⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{clarified-review}} {{task|Sorting Algorithms}} {{Sorting Algorithm}}
;Task: Implement a ''comb sort''.
The '''Comb Sort''' is a variant of the [[Bubble Sort]].
Like the [[Shell sort]], the Comb Sort increases the gap used in comparisons and exchanges.
Dividing the gap by works best, but 1.3 may be more practical.
Some implementations use the insertion sort once the gap is less than a certain amount.
;Also see:
- the Wikipedia article: [[wp:Comb sort|Comb sort]].
Variants:
- Combsort11 makes sure the gap ends in (11, 8, 6, 4, 3, 2, 1), which is significantly faster than the other two possible endings.
- Combsort with different endings changes to a more efficient sort when the data is almost sorted (when the gap is small). Comb sort with a low gap isn't much better than the Bubble Sort.
Pseudocode: '''function''' combsort('''array''' input) gap := input'''.size''' ''//initialize gap size'' '''loop until''' gap = 1 '''and''' swaps = 0 ''//update the gap value for a next comb. Below is an example'' gap := int(gap / 1.25) '''if''' gap < 1 ''//minimum gap is 1'' gap := 1 '''end if''' i := 0 swaps := 0 ''//see [[Bubble Sort]] for an explanation'' ''//a single "comb" over the input list'' '''loop until''' i + gap >= input'''.size''' ''//see [[Shell sort]] for similar idea'' '''if''' input[i] > input[i+gap] '''swap'''(input[i], input[i+gap]) swaps := 1 ''// Flag a swap has occurred, so the'' ''// list is not guaranteed sorted'' '''end if''' i := i + 1 '''end loop''' '''end loop''' '''end function'''
360 Assembly
Translation from prototype.
The program uses ASM structured macros and two ASSIST macros to keep the code as short as possible.
* Comb sort 23/06/2016
COMBSORT CSECT
USING COMBSORT,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) prolog
ST R13,4(R15) "
ST R15,8(R13) "
LR R13,R15 "
L R2,N n
BCTR R2,0 n-1
ST R2,GAP gap=n-1
DO UNTIL=(CLC,GAP,EQ,=F'1',AND,CLI,SWAPS,EQ,X'00') repeat
L R4,GAP gap |
MH R4,=H'100' gap*100 |
SRDA R4,32 . |
D R4,=F'125' /125 |
ST R5,GAP gap=int(gap/1.25) |
IF CLC,GAP,LT,=F'1' if gap<1 then -----------+ |
MVC GAP,=F'1' gap=1 | |
ENDIF , end if <-----------------+ |
MVI SWAPS,X'00' swaps=false |
LA RI,1 i=1 |
DO UNTIL=(C,R3,GT,N) do i=1 by 1 until i+gap>n ---+ |
LR R7,RI i | |
SLA R7,2 . | |
LA R7,A-4(R7) r7=@a(i) | |
LR R8,RI i | |
A R8,GAP i+gap | |
SLA R8,2 . | |
LA R8,A-4(R8) r8=@a(i+gap) | |
L R2,0(R7) temp=a(i) | |
IF C,R2,GT,0(R8) if a(i)>a(i+gap) then ---+ | |
MVC 0(4,R7),0(R8) a(i)=a(i+gap) | | |
ST R2,0(R8) a(i+gap)=temp | | |
MVI SWAPS,X'01' swaps=true | | |
ENDIF , end if <-----------------+ | |
LA RI,1(RI) i=i+1 | |
LR R3,RI i | |
A R3,GAP i+gap | |
ENDDO , end do <---------------------+ |
ENDDO , until gap=1 and not swaps <------+
LA R3,PG pgi=0
LA RI,1 i=1
DO WHILE=(C,RI,LE,N) do i=1 to n -------+
LR R1,RI i |
SLA R1,2 . |
L R2,A-4(R1) a(i) |
XDECO R2,XDEC edit a(i) |
MVC 0(4,R3),XDEC+8 output a(i) |
LA R3,4(R3) pgi=pgi+4 |
LA RI,1(RI) i=i+1 |
ENDDO , end do <-----------+
XPRNT PG,L'PG print buffer
L R13,4(0,R13) epilog
LM R14,R12,12(R13) "
XR R15,R15 "
BR R14 exit
A DC F'4',F'65',F'2',F'-31',F'0',F'99',F'2',F'83',F'782',F'1'
DC F'45',F'82',F'69',F'82',F'104',F'58',F'88',F'112',F'89',F'74'
N DC A((N-A)/L'A) number of items of a
GAP DS F gap
SWAPS DS X flag for swaps
PG DS CL80 output buffer
XDEC DS CL12 temp for edit
YREGS
RI EQU 6 i
END COMBSORT
{{out}}
-31 0 1 2 2 4 45 58 65 69 74 82 82 83 88 89 99 104 112 782
ActionScript
function combSort(input:Array)
{
var gap:uint = input.length;
var swapped:Boolean = false;
while(gap > 1 || swapped)
{
gap /= 1.25;
swapped = false;
for(var i:uint = 0; i + gap < input.length; i++)
{
if(input[i] > input[i+gap])
{
var tmp = input[i];
input[i] = input[i+gap];
input[i+gap]=tmp;
swapped = true;
}
}
}
return input;
}
Ada
with Ada.Text_IO;
procedure Comb_Sort is
generic
type Element_Type is private;
type Index_Type is range <>;
type Array_Type is array (Index_Type range <>) of Element_Type;
with function ">" (Left, Right : Element_Type) return Boolean is <>;
with function "+" (Left : Index_Type; Right : Natural) return Index_Type is <>;
with function "-" (Left : Index_Type; Right : Natural) return Index_Type is <>;
procedure Comb_Sort (Data: in out Array_Type);
procedure Comb_Sort (Data: in out Array_Type) is
procedure Swap (Left, Right : in Index_Type) is
Temp : Element_Type := Data(Left);
begin
Data(Left) := Data(Right);
Data(Right) := Temp;
end Swap;
Gap : Natural := Data'Length;
Swap_Occured : Boolean;
begin
loop
Gap := Natural (Float(Gap) / 1.25 - 0.5);
if Gap < 1 then
Gap := 1;
end if;
Swap_Occured := False;
for I in Data'First .. Data'Last - Gap loop
if Data (I) > Data (I+Gap) then
Swap (I, I+Gap);
Swap_Occured := True;
end if;
end loop;
exit when Gap = 1 and not Swap_Occured;
end loop;
end Comb_Sort;
type Integer_Array is array (Positive range <>) of Integer;
procedure Int_Comb_Sort is new Comb_Sort (Integer, Positive, Integer_Array);
Test_Array : Integer_Array := (1, 3, 256, 0, 3, 4, -1);
begin
Int_Comb_Sort (Test_Array);
for I in Test_Array'Range loop
Ada.Text_IO.Put (Integer'Image (Test_Array (I)));
end loop;
Ada.Text_IO.New_Line;
end Comb_Sort;
Output:
-1 0 1 3 3 4 256
AutoHotkey
List1 = 23,76,99,58,97,57,35,89,51,38,95,92,24,46,31,24,14,12,57,78
List2 = 88,18,31,44,4,0,8,81,14,78,20,76,84,33,73,75,82,5,62,70
List2Array(List1, "MyArray")
CombSort("MyArray")
MsgBox, % List1 "`n" Array2List("MyArray")
List2Array(List2, "MyArray")
CombSort("MyArray")
MsgBox, % List2 "`n" Array2List("MyArray")
;---------------------------------------------------------------------------
CombSort(Array) { ; CombSort of Array %Array%, length = %Array%0
;---------------------------------------------------------------------------
Gap := %Array%0
While Gap > 1 Or Swaps {
If (Gap > 1)
Gap := 4 * Gap // 5
i := Swaps := False
While (j := ++i + Gap) <= %Array%0 {
If (%Array%%i% > %Array%%j%) {
Swaps := True
%Array%%i% := (%Array%%j% "", %Array%%j% := %Array%%i%)
}
}
}
}
;---------------------------------------------------------------------------
List2Array(List, Array) { ; creates an array from a comma separated list
;---------------------------------------------------------------------------
global
StringSplit, %Array%, List, `,
}
;---------------------------------------------------------------------------
Array2List(Array) { ; returns a comma separated list from an array
;---------------------------------------------------------------------------
Loop, % %Array%0
List .= (A_Index = 1 ? "" : ",") %Array%%A_Index%
Return, List
}
Message (1) box shows:
23,76,99,58,97,57,35,89,51,38,95,92,24,46,31,24,14,12,57,78
12,14,23,24,24,31,35,38,46,51,57,57,58,76,78,89,92,95,97,99
Message (2) box shows:
88,18,31,44,4,0,8,81,14,78,20,76,84,33,73,75,82,5,62,70
0,4,5,8,14,18,20,31,33,44,62,70,73,75,76,78,81,82,84,88
AWK
function combsort( a, len, gap, igap, swap, swaps, i )
{
gap = len
swaps = 1
while( gap > 1 || swaps )
{
gap /= 1.2473;
if ( gap < 1 ) gap = 1
i = swaps = 0
while( i + gap < len )
{
igap = i + int(gap)
if ( a[i] > a[igap] )
{
swap = a[i]
a[i] = a[igap]
a[igap] = swap
swaps = 1
}
i++;
}
}
}
BEGIN {
a[0] = 5
a[1] = 2
a[2] = 7
a[3] = -11
a[4] = 6
a[5] = 1
combsort( a, length(a) )
for( i=0; i<length(a); i++ )
print a[i]
}
BBC BASIC
DEF PROC_CombSort11(Size%)
gap%=Size%
REPEAT
IF gap% > 1 THEN
gap%=gap% / 1.3
IF gap%=9 OR gap%=10 gap%=11
ENDIF
I% = 1
Finished%=TRUE
REPEAT
IF data%(I%) > data%(I%+gap%) THEN
SWAP data%(I%),data%(I%+gap%)
Finished% = FALSE
ENDIF
I%+=1
UNTIL I%+gap% > Size%
UNTIL gap%=1 AND Finished%
ENDPROC
C
Implementation of Combsort11. Its efficiency can be improved by just switching to Insertion sort when the gap size becomes less than 10.
