable size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
// Now count remaining bytes.
total[0] += bytes;
if (total[0] < bytes)
total[1]++;
// Put the 64-bit file length in *bits* at the end of
// the buffer.
buffer[size - 2] = bswap((total[1] << 3) | (total[0] >> 29));
buffer[size - 1] = bswap(total[0] << 3);
memcpy(&bufferB[bytes], fillBuf.ptr, (size - 2) * 4 - bytes);
// Process last bytes.
processBlock(bufferB[0 .. size * 4]);
}
/** Put result from this in first 32 bytes following resBuf. The
result must be in little endian byte order.
Important: On some systems it is required that resBuf is correctly
aligned for a 32-bit value. */
ref TResult read(return ref TResult resBuf) pure nothrow @nogc {
foreach (immutable i, immutable s; state)
(cast(uint*)resBuf.ptr)[i] = bswap(s);
return resBuf;
}
/** Process the remaining bytes in the buffer and put result from
CTX in first 32 (28) bytes following resBuf. The result is always
in little endian byte order, so that a byte-wise output yields to
the wanted ASCII representation of the message digest.
Important: On some systems it is required that resBuf be correctly
aligned for a 32 bits value. */
ref TResult finish(return ref TResult resBuf) pure nothrow @nogc {
conclude;
return read(resBuf);
}
/** Compute SHA512 message digest for LEN bytes beginning at
buffer. The result is always in little endian byte order, so that
a byte-wise output yields to the wanted ASCII representation of
the message digest. */
static ref TResult digest(in ubyte[] inBuffer, return ref TResult resBuf)
pure nothrow @nogc {
SHA256 sha = void;
// Initialize the computation context.
sha.init;
// Process whole buffer but last len % 64 bytes.
sha.processBytes(inBuffer);
// Put result in desired memory area.
return sha.finish(resBuf);
}
/// ditto
static TResult digest(in ubyte[] inBuffer) pure nothrow @nogc {
align(4) TResult resBuf = void;
return digest(inBuffer, resBuf);
}
}
version (sha_256_main) {
void main() {
import std.stdio, std.string;
immutable data = "Rosetta code".representation;
writefln("%(%02x%)", SHA256.digest(data));
}
}
Compile with -version=sha_256_main to run the main function. {{out}}
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
This is a moderately efficient implementation, about 100 MB/s on a 4096 bytes input buffer on a 32 bit system, using the ldc2 compiler. On a more modern CPU (Intel Ivy Bridge) using HyperThreading, handwritten assembly by Intel is about twice faster.
DWScript
PrintLn( HashSHA256.HashData('Rosetta code') );
Emacs Lisp
(secure-hash 'sha256 "Rosetta code") ;; as string of hex digits
Erlang
More code to get the correct display format than doing the calculation. {{out}}
10> Binary = crypto:hash( sha256, "Rosetta code" ).
11> lists:append( [erlang:integer_to_list(X, 16) || <<X:8/integer>> <= Binary] ).
"764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF"
=={{header|F_Sharp|F#}}==
open System.Security.Cryptography
open System.Text
"Rosetta code"
|> Encoding.ASCII.GetBytes
|> (new SHA256Managed()).ComputeHash
|> System.BitConverter.ToString
|> printfn "%s"
{{out}}
76-4F-AF-5C-61-AC-31-5F-14-97-F9-DF-A5-42-71-39-65-B7-85-E5-CC-2F-70-7D-64-68-D7-D1-12-4C-DF-CF
Factor
{{works with|Factor|0.98}}
USING: checksums checksums.sha io math.parser ;
"Rosetta code" sha-256 checksum-bytes bytes>hex-string print
{{out}}
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
Fortran
Intel Fortran on Windows
Using Windows API. See [https://msdn.microsoft.com/en-us/library/aa379886.aspx CryptAcquireContext], [https://msdn.microsoft.com/en-us/library/aa379908.aspx CryptCreateHash], [https://msdn.microsoft.com/en-us/library/aa380202.aspx CryptHashData] and [https://msdn.microsoft.com/en-us/library/aa379947.aspx CryptGetHashParam] on MSDN.
With the file rc.txt containing the string "Rosetta Code":
sha256 rc.txt
764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF rc.txt (12 bytes)
module sha256_mod
use kernel32
use advapi32
implicit none
integer, parameter :: SHA256LEN = 32
contains
subroutine sha256hash(name, hash, dwStatus, filesize)
implicit none
character(*) :: name
integer, parameter :: BUFLEN = 32768
integer(HANDLE) :: hFile, hProv, hHash
integer(DWORD) :: dwStatus, nRead
integer(BOOL) :: status
integer(BYTE) :: buffer(BUFLEN)
integer(BYTE) :: hash(SHA256LEN)
integer(UINT64) :: filesize
dwStatus = 0
filesize = 0
hFile = CreateFile(trim(name) // char(0), GENERIC_READ, FILE_SHARE_READ, NULL, &
OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, NULL)
if (hFile == INVALID_HANDLE_VALUE) then
dwStatus = GetLastError()
print *, "CreateFile failed."
return
end if
if (CryptAcquireContext(hProv, NULL, MS_ENH_RSA_AES_PROV, PROV_RSA_AES, &
CRYPT_VERIFYCONTEXT) == FALSE) then
dwStatus = GetLastError()
print *, "CryptAcquireContext failed.", dwStatus
goto 3
end if
if (CryptCreateHash(hProv, CALG_SHA_256, 0_ULONG_PTR, 0_DWORD, hHash) == FALSE) then
dwStatus = GetLastError()
print *, "CryptCreateHash failed."
