⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Sorting Algorithms}} {{Sorting Algorithm}} [[Category:Recursion]]
The '''merge sort''' is a recursive sort of order n*log(n).
It is notable for having a worst case and average complexity of ''O(n*log(n))'', and a best case complexity of ''O(n)'' (for pre-sorted input).
The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements (which are both entirely sorted groups).
Then merge the groups back together so that their elements are in order.
This is how the algorithm gets its ''divide and conquer'' description.
;Task: Write a function to sort a collection of integers using the merge sort.
The merge sort algorithm comes in two parts: a sort function and a merge function
The functions in pseudocode look like this: '''function''' ''mergesort''(m) '''var''' list left, right, result '''if''' length(m) ≤ 1 '''return''' m '''else''' '''var''' middle = length(m) / 2 '''for each''' x '''in''' m '''up to''' middle - 1 '''add''' x '''to''' left '''for each''' x '''in''' m '''at and after''' middle '''add''' x '''to''' right left = mergesort(left) right = mergesort(right) '''if''' last(left) ≤ first(right) '''append''' right '''to''' left '''return''' left result = merge(left, right) '''return''' result
'''function''' ''merge''(left,right) '''var''' list result '''while''' length(left) > 0 and length(right) > 0 '''if''' first(left) ≤ first(right) '''append''' first(left) '''to''' result left = rest(left) '''else''' '''append''' first(right) '''to''' result right = rest(right) '''if''' length(left) > 0 '''append''' rest(left) '''to''' result '''if''' length(right) > 0 '''append''' rest(right) '''to''' result '''return''' result
;See also:
- the Wikipedia entry: [[wp:Merge_sort| merge sort]]
Note: better performance can be expected if, rather than recursing until length(m) ≤ 1, an insertion sort is used for length(m) smaller than some threshold larger than '''1'''. However, this complicates the example code, so it is not shown here.
360 Assembly
{{trans|BBC BASIC}} The program uses ASM structured macros and two ASSIST macros (XDECO, XPRNT) to keep the code as short as possible.
* Merge sort 19/06/2016
MAIN CSECT
STM R14,R12,12(R13) save caller's registers
LR R12,R15 set R12 as base register
USING MAIN,R12 notify assembler
LA R11,SAVEXA get the address of my savearea
ST R13,4(R11) save caller's save area pointer
ST R11,8(R13) save my save area pointer
LR R13,R11 set R13 to point to my save area
LA R1,1 1
LA R2,NN hbound(a)
BAL R14,SPLIT call split(1,hbound(a))
LA RPGI,PG pgi=0
LA RI,1 i=1
DO WHILE=(C,RI,LE,=A(NN)) do i=1 to hbound(a)
LR R1,RI i
SLA R1,2 .
L R2,A-4(R1) a(i)
XDECO R2,XDEC edit a(i)
MVC 0(4,RPGI),XDEC+8 output a(i)
LA RPGI,4(RPGI) pgi=pgi+4
LA RI,1(RI) i=i+1
ENDDO , end do
XPRNT PG,80 print buffer
L R13,SAVEXA+4 restore caller's savearea address
LM R14,R12,12(R13) restore caller's registers
XR R15,R15 set return code to 0
BR R14 return to caller
* split(istart,iend) ------recursive---------------------
SPLIT STM R14,R12,12(R13) save all registers
LR R9,R1 save R1
LA R1,72 amount of storage required
GETMAIN RU,LV=(R1) allocate storage for stack
USING STACK,R10 make storage addressable
LR R10,R1 establish stack addressability
LA R11,SAVEXB get the address of my savearea
ST R13,4(R11) save caller's save area pointer
ST R11,8(R13) save my save area pointer
LR R13,R11 set R13 to point to my save area
LR R1,R9 restore R1
LR RSTART,R1 istart=R1
LR REND,R2 iend=R2
IF CR,REND,EQ,RSTART THEN if iend=istart
B RETURN return
ENDIF , end if
BCTR R2,0 iend-1
IF C,R2,EQ,RSTART THEN if iend-istart=1
LR R1,REND iend
SLA R1,2 .
L R2,A-4(R1) a(iend)
LR R1,RSTART istart
SLA R1,2 .
L R3,A-4(R1) a(istart)
IF CR,R2,LT,R3 THEN if a(iend)<a(istart)
LR R1,RSTART istart
SLA R1,2 .
LA R2,A-4(R1) @a(istart)
LR R1,REND iend
SLA R1,2 .
LA R3,A-4(R1) @a(iend)
MVC TEMP,0(R2) temp=a(istart)
MVC 0(4,R2),0(R3) a(istart)=a(iend)
MVC 0(4,R3),TEMP a(iend)=temp
ENDIF , end if
B RETURN return
ENDIF , end if
LR RMIDDL,REND iend
SR RMIDDL,RSTART iend-istart
SRA RMIDDL,1 (iend-istart)/2
AR RMIDDL,RSTART imiddl=istart+(iend-istart)/2
LR R1,RSTART istart
LR R2,RMIDDL imiddl
BAL R14,SPLIT call split(istart,imiddl)
LA R1,1(RMIDDL) imiddl+1
LR R2,REND iend
BAL R14,SPLIT call split(imiddl+1,iend)
LR R1,RSTART istart
LR R2,RMIDDL imiddl
LR R3,REND iend
BAL R14,MERGE call merge(istart,imiddl,iend)
RETURN L R13,SAVEXB+4 restore caller's savearea address
XR R15,R15 set return code to 0
LA R0,72 amount of storage to free
FREEMAIN A=(R10),LV=(R0) free allocated storage
L R14,12(R13) restore caller's return address
LM R2,R12,28(R13) restore registers R2 to R12
BR R14 return to caller
DROP R10 base no longer needed
* merge(jstart,jmiddl,jend) ------------------------------------
MERGE STM R1,R3,JSTART jstart=r1,jmiddl=r2,jend=r3
SR R2,R1 jmiddl-jstart
LA RBS,2(R2) bs=jmiddl-jstart+2
LA RI,1 i=1
LR R3,RBS bs
BCTR R3,0 bs-1
DO WHILE=(CR,RI,LE,R3) do i=0 to bs-1
L R2,JSTART jstart
AR R2,RI jstart+i
SLA R2,2 .