void Combsort11(double a[], int nElements)
{
int i, j, gap, swapped = 1;
double temp;
gap = nElements;
while (gap > 1 || swapped == 1)
{
gap = gap * 10 / 13;
if (gap == 9 || gap == 10) gap = 11;
if (gap < 1) gap = 1;
swapped = 0;
for (i = 0, j = gap; j < nElements; i++, j++)
{
if (a[i] > a[j])
{
temp = a[i];
a[i] = a[j];
a[j] = temp;
swapped = 1;
}
}
}
}
C++
This is copied from [[wp:Comb sort|the Wikipedia article]].
template<class ForwardIterator>
void combsort ( ForwardIterator first, ForwardIterator last )
{
static const double shrink_factor = 1.247330950103979;
typedef typename std::iterator_traits<ForwardIterator>::difference_type difference_type;
difference_type gap = std::distance(first, last);
bool swaps = true;
while ( (gap > 1) || (swaps == true) ){
if (gap > 1)
gap = static_cast<difference_type>(gap/shrink_factor);
swaps = false;
ForwardIterator itLeft(first);
ForwardIterator itRight(first); std::advance(itRight, gap);
for ( ; itRight!=last; ++itLeft, ++itRight ){
if ( (*itRight) < (*itLeft) ){
std::iter_swap(itLeft, itRight);
swaps = true;
}
}
}
}
C#
using System;
namespace CombSort
{
class Program
{
static void Main(string[] args)
{
int[] unsorted = new int[] { 3, 5, 1, 9, 7, 6, 8, 2, 4 };
Console.WriteLine(string.Join(",", combSort(unsorted)));
}
public static int[] combSort(int[] input)
{
double gap = input.Length;
bool swaps = true;
while (gap > 1 || swaps)
{
gap /= 1.247330950103979;
if (gap < 1) { gap = 1; }
int i = 0;
swaps = false;
while (i + gap < input.Length)
{
int igap = i + (int)gap;
if (input[i] > input[igap])
{
int swap = input[i];
input[i] = input[igap];
input[igap] = swap;
swaps = true;
}
i++;
}
}
return input;
}
}
}
COBOL
This excerpt contains just enough of the procedure division to show the workings. See the example for the bubble sort for a more complete program.
C-PROCESS SECTION.
C-000.
DISPLAY "SORT STARTING".
MOVE WC-SIZE TO WC-GAP.
PERFORM E-COMB UNTIL WC-GAP = 1 AND FINISHED.
DISPLAY "SORT FINISHED".
C-999.
EXIT.
E-COMB SECTION.
E-000.
IF WC-GAP > 1
DIVIDE WC-GAP BY 1.3 GIVING WC-GAP
IF WC-GAP = 9 OR 10
MOVE 11 TO WC-GAP.
MOVE 1 TO WC-SUB-1.
MOVE "Y" TO WF-FINISHED.
PERFORM F-SCAN UNTIL WC-SUB-1 + WC-GAP > WC-SIZE.
E-999.
EXIT.
F-SCAN SECTION.
F-000.
ADD WC-SUB-1 WC-GAP GIVING WC-SUB-2.
IF WB-ENTRY(WC-SUB-1) > WB-ENTRY(WC-SUB-2)
MOVE WB-ENTRY(WC-SUB-1) TO WC-TEMP
MOVE WB-ENTRY(WC-SUB-2) TO WB-ENTRY(WC-SUB-1)
MOVE WC-TEMP TO WB-ENTRY(WC-SUB-2)
MOVE "N" TO WF-FINISHED.
ADD 1 TO WC-SUB-1.
F-999.
EXIT.
Common Lisp
(defparameter *shrink* 1.3)
(defun comb-sort (input)
(loop with input-size = (length input)
with gap = input-size
with swapped
do (when (> gap 1)
(setf gap (floor gap *shrink*)))
(setf swapped nil)
(loop for lo from 0
for hi from gap below input-size
when (> (aref input lo) (aref input hi))
do (rotatef (aref input lo) (aref input hi))
(setf swapped t))
while (or (> gap 1) swapped)
finally (return input)))
D
{{trans|Python}}
import std.stdio, std.algorithm;
void combSort(T)(T[] input) pure nothrow @safe @nogc {
int gap = input.length;
bool swaps = true;
while (gap > 1 || swaps) {
gap = max(1, cast(int)(gap / 1.2473));
swaps = false;
foreach (immutable i; 0 .. input.length - gap)
if (input[i] > input[i + gap]) {
input[i].swap(input[i + gap]);
swaps = true;
}
}
}
void main() {
auto data = [28, 44, 46, 24, 19, 2, 17, 11, 25, 4];
data.combSort;
data.writeln;
}
{{out}}
[2, 4, 11, 17, 19, 24, 25, 28, 44, 46]
Eiffel
class
COMB_SORT [G -> COMPARABLE]
feature
combsort (ar: ARRAY [G]): ARRAY [G]
-- Sorted array in ascending order.
require
array_not_void: ar /= Void
local
gap, i: INTEGER
swap: G
swapped: BOOLEAN
shrink: REAL_64
do
create Result.make_empty
Result.deep_copy (ar)
gap := Result.count
from
until
gap = 1 and swapped = False
loop
from
i := Result.lower
swapped := False
until
i + gap > Result.count
loop
if Result [i] > Result [i + gap] then
swap := Result [i]
Result [i] := Result [i + gap]
Result [i + gap] := swap
swapped := True
end
i := i + 1
end
shrink := gap / 1.3
gap := shrink.floor
if gap < 1 then
gap := 1
end
end
ensure
Result_is_set: Result /= Void
Result_is_sorted: is_sorted (Result)
end
feature {NONE}
is_sorted (ar: ARRAY [G]): BOOLEAN
--- Is 'ar' sorted in ascending order?
require
ar_not_empty: ar.is_empty = False
local
i: INTEGER
do
Result := True
from
i := ar.lower
until
i = ar.upper
loop
if ar [i] > ar [i + 1] then
Result := False
end
i := i + 1
end
end
end
Test:
class
APPLICATION
create
make
feature
make
do
test := <<1, 5, 99, 2, 95, 7, -7>>
io.put_string ("unsorted" + "%N")
across
test as ar
loop
io.put_string (ar.item.out + "%T")
end
io.put_string ("%N" + "sorted:" + "%N")
create combsort
test := combsort.combsort (test)
across
test as ar
loop
io.put_string (ar.item.out + "%T")
end
end
combsort: COMB_SORT [INTEGER]
test: ARRAY [INTEGER]
end
{{out}}
unsorted:
1 5 99 2 95 7 -7
sorted:
-7 1 2 5 7 95 99
Elena
ELENA 4.1 :
import extensions;
import system'math;
import system'routines;
extension op
{
combSort()
{
var list := self.clone();
real gap := list.Length;
bool swaps := true;
while (gap > 1 || swaps)
{
gap /= 1.247330950103979r;
if (gap<1) { gap := 1 };
int i := 0;
swaps := false;
while (i + gap.RoundedInt < list.Length)
{
int igap := i + gap.RoundedInt;
if (list[i] > list[igap])
{
list.exchange(i,igap);
swaps := true
};
i += 1
}
};
^ list
}
}
public program()
{
var list := new int[]::(3, 5, 1, 9, 7, 6, 8, 2, 4 );
console.printLine("before:", list.asEnumerable());
console.printLine("after :", list.combSort().asEnumerable())
}
{{out}}
before:3,5,1,9,7,6,8,2,4
after :1,2,3,4,5,6,7,8,9
Elixir
defmodule Sort do
def comb_sort([]), do: []
def comb_sort(input) do
comb_sort(List.to_tuple(input), length(input), 0) |> Tuple.to_list
end
defp comb_sort(output, 1, 0), do: output
defp comb_sort(input, gap, _) do
gap = max(trunc(gap / 1.25), 1)
{output,swaps} = Enum.reduce(0..tuple_size(input)-gap-1, {input,0}, fn i,{acc,swap} ->
if (x = elem(acc,i)) > (y = elem(acc,i+gap)) do
{acc |> put_elem(i,y) |> put_elem(i+gap,x), 1}
else
{acc,swap}
end
end)
comb_sort(output, gap, swaps)
end
end
(for _ <- 1..20, do: :rand.uniform(20)) |> IO.inspect |> Sort.comb_sort |> IO.inspect
{{out}}
[10, 7, 8, 13, 4, 11, 13, 12, 18, 11, 5, 7, 3, 4, 15, 1, 17, 16, 7, 14]
[1, 3, 4, 4, 5, 7, 7, 7, 8, 10, 11, 11, 12, 13, 13, 14, 15, 16, 17, 18]
Forth
This is an implementation of Comb sort with a different ending. Here [[Gnome sort]] is used, since it is rather small. The dataset is rather large, because otherwise the Comb sort routine would never kick in, passing control to Gnome sort almost right away. Note Comb sort can be kept much simpler this way, because Combsort11 optimizations and swapped flags can be discarded.