go to 2
end if
do
status = ReadFile(hFile, loc(buffer), BUFLEN, nRead, NULL)
if (status == FALSE .or. nRead == 0) exit
filesize = filesize + nRead
if (CryptHashData(hHash, buffer, nRead, 0) == FALSE) then
dwStatus = GetLastError()
print *, "CryptHashData failed."
go to 1
end if
end do
if (status == FALSE) then
dwStatus = GetLastError()
print *, "ReadFile failed."
go to 1
end if
nRead = SHA256LEN
if (CryptGetHashParam(hHash, HP_HASHVAL, hash, nRead, 0) == FALSE) then
dwStatus = GetLastError()
print *, "CryptGetHashParam failed."
end if
1 status = CryptDestroyHash(hHash)
2 status = CryptReleaseContext(hProv, 0)
3 status = CloseHandle(hFile)
end subroutine
end module
program sha256
use sha256_mod
implicit none
integer :: n, m, i, j
character(:), allocatable :: name
integer(DWORD) :: dwStatus
integer(BYTE) :: hash(SHA256LEN)
integer(UINT64) :: filesize
n = command_argument_count()
do i = 1, n
call get_command_argument(i, length=m)
allocate(character(m) :: name)
call get_command_argument(i, name)
call sha256hash(name, hash, dwStatus, filesize)
if (dwStatus == 0) then
do j = 1, SHA256LEN
write(*, "(Z2.2)", advance="NO") hash(j)
end do
write(*, "(' ',A,' (',G0,' bytes)')") name, filesize
end if
deallocate(name)
end do
end program
FreeBASIC
' version 20-10-2016
' FIPS PUB 180-4
' compile with: fbc -s console
Function SHA_256(test_str As String) As String
#Macro Ch (x, y, z)
(((x) And (y)) Xor ((Not (x)) And z))
#EndMacro
#Macro Maj (x, y, z)
(((x) And (y)) Xor ((x) And (z)) Xor ((y) And (z)))
#EndMacro
#Macro sigma0 (x)
(((x) Shr 2 Or (x) Shl 30) Xor ((x) Shr 13 Or (x) Shl 19) Xor ((x) Shr 22 Or (x) Shl 10))
#EndMacro
#Macro sigma1 (x)
(((x) Shr 6 Or (x) Shl 26) Xor ((x) Shr 11 Or (x) Shl 21) Xor ((x) Shr 25 Or (x) Shl 7))
#EndMacro
#Macro sigma2 (x)
(((x) Shr 7 Or (x) Shl 25) Xor ((x) Shr 18 Or (x) Shl 14) Xor ((x) Shr 3))
#EndMacro
#Macro sigma3 (x)
(((x) Shr 17 Or (x) Shl 15) Xor ((x) Shr 19 Or (x) Shl 13) Xor ((x) Shr 10))
#EndMacro
Dim As String message = test_str ' strings are passed as ByRef's
Dim As Long i, j
Dim As UByte Ptr ww1
Dim As UInteger<32> Ptr ww4
Dim As ULongInt l = Len(message)
' set the first bit after the message to 1
message = message + Chr(1 Shl 7)
' add one char to the length
Dim As ULong padding = 64 - ((l +1) Mod (512 \ 8)) ' 512 \ 8 = 64 char.
' check if we have enough room for inserting the length
If padding < 8 Then padding = padding + 64
message = message + String(padding, Chr(0)) ' adjust length
Dim As ULong l1 = Len(message) ' new length
l = l * 8 ' orignal length in bits
' create ubyte ptr to point to l ( = length in bits)
Dim As UByte Ptr ub_ptr = Cast(UByte Ptr, @l)
For i = 0 To 7 'copy length of message to the last 8 bytes
message[l1 -1 - i] = ub_ptr[i]
Next
'table of constants
Dim As UInteger<32> K(0 To ...) = _
{ &H428a2f98, &H71374491, &Hb5c0fbcf, &He9b5dba5, &H3956c25b, &H59f111f1, _
&H923f82a4, &Hab1c5ed5, &Hd807aa98, &H12835b01, &H243185be, &H550c7dc3, _
&H72be5d74, &H80deb1fe, &H9bdc06a7, &Hc19bf174, &He49b69c1, &Hefbe4786, _
&H0fc19dc6, &H240ca1cc, &H2de92c6f, &H4a7484aa, &H5cb0a9dc, &H76f988da, _
&H983e5152, &Ha831c66d, &Hb00327c8, &Hbf597fc7, &Hc6e00bf3, &Hd5a79147, _
&H06ca6351, &H14292967, &H27b70a85, &H2e1b2138, &H4d2c6dfc, &H53380d13, _
&H650a7354, &H766a0abb, &H81c2c92e, &H92722c85, &Ha2bfe8a1, &Ha81a664b, _
&Hc24b8b70, &Hc76c51a3, &Hd192e819, &Hd6990624, &Hf40e3585, &H106aa070, _
&H19a4c116, &H1e376c08, &H2748774c, &H34b0bcb5, &H391c0cb3, &H4ed8aa4a, _
&H5b9cca4f, &H682e6ff3, &H748f82ee, &H78a5636f, &H84c87814, &H8cc70208, _
&H90befffa, &Ha4506ceb, &Hbef9a3f7, &Hc67178f2 }
Dim As UInteger<32> h0 = &H6a09e667
Dim As UInteger<32> h1 = &Hbb67ae85
Dim As UInteger<32> h2 = &H3c6ef372
Dim As UInteger<32> h3 = &Ha54ff53a
Dim As UInteger<32> h4 = &H510e527f
Dim As UInteger<32> h5 = &H9b05688c
Dim As UInteger<32> h6 = &H1f83d9ab
Dim As UInteger<32> h7 = &H5be0cd19