L R2,A-8(R2) a(jstart+i-1)
LR R1,RI i
SLA R1,2 .
ST R2,B-4(R1) b(i)=a(jstart+i-1)
LA RI,1(RI) i=i+1
ENDDO , end do
LA RI,1 i=1
L RJ,JMIDDL j=jmiddl
LA RJ,1(RJ) j=jmiddl+1
L RK,JSTART k=jstart
DO UNTIL=(CR,RI,EQ,RBS,OR, do until i=bs or X
C,RJ,GT,JEND) j>jend
LR R1,RI i
SLA R1,2 .
L R4,B-4(R1) r4=b(i)
LR R1,RJ j
SLA R1,2 .
L R3,A-4(R1) r3=a(j)
LR R9,RK k
SLA R9,2 r9 for a(k)
IF CR,R4,LE,R3 THEN if b(i)<=a(j)
ST R4,A-4(R9) a(k)=b(i)
LA RI,1(RI) i=i+1
ELSE , else
ST R3,A-4(R9) a(k)=a(j)
LA RJ,1(RJ) j=j+1
ENDIF , end if
LA RK,1(RK) k=k+1
ENDDO , end do
DO WHILE=(CR,RI,LT,RBS) do while i<bs
LR R1,RI i
SLA R1,2 .
L R2,B-4(R1) b(i)
LR R1,RK k
SLA R1,2 .
ST R2,A-4(R1) a(k)=b(i)
LA RI,1(RI) i=i+1
LA RK,1(RK) k=k+1
ENDDO , end do
BR R14 return to caller
* ------- ------------------ ------------------------------------
LTORG
SAVEXA DS 18F savearea of main
NN EQU ((B-A)/L'A) number of items
A DC F'4',F'65',F'2',F'-31',F'0',F'99',F'2',F'83',F'782',F'1'
DC F'45',F'82',F'69',F'82',F'104',F'58',F'88',F'112',F'89',F'74'
B DS (NN/2+1)F merge sort static storage
TEMP DS F for swap
JSTART DS F jstart
JMIDDL DS F jmiddl
JEND DS F jend
PG DC CL80' ' buffer
XDEC DS CL12 for edit
STACK DSECT dynamic area
SAVEXB DS 18F " savearea of mergsort (72 bytes)
YREGS
RI EQU 6 i
RJ EQU 7 j
RK EQU 8 k
RSTART EQU 6 istart
REND EQU 7 i
RMIDDL EQU 8 i
RPGI EQU 3 pgi
RBS EQU 0 bs
END MAIN
{{out}}
-31 0 1 2 2 4 45 58 65 69 74 82 82 83 88 89 99 104 112 782
ACL2
(defun split (xys)
(if (endp (rest xys))
(mv xys nil)
(mv-let (xs ys)
(split (rest (rest xys)))
(mv (cons (first xys) xs)
(cons (second xys) ys)))))
(defun mrg (xs ys)
(declare (xargs :measure (+ (len xs) (len ys))))
(cond ((endp xs) ys)
((endp ys) xs)
((< (first xs) (first ys))
(cons (first xs) (mrg (rest xs) ys)))
(t (cons (first ys) (mrg xs (rest ys))))))
(defthm split-shortens
(implies (consp (rest xs))
(mv-let (ys zs)
(split xs)
(and (< (len ys) (len xs))
(< (len zs) (len xs))))))
(defun msort (xs)
(declare (xargs
:measure (len xs)
:hints (("Goal"
:use ((:instance split-shortens))))))
(if (endp (rest xs))
xs
(mv-let (ys zs)
(split xs)
(mrg (msort ys)
(msort zs)))))
ActionScript
function mergesort(a:Array)
{
//Arrays of length 1 and 0 are always sorted
if(a.length <= 1) return a;
else
{
var middle:uint = a.length/2;
//split the array into two
var left:Array = new Array(middle);
var right:Array = new Array(a.length-middle);
var j:uint = 0, k:uint = 0;
//fill the left array
for(var i:uint = 0; i < middle; i++)
left[j++]=a[i];
//fill the right array
for(i = middle; i< a.length; i++)
right[k++]=a[i];
//sort the arrays
left = mergesort(left);
right = mergesort(right);
//If the last element of the left array is less than or equal to the first
//element of the right array, they are in order and don't need to be merged
if(left[left.length-1] <= right[0])
return left.concat(right);
a = merge(left, right);
return a;
}
}
function merge(left:Array, right:Array)
{
var result:Array = new Array(left.length + right.length);
var j:uint = 0, k:uint = 0, m:uint = 0;
//merge the arrays in order
while(j < left.length && k < right.length)
{
if(left[j] <= right[k])
result[m++] = left[j++];
else
result[m++] = right[k++];
}
//If one of the arrays has remaining entries that haven't been merged, they
//will be greater than the rest of the numbers merged so far, so put them on the
//end of the array.