defer precedes
defer exchange
: gnomesort ( a n)
swap >r 1 ( n c)
begin ( n c)
over over > ( n c f)
while ( n c)
dup if ( n c)
dup dup 1- over over r@ precedes
if r@ exchange 1- else drop drop 1+ then
else 1+ then ( n c)
repeat drop drop r> drop ( --)
;
: combsort ( a n --)
dup begin ( a n g)
10 13 */ tuck >r >r 0 ( a g 0)
begin ( a g 0)
over r@ < ( a g 0 f)
while ( a g 0)
rot >r over over r@ precedes ( g 0 f)
if over over r@ exchange then ( g 0)
r> rot 1+ rot 1+ ( a g 0)
repeat drop drop r> r> ( a n g)
dup 9 < ( a n g f)
until drop gnomesort ( --)
;
create example
8 93 69 52 50 79 33 52 19 77 , , , , , , , , , ,
72 85 11 61 64 80 64 76 47 65 , , , , , , , , , ,
13 47 23 40 87 45 2 48 22 69 , , , , , , , , , ,
1 53 33 60 57 14 76 32 59 12 , , , , , , , , , ,
74 38 39 22 87 28 37 93 71 88 , , , , , , , , , ,
56 35 48 99 21 35 26 28 58 85 , , , , , , , , , ,
27 16 54 88 82 18 45 64 45 87 , , , , , , , , , ,
98 97 60 77 43 1 64 0 32 89 , , , , , , , , , ,
77 90 68 83 9 76 10 10 95 12 , , , , , , , , , ,
99 23 74 58 54 25 50 9 94 1 , , , , , , , , , ,
:noname >r cells r@ + @ swap cells r> + @ swap < ; is precedes
:noname >r cells r@ + swap cells r> + over @ over @ swap rot ! swap ! ; is exchange
: .array 100 0 do example i cells + ? loop cr ;
.array example 100 combsort .array
Less Clever Version
This version is an academic demonstration that aligns with the algorithm. As is, it is limited to use one static array and sorts in ascending order only.
\ combsort for the Forth Newbie (GForth)
HEX
\ gratuitous variables ( Add clarity but NOT re-entrant)
VARIABLE GAP
VARIABLE SORTED \ flag
DECIMAL
100 CONSTANT SIZE
\ allocate a small array of cells
CREATE Q SIZE CELLS ALLOT
\ operator to index into the array
: ]Q ( n -- adr) CELLS Q + ;
\ fill array and see array
: INITDATA ( -- ) SIZE 0 DO SIZE I - I ]Q ! LOOP ;
: SEEDATA ( -- ) CR SIZE 0 DO I ]Q @ U. LOOP ;
\ compute a new gap using scaled division
\ factored out for this example. Could be a macro or inline code.
: /1.3 ( n -- n' ) 10 13 */ ;
\ factored out for this example. Could be a macro or inline code.
: XCHG ( adr1 adr2 n1 n2-- ) SWAP ROT ! SWAP ! ;
: COMBSORT ( n -- )
DUP >R \ copy n to return stack
1+ GAP ! \ set GAP to n+1
BEGIN
GAP @ /1.3 GAP ! \ re-compute the gap
SORTED ON
R@ GAP @ - 0 \ n-gap is loop limit
DO
I GAP @ + ]Q I ]Q \ compute array addresses
OVER @ OVER @ \ fetch the data in each cell
2DUP < \ compare a copy of the data
IF
XCHG \ Exchange the data in the cells
SORTED OFF \ flag we are not sorted
ELSE
2DROP 2DROP \ remove address and data
THEN
LOOP
SORTED @ GAP @ 0= AND \ test for complete
UNTIL
R> DROP ; \ remove 'n' from return stack
Fortran
{{works with|Fortran|90 and later}}
program Combsort_Demo
implicit none
integer, parameter :: num = 20
real :: array(num)
call random_seed
call random_number(array)
write(*,*) "Unsorted array:-"
write(*,*) array
write(*,*)
call combsort(array)
write(*,*) "Sorted array:-"
write(*,*) array
contains
subroutine combsort(a)
real, intent(in out) :: a(:)
real :: temp
integer :: i, gap
logical :: swapped = .true.
gap = size(a)
do while (gap > 1 .or. swapped)
gap = gap / 1.3
if (gap < 1) gap = 1
swapped = .false.
do i = 1, size(a)-gap
if (a(i) > a(i+gap)) then
temp = a(i)
a(i) = a(i+gap)
a(i+gap) = temp;
swapped = .true.
end if
end do
end do
end subroutine combsort
end program Combsort_Demo
FreeBASIC
' version 21-10-2016
' compile with: fbc -s console
' for boundary checks on array's compile with: fbc -s console -exx
Sub compsort(bs() As Long)
' sort from lower bound to the highter bound
' array's can have subscript range from -2147483648 to +2147483647
Dim As Long lb = LBound(bs)
Dim As Long ub = UBound(bs)
Dim As Long gap = ub - lb
Dim As Long done, i
Do
gap = Int (gap / 1.3)
If gap < 1 Then gap = 1
done = 0
For i = lb To ub - gap
If bs(i) > bs(i + gap) Then
Swap bs(i), bs(i + gap)
done = 1
End If
Next
Loop Until ((gap = 1) And (done = 0))
End Sub
Sub comp11sort(bs() As Long)
' sort from lower bound to the higher bound
' array's can have subscript range from -2147483648 to +2147483647
Dim As Long lb = LBound(bs)
Dim As Long ub = UBound(bs)
Dim As Long gap = ub - lb
Dim As Long done, i
Do
gap = Int(gap / 1.24733)
If gap = 9 Or gap = 10 Then
gap = 11
ElseIf gap < 1 Then
gap = 1
End If
done = 0
For i = lb To ub - gap
If bs(i) > bs(i + gap) Then
Swap bs(i), bs(i + gap)
done = 1
End If
Next
Loop Until ((gap = 1) And (done = 0))
End Sub
' ------=< MAIN >=------
Dim As Long i, array(-7 To 7)
Dim As Long a = LBound(array), b = UBound(array)
Randomize Timer
For i = a To b : array(i) = i : Next
For i = a To b ' little shuffle
Swap array(i), array(Int(Rnd * (b - a +1)) + a)
Next
Print "normal comb sort"
Print "unsorted ";
For i = a To b : Print Using "####"; array(i); : Next : Print
compsort(array()) ' sort the array
Print " sorted ";
For i = a To b : Print Using "####"; array(i); : Next : Print
Print
Print "comb11 sort"
For i = a To b ' little shuffle
Swap array(i), array(Int(Rnd * (b - a +1)) + a)
Next
Print "unsorted ";
For i = a To b : Print Using "####"; array(i); : Next : Print
comp11sort(array()) ' sort the array
Print " sorted ";
For i = a To b : Print Using "####"; array(i); : Next : Print
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
{{out}}
normal comb sort
unsorted -6 5 -1 -3 -7 6 1 7 -4 3 4 -2 -5 0 2
sorted -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
comb11 sort
unsorted 4 -7 -1 1 2 3 -3 7 0 -2 6 -5 5 -6 -4
sorted -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Gambas
'''[https://gambas-playground.proko.eu/?gist=ade780ac2893fcfc95bf0d3feff6a3a8 Click this link to run this code]'''
Public Sub Main()
Dim siToSort As Short[] = [249, 28, 111, 36, 171, 98, 29, 448, 44, 147, 154, 46, 102, 183, 24,
120, 19, 123, 2, 17, 226, 11, 211, 25, 191, 205, 77]
Dim siStart As Short
Dim siGap As Short = siToSort.Max
Dim bSorting, bGap1 As Boolean
Print "To sort: -"
ShowWorking(siToSort)
Print
Repeat
bSorting = False
siStart = 0
If siGap = 1 Then bGap1 = True
Repeat
If siToSort[siStart] > siToSort[siStart + siGap] Then
Swap siToSort[siStart], siToSort[siStart + siGap]
bSorting = True
End If
Inc siStart
Until siStart + siGap > siToSort.Max
If bSorting Then ShowWorking(siToSort)
siGap /= 1.3
If siGap < 1 Then siGap = 1
Until bSorting = False And bGap1 = True
End
'-----------------------------------------
Public Sub ShowWorking(siToSort As Short[])
Dim siCount As Short
For siCount = 0 To siToSort.Max
Print Str(siToSort[siCount]);
If siCount <> siToSort.Max Then Print ",";
Next