Dim As UInteger<32> a, b, c, d, e, f, g, h
Dim As UInteger<32> t1, t2, w(0 To 63)
For j = 0 To (l1 -1) \ 64 ' split into block of 64 bytes
ww1 = Cast(UByte Ptr, @message[j * 64])
ww4 = Cast(UInteger<32> Ptr, @message[j * 64])
For i = 0 To 60 Step 4 'little endian -> big endian
Swap ww1[i ], ww1[i +3]
Swap ww1[i +1], ww1[i +2]
Next
For i = 0 To 15 ' copy the 16 32bit block into the array
W(i) = ww4[i]
Next
For i = 16 To 63 ' fill the rest of the array
w(i) = sigma3(W(i -2)) + W(i -7) + sigma2(W(i -15)) + W(i -16)
Next
a = h0 : b = h1 : c = h2 : d = h3 : e = h4 : f = h5 : g = h6 : h = h7
For i = 0 To 63
t1 = h + sigma1(e) + Ch(e, f, g) + K(i) + W(i)
t2 = sigma0(a) + Maj(a, b, c)
h = g : g = f : f = e
e = d + t1
d = c : c = b : b = a
a = t1 + t2
Next
h0 += a : h1 += b : h2 += c : h3 += d
h4 += e : h5 += f : h6 += g : h7 += h
Next j
Dim As String answer = Hex(h0, 8) + Hex(h1, 8) + Hex(h2, 8) + Hex(h3, 8)
answer += Hex(h4, 8) + Hex(h5, 8) + Hex(h6, 8) + Hex(h7, 8)
Return LCase(answer)
End Function
' ------=< MAIN >=------
Dim As String test = "Rosetta code"
Print test; " => "; SHA_256(test)
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
{{out}}
Rosetta code => 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
Free Pascal
program rosettaCodeSHA256;
uses
SysUtils, DCPsha256;
var
ros: String;
sha256 : TDCP_sha256;
digest : array[0..63] of byte;
i: Integer;
output: String;
begin
ros := 'Rosetta code';
sha256 := TDCP_sha256.Create(nil);
sha256.init;
sha256.UpdateStr(ros);
sha256.Final(digest);
output := '';
for i := 0 to 31 do begin
output := output + intToHex(digest[i], 2);
end;
writeln(lowerCase(output));
end.
{{out}}
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
FunL
A SHA-256 function can be defined using the Java support library.
native java.security.MessageDigest
def sha256Java( message ) = map( a -> format('%02x', a), list(MessageDigest.getInstance('SHA-256').digest(message.getBytes('UTF-8'))) ).mkString()
Here is a definition implemented as a direct translation of the pseudocode at '''[[wp:SHA-256|SHA-256]]'''.
def sha256( message ) =
//Initialize hash values
h0 = 0x6a09e667
h1 = 0xbb67ae85
h2 = 0x3c6ef372
h3 = 0xa54ff53a
h4 = 0x510e527f
h5 = 0x9b05688c
h6 = 0x1f83d9ab
h7 = 0x5be0cd19
// Initialize array of round constants
k(0..63) = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2]
// Pre-processing
bits = BitArray( message.getBytes('UTF-8') )
len = bits.length()
bits.append( 1 )
r = bits.length()%512
bits.appendAll( 0 | _ <- 1..(if r > 448 then 512 - r + 448 else 448 - r) )
bits.appendInt( 0 )
bits.appendInt( len )
words = bits.toIntVector()
// Process the message in successive 512-bit chunks
for chunk <- 0:words.length():16
w(0..15) = words(chunk..chunk+15)
// Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array
for i <- 16..63
s0 = (w(i-15) rotateright 7) xor (w(i-15) rotateright 18) xor (w(i-15) >>> 3)
s1 = (w(i-2) rotateright 17) xor (w(i-2) rotateright 19) xor (w(i-2) >>> 10)
w(i) = w(i-16) + s0 + w(i-7) + s1
// Initialize working variables to current hash value
a = h0
b = h1
c = h2
d = h3
e = h4
f = h5
g = h6
h = h7
// Compression function main loop
for i <- 0..63
S1 = (e rotateright 6) xor (e rotateright 11) xor (e rotateright 25)
ch = (e and f) xor ((not e) and g)
temp1 = h + S1 + ch + k(i) + w(i)
S0 = (a rotateright 2) xor (a rotateright 13) xor (a rotateright 22)
maj = (a and b) xor (a and c) xor (b and c)
temp2 = S0 + maj
h = g
g = f
f = e
e = d + temp1
d = c
c = b
b = a
a = temp1 + temp2
// Add the compressed chunk to the current hash value
h0 = h0 + a
h1 = h1 + b
h2 = h2 + c
h3 = h3 + d
h4 = h4 + e
h5 = h5 + f
h6 = h6 + g
h7 = h7 + h
// Produce the final hash value (big-endian)
map( a -> format('%08x', a.intValue()), [h0, h1, h2, h3, h4, h5, h6, h7] ).mkString()
Here is a test comparing the two and also verifying the hash values of the empty message string.