for(; j < left.length; j++)
result[m++] = left[j];
for(; k < right.length; k++)
result[m++] = right[k];
return result;
}
Ada
This example creates a generic package for sorting arrays of any type. Ada allows array indices to be any discrete type, including enumerated types which are non-numeric. Furthermore, numeric array indices can start at any value, positive, negative, or zero. The following code handles all the possible variations in index types.
generic
type Element_Type is private;
type Index_Type is (<>);
type Collection_Type is array(Index_Type range <>) of Element_Type;
with function "<"(Left, Right : Element_Type) return Boolean is <>;
package Mergesort is
function Sort(Item : Collection_Type) return Collection_Type;
end MergeSort;
package body Mergesort is
-----------
-- Merge --
-----------
function Merge(Left, Right : Collection_Type) return Collection_Type is
Result : Collection_Type(Left'First..Right'Last);
Left_Index : Index_Type := Left'First;
Right_Index : Index_Type := Right'First;
Result_Index : Index_Type := Result'First;
begin
while Left_Index <= Left'Last and Right_Index <= Right'Last loop
if Left(Left_Index) <= Right(Right_Index) then
Result(Result_Index) := Left(Left_Index);
Left_Index := Index_Type'Succ(Left_Index); -- increment Left_Index
else
Result(Result_Index) := Right(Right_Index);
Right_Index := Index_Type'Succ(Right_Index); -- increment Right_Index
end if;
Result_Index := Index_Type'Succ(Result_Index); -- increment Result_Index
end loop;
if Left_Index <= Left'Last then
Result(Result_Index..Result'Last) := Left(Left_Index..Left'Last);
end if;
if Right_Index <= Right'Last then
Result(Result_Index..Result'Last) := Right(Right_Index..Right'Last);
end if;
return Result;
end Merge;
----------
-- Sort --
----------
function Sort (Item : Collection_Type) return Collection_Type is
Result : Collection_Type(Item'range);
Middle : Index_Type;
begin
if Item'Length <= 1 then
return Item;
else
Middle := Index_Type'Val((Item'Length / 2) + Index_Type'Pos(Item'First));
declare
Left : Collection_Type(Item'First..Index_Type'Pred(Middle));
Right : Collection_Type(Middle..Item'Last);
begin
for I in Left'range loop
Left(I) := Item(I);
end loop;
for I in Right'range loop
Right(I) := Item(I);
end loop;
Left := Sort(Left);
Right := Sort(Right);
Result := Merge(Left, Right);
end;
return Result;
end if;
end Sort;
end Mergesort;
The following code provides an usage example for the generic package defined above.
with Ada.Text_Io; use Ada.Text_Io;
with Mergesort;
procedure Mergesort_Test is
type List_Type is array(Positive range <>) of Integer;
package List_Sort is new Mergesort(Integer, Positive, List_Type);
procedure Print(Item : List_Type) is
begin
for I in Item'range loop
Put(Integer'Image(Item(I)));
end loop;
New_Line;
end Print;
List : List_Type := (1, 5, 2, 7, 3, 9, 4, 6);
begin
Print(List);
Print(List_Sort.Sort(List));
end Mergesort_Test;
{{out}}
1 5 2 7 3 9 4 6
1 2 3 4 5 6 7 9
ALGOL 68
{{trans|python}} Below are two variants of the same routine. If copying the DATA type to a different memory location is expensive, then the optimised version should be used as the DATA elements are handled indirectly.
MODE DATA = CHAR;
PROC merge sort = ([]DATA m)[]DATA: (
IF LWB m >= UPB m THEN
m
ELSE
INT middle = ( UPB m + LWB m ) OVER 2;
[]DATA left = merge sort(m[:middle]);
[]DATA right = merge sort(m[middle+1:]);
flex merge(left, right)[AT LWB m]
FI
);
# FLEX version: A demonstration of FLEX for manipulating arrays #
PROC flex merge = ([]DATA in left, in right)[]DATA:(
[UPB in left + UPB in right]DATA result;
FLEX[0]DATA left := in left;
FLEX[0]DATA right := in right;
FOR index TO UPB result DO
# change the direction of this comparison to change the direction of the sort #
IF LWB right > UPB right THEN
result[index:] := left;
stop iteration
ELIF LWB left > UPB left THEN
result[index:] := right;
stop iteration
ELIF left[1] <= right[1] THEN
result[index] := left[1];
left := left[2:]
ELSE
result[index] := right[1];
right := right[2:]
FI
OD;
stop iteration:
result
);
[32]CHAR char array data := "big fjords vex quick waltz nymph";
print((merge sort(char array data), new line));
{{out}}
abcdefghiijklmnopqrstuvwxyz
Optimised version:
avoids FLEX array copies and manipulations
avoids type DATA memory copies, useful in cases where DATA is a large STRUCT
PROC opt merge sort = ([]REF DATA m)[]REF DATA: (
IF LWB m >= UPB m THEN
m
ELSE
INT middle = ( UPB m + LWB m ) OVER 2;
[]REF DATA left = opt merge sort(m[:middle]);
[]REF DATA right = opt merge sort(m[middle+1:]);
opt merge(left, right)[AT LWB m]
FI
);
PROC opt merge = ([]REF DATA left, right)[]REF DATA:(
[UPB left - LWB left + 1 + UPB right - LWB right + 1]REF DATA result;
INT index left:=LWB left, index right:=LWB right;
FOR index TO UPB result DO