Print
End
Output:
To sort: -
249,28,111,36,171,98,29,448,44,147,154,46,102,183,24,120,19,123,2,17,226,11,211,25,191,205,77
77,28,111,36,171,98,29,448,44,147,154,46,102,183,24,120,19,123,2,17,226,11,211,25,191,205,249
77,11,111,25,171,98,29,448,44,147,154,46,102,183,24,120,19,123,2,17,226,28,211,36,191,205,249
77,11,111,2,17,98,28,211,36,147,154,46,102,183,24,120,19,123,25,171,226,29,448,44,191,205,249
46,11,111,2,17,19,28,25,36,147,29,77,44,183,24,120,98,123,211,171,226,154,448,102,191,205,249
36,11,29,2,17,19,24,25,46,123,111,77,44,154,28,102,98,147,211,171,226,183,448,120,191,205,249
24,11,29,2,17,19,36,25,28,102,98,77,44,154,46,123,111,120,191,171,226,183,448,147,211,205,249
17,11,29,2,24,19,36,25,28,102,46,77,44,120,98,123,111,154,191,147,211,183,249,171,226,205,448
2,11,19,17,24,28,36,25,29,44,46,77,102,111,98,123,120,154,183,147,171,191,205,211,226,249,448
2,11,19,17,24,25,29,28,36,44,46,77,98,111,102,123,120,147,171,154,183,191,205,211,226,249,448
2,11,17,19,24,25,28,29,36,44,46,77,98,102,111,120,123,147,154,171,183,191,205,211,226,249,448
Go
package main
import "fmt"
func main() {
a := []int{170, 45, 75, -90, -802, 24, 2, 66}
fmt.Println("before:", a)
combSort(a)
fmt.Println("after: ", a)
}
func combSort(a []int) {
if len(a) < 2 {
return
}
for gap := len(a); ; {
if gap > 1 {
gap = gap * 4 / 5
}
swapped := false
for i := 0; ; {
if a[i] > a[i+gap] {
a[i], a[i+gap] = a[i+gap], a[i]
swapped = true
}
i++
if i+gap >= len(a) {
break
}
}
if gap == 1 && !swapped {
break
}
}
}
More generic version that sorts anything that implements sort.Interface
:
package main
import (
"sort"
"fmt"
)
func main() {
a := []int{170, 45, 75, -90, -802, 24, 2, 66}
fmt.Println("before:", a)
combSort(sort.IntSlice(a))
fmt.Println("after: ", a)
}
func combSort(a sort.Interface) {
if a.Len() < 2 {
return
}
for gap := a.Len(); ; {
if gap > 1 {
gap = gap * 4 / 5
}
swapped := false
for i := 0; ; {
if a.Less(i+gap, i) {
a.Swap(i, i+gap)
swapped = true
}
i++
if i+gap >= a.Len() {
break
}
}
if gap == 1 && !swapped {
break
}
}
}
Groovy
Combsort solution:
def makeSwap = { a, i, j -> print "."; a[i] ^= a[j]; a[j] ^= a[i]; a[i] ^= a[j] }
def checkSwap = { a, i, j -> [(a[i] > a[j])].find { it }.each { makeSwap(a, i, j) } }
def combSort = { input ->
def swap = checkSwap.curry(input)
def size = input.size()
def gap = size
def swapped = true
while (gap != 1 || swapped) {
gap = (gap / 1.247330950103979) as int
gap = (gap < 1) ? 1 : gap
swapped = (0..<(size-gap)).any { swap(it, it + gap) }
}
input
}
Combsort11 solution:
def combSort11 = { input ->
def swap = checkSwap.curry(input)
def size = input.size()
def gap = size
def swapped = true
while (gap != 1 || swapped) {
gap = (gap / 1.247330950103979) as int
gap = ((gap < 1) ? 1 : ([10,9].contains(gap) ? 11 : gap))
swapped = (0..<(size-gap)).any { swap(it, it + gap) }
}
input
}
Test:
println (combSort([23,76,99,58,97,57,35,89,51,38,95,92,24,46,31,24,14,12,57,78,4]))
println (combSort11([23,76,99,58,97,57,35,89,51,38,95,92,24,46,31,24,14,12,57,78,4]))
println ()
println (combSort([88,18,31,44,4,0,8,81,14,78,20,76,84,33,73,75,82,5,62,70,12,7,1]))
println (combSort11([88,18,31,44,4,0,8,81,14,78,20,76,84,33,73,75,82,5,62,70,12,7,1]))
Output:
..................................................................................................................[4, 12, 14, 23, 24, 24, 31, 35, 38, 46, 51, 57, 57, 58, 76, 78, 89, 92, 95, 97, 99]
..........................................................................................................................[4, 12, 14, 23, 24, 24, 31, 35, 38, 46, 51, 57, 57, 58, 76, 78, 89, 92, 95, 97, 99]
...............................................................................................[0, 1, 4, 5, 7, 8, 12, 14, 18, 20, 31, 33, 44, 62, 70, 73, 75, 76, 78, 81, 82, 84, 88]
...............................................................................................[0, 1, 4, 5, 7, 8, 12, 14, 18, 20, 31, 33, 44, 62, 70, 73, 75, 76, 78, 81, 82, 84, 88]
Haskell
import Data.List
import Control.Arrow
import Control.Monad
flgInsert x xs = ((x:xs==) &&& id)$ insert x xs
gapSwapping k = (and *** concat. transpose). unzip
. map (foldr (\x (b,xs) -> first (b &&)$ flgInsert x xs) (True,[]))
. transpose. takeWhile (not.null). unfoldr (Just. splitAt k)
combSort xs = (snd. fst) $ until (\((b,_),g)-> b && g==1)
(\((_,xs),g) ->(gapSwapping g xs, fg g)) ((False,xs), fg $ length xs)
where fg = max 1. truncate. (/1.25). fromIntegral
Example:
*Main> combSort [23,76,99,58,97,57,35,89,51,38,95,92,24,46,31,24,14,12,57,78]
[12,14,23,24,24,31,35,38,46,51,57,57,58,76,78,89,92,95,97,99]
Io
List do(
combSortInPlace := method(
gap := size
swap := true
while(gap > 1 or swap,
swap = false
gap = (gap / 1.25) floor
for(i, 0, size - gap,
if(at(i) > at(i + gap),
swap = true
swapIndices(i, i + gap)
)
)
)
self)
)
lst := list(23, 76, 99, 58, 97, 57, 35, 89, 51, 38, 95, 92, 24, 46, 31, 24, 14, 12, 57, 78)
lst combSortInPlace println # ==> list(12, 14, 23, 24, 24, 31, 35, 38, 46, 51, 57, 57, 58, 76, 78, 89, 92, 95, 97, 99)
=={{header|Icon}} and {{header|Unicon}}==
procedure main() #: demonstrate various ways to sort a list and string
demosort(combsort,[3, 14, 1, 5, 9, 2, 6, 3],"qwerty")
end
procedure combsort(X,op) #: return sorted X
local gap,swapped,i
op := sortop(op,X) # select how and what we sort
swappped := gap := *X # initialize gap size and say swapped
until /swapped & gap = 1 do {
gap := integer(gap / 1.25) # update the gap value for a next comb
gap <:= 1 # minimum gap of 1
swapped := &null
i := 0
until (i +:= 1) + gap > *X do # a single "comb" over the input list
if op(X[i+gap],X[i]) then
X[i+1] :=: X[swapped := i] # swap and flag as unsorted
}
return X
end
Note: This example relies on [[Sorting_algorithms/Bubble_sort#Icon| the supporting procedures 'sortop', and 'demosort' in Bubble Sort]]. The full demosort exercises the named sort of a list with op = "numeric", "string", ">>" (lexically gt, descending),">" (numerically gt, descending), a custom comparator, and also a string.
Abbreviated sample output:
Sorting Demo using procedure combsort
on list : [ 3 14 1 5 9 2 6 3 ]
with op = &null: [ 1 2 3 3 5 6 9 14 ] (0 ms)
...
on string : "qwerty"
with op = &null: "eqrtwy" (0 ms)
=={{header|IS-BASIC}}==
## J
{{eff note|J|/:~}}
Large gap sizes allow some parallelism in comparisons and swaps. (If the gap size is G, then G pairs can be compared and swapped in parallel.) Beyond that, however, the data flow complexity of this algorithm requires a fair bit of micro-management.