message = 'Rosetta code'
println( 'FunL: "' + message + '" ~> ' + sha256(message) )
println( 'Java: "' + message + '" ~> ' + sha256Java(message) )
message = ''
println( 'FunL: "' + message + '" ~> ' + sha256(message) )
println( 'Java: "' + message + '" ~> ' + sha256Java(message) )
{{out}}
FunL: "Rosetta code" ~> 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
Java: "Rosetta code" ~> 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
FunL: "" ~> e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
Java: "" ~> e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
Genie
[indent=4]
/*
SHA-256 in Genie
valac SHA-256.gs
./SHA-256
*/
init
var msg = "Rosetta code"
var digest = Checksum.compute_for_string(ChecksumType.SHA256, msg, -1)
print msg
print digest
assert(digest == "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf")
{{out}}
prompt$ valac SHA-256.gs
prompt$ ./SHA-256
Rosetta code
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
Go
package main
import (
"crypto/sha256"
"fmt"
"log"
)
func main() {
h := sha256.New()
if _, err := h.Write([]byte("Rosetta code")); err != nil {
log.Fatal(err)
}
fmt.Printf("%x\n", h.Sum(nil))
}
{{out}}
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
Groovy
def sha256Hash = { text ->
java.security.MessageDigest.getInstance("SHA-256").digest(text.bytes)
.collect { String.format("%02x", it) }.join('')
}
Testing
assert sha256Hash('Rosetta code') == '764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf'
Halon
$var = "Rosetta code";
echo sha2($var, 256);
{{out}}
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
Haskell
import Data.Char (ord)
import Crypto.Hash.SHA256 (hash)
import Data.ByteString (unpack, pack)
import Text.Printf (printf)
main = putStrLn $ -- output to terminal
concatMap (printf "%02x") $ -- to hex string
unpack $ -- to array of Word8
hash $ -- SHA-256 hash to ByteString
pack $ -- to ByteString
map (fromIntegral.ord) -- to array of Word8
"Rosetta code"
{{out}}
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## J '''Solution:''' From J8 the ide/qt addon provides bindings to Qt libraries that include support for various hashing algorithms including SHA-256. ```j require '~addons/ide/qt/qt.ijs' getsha256=: 'sha256'&gethash_jqtide_ ``` '''Example Usage:''' ```j getsha256 'Rosetta code' 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` Note that the older version Qt4 libraries currently shipped by default on many Linux distributions don't support SHA-256. On Windows and Mac, J8 includes the later Qt5 libraries that include support for SHA-256. Starting in J8.06, the sha family of hashes have built-in support. ```j sha256=: 3&(128!:6) ``` ```j sha256 'Rosetta code' 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## Java The solution to this task would be a small modification to [[MD5#Java|MD5]] (replacing "MD5" with "SHA-256" as noted [http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#MessageDigest here]). ## Jsish ```javascript /* SHA-256 hash in Jsish */ var str = 'Rosetta code'; puts(Util.hash(str, {type:'sha256'})); /* =!EXPECTSTART!= 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf =!EXPECTEND!= */ ``` {{out}} ```txt prompt$ jsish sha-256.jsi 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf prompt$ jsish -u sha-256.jsi [PASS] sha-256.jsi ``` ## Julia {{works with|Julia|0.6}} ```julia msg = "Rosetta code" using Nettle digest = hexdigest("sha256", msg) # native using SHA digest1 = join(num2hex.(sha256(msg))) @assert digest == digest1 ``` ## Kotlin ```scala // version 1.0.6 import java.security.MessageDigest fun main(args: Array) { val text = "Rosetta code" val bytes = text.toByteArray() val md = MessageDigest.getInstance("SHA-256") val digest = md.digest(bytes) for (byte in digest) print("%02x".format(byte)) println() } ``` {{out}} ```txt 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## Lasso Lasso supports the ciphers as supplied by the operating system. SHA-256 is not supplied by all operating systems by default. Use the cipher_list method to view these algorithms. ```Lasso // The following will return a list of all the cipher // algorithms supported by the installation of Lasso cipher_list // With a -digest parameter the method will limit the returned list // to all of the digest algorithms supported by the installation of Lasso cipher_list(-digest) // return the SHA-256 digest. Dependant on SHA-256 being an available digest method cipher_digest('Rosetta Code', -digest='SHA-256',-hex=true) ``` ## Lua {{works with|Lua 5.1.4}} {{libheader|sha2}} ([http://code.google.com/p/sha2/ luarocks install sha2]) ```Lua #!