# change the direction of this comparison to change the direction of the sort #
IF index right > UPB right THEN
result[index:] := left[index left:];
stop iteration
ELIF index left > UPB left THEN
result[index:] := right[index right:];
stop iteration
ELIF left[index left] <= right[index right] THEN
result[index] := left[index left]; index left +:= 1
ELSE
result[index] := right[index right]; index right +:= 1
FI
OD;
stop iteration:
result
);
# create an array of pointers to the data being sorted #
[UPB char array data]REF DATA data; FOR i TO UPB char array data DO data[i] := char array data[i] OD;
[]REF CHAR result = opt merge sort(data);
FOR i TO UPB result DO print((result[i])) OD; print(new line)
{{out}}
abcdefghiijklmnopqrstuvwxyz
Astro
fun mergesort(m):
if m.lenght <= 1: return m
let middle = floor m.lenght / 2
let left = merge(m[:middle])
let right = merge(m[middle-1:]);
fun merge(left, right):
let result = []
while not (left.isempty or right.isempty):
if left[1] <= right[1]:
result.push! left.shift!()
else:
result.push! right.shift!()
result.push! left.push! right
let arr = [7, 6, 5, 9, 8, 4, 3, 1, 2, 0]
print mergesort arr
== [[AutoHotkey_L]] == AutoHotkey_L has true array support and can dynamically grow and shrink its arrays at run time. This version of Merge Sort only needs '''n''' locations to sort. [http://www.autohotkey.com/forum/viewtopic.php?t=77693&highlight=| AHK forum post]
#NoEnv
Test := []
Loop 100 {
Random n, 0, 999
Test.Insert(n)
}
Result := MergeSort(Test)
Loop % Result.MaxIndex() {
MsgBox, 1, , % Result[A_Index]
IfMsgBox Cancel
Break
}
Return
/*
Function MergeSort
Sorts an array by first recursively splitting it down to its
individual elements and then merging those elements in their
correct order.
Parameters
Array The array to be sorted
Returns
The sorted array
*/
MergeSort(Array)
{
; Return single element arrays
If (! Array.HasKey(2))
Return Array
; Split array into Left and Right halfs
Left := [], Right := [], Middle := Array.MaxIndex() // 2
Loop % Middle
Right.Insert(Array.Remove(Middle-- + 1)), Left.Insert(Array.Remove(1))
If (Array.MaxIndex())
Right.Insert(Array.Remove(1))
Left := MergeSort(Left), Right := MergeSort(Right)
; If all the Right values are greater than all the
; Left values, just append Right at the end of Left.
If (Left[Left.MaxIndex()] <= Right[1]) {
Loop % Right.MaxIndex()
Left.Insert(Right.Remove(1))
Return Left
}
; Loop until one of the arrays is empty
While(Left.MaxIndex() and Right.MaxIndex())
Left[1] <= Right[1] ? Array.Insert(Left.Remove(1))
: Array.Insert(Right.Remove(1))
Loop % Left.MaxIndex()
Array.Insert(Left.Remove(1))
Loop % Right.MaxIndex()
Array.Insert(Right.Remove(1))
Return Array
}
AutoHotkey
Contributed by Laszlo on the ahk [http://www.autohotkey.com/forum/post-276483.html#276483 forum]
MsgBox % MSort("")
MsgBox % MSort("xxx")
MsgBox % MSort("3,2,1")
MsgBox % MSort("dog,000000,cat,pile,abcde,1,zz,xx,z")
MSort(x) { ; Merge-sort of a comma separated list
If (2 > L:=Len(x))
Return x ; empty or single item lists are sorted
StringGetPos p, x, `,, % "L" L//2 ; Find middle comma
Return Merge(MSort(SubStr(x,1,p)), MSort(SubStr(x,p+2))) ; Split, Sort, Merge
}
Len(list) {
StringReplace t, list,`,,,UseErrorLevel ; #commas -> ErrorLevel
Return list="" ? 0 : ErrorLevel+1
}
Item(list,ByRef p) { ; item at position p, p <- next position
Return (p := InStr(list,",",0,i:=p+1)) ? SubStr(list,i,p-i) : SubStr(list,i)
}
Merge(list0,list1) { ; Merge 2 sorted lists
IfEqual list0,, Return list1
IfEqual list1,, Return list0
i0 := Item(list0,p0:=0)
i1 := Item(list1,p1:=0)
Loop {
i := i0>i1
list .= "," i%i% ; output smaller
If (p%i%)
i%i% := Item(list%i%,p%i%) ; get next item from processed list
Else {
i ^= 1 ; list is exhausted: attach rest of other
Return SubStr(list "," i%i% (p%i% ? "," SubStr(list%i%,p%i%+1) : ""), 2)
}
}
}
BBC BASIC
DEFPROC_MergeSort(Start%,End%)
REM *****************************************************************
REM This procedure Merge Sorts the chunk of data% bounded by
REM Start% & End%.
REM *****************************************************************
LOCAL Middle%
IF End%=Start% ENDPROC
IF End%-Start%=1 THEN
IF data%(End%)<data%(Start%) THEN
SWAP data%(Start%),data%(End%)
ENDIF
ENDPROC
ENDIF
Middle%=Start%+(End%-Start%)/2
PROC_MergeSort(Start%,Middle%)
PROC_MergeSort(Middle%+1,End%)
PROC_Merge(Start%,Middle%,End%)
ENDPROC
:
DEF PROC_Merge(Start%,Middle%,End%)
LOCAL fh_size%
fh_size% = Middle%-Start%+1
FOR I%=0 TO fh_size%-1
fh%(I%)=data%(Start%+I%)
NEXT I%
I%=0
J%=Middle%+1
K%=Start%
REPEAT
IF fh%(I%) <= data%(J%) THEN
data%(K%)=fh%(I%)
I%+=1
K%+=1
ELSE
data%(K%)=data%(J%)
J%+=1
K%+=1
ENDIF
UNTIL I%=fh_size% OR J%>End%
WHILE I% < fh_size%
data%(K%)=fh%(I%)
I%+=1
K%+=1
ENDWHILE
ENDPROC
Usage would look something like this example which sorts a series of 1000 random integers:
REM Example of merge sort usage.