```J
combSort=:3 :0
gap=. #y
whilst.1 < gap+swaps do.
swaps=. 0
i=. i.2,gap=. 1 >. <.gap%1.25
while.{:$i=.i #"1~ ({: i) < #y do.
swaps=.swaps+#{:k=.i #"1~b=. >/ i{y
i=. i+gap
y=.((|.k){y) k} y
end.
end.
y
)
Example use: combSort 23 76 99 58 97 57 35 89 51 38 95 92 24 46 31 24 14 12 57 78 12 14 23 24 24 31 35 38 46 51 57 57 58 76 78 89 92 95 97 99 combSort 88 18 31 44 4 0 8 81 14 78 20 76 84 33 73 75 82 5 62 70 0 4 5 8 14 18 20 31 33 44 62 70 73 75 76 78 81 82 84 88
Java
This is copied from [[wp:Comb sort|the Wikipedia article]].
void sort(E[] input) {
int gap = input.length;
boolean swapped = true;
while (gap > 1 || swapped) {
if (gap > 1) {
gap = (int) (gap / 1.3);
}
swapped = false;
for (int i = 0; i + gap < input.length; i++) {
if (input[i].compareTo(input[i + gap]) > 0) {
E t = input[i];
input[i] = input[i + gap];
input[i + gap] = t;
swapped = true;
}
}
}
}
JavaScript
// Node 5.4.1 tested implementation (ES6)
function is_array_sorted(arr) {
var sorted = true;
for (var i = 0; i < arr.length - 1; i++) {
if (arr[i] > arr[i + 1]) {
sorted = false;
break;
}
}
return sorted;
}
// Array to sort
var arr = [4, 9, 0, 3, 1, 5];
var iteration_count = 0;
var gap = arr.length - 2;
var decrease_factor = 1.25;
// Until array is not sorted, repeat iterations
while (!is_array_sorted(arr)) {
// If not first gap
if (iteration_count > 0)
// Calculate gap
gap = (gap == 1) ? gap : Math.floor(gap / decrease_factor);
// Set front and back elements and increment to a gap
var front = 0;
var back = gap;
while (back <= arr.length - 1) {
// If elements are not ordered swap them
if (arr[front] > arr[back]) {
var temp = arr[front];
arr[front] = arr[back];
arr[back] = temp;
}
// Increment and re-run swapping
front += 1;
back += 1;
}
iteration_count += 1;
}
// Print the sorted array
console.log(arr);
}
{{out}}
[0, 1, 3, 4, 5, 9]
jq
{{works with|jq|1.4}} An implementation of the pseudo-code in the task description:
# Input should be the array to be sorted.
def combsort:
# As soon as "condition" is true, emit . and stop:
def do_until(condition; next):
def u: if condition then . else (next|u) end;
u;
def swap(i;j):
if i==j then . else .[i] as $tmp | .[i] = .[j] | .[j] = $tmp end;
. as $in
| length as $length
# state: [gap, swaps, array] where:
# gap is the gap size;
# swaps is a boolean flag indicating a swap has occurred,
# implying that the array might not be sorted;
# array is the current state of the array being sorted
| [ $length, false, $in ]
| do_until( .[0] == 1 and .[1] == false;
# update the gap value for the next "comb":
([1, ((.[0] / 1.25) | floor)] | max) as $gap # minimum gap is 1
# state: [i, swaps, array]
| [0, false, .[2]]
# a single "comb" over the input list:
| do_until( (.[0] + $gap) >= $length;
.[0] as $i
| if .[2][$i] > .[2][$i+$gap] then
[$i+1, true, (.[2]|swap($i; $i+$gap))]
else .[0] += 1
end)
| .[0] = $gap )
| .[2] ;
Julia
# v0.6
function combsort!(x::Array)::Array
gap, swaps = length(x), true
while gap > 1 || swaps
gap = floor(Int, gap / 1.25)
i, swaps = 0, false
while i + gap < length(x)
if x[i+1] > x[i+1+gap]
x[i+1], x[i+1+gap] = x[i+1+gap], x[i+1]
swaps = true
end
i += 1
end
end
return x
end
x = randn(100)
@show x combsort!(x)
@assert issorted(x)
{{out}}
x = [1.41167, 1.19626, 0.821703, 0.336024, -0.708447, 0.694578, 1.49075, -1.07124, -1.59686, -0.720135]
combsort!(x) = [-1.59686, -1.07124, -0.720135, -0.708447, 0.336024, 0.694578, 0.821703, 1.19626, 1.41167, 1.49075]
Kotlin
// version 1.1.2
fun <T : Comparable<T>> combSort(input: Array<T>) {
var gap = input.size
if (gap <= 1) return // already sorted
var swaps = false
while (gap > 1 || swaps) {
gap = (gap / 1.247331).toInt()
if (gap < 1) gap = 1
var i = 0
swaps = false
while (i + gap < input.size) {
if (input[i] > input[i + gap]) {
val tmp = input[i]
input[i] = input[i + gap]
input[i + gap] = tmp
swaps = true
}
i++
}
}
}
fun main(args: Array<String>) {
val ia = arrayOf(28, 44, 46, 24, 19, 2, 17, 11, 25, 4)
println("Unsorted : ${ia.contentToString()}")
combSort(ia)
println("Sorted : ${ia.contentToString()}")
println()
val ca = arrayOf('X', 'B', 'E', 'A', 'Z', 'M', 'S', 'L', 'Y', 'C')
println("Unsorted : ${ca.contentToString()}")
combSort(ca)
println("Sorted : ${ca.contentToString()}")
}
{{out}}
Unsorted : [28, 44, 46, 24, 19, 2, 17, 11, 25, 4]
Sorted : [2, 4, 11, 17, 19, 24, 25, 28, 44, 46]
Unsorted : [X, B, E, A, Z, M, S, L, Y, C]
Sorted : [A, B, C, E, L, M, S, X, Y, Z]
Liberty BASIC
'randomize 0.5
itemCount = 20
dim item(itemCount)
for i = 1 to itemCount
item(i) = int(rnd(1) * 100)
next i
print "Before Sort"
for i = 1 to itemCount
print item(i)
next i
print: print
't0=time$("ms")
gap=itemCount
while gap>1 or swaps <> 0
gap=int(gap/1.25)
'if gap = 10 or gap = 9 then gap = 11 'uncomment to get Combsort11
if gap <1 then gap = 1
i = 1
swaps = 0
for i = 1 to itemCount-gap
if item(i) > item(i + gap) then
temp = item(i)
item(i) = item(i + gap)
item(i + gap) = temp
swaps = 1
end if
next
wend
print "After Sort"
't1=time$("ms")
'print t1-t0
for i = 1 to itemCount
print item(i)
next i
end
Lua
function combsort(t)
local gapd, gap, swaps = 1.2473, #t, 0
while gap + swaps > 1 do
local k = 0
swaps = 0
if gap > 1 then gap = math.floor(gap / gapd) end
for k = 1, #t - gap do
if t[k] > t[k + gap] then
t[k], t[k + gap], swaps = t[k + gap], t[k], swaps + 1
end
end
end
return t
end
print(unpack(combsort{3,5,1,2,7,4,8,3,6,4,1}))
Maple
swap := proc(arr, a, b)
local temp;
temp := arr[a]:
arr[a] := arr[b]:
arr[b] := temp:
end proc:
newGap := proc(gap)
local new;
new := trunc(gap*10/13);
if (new < 1) then return 1; end if;
return new;
end proc;
combsort := proc(arr, len)
local gap, swapped,i, temp;
swapped := true:
gap := len:
while ((not gap = 1) or swapped) do
gap := newGap(gap):
swapped := false:
for i from 1 to len-gap by 1 do
if (arr[i] > arr[i+gap]) then
temp := arr[i]:
arr[i] := arr[i+gap]:
arr[i+gap] := temp:
swapped:= true:
end if:
end do:
end do:
end proc:
arr := Array([17,3,72,0,36,2,3,8,40,0]);
combsort(arr, numelems(arr));
arr;
{{Out|Output}}
[0,0,2,3,3,8,17,36,40,72]
Mathematica
combSort[list_] := Module[{ gap = 0, listSize = 0, swaps = True},
gap = listSize = Length[list];
While[ !((gap <= 1) && (swaps == False)),
gap = Floor@Divide[gap, 1.25];
If[ gap < 1, gap = 1]; i = 1; swaps = False;
While[ ! ((i + gap - 1) >= listSize),
If[ list[[i]] > list[[i + gap]], swaps = True;
list[[i ;; i + gap]] = list[[i + gap ;; i ;; -1]];
];
i++;
]
]
]
combSort@{2, 1, 3, 7, 6}
->{1, 2, 3, 6, 7}
=={{header|MATLAB}} / {{header|Octave}}==
function list = combSort(list)