/usr/bin/lua require "sha2" print(sha2.sha256hex("Rosetta code")) ``` {{out}} ```txt 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## Mathematica Hash["Rosetta code","SHA256","HexString"] ``` {{out}} ```txt 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## NetRexx This solution is basically the same as that for [[MD5#NetRExx|MD5]], substituting "SHA-256" for "MD5" as the algorithm to use in the MessageDigest instance. ```NetRexx /* NetRexx */ options replace format comments java crossref savelog symbols binary import java.security.MessageDigest SHA256('Rosetta code', '764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf') return -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method SHA256(messageText, verifyCheck) public static algorithm = 'SHA-256' digestSum = getDigest(messageText, algorithm) say ' 'messageText' ' say Rexx('<'algorithm'>').right(12) || digestSum''algorithm'>' say Rexx('').right(12) || verifyCheck' ' if digestSum == verifyCheck then say algorithm 'Confirmed' else say algorithm 'Failed' return -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method getDigest(messageText = Rexx, algorithm = Rexx 'MD5', encoding = Rexx 'UTF-8', lowercase = boolean 1) public static returns Rexx algorithm = algorithm.upper encoding = encoding.upper message = String(messageText) messageBytes = byte[] digestBytes = byte[] digestSum = Rexx '' do messageBytes = message.getBytes(encoding) md = MessageDigest.getInstance(algorithm) md.update(messageBytes) digestBytes = md.digest loop b_ = 0 to digestBytes.length - 1 bb = Rexx(digestBytes[b_]).d2x(2) if lowercase then digestSum = digestSum || bb.lower else digestSum = digestSum || bb.upper end b_ catch ex = Exception ex.printStackTrace end return digestSum ``` '''Output:''' ```txtRosetta code 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf SHA-256 Confirmed ``` ## NewLISP ```NewLISP ;; using the crypto module from http://www.newlisp.org/code/modules/crypto.lsp.html ;; (import native functions from the crypto library, provided by OpenSSL) (module "crypto.lsp") (crypto:sha256 "Rosetta Code") ``` ## Nim {{libheader|OpenSSL}} Compile withnim -d:ssl c sha256.nim
: ```nim import strutils const SHA256Len = 32 proc SHA256(d: cstring, n: culong, md: cstring = nil): cstring {.cdecl, dynlib: "libssl.so", importc.} proc SHA256(s: string): string = result = "" let s = SHA256(s.cstring, s.len.culong) for i in 0 .. < SHA256Len: result.add s[i].BiggestInt.toHex(2).toLower echo SHA256("Rosetta code") ``` {{out}} ```txt 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` =={{header|Oberon-2}}== {{works with|oo2c}}{{libheader|crypto}} ```oberon2 MODULE SHA256; IMPORT Crypto:SHA256, Crypto:Utils, Strings, Out; VAR h: SHA256.Hash; str: ARRAY 128 OF CHAR; BEGIN h := SHA256.NewHash(); h.Initialize; str := "Rosetta code"; h.Update(str,0,Strings.Length(str)); h.GetHash(str,0); Out.String("SHA256: ");Utils.PrintHex(str,0,h.size);Out.Ln END SHA256. ``` {{out}} ```txt SHA256: 764FAF5C 61AC315F 1497F9DF A5427139 65B785E5 CC2F707D 6468D7D1 124CDFCF ``` ## Objeck ```Objeck class ShaHash { function : Main(args : String[]) ~ Nil { hash:= Encryption.Hash->SHA256("Rosetta code"->ToByteArray()); str := hash->ToHexString()->ToLower(); str->PrintLine(); str->Equals("764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf")->PrintLine(); } } ``` ```txt 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf true ``` =={{header|Objective-C}}== Build with something like ```txt clang -o rosetta_sha256 rosetta_sha256.m /System/Library/Frameworks/Cocoa.framework/Cocoa ``` or in XCode. ```objc>#importint main(int argc, char ** argv) { NSString * msg = @"Rosetta code"; unsigned char buf[CC_SHA256_DIGEST_LENGTH]; const char * rc = [msg cStringUsingEncoding:NSASCIIStringEncoding]; if (! CC_SHA256(rc, strlen(rc), buf)) { NSLog(@"Failure..."); return -1; } NSMutableString * res = [NSMutableString stringWithCapacity:(CC_SHA256_DIGEST_LENGTH * 2)]; for (int i = 0; i < CC_SHA256_DIGEST_LENGTH; ++i) { [res appendFormat:@"%02x", buf[i]]; } NSLog(@"Output: %@", res); return 0; } ``` ## OCaml {{libheader|caml-sha}} ```ocaml let () = let s = "Rosetta code" in let digest = Sha256.string s in print_endline (Sha256.to_hex digest) ``` Running this script in interpreted mode: ```txt $ ocaml -I +sha sha256.cma sha.ml 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## OS X sha256sum Apple OS X command line with echo and sha256sum. ```sha256sum echo -n 'Rosetta code' | sha256sum ``` Using the -n flag for echo is required as echo normally outputs a newline. {{out}} ```txt 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf - ``` ## PARI/GP It works on Linux systems. ```parigp sha256(s)=extern("echo \"Str(`echo -n '"Str(s)"'|sha256sum|cut -d' ' -f1`)\"") ``` The code above creates a new function sha256(s) which returns SHA-256 hash of item s. {{out}} ```txt sha256("Rosetta code") = "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf" ``` ## Perl The preferred way to do a task like this is to use an already written module, for example: ```Perl #!