Size%=1000
S1%=Size%/2
DIM data%(Size%)
DIM fh%(S1%)
FOR I%=1 TO Size%
data%(I%)=RND(100000)
NEXT
PROC_MergeSort(1,Size%)
END
C
#include <stdio.h>
#include <stdlib.h>
void merge (int *a, int n, int m) {
int i, j, k;
int *x = malloc(n * sizeof (int));
for (i = 0, j = m, k = 0; k < n; k++) {
x[k] = j == n ? a[i++]
: i == m ? a[j++]
: a[j] < a[i] ? a[j++]
: a[i++];
}
for (i = 0; i < n; i++) {
a[i] = x[i];
}
free(x);
}
void merge_sort (int *a, int n) {
if (n < 2)
return;
int m = n / 2;
merge_sort(a, m);
merge_sort(a + m, n - m);
merge(a, n, m);
}
int main () {
int a[] = {4, 65, 2, -31, 0, 99, 2, 83, 782, 1};
int n = sizeof a / sizeof a[0];
int i;
for (i = 0; i < n; i++)
printf("%d%s", a[i], i == n - 1 ? "\n" : " ");
merge_sort(a, n);
for (i = 0; i < n; i++)
printf("%d%s", a[i], i == n - 1 ? "\n" : " ");
return 0;
}
{{out}}
4 65 2 -31 0 99 2 83 782 1
-31 0 1 2 2 4 65 83 99 782
C++
#include <iterator>
#include <algorithm> // for std::inplace_merge
#include <functional> // for std::less
template<typename RandomAccessIterator, typename Order>
void mergesort(RandomAccessIterator first, RandomAccessIterator last, Order order)
{
if (last - first > 1)
{
RandomAccessIterator middle = first + (last - first) / 2;
mergesort(first, middle, order);
mergesort(middle, last, order);
std::inplace_merge(first, middle, last, order);
}
}
template<typename RandomAccessIterator>
void mergesort(RandomAccessIterator first, RandomAccessIterator last)
{
mergesort(first, last, std::less<typename std::iterator_traits<RandomAccessIterator>::value_type>());
}
C#
{{works with|C sharp|C#|3.0+}}
namespace Sort {
using System;
public class MergeSort<T> where T : IComparable {
#region Constants
private const Int32 mergesDefault = 6;
private const Int32 insertionLimitDefault = 12;
#endregion
#region Properties
protected Int32[] Positions { get; set; }
private Int32 merges;
public Int32 Merges {
get { return merges; }
set {
// A minimum of 2 merges are required
if (value > 1)
merges = value;
else
throw new ArgumentOutOfRangeException();
if (Positions == null || Positions.Length != merges)
Positions = new Int32[merges];
}
}
public Int32 InsertionLimit { get; set; }
#endregion
#region Constructors
public MergeSort(Int32 merges, Int32 insertionLimit) {
Merges = merges;
InsertionLimit = insertionLimit;
}
public MergeSort()
: this(mergesDefault, insertionLimitDefault) {
}
#endregion
#region Sort Methods
public void Sort(T[] entries) {
// Allocate merge buffer
var entries2 = new T[entries.Length];
Sort(entries, entries2, 0, entries.Length - 1);
}
// Top-Down K-way Merge Sort
public void Sort(T[] entries1, T[] entries2, Int32 first, Int32 last) {
var length = last + 1 - first;
if (length < 2)
return;
else if (length < InsertionLimit) {
InsertionSort<T>.Sort(entries1, first, last);
return;
}
var left = first;
var size = ceiling(length, Merges);
for (var remaining = length; remaining > 0; remaining -= size, left += size) {
var right = left + Math.Min(remaining, size) - 1;
Sort(entries1, entries2, left, right);
}
Merge(entries1, entries2, first, last);
Array.Copy(entries2, first, entries1, first, length);
}
#endregion
#region Merge Methods
public void Merge(T[] entries1, T[] entries2, Int32 first, Int32 last) {
Array.Clear(Positions, 0, Merges);
// This implementation has a quadratic time dependency on the number of merges
for (var index = first; index <= last; index++)
entries2[index] = remove(entries1, first, last);
}
private T remove(T[] entries, Int32 first, Int32 last) {
var entry = default(T);
var found = (Int32?)null;
var length = last + 1 - first;
var index = 0;
var left = first;
var size = ceiling(length, Merges);
for (var remaining = length; remaining > 0; remaining -= size, left += size, index++) {
var position = Positions[index];
if (position < Math.Min(remaining, size)) {
var next = entries[left + position];
if (!found.HasValue || entry.CompareTo(next) > 0) {
found = index;
entry = next;
}
}
}
// Remove entry
Positions[found.Value]++;
return entry;
}
#endregion
#region Math Methods
private static Int32 ceiling(Int32 numerator, Int32 denominator) {
return (numerator + denominator - 1) / denominator;
}
#endregion
}
#region Insertion Sort
static class InsertionSort<T> where T : IComparable {
public static void Sort(T[] entries, Int32 first, Int32 last) {
for (var index = first + 1; index <= last; index++)
insert(entries, first, index);
}
private static void insert(T[] entries, Int32 first, Int32 index) {
var entry = entries[index];
while (index > first && entries[index - 1].CompareTo(entry) > 0)
entries[index] = entries[--index];
entries[index] = entry;
}
}
#endregion
}
'''Example''':
using Sort;
using System;
class Program {
static void Main(String[] args) {
var entries = new Int32[] { 7, 5, 2, 6, 1, 4, 2, 6, 3 };
var sorter = new MergeSort<Int32>();
sorter.Sort(entries);
Console.WriteLine(String.Join(" ", entries));
}
}
{{out}}
1 2 2 3 4 5 6 6 7
Clojure
{{trans|Haskell}}
(defn merge [left right]
(cond (nil? left) right
(nil? right) left
:else (let [[l & *left] left
[r & *right] right]
(if (<= l r) (cons l (merge *left right))
(cons r (merge left *right))))))
(defn merge-sort [list]
(if (< (count list) 2)
list
(let [[left right] (split-at (/ (count list) 2) list)]
(merge (merge-sort left) (merge-sort right)))))
COBOL
Cobol cannot do recursion, so this version simulates recursion. The working storage is therefore pretty complex, so I have shown the whole program, not just the working procedure division parts.