listSize = numel(list);
gap = int32(listSize); %Coerce gap to an int so we can use the idivide function
swaps = true; %Swap flag
while not((gap <= 1) && (swaps == false))
gap = idivide(gap,1.25,'floor'); %Int divide, floor the resulting operation
if gap < 1
gap = 1;
end
i = 1; %i equals 1 because all arrays are 1 based in MATLAB
swaps = false;
%i + gap must be subtracted by 1 because the pseudo-code was writen
%for 0 based arrays
while not((i + gap - 1) >= listSize)
if (list(i) > list(i+gap))
list([i i+gap]) = list([i+gap i]); %swap
swaps = true;
end
i = i + 1;
end %while
end %while
end %combSort
Sample Output:
combSort([4 3 1 5 6 2])
ans =
1 2 3 4 5 6
MAXScript
fn combSort arr =
(
local gap = arr.count
local swaps = 1
while not (gap == 1 and swaps == 0) do
(
gap = (gap / 1.25) as integer
if gap < 1 do
(
gap = 1
)
local i = 1
swaps = 0
while not (i + gap > arr.count) do
(
if arr[i] > arr[i+gap] do
(
swap arr[i] arr[i+gap]
swaps = 1
)
i += 1
)
)
return arr
)
Output:
a = for i in 1 to 10 collect random 1 10
#(2, 6, 5, 9, 10, 7, 2, 6, 1, 4)
combsort a
#(1, 2, 2, 4, 5, 6, 6, 7, 9, 10)
NetRexx
/* NetRexx */
options replace format comments java crossref savelog symbols binary
placesList = [String -
"UK London", "US New York" -
, "US Boston", "US Washington" -
, "UK Washington", "US Birmingham" -
, "UK Birmingham", "UK Boston" -
]
sortedList = combSort(String[] Arrays.copyOf(placesList, placesList.length))
lists = [placesList, sortedList]
loop ln = 0 to lists.length - 1
cl = lists[ln]
loop ct = 0 to cl.length - 1
say cl[ct]
end ct
say
end ln
return
method combSort(input = String[]) public constant binary returns String[]
swaps = isTrue
gap = input.length
loop label comb until gap = 1 & \swaps
gap = int gap / 1.25
if gap < 1 then
gap = 1
i_ = 0
swaps = isFalse
loop label swaps until i_ + gap >= input.length
if input[i_].compareTo(input[i_ + gap]) > 0 then do
swap = input[i_]
input[i_] = input[i_ + gap]
input[i_ + gap] = swap
swaps = isTrue
end
i_ = i_ + 1
end swaps
end comb
return input
method isTrue public constant binary returns boolean
return 1 == 1
method isFalse public constant binary returns boolean
return \isTrue
;Output
UK London
US New York
US Boston
US Washington
UK Washington
US Birmingham
UK Birmingham
UK Boston
UK Birmingham
UK Boston
UK London
UK Washington
US Birmingham
US Boston
US New York
US Washington
Nim
proc combSort[T](a: var openarray[T]) =
var gap = a.len
var swapped = true
while gap > 1 or swapped:
gap = gap * 10 div 13
if gap == 9 or gap == 10: gap = 11
if gap < 1: gap = 1
swapped = false
var i = 0
for j in gap .. <a.len:
if a[i] > a[j]:
swap a[i], a[j]
swapped = true
inc i
var a = @[4, 65, 2, -31, 0, 99, 2, 83, 782]
combSort a
echo a
Output:
@[-31, 0, 2, 2, 4, 65, 83, 99, 782]
Objeck
bundle Default {
class Stooge {
function : Main(args : String[]) ~ Nil {
nums := [3, 5, 1, 9, 7, 6, 8, 2, 4];
CombSort(nums);
each(i : nums) {
IO.Console->Print(nums[i])->Print(",");
};
IO.Console->PrintLine();
}
function : CombSort(input : Int[]) ~ Nil {
gap : Float := input->Size();
swaps := true;
while(gap > 1 | swaps) {
gap /= 1.247330950103979;
if(gap < 1) { gap := 1; };
i : Int := 0;
swaps := false;
while(i + gap < input->Size()) {
igap : Int := i + gap->As(Int);
if (input[i] > input[igap]) {
swap : Int := input[i];
input[i] := input[igap];
input[igap] := swap;
swaps := true;
};
i += 1;
};
};
}
}
}
OCaml
let comb_sort ~input =
let input_length = Array.length input in
let gap = ref(input_length) in
let swapped = ref true in
while (!gap > 1 || !swapped) do
if (!gap > 1) then
gap := int_of_float (float !gap /. 1.3);
swapped := false;
for i = 0 to input_length - !gap do
if input.(i) > input.(i + !gap) then begin
let tmp = input.(i) in
input.(i) <- input.(i + !gap);
input.(i + !gap) <- tmp;
swapped := true;
end
done
done
;;
Oz
declare
proc {CombSort Arr}
Low = {Array.low Arr}
High = {Array.high Arr}
Size = High - Low + 1
Gap = {NewCell Size}
Swapped = {NewCell true}
proc {Swap I J}
Arr.J := (Arr.I := Arr.J)
end
in
for while:@Gap>1 orelse @Swapped do
if @Gap > 1 then
Gap := {Float.toInt {Floor {Int.toFloat @Gap} / 1.3}}
end
Swapped := false
for I in Low..High-@Gap do
if Arr.I > Arr.(I+@Gap) then
{Swap I I+@Gap}
Swapped := true
end
end
end
end
Arr = {Tuple.toArray unit(3 1 4 1 5 9 2 6 5)}
in
{CombSort Arr}
{Show {Array.toRecord unit Arr}}
PARI/GP
combSort(v)={
my(phi=(1+sqrt(5))/2,magic=1/(1-exp(-phi)),g=#v,swaps);
while(g>1 | swaps,
if(g>1, g\=magic);
swaps=0;
for(i=1,#v-g,
if(v[i]>v[i+g],
my(t=v[i]);
v[i]=v[i+g];
v[i+g]=t;
swaps++
)
)
);
v
};
Pascal
program CombSortDemo;
// NOTE: The array is 1-based
// If you want to use this code on a 0-based array, see below
type
TIntArray = array[1..40] of integer;
var
data: TIntArray;
i: integer;
procedure combSort(var a: TIntArray);
var
i, gap, temp: integer;
swapped: boolean;
begin
gap := length(a);
swapped := true;
while (gap > 1) or swapped do
begin
gap := trunc(gap / 1.3);
if (gap < 1) then
gap := 1;
swapped := false;
for i := 1 to length(a) - gap do
if a[i] > a[i+gap] then
begin
temp := a[i];
a[i] := a[i+gap];
a[i+gap] := temp;
swapped := true;
end;
end;
end;
begin
Randomize;
writeln('The data before sorting:');
for i := low(data) to high(data) do
begin
data[i] := Random(high(data));
write(data[i]:4);
end;
writeln;
combSort(data);
writeln('The data after sorting:');
for i := low(data) to high(data) do
begin
write(data[i]:4);
end;
writeln;
end.
Output:
The data before sorting:
10 26 32 10 9 32 38 37 12 9 16 7 25 1 37 7 24 22 7 36 2 5 10 5 33 35 32 18 5 28 7 5 36 12 16 36 24 3 29 15
The data after sorting:
1 2 3 5 5 5 5 7 7 7 7 9 9 10 10 10 12 12 15 16 16 18 22 24 24 25 26 28 29 32 32 32 33 35 36 36 36 37 37 38
program CombSortDemo;
// NOTE: The array is 0-based
// If you want to use this code on a 1-based array, see above
type
TIntArray = array[0..39] of integer;
var
data: TIntArray;
i: integer;
procedure combSort(var a: TIntArray);
var
i, gap, temp: integer;
swapped: boolean;
begin
gap := length(a);
swapped := true;
while (gap > 1) or swapped do
begin
gap := trunc(gap / 1.3);
if (gap < 1) then
gap := 1;
swapped := false;
for i := 0 to length(a) - gap - 1 do
if a[i] > a[i+gap] then
begin
temp := a[i];
a[i] := a[i+gap];
a[i+gap] := temp;
swapped := true;
end;
end;
end;
begin
Randomize;
writeln('The data before sorting:');
for i := low(data) to high(data) do
begin
data[i] := Random(high(data));
write(data[i]:4);
end;
writeln;
combSort(data);
writeln('The data after sorting:');
for i := low(data) to high(data) do
begin
write(data[i]:4);
end;
writeln;
end.