/usr/bin/perl use strict ; use warnings ; use Digest::SHA qw( sha256_hex ) ; my $digest = sha256_hex my $phrase = "Rosetta code" ; print "SHA-256('$phrase'): $digest\n" ; ``` {{out}} ```txt SHA-256('Rosetta code'): 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` On the other hand, one of perl's mottos is There Is More Than One Way To Do It, so of course you could write your own implementation if you wanted to. ```Perl package Digest::SHA256::PP; use strict; use warnings; use constant WORD => 2**32; use constant MASK => WORD - 1; my @h; my @k; for my $p ( 2 .. 311 ) { # Horrible primality test, but sufficient for this task. next if ("1" x $p) =~ /^(11+?)\1+$/; # The choice to generate h and k instead of hard coding # them is inspired by the Perl 6 implementation. my $c = $p ** ( 1/3 ); push @k, int( ($c - int $c) * WORD ); next if @h == 8; my $s = $p ** ( 1/2 ); push @h, int( ($s - int $s) * WORD ); } sub new { my %self = ( state => [@h], str => "", len => 0 ); bless \%self, shift; } my $rightrotate = sub { my $lo = $_[0] >> $_[1]; my $hi = $_[0] << (32 - $_[1]); ($hi | $lo); }; # This is adapted from the wikipedia entry on SHA2. my $compress = sub { my ($state, $bytes) = @_; my @w = unpack 'N*', $bytes; @w == 16 or die 'internal error'; my ($a, $b, $c, $d, $e, $f, $g, $h) = @$state; until( @w == 64 ) { my $s0 = $w[-15] >> 3; my $s1 = $w[-2] >> 10; $s0 ^= $rightrotate->($w[-15], $_) for 7, 18; $s1 ^= $rightrotate->($w[-2], $_) for 17, 19; push @w, ($w[-16] + $s0 + $w[-7] + $s1) & MASK; } my $i = 0; for my $w (@w) { my $ch = ($e & $f) ^ ((~$e) & $g); my $maj = ($a & $b) ^ ($a & $c) ^ ($b & $c); my ($S0, $S1) = (0, 0); $S1 ^= $rightrotate->( $e, $_ ) for 6, 11, 25; $S0 ^= $rightrotate->( $a, $_ ) for 2, 13, 22; my $temp1 = $h + $S1 + $ch + $k[$i++] + $w; my $temp2 = $S0 + $maj; ($h, $g, $f, $e, $d, $c, $b, $a) = ($g, $f, $e, ($d+$temp1)&MASK, $c, $b, $a, ($temp1+$temp2)&MASK); } my $j = 0; $state->[$j++] += $_ for $a, $b, $c, $d, $e, $f, $g, $h; }; use constant can_Q => eval { length pack 'Q>', 0 }; sub add { my ($self, $bytes) = @_; $self->{len} += 8 * length $bytes; if( !can_Q and $self->{len} >= WORD ) { my $hi = int( $self->{len} / WORD ); $self->{big} += $hi; $self->{len} -= $hi * WORD; } my $len = length $self->{str}; if( ($len + length $bytes) < 64 ) { $self->{str} .= $bytes; return $self; } my $off = 64 - $len; $compress->( $self->{state}, $self->{str} . substr( $bytes, 0, $off ) ); $len = length $_[0]; while( $off+64 <= $len ) { $compress->( $self->{state}, substr( $bytes, $off, 64 ) ); $off += 64; } $self->{str} = substr( $bytes, $off ); $self; } sub addfile { my ($self, $fh) = @_; my $s = ""; while( read( $fh, $s, 2**13 ) ) { $self->add( $s ); } $self; } sub digest { my $self = shift; my $final = $self->{str}; $final .= chr 0x80; while( ( 8+length $final ) % 64 ) { $final .= chr 0; } if( can_Q ) { $final .= pack 'Q>', $self->{len}; } else { $self->{big} ||= 0; $final .= pack 'NN', $self->{big}, $self->{len}; } $compress->( $self->{state}, substr $final, 0, 64, "" ) while length $final; if( wantarray ) { map pack('N', $_), @{ $self->{state} }; } else { pack 'N*', @{ $self->{state} }; } } sub hexdigest { if( wantarray ) { map unpack( 'H*', $_), &digest; } else { unpack 'H*', &digest; } } unless( caller ) { my @testwith = (@ARGV ? @ARGV : 'Rosetta code'); for my $str (@testwith) { my $digester = __PACKAGE__->new; $digester->add($str); print "'$str':\n"; print join(" ", $digester->hexdigest), "\n"; } } 1; ``` {{out}} ```txt 'Rosetta code': 764faf5c 61ac315f 1497f9df a5427139 65b785e5 cc2f707d 6468d7d1 124cdfcf ``` ## Perl 6 The following implementation takes all data as input. Ideally, input should be given lazily or something. ```perl6 say sha256 "Rosetta code"; sub init(&f) { map { my $f = $^p.&f; (($f - $f.Int)*2**32).Int }, state @ = grep *.is-prime, 2 .. *; } sub infix: { ($^a + $^b) % 2**32 } sub rotr($n, $b) { $n +> $b +| $n +< (32 - $b) } proto sha256($) returns Blob {*} multi sha256(Str $str where all($str.ords) < 128) { sha256 $str.encode: 'ascii' } multi sha256(Blob $data) { constant K = init(* **(1/3))[^64]; my @b = flat $data.list, 0x80; push @b, 0 until (8 * @b - 448) %% 512; push @b, slip reverse (8 * $data).polymod(256 xx 7); my @word = :256[@b.shift xx 4] xx @b/4; my @H = init(&sqrt)[^8]; my @w; loop (my $i = 0; $i < @word; $i += 16) { my @h = @H; for ^64 -> $j { @w[$j] = $j < 16 ?? @word[$j + $i] // 0 !! [m+] rotr(@w[$j-15], 7) +^ rotr(@w[$j-15], 18) +^ @w[$j-15] +> 3, @w[$j-7], rotr(@w[$j-2], 17) +^ rotr(@w[$j-2], 19) +^ @w[$j-2] +> 10, @w[$j-16]; my $ch = @h[4] +& @h[5] +^ +^@h[4] % 2**32 +& @h[6]; my $maj = @h[0] +& @h[2] +^ @h[0] +& @h[1] +^ @h[1] +& @h[2]; my $σ0 = [+^] map { rotr @h[0], $_ }, 2, 13, 22; my $σ1 = [+^] map { rotr @h[4], $_ }, 6, 11, 25; my $t1 = [m+] @h[7], $σ1, $ch, K[$j], @w[$j]; my $t2 = $σ0 m+ $maj; @h = flat $t1 m+ $t2, @h[^3], @h[3] m+ $t1, @h[4..6]; } @H [Z[m+]]= @h; } return Blob.new: map { |reverse .polymod(256 xx 3) }, @H; } ``` {{out}} ```txt Buf:0x<76 4f af 5c 61 ac 31 5f 14 97 f9 df a5 42 71 39 65 b7 85 e5 cc 2f 70 7d 64 68 d7 d1 12 4c df