IDENTIFICATION DIVISION.
PROGRAM-ID. MERGESORT.
AUTHOR. DAVE STRATFORD.
DATE-WRITTEN. APRIL 2010.
INSTALLATION. HEXAGON SYSTEMS LIMITED.
******************************************************************
* MERGE SORT *
* The Merge sort uses a completely different paradigm, one of *
* divide and conquer, to many of the other sorts. The data set *
* is split into smaller sub sets upon which are sorted and then *
* merged together to form the final sorted data set. *
* This version uses the recursive method. Split the data set in *
* half and perform a merge sort on each half. This in turn splits*
* each half again and again until each set is just one or 2 items*
* long. A set of one item is already sorted so is ignored, a set *
* of two is compared and swapped as necessary. The smaller data *
* sets are then repeatedly merged together to eventually form the*
* full, sorted, set. *
* Since cobol cannot do recursion this module only simulates it *
* so is not as fast as a normal recursive version would be. *
* Scales very well to larger data sets, its relative complexity *
* means it is not suited to sorting smaller data sets: use an *
* Insertion sort instead as the Merge sort is a stable sort. *
******************************************************************
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. ICL VME.
OBJECT-COMPUTER. ICL VME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FA-INPUT-FILE ASSIGN FL01.
SELECT FB-OUTPUT-FILE ASSIGN FL02.
DATA DIVISION.
FILE SECTION.
FD FA-INPUT-FILE.
01 FA-INPUT-REC.
03 FA-DATA PIC 9(6).
FD FB-OUTPUT-FILE.
01 FB-OUTPUT-REC PIC 9(6).
WORKING-STORAGE SECTION.
01 WA-IDENTITY.
03 WA-PROGNAME PIC X(10) VALUE "MERGESORT".
03 WA-VERSION PIC X(6) VALUE "000001".
01 WB-TABLE.
03 WB-ENTRY PIC 9(8) COMP SYNC OCCURS 100000
INDEXED BY WB-IX-1
WB-IX-2.
01 WC-VARS.
03 WC-SIZE PIC S9(8) COMP SYNC.
03 WC-TEMP PIC S9(8) COMP SYNC.
03 WC-START PIC S9(8) COMP SYNC.
03 WC-MIDDLE PIC S9(8) COMP SYNC.
03 WC-END PIC S9(8) COMP SYNC.
01 WD-FIRST-HALF.
03 WD-FH-MAX PIC S9(8) COMP SYNC.
03 WD-ENTRY PIC 9(8) COMP SYNC OCCURS 50000
INDEXED BY WD-IX.
01 WF-CONDITION-FLAGS.
03 WF-EOF-FLAG PIC X.
88 END-OF-FILE VALUE "Y".
03 WF-EMPTY-FILE-FLAG PIC X.
88 EMPTY-FILE VALUE "Y".
01 WS-STACK.
* This stack is big enough to sort a list of 1million items.
03 WS-STACK-ENTRY OCCURS 20 INDEXED BY WS-STACK-TOP.
05 WS-START PIC S9(8) COMP SYNC.
05 WS-MIDDLE PIC S9(8) COMP SYNC.
05 WS-END PIC S9(8) COMP SYNC.
05 WS-FS-FLAG PIC X.
88 FIRST-HALF VALUE "F".
88 SECOND-HALF VALUE "S".
88 WS-ALL VALUE "A".
05 WS-IO-FLAG PIC X.
88 WS-IN VALUE "I".
88 WS-OUT VALUE "O".
PROCEDURE DIVISION.
A-MAIN SECTION.
A-000.
PERFORM B-INITIALISE.
IF NOT EMPTY-FILE
PERFORM C-PROCESS.
PERFORM D-FINISH.
A-999.
STOP RUN.
B-INITIALISE SECTION.
B-000.
DISPLAY "*** " WA-PROGNAME " VERSION "
WA-VERSION " STARTING ***".
MOVE ALL "N" TO WF-CONDITION-FLAGS.
OPEN INPUT FA-INPUT-FILE.
SET WB-IX-1 TO 0.
READ FA-INPUT-FILE AT END MOVE "Y" TO WF-EOF-FLAG
WF-EMPTY-FILE-FLAG.
PERFORM BA-READ-INPUT UNTIL END-OF-FILE.