Perl
sub combSort {
my @arr = @_;
my $gap = @arr;
my $swaps = 1;
while ($gap > 1 || $swaps) {
$gap /= 1.25 if $gap > 1;
$swaps = 0;
foreach my $i (0 .. $#arr - $gap) {
if ($arr[$i] > $arr[$i+$gap]) {
@arr[$i, $i+$gap] = @arr[$i+$gap, $i];
$swaps = 1;
}
}
}
return @arr;
}
Perl 6
{{trans|Perl}}
sub comb_sort ( @a is copy ) {
my $gap = +@a;
my $swaps = 1;
while $gap > 1 or $swaps {
$gap = ( ($gap * 4) div 5 ) || 1 if $gap > 1;
$swaps = 0;
for ^(+@a - $gap) -> $i {
my $j = $i + $gap;
if @a[$i] > @a[$j] {
@a[$i, $j] .= reverse;
$swaps = 1;
}
}
}
return @a;
}
my @weights = (^50).map: { 100 + ( 1000.rand.Int / 10 ) };
say @weights.sort.Str eq @weights.&comb_sort.Str ?? 'ok' !! 'not ok';
Phix
function comb_sort(sequence s)
integer gap = length(s)-1
while 1 do
gap = max(floor(gap/1.3),1)
integer swapped = 0
for i=1 to length(s)-gap do
object si = s[i]
if si>s[i+gap] then
s[i] = s[i+gap]
s[i+gap] = si
swapped = 1
end if
end for
if gap=1 and swapped=0 then exit end if
end while
return s
end function
PHP
function combSort($arr){
$gap = count($arr);
$swap = true;
while ($gap > 1 || $swap){
if($gap > 1) $gap /= 1.25;
$swap = false;
$i = 0;
while($i+$gap < count($arr)){
if($arr[$i] > $arr[$i+$gap]){
list($arr[$i], $arr[$i+$gap]) = array($arr[$i+$gap],$arr[$i]);
$swap = true;
}
$i++;
}
}
return $arr;
}
PicoLisp
(de combSort (Lst)
(let (Gap (length Lst) Swaps NIL)
(while (or (> Gap 1) Swaps)
(setq Gap (max 1 (/ (* Gap 4) 5)))
(off Swaps)
(use Lst
(for (G (cdr (nth Lst Gap)) G (cdr G))
(when (> (car Lst) (car G))
(xchg Lst G)
(on Swaps) )
(pop 'Lst) ) ) ) )
Lst )
Output:
: (combSort (88 18 31 44 4 0 8 81 14 78 20 76 84 33 73 75 82 5 62 70))
-> (0 4 5 8 14 18 20 31 33 44 62 70 73 75 76 78 81 82 84 88)
PL/I
/* From the pseudocode. */
comb_sort: procedure (A);
declare A(*) fixed;
declare t fixed;
declare (i, gap) fixed binary (31);
declare swaps bit (1) aligned;
gap = hbound(A,1) - lbound(A,1); /* initialize the gap size. */
do until (gap <= 1 & swaps);
/* update the gap value for a next comb. */
put skip data (gap);
gap = gap / 1.25e0;
put skip data (gap);
swaps = '1'b;
/* a single "comb" over the array. */
do i = lbound(A,1) by 1 until (i + gap >= hbound(A,1));
if A(i) > A(i+gap) then
do;
t = A(i); A(i) = A(i+gap); A(i+gap) = t;
swaps = '0'b; /* Flag a swap has occurred, so */
/* the list is not guaranteed sorted. */
end;
end;
end;
end comb_sort;
PowerShell
Massaging gap to always hit 11. Based on PowerShell from [[Cocktail Sort]]
function CombSort ($a) {
$l = $a.Length
$gap = 11
while( $gap -lt $l )
{
$gap = [Math]::Floor( $gap*1.3 )
}
if( $l -gt 1 )
{
$hasChanged = $true
:outer while ($hasChanged -or ( $gap -gt 1 ) ) {
$count = 0
$hasChanged = $false
if( $gap -gt 1 ) {
$gap = [Math]::Floor( $gap/1.3 )
} else {
$l--
}
for ($i = 0; $i -lt ( $l - $gap ); $i++) {
if ($a[$i] -gt $a[$i+$gap]) {
$a[$i], $a[$i+$gap] = $a[$i+$gap], $a[$i]
$hasChanged = $true
$count++
}
}
}
}
$a
}
$l = 100; CombSort ( 1..$l | ForEach-Object { $Rand = New-Object Random }{ $Rand.Next( -( $l - 1 ), $l - 1 ) } )
PureBasic
Implementation of CombSort11.
;sorts an array of integers
Procedure combSort11(Array a(1))
Protected i, gap, swaps = 1
Protected nElements = ArraySize(a())
gap = nElements
While (gap > 1) Or (swapped = 1)
gap * 10 / 13
If gap = 9 Or gap = 10: gap = 11: EndIf
If gap < 1: gap = 1: EndIf
i = 0
swaps = 0
While (i + gap) <= nElements
If a(i) > a(i + gap)
Swap a(i), a(i + gap)
swaps = 1
EndIf
i + 1
Wend
Wend
EndProcedure
Implementation of CombSort.
;sorts an array of integers
Procedure combSort(Array a(1))
Protected i, gap, swaps = 1
Protected nElements = ArraySize(a())
gap = nElements
While (gap > 1) Or (swaps = 1)
gap = Int(gap / 1.25)
i = 0
swaps = 0
While (i + gap) <= nElements
If a(i) > a(i + gap)
Swap a(i), a(i + gap)
swaps = 1
EndIf
i + 1
Wend
Wend
EndProcedure
Python
def combsort(input):
gap = len(input)
swaps = True
while gap > 1 or swaps:
gap = max(1, int(gap / 1.25)) # minimum gap is 1
swaps = False
for i in range(len(input) - gap):
j = i+gap
if input[i] > input[j]:
input[i], input[j] = input[j], input[i]
swaps = True
>>> y = [88, 18, 31, 44, 4, 0, 8, 81, 14, 78, 20, 76, 84, 33, 73, 75, 82, 5, 62, 70]
>>> combsort(y)
>>> assert y == sorted(y)
>>> y
[0, 4, 5, 8, 14, 18, 20, 31, 33, 44, 62, 70, 73, 75, 76, 78, 81, 82, 84, 88]
>>>
R
comb.sort<-function(a){
gap<-length(a)
swaps<-1
while(gap>1 & swaps==1){
gap=floor(gap/1.3)
if(gap<1){
gap=1
}
swaps=0
i=1
while(i+gap<=length(a)){
if(a[i]>a[i+gap]){
a[c(i,i+gap)] <- a[c(i+gap,i)]
swaps=1
}
i<-i+1
}
}
return(a)
}
Racket
#lang racket
(require (only-in srfi/43 vector-swap!))
(define (comb-sort xs)
(define (ref i) (vector-ref xs i))
(define (swap i j) (vector-swap! xs i j))
(define (new gap) (max 1 (exact-floor (/ gap 1.25))))
(define size (vector-length xs))
(let loop ([gap size] [swaps 0])
(unless (and (= gap 1) (= swaps 0))
(loop (new gap)
(for/fold ([swaps 0]) ([i (in-range 0 (- size gap))])
(cond
[(> (ref i) (ref (+ i gap)))
(swap i (+ i gap))
(+ swaps 1)]
[swaps])))))
xs)
REXX
/*REXX program sorts and displays a stemmed array using the comb sort algorithm. */
call gen; w=length(#) /*generate the @ array elements. */
call show 'before sort' /*display the before array elements. */
say copies('▒', 60) /*display a separator line (a fence). */
call combSort # /*invoke the comb sort (with # entries)*/
call show ' after sort' /*display the after array elements. */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
combSort: procedure expose @.; parse arg N /*N: is the number of @ elements. */
g=N - 1 /*G: is the gap between the sort COMBs*/
do until g<=1 & done; done=1 /*assume sort is done (so far). */
g=g * 0.8 % 1 /*equivalent to: g=trunc( g / 1.25) */
if g==0 then g=1 /*handle case of the gap is too small. */
do j=1 until $ >= N; $=j + g /*$: temp index variable. */
if @.j > @.$ then do; _=@.j; @.j=@.$; @.$=_; done=0; end
end /*j*/
end /*until*/ /* [↑] swap two elements in the array.*/
return
/*──────────────────────────────────────────────────────────────────────────────────────*/
gen: @. = ; @.12 = "dodecagon 12"
@.1 = '----polygon--- sides' ; @.13 = "tridecagon 13"
@.2 = '
### =========== ====
' ; @.14 = "tetradecagon 14"
@.3 = 'triangle 3' ; @.15 = "pentadecagon 15"
@.4 = 'quadrilateral 4' ; @.16 = "hexadecagon 16"
@.5 = 'pentagon 5' ; @.17 = "heptadecagon 17"
@.6 = 'hexagon 6' ; @.18 = "octadecagon 18"
@.7 = 'heptagon 7' ; @.19 = "enneadecagon 19"
@.8 = 'octagon 8' ; @.20 = "icosagon 20"
@.9 = 'nonagon 9' ; @.21 = "hectogon 100"
@.10 = 'decagon 10' ; @.22 = "chiliagon 1000"
@.11 = 'hendecagon 11' ; @.23 = "myriagon 10000"
do #=1 while @.#\==''; end; #=#-1 /*find how many elements in @*/
return /* [↑] adjust # because of the DO loop*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: do k=1 for #; say right('element',15) right(k,w) arg(1)":" @.k; end; return
Data trivia: A ''hendecagon'' (also known as an ''undecagon'' or ''unidecagon'') is from the Greek word ''hendeka'' [eleven] and ''gon─'' [corner].