cf> ``` ## Phix ```Phix include builtins\sha256.e function asHex(string s) string res = "" for i=1 to length(s) do res &= sprintf("%02X",s[i]) end for return res end function ?asHex(sha256("Rosetta code")) ``` {{out}} ```txt "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf" ``` The standard include file sha256.e is now mainly optimised inline assembly, but the following is, I feel, more in the spirit of this site ```Phix -- -- demo\rosetta\sha-256.exw -- ### ================== -- -- fairly faithful rendition of https://en.wikipedia.org/wiki/SHA-2 -- with slightly improved names (eg s0 -> sigma0) from elsewhere. -- See also sha-256asm.exw for a faster inline asm version, and -- sha-256dll.exw is much shorter as it uses a pre-built dll. --Initial array of round constants --(first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311): constant k = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2} function pad64(integer v) -- round v up to multiple of 64 return floor((v+63)/64)*64 end function constant m4 = allocate(4) -- scratch area, for uint32 function uint32(atom v) -- -- (note: I have experimented to call this as few times as possible. -- It wouldn't hurt to perform this on every maths op, but a -- few leading bits in a few work fields don't matter much.) -- poke4(m4,v) return peek4u(m4) end function function sq_uint32(sequence s) -- apply unit32 to all elements of s for i=1 to length(s) do s[i] = uint32(s[i]) end for return s end function function dword(string msg, integer i) -- get dword as big-endian return msg[i]*#1000000+msg[i+1]*#10000+msg[i+2]*#100+msg[i+3] end function function shr(atom v, integer bits) return floor(v/power(2,bits)) end function function ror(atom v, integer bits) return or_bits(shr(v,bits),v*power(2,32-bits)) end function function sha256(string msg) -- main function atom s0,s1,a,b,c,d,e,f,g,h,ch,temp1,maj,temp2,x sequence w = repeat(0,64) sequence res integer len = length(msg)+1 --Initial hash values --(first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19) atom h0 = 0x6a09e667, h1 = 0xbb67ae85, h2 = 0x3c6ef372, h3 = 0xa54ff53a, h4 = 0x510e527f, h5 = 0x9b05688c, h6 = 0x1f83d9ab, h7 = 0x5be0cd19 -- add the '1' bit and space for size in bits, padded to multiple of 64 msg &= #80&repeat('\0',pad64(len+8)-len) len = (len-1)*8 for i=length(msg) to 1 by -1 do msg[i] = and_bits(len,#FF) len = floor(len/#100) if len=0 then exit end if end for -- Process the message in successive 512-bit (64 byte) chunks for chunk=1 to length(msg) by 64 do for i=1 to 16 do w[i] = dword(msg,chunk+(i-1)*4) end for -- Extend the first 16 words into the remaining 48 words w[17..64] of the message schedule array for i=17 to 64 do x = w[i-15]; s0 = xor_bits(xor_bits(ror(x, 7),ror(x,18)),shr(x, 3)) x = w[i-2]; s1 = xor_bits(xor_bits(ror(x,17),ror(x,19)),shr(x,10)) w[i] = uint32(w[i-16]+s0+w[i-7]+s1) end for -- Initialize working variables to current hash value {a,b,c,d,e,f,g,h} = {h0,h1,h2,h3,h4,h5,h6,h7} -- Compression function main loop for i=1 to 64 do s1 = xor_bits(xor_bits(ror(e,6),ror(e,11)),ror(e,25)) ch = xor_bits(and_bits(e,f),and_bits(not_bits(e),g)) temp1 = h+s1+ch+k[i]+w[i] s0 = xor_bits(xor_bits(ror(a,2),ror(a,13)),ror(a,22)) maj = xor_bits(xor_bits(and_bits(a,b),and_bits(a,c)),and_bits(b,c)) temp2 = s0+maj {h,g,f,e,d,c,b,a} = sq_uint32({g,f,e,d+temp1,c,b,a,temp1+temp2}) end for -- Add the compressed chunk to the current hash value {h0,h1,h2,h3,h4,h5,h6,h7} = sq_add({h0,h1,h2,h3,h4,h5,h6,h7},{a,b,c,d,e,f,g,h}) end for -- Produce the final hash value (big-endian) res = sq_uint32({h0, h1, h2, h3, h4, h5, h6, h7}) -- (or do sq_unit32 on the sq_add above) for i=1 to length(res) do res[i] = sprintf("%08x",res[i]) end for return join(res) end function ?sha256("Rosetta code") ``` {{out}} ```txt "764FAF5C 61AC315F 1497F9DF A5427139 65B785E5 CC2F707D 6468D7D1 124CDFCF" ``` ## PHP ```php > C X)) (mod32 (>> (- C 32) X))) ) (de mod32 (N) (& N `(hex "FFFFFFFF")) ) (de not32 (N) (x| N `(hex "FFFFFFFF")) ) (de add32 @ (mod32 (pass +)) ) (de sha256 (Str) (let Len (length Str) (setq Str (conc (need (- 8 (* 64 (/ (+ Len 1 8 63) 64)) ) (conc (mapcar char (chop Str)) (cons `(hex "80"))) 0 ) (flip (make (setq Len (* 8 Len)) (do 8 (link (& Len 255)) (setq Len (>> 8 Len )) ) ) ) ) ) ) (let (H0 `(hex "6A09E667") H1 `(hex "BB67AE85") H2 `(hex "3C6EF372") H3 `(hex "A54FF53A") H4 `(hex "510E527F") H5 `(hex "9B05688C") H6 `(hex "1F83D9AB") H7 `(hex "5BE0CD19") ) (while Str (let (A H0 B H1 C H2 D H3 E H4 F H5 G H6 H H7 W (conc (make (do 16 (link (apply | (mapcar >> (-24 -16 -8 0) (cut 4 'Str)) ) ) ) ) (need 48 0) ) ) (for (I 17 (>= 64 I) (inc I)) (let (Wi15 (get W (- I 15)) Wi2 (get W (- I 2)) S0 (x| (rightRotate Wi15 7) (rightRotate Wi15 18) (>> 3 Wi15) ) S1 (x| (rightRotate Wi2 17) (rightRotate Wi2 19) (>> 10 Wi2) ) ) (set (nth W I) (add32 (get W (- I 16)) S0 (get W (- I 7)) S1 ) ) ) ) (use (Tmp1 Tmp2) (for I 64 (setq Tmp1 (add32 H (x| (rightRotate E 6) (rightRotate E 11) (rightRotate E 25) ) (x| (& E F) (& (not32 E) G)) (get *Sha256-K I) (get W I) ) Tmp2 (add32 (x| (rightRotate A 2) (rightRotate A 13) (rightRotate A 22) ) (x| (& A B) (& A C) (& B C) ) ) H G G F F E E (add32 D Tmp1) D C C B B A A (add32 Tmp1 Tmp2) ) ) ) (setq H0 (add32 H0 A) H1 (add32 H1 B) H2 (add32 H2 C) H3 (add32 H3 D) H4 (add32 H4 E) H5 (add32 H5 F) H6 (add32 H6 G) H7 (add32 H7 H) ) ) ) (mapcan '((N) (flip (make (do 4 (link (& 255 N)) (setq N (>> 8 N)) ) ) ) ) (list H0 H1 H2 H3 H4 H5 H6 H7) ) ) ) (let Str "Rosetta code" (println (pack (mapcar '((B) (pad 2 (hex B))) (sha256 Str) ) ) ) (println (pack (mapcar '((B) (pad 2 (hex B))) (native "libcrypto.so" "SHA256" '(B . 