CLOSE FA-INPUT-FILE.
SET WC-SIZE TO WB-IX-1.
B-999.
EXIT.
BA-READ-INPUT SECTION.
BA-000.
SET WB-IX-1 UP BY 1.
MOVE FA-DATA TO WB-ENTRY(WB-IX-1).
READ FA-INPUT-FILE AT END MOVE "Y" TO WF-EOF-FLAG.
BA-999.
EXIT.
C-PROCESS SECTION.
C-000.
DISPLAY "SORT STARTING".
MOVE 1 TO WS-START(1).
MOVE WC-SIZE TO WS-END(1).
MOVE "F" TO WS-FS-FLAG(1).
MOVE "I" TO WS-IO-FLAG(1).
SET WS-STACK-TOP TO 2.
PERFORM E-MERGE-SORT UNTIL WS-OUT(1).
DISPLAY "SORT FINISHED".
C-999.
EXIT.
D-FINISH SECTION.
D-000.
OPEN OUTPUT FB-OUTPUT-FILE.
SET WB-IX-1 TO 1.
PERFORM DA-WRITE-OUTPUT UNTIL WB-IX-1 > WC-SIZE.
CLOSE FB-OUTPUT-FILE.
DISPLAY "*** " WA-PROGNAME " FINISHED ***".
D-999.
EXIT.
DA-WRITE-OUTPUT SECTION.
DA-000.
WRITE FB-OUTPUT-REC FROM WB-ENTRY(WB-IX-1).
SET WB-IX-1 UP BY 1.
DA-999.
EXIT.
******************************************************************
E-MERGE-SORT SECTION.
*
### ===============
*
* This section controls the simulated recursion. *
******************************************************************
E-000.
IF WS-OUT(WS-STACK-TOP - 1)
GO TO E-010.
MOVE WS-START(WS-STACK-TOP - 1) TO WC-START.
MOVE WS-END(WS-STACK-TOP - 1) TO WC-END.
* First check size of part we are dealing with.
IF WC-END - WC-START = 0
* Only 1 number in range, so simply set for output, and move on
MOVE "O" TO WS-IO-FLAG(WS-STACK-TOP - 1)
GO TO E-010.
IF WC-END - WC-START = 1
* 2 numbers, so compare and swap as necessary. Set for output
MOVE "O" TO WS-IO-FLAG(WS-STACK-TOP - 1)
IF WB-ENTRY(WC-START) > WB-ENTRY(WC-END)
MOVE WB-ENTRY(WC-START) TO WC-TEMP
MOVE WB-ENTRY(WC-END) TO WB-ENTRY(WC-START)
MOVE WC-TEMP TO WB-ENTRY(WC-END)
GO TO E-010
ELSE
GO TO E-010.
* More than 2, so split and carry on down
COMPUTE WC-MIDDLE = ( WC-START + WC-END ) / 2.
MOVE WC-START TO WS-START(WS-STACK-TOP).
MOVE WC-MIDDLE TO WS-END(WS-STACK-TOP).
MOVE "F" TO WS-FS-FLAG(WS-STACK-TOP).
MOVE "I" TO WS-IO-FLAG(WS-STACK-TOP).
SET WS-STACK-TOP UP BY 1.
GO TO E-999.
E-010.
SET WS-STACK-TOP DOWN BY 1.
IF SECOND-HALF(WS-STACK-TOP)
GO TO E-020.
MOVE WS-START(WS-STACK-TOP - 1) TO WC-START.
MOVE WS-END(WS-STACK-TOP - 1) TO WC-END.
COMPUTE WC-MIDDLE = ( WC-START + WC-END ) / 2 + 1.
MOVE WC-MIDDLE TO WS-START(WS-STACK-TOP).
MOVE WC-END TO WS-END(WS-STACK-TOP).
MOVE "S" TO WS-FS-FLAG(WS-STACK-TOP).
MOVE "I" TO WS-IO-FLAG(WS-STACK-TOP).
SET WS-STACK-TOP UP BY 1.
GO TO E-999.
E-020.
MOVE WS-START(WS-STACK-TOP - 1) TO WC-START.
MOVE WS-END(WS-STACK-TOP - 1) TO WC-END.
COMPUTE WC-MIDDLE = ( WC-START + WC-END ) / 2.
PERFORM H-PROCESS-MERGE.
MOVE "O" TO WS-IO-FLAG(WS-STACK-TOP - 1).
E-999.
EXIT.
******************************************************************
H-PROCESS-MERGE SECTION.
*
### ==================
*
* This section identifies which data is to be merged, and then *
* merges the two data streams into a single larger data stream. *
******************************************************************
H-000.
INITIALISE WD-FIRST-HALF.
COMPUTE WD-FH-MAX = WC-MIDDLE - WC-START + 1.
SET WD-IX TO 1.
PERFORM HA-COPY-OUT VARYING WB-IX-1 FROM WC-START BY 1
UNTIL WB-IX-1 > WC-MIDDLE.
SET WB-IX-1 TO WC-START.
SET WB-IX-2 TO WC-MIDDLE.
SET WB-IX-2 UP BY 1.
SET WD-IX TO 1.
PERFORM HB-MERGE UNTIL WD-IX > WD-FH-MAX OR WB-IX-2 > WC-END.
PERFORM HC-COPY-BACK UNTIL WD-IX > WD-FH-MAX.
H-999.
EXIT.
HA-COPY-OUT SECTION.
HA-000.
MOVE WB-ENTRY(WB-IX-1) TO WD-ENTRY(WD-IX).
SET WD-IX UP BY 1.
HA-999.
EXIT.
HB-MERGE SECTION.
HB-000.
IF WB-ENTRY(WB-IX-2) < WD-ENTRY(WD-IX)
MOVE WB-ENTRY(WB-IX-2) TO WB-ENTRY(WB-IX-1)
SET WB-IX-2 UP BY 1
ELSE
MOVE WD-ENTRY(WD-IX) TO WB-ENTRY(WB-IX-1)
SET WD-IX UP BY 1.
SET WB-IX-1 UP BY 1.
HB-999.
EXIT.
HC-COPY-BACK SECTION.
HC-000.
MOVE WD-ENTRY(WD-IX) TO WB-ENTRY(WB-IX-1).
SET WD-IX UP BY 1.
SET WB-IX-1 UP BY 1.
HC-999.
EXIT.
CoffeeScript
# This is a simple version of mergesort that returns brand-new arrays.
# A more sophisticated version would do more in-place optimizations.
merge_sort = (arr) ->
if arr.length <= 1
return (elem for elem in arr)
m = Math.floor(arr.length / 2)
arr1 = merge_sort(arr.slice 0, m)
arr2 = merge_sort(arr.slice m)
result = []
p1 = p2 = 0
while true
if p1 >= arr1.length
if p2 >= arr2.length
return result
result.push arr2[p2]
p2 += 1
else if p2 >= arr2.length or arr1[p1] < arr2[p2]
result.push arr1[p1]
p1 += 1
else
result.push arr2[p2]
p2 += 1
do ->
console.log merge_sort [2,4,6,8,1,3,5,7,9,10,11,0,13,12]
{{out}}
> coffee mergesort.coffee
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ]
Common Lisp
(defun merge-sort (result-type sequence predicate)
(let ((split (floor (length sequence) 2)))
(if (zerop split)
(copy-seq sequence)
(merge result-type (merge-sort result-type (subseq sequence 0 split) predicate)
(merge-sort result-type (subseq sequence split) predicate)
predicate))))
merge is a standard Common Lisp function.
(merge-sort 'list (list 1 3 5 7 9 8 6 4 2) #'<) (1 2 3 4 5 6 7 8 9)
Crystal
{{trans|Ruby}}
def merge_sort(a : Array(Int32)) : Array(Int32)
return a if a.size <= 1
m = a.size / 2
lt = merge_sort(a[0 ... m])
rt = merge_sort(a[m .. -1])
return merge(lt, rt)
end
def merge(lt : Array(Int32), rt : Array(Int32)) : Array(Int32)
result = Array(Int32).new
until lt.empty? || rt.empty?
result << (lt.first < rt.first ? lt.shift : rt.shift)
end
return result + lt + rt
end
a = [7, 6, 5, 9, 8, 4, 3, 1, 2, 0]
puts merge_sort(a) # => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Curry
Copied from [http://www.informatik.uni-kiel.de/~curry/examples/ Curry: Example Programs]
-- merge sort: sorting two lists by merging the sorted first
-- and second half of the list
sort :: ([a] -> [a] -> [a] -> Success) -> [a] -> [a] -> Success
sort merge xs ys =
if length xs < 2 then ys =:= xs
else sort merge (firsthalf xs) us
& sort merge (secondhalf xs) vs
& merge us vs ys
where us,vs free
intMerge :: [Int] -> [Int] -> [Int] -> Success
intMerge [] ys zs = zs =:= ys
intMerge (x:xs) [] zs = zs =:= x:xs
intMerge (x:xs) (y:ys) zs =
if (x > y) then intMerge (x:xs) ys us & zs =:= y:us
else intMerge xs (y:ys) vs & zs =:= x:vs
where us,vs free
firsthalf xs = take (length xs `div` 2) xs
secondhalf xs = drop (length xs `div` 2) xs
goal1 xs = sort intMerge [3,1,2] xs
goal2 xs = sort intMerge [3,1,2,5,4,8] xs
goal3 xs = sort intMerge [3,1,2,5,4,8,6,7,2,9,1,4,3] xs
D
Arrays only, not in-place.
import std.stdio, std.algorithm, std.array, std.range;
T[] mergeSorted(T)(in T[] D) /*pure nothrow @safe*/ {
if (D.length < 2)
return D.dup;
return [D[0 .. $ / 2].mergeSorted, D[$ / 2 .. $].mergeSorted]
.nWayUnion.array;
}
void main() {
[3, 4, 2, 5, 1, 6].mergeSorted.writeln;
}
Alternative Version
This in-place version allocates the auxiliary memory on the stack, making life easier for the garbage collector, but with risk of stack overflow (same output):
import std.stdio, std.algorithm, core.stdc.stdlib, std.exception,
std.range;
void mergeSort(T)(T[] data) if (hasSwappableElements!(typeof(data))) {
immutable L = data.length;
if (L < 2) return;
T* ptr = cast(T*)alloca(L * T.sizeof);
enforce(ptr != null);
ptr[0 .. L] = data[];
mergeSort(ptr[0 .. L/2]);
mergeSort(ptr[L/2 .. L]);
[ptr[0 .. L/2], ptr[L/2 .. L]].nWayUnion().copy(data);
}
void main() {
auto a = [3, 4, 2, 5, 1, 6];
a.mergeSort();
writeln(a);
}
Dart
void main() {
MergeSortInDart sampleSort = MergeSortInDart();
List<int> theResultingList = sampleSort.sortTheList([54, 89, 125, 47899, 32, 61, 42, 895647, 215, 345, 6, 21, 2, 78]);
print('Here\'s the sorted list: ${theResultingList}');
}