{{out|output|:}}
element 1 before sort: ----polygon--- sides element 2 before sort: ### =========== ==== element 3 before sort: triangle 3 element 4 before sort: quadrilateral 4 element 5 before sort: pentagon 5 element 6 before sort: hexagon 6 element 7 before sort: heptagon 7 element 8 before sort: octagon 8 element 9 before sort: nonagon 9 element 10 before sort: decagon 10 element 11 before sort: hendecagon 11 element 12 before sort: dodecagon 12 element 13 before sort: tridecagon 13 element 14 before sort: tetradecagon 14 element 15 before sort: pentadecagon 15 element 16 before sort: hexadecagon 16 element 17 before sort: heptadecagon 17 element 18 before sort: octadecagon 18 element 19 before sort: enneadecagon 19 element 20 before sort: icosagon 20 element 21 before sort: hectogon 100 element 22 before sort: chiliagon 1000 element 23 before sort: myriagon 10000 ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ element 1 after sort: ----polygon--- sides element 2 after sort: ### =========== ==== element 3 after sort: chiliagon 1000 element 4 after sort: decagon 10 element 5 after sort: dodecagon 12 element 6 after sort: enneadecagon 19 element 7 after sort: hectogon 100 element 8 after sort: hendecagon 11 element 9 after sort: heptadecagon 17 element 10 after sort: heptagon 7 element 11 after sort: hexadecagon 16 element 12 after sort: hexagon 6 element 13 after sort: icosagon 20 element 14 after sort: myriagon 10000 element 15 after sort: nonagon 9 element 16 after sort: octadecagon 18 element 17 after sort: octagon 8 element 18 after sort: pentadecagon 15 element 19 after sort: pentagon 5 element 20 after sort: quadrilateral 4 element 21 after sort: tetradecagon 14 element 22 after sort: triangle 3 element 23 after sort: tridecagon 13 ``` ## Ring ```ring aList = [3,5,1,2,7,4,8,3,6,4,1] see combsort(aList) func combsort t gapd = 1.2473 gap = len(t) swaps = 0 while gap + swaps > 1 k = 0 swaps = 0 if gap > 1 gap = floor(gap / gapd) ok for k = 1 to len(t) - gap if t[k] > t[k + gap] temp = t[k] t[k] = t[k + gap] t[k + gap] = temp swaps = swaps + 1 ok next end return t ``` ## Ruby ```ruby class Array def combsort! gap = size swaps = true while gap > 1 or swaps gap = [1, (gap / 1.25).to_i].max swaps = false 0.upto(size - gap - 1) do |i| if self[i] > self[i+gap] self[i], self[i+gap] = self[i+gap], self[i] swaps = true end end end self end end p [23, 76, 99, 58, 97, 57, 35, 89, 51, 38, 95, 92, 24, 46, 31, 24, 14, 12, 57, 78].combsort! ``` results in ```txt [12, 14, 23, 24, 24, 31, 35, 38, 46, 51, 57, 57, 58, 76, 78, 89, 92, 95, 97, 99] ``` ## Scala ===Imperative version (Ugly, side effects)=== ```Scala object CombSort extends App { val ia = Array(28, 44, 46, 24, 19, 2, 17, 11, 25, 4) val ca = Array('X', 'B', 'E', 'A', 'Z', 'M', 'S', 'L', 'Y', 'C') def sorted[E](input: Array[E])(implicit ord: Ordering[E]): Array[E] = { import ord._ var gap = input.length var swapped = true while (gap > 1 || swapped) { if (gap > 1) gap = (gap / 1.3).toInt swapped = false for (i <- 0 until input.length - gap) if (input(i) >= input(i + gap)) { val t = input(i) input(i) = input(i + gap) input(i + gap) = t swapped = true } } input } println(s"Unsorted : ${ia.mkString("[", ", ", "]")}") println(s"Sorted : ${sorted(ia).mkString("[", ", ", "]")}\n") println(s"Unsorted : ${ca.mkString("[", ", ", "]")}") println(s"Sorted : ${sorted(ca).mkString("[", ", ", "]")}") } ``` {{Out}}See it in running in your browser by [https://scalafiddle.io/sf/7ykMPZx/0 ScalaFiddle (JavaScript)] or by [https://scastie.scala-lang.org/Gp1ZcxnPQAKvToWFZLU7OA Scastie (JVM)]. ## Sather ```sather class SORT{T < $IS_LT{T}} is private swap(inout a, inout b:T) is temp ::= a; a := b; b := temp; end; -- --------------------------------------------------------------------------------- comb_sort(inout a:ARRAY{T}) is gap ::= a.size; swapped ::= true; loop until!(gap <= 1 and ~swapped); if gap > 1 then gap := (gap.flt / 1.25).int; end; i ::= 0; swapped := false; loop until! ( (i + gap) >= a.size ); if (a[i] > a[i+gap]) then swap(inout a[i], inout a[i+gap]); swapped := true; end; i := i + 1; end; end; end; end; class MAIN is main is a:ARRAY{INT} := |88, 18, 31, 44, 4, 0, 8, 81, 14, 78, 20, 76, 84, 33, 73, 75, 82, 5, 62, 70|; b ::= a.copy; SORT{INT}::comb_sort(inout b); #OUT + b + "\n"; end; end; ``` ## Sidef ```ruby func comb_sort(arr) { var gap = arr.len; var swaps = true; while (gap > 1 || swaps) { gap.div!(1.25).int! if (gap > 1); swaps = false; for i in ^(arr.len - gap) { if (arr[i] > arr[i+gap]) { arr[i, i+gap] = arr[i+gap, i]; swaps = true; } } } return arr; } ``` ## Swift {{trans|C}} ```Swift func combSort(inout list:[Int]) { var swapped = true var gap = list.count while gap > 1 || swapped { gap = gap * 10 / 13 if gap == 9 || gap == 10 { gap = 11 } else if gap < 1 { gap = 1 } swapped = false for var i = 0, j = gap; j < list.count; i++, j++ { if list[i] > list[j] { (list[i], list[j]) = (list[j], list[i]) swapped = true } } } } ``` ## Tcl ```tcl proc combsort {input} { set gap [llength $input] while 1 { set gap [expr {int(floor($gap / 1.3))}] set swaps 0 for {set i 0} {$i+$gap < [llength $input]} {incr i} { set j [expr {$i+$gap}] if {[lindex $input $i] > [lindex $input $j]} { set tmp [lindex $input $i] lset input $i [lindex $input $j] lset input $j $tmp incr swaps } } if {$gap <= 1 && !$swaps} break } return $input } set data {23 76 99 58 97 57 35 89 51 38 95 92 24 46 31 24 14 12 57 78} puts [combsort $data] ``` Produces this output: ```txt 12 14 23 24 24 31 35 38 46 51 57 57 58 76 78 89 92 95 97 99 ``` =={{header|TI-83 BASIC}}== Requires [[Insertion sort#TI-83 BASIC|prgmSORTINS]]. Gap division of 1.3. Switches to [[Insertion sort]] when gap is less than 5. :L1→L2 :dim(L2)→A :While A>5 and B=0 :int(A/1.3)→A :1→C :0→B :While (C+A)≥dim(L2) :If L2(C)>L2(C+A) :Then :L2(C)→D :L2(C+A)→L2(C) :D→L2(C+A) :1→B :End :C+1→C :End :DelVar A :DelVar B :DelVar C :DelVar D :L1→L3 :L2→L1 :[[Insertion sort#TI-83 BASIC|prgmSORTINS]] :L3→L1 :DelVar L3 :Return {{omit from|GUISS}} ## uBasic/4tHPRINT "Comb sort:" n = FUNC (_InitArray) PROC _ShowArray (n) PROC _Combsort (n) PROC _ShowArray (n) PRINT END _Combsort PARAM (1) ' Combsort subroutine LOCAL(4) b@ = a@ c@ = 1 DO WHILE (b@ > 1) + c@ b@ = (b@ * 10) / 13 IF (b@ = 9) + (b@ = 10) THEN b@ = 11 IF b@ < 1 THEN b@ = 1 c@ = 0 d@ = 0 e@ = b@ DO WHILE e@ < a@ IF @(d@) > @(e@) THEN PROC _Swap (d@, e@) : c@ = 1 d@ = d@ + 1 e@ = e@ + 1 LOOP LOOP RETURN _Swap PARAM(2) ' Swap two array elements PUSH @(a@) @(a@) = @(b@) @(b@) = POP() RETURN _InitArray ' Init example array PUSH 4, 65, 2, -31, 0, 99, 2, 83, 782, 1 FOR i = 0 TO 9 @(i) = POP() NEXT RETURN (i) _ShowArray PARAM (1) ' Show array subroutine FOR i = 0 TO a@-1 PRINT @(i), NEXT PRINT RETURN ``` ## VBA {[trans|Phix}} ```vb Function comb_sort(ByVal s As Variant) As Variant Dim gap As Integer: gap = UBound(s) Dim swapped As Integer Do While True gap = WorksheetFunction.Max(WorksheetFunction.Floor_Precise(gap / 1.3), 1) swapped = False For i = 0 To UBound(s) - gap si = Val(s(i)) If si > Val(s(i + gap)) Then s(i) = s(i + gap) s(i + gap) = CStr(si) swapped = True End If Next i If gap = 1 And Not swapped Then Exit Do Loop comb_sort = s End Function Public Sub main() Dim s(9) As Variant For i = 0 To 9 s(i) = CStr(Int(1000 * Rnd)) Next i Debug.Print Join(s, ", ") Debug.Print Join(comb_sort(s), ", ") End Sub ``` {{out}} ```txt 45, 414, 862, 790, 373, 961, 871, 56, 949, 364 45, 56, 364, 373, 414, 790, 862, 871, 949, 961 ``` ## zkl {{trans|D}} ```zkl fcn combSort(list){ len,gap,swaps:=list.len(),len,True; while(gap>1 or swaps){ gap,swaps=(1).max(gap.toFloat()/1.2473), False; foreach i in (len - gap){ if(list[i]>list[i + gap]){ list.swap(i,i + gap); swaps=True; } } } list } ``` ```zkl combSort(List(28, 44, 46, 24, 19, 2, 17, 11, 25, 4)).println(); combSort("This is a test".toData()).text.println(); ``` {{out}} ```txt L(2,4,11,17,19,24,25,28,44,46) Taehiissstt ```