32) Str (length Str) '(NIL (32)) ) ) ) ) ) (bye) ``` ## PowerShell {{works with|PowerShell 5.0}} ```PowerShell Set-Content -Value "Rosetta code" -Path C:\Colors\blue.txt -NoNewline -Force Get-FileHash -Path C:\Colors\blue.txt -Algorithm SHA256 ``` {{out}} ```txt Algorithm Hash Path --------- ---- ---- SHA256 764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF C:\Colors\blue.txt ``` ## PureBasic PB Version 5.40 ```purebasic a$="Rosetta code" bit.i= 256 UseSHA2Fingerprint() : b$=StringFingerprint(a$, #PB_Cipher_SHA2, bit) OpenConsole() Print("[SHA2 "+Str(bit)+" bit] Text: "+a$+" ==> "+b$) Input() ``` {{out}} ```txt [SHA2 256 bit] Text: Rosetta code ==> 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## Python Python has a standard module for this: ```python>>> import hashlib >>> hashlib.sha256( "Rosetta code".encode() ).hexdigest() '764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf' >>> ``` ## R ```rsplus library(digest) input <- "Rosetta code" cat(digest(input, algo = "sha256", serialize = FALSE), "\n") ``` {{out}} ```txt 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## Racket ```racket #lang racket/base ;; define a quick SH256 FFI interface, similar to the Racket's default ;; SHA1 interface (require ffi/unsafe ffi/unsafe/define openssl/libcrypto (only-in openssl/sha1 bytes->hex-string)) (define-ffi-definer defcrypto libcrypto) (defcrypto SHA256_Init (_fun _pointer -> _int)) (defcrypto SHA256_Update (_fun _pointer _pointer _long -> _int)) (defcrypto SHA256_Final (_fun _pointer _pointer -> _int)) (define (sha256 bytes) (define ctx (malloc 128)) (define result (make-bytes 32)) (SHA256_Init ctx) (SHA256_Update ctx bytes (bytes-length bytes)) (SHA256_Final result ctx) (bytes->hex-string result)) ;; use the defined wrapper to solve the task (displayln (sha256 #"Rosetta code")) ``` {{out}} ```txt 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## Ring ```ring # Project: SHA-256 load "stdlib.ring" str = "Rosetta code" see "String: " + str + nl see "SHA-256: " see sha256(str) + nl ``` Output: ```txt String: Rosetta code SHA-256: 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## Ruby ```ruby require 'digest/sha2' puts Digest::SHA256.hexdigest('Rosetta code') ``` ## Rust ```rust use sha2::{Digest, Sha256}; fn hex_string(input: &[u8]) -> String { input.as_ref().iter().map(|b| format!("{:x}", b)).collect() } fn main() { // create a Sha256 object let mut hasher = Sha256::new(); // write input message hasher.input(b"Rosetta code"); // read hash digest and consume hasher let result = hasher.result(); let hex = hex_string(&result); assert_eq!( hex, "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf" ); println!("{}", hex) } ``` {{out}} ```txt 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## Scala {{libheader|Scala}} ```Scala object RosettaSHA256 extends App { def MD5(s: String): String = { // Besides "MD5", "SHA-256", and other hashes are available val m = java.security.MessageDigest.getInstance("SHA-256").digest(s.getBytes("UTF-8")) m.map("%02x".format(_)).mkString } assert(MD5("Rosetta code") == "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf") println("Successfully completed without errors.") } ``` ## Seed7 ```seed7 $ include "seed7_05.s7i"; include "msgdigest.s7i"; const proc: main is func begin writeln(hex(sha256("Rosetta code"))); end func; ``` {{out}} ```txt 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## Sidef ```ruby var sha = frequire('Digest::SHA'); say sha.sha256_hex('Rosetta code'); ``` {{out}} ```txt 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## Smalltalk Use the [http://smalltalkhub.com/#!/~Cryptography/Cryptography Cryptography] library: ```smalltalk (SHA256 new hashStream: 'Rosetta code' readStream) hex. ``` ## Tcl ```tcl package require sha256 puts [sha2::sha256 -hex "Rosetta code"] ``` {{out}} ```txt 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf ``` ## zkl Uses shared library zklMsgHash.so ```zkl var MsgHash=Import("zklMsgHash"); MsgHash.SHA256("Rosetta code")=="764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf" ``` {{out}} ```txt True ``` {{omit from|Brlcad}} {{omit from|GUISS}} {{omit from|Lilypond}} {{omit from|Openscad}} {{omit from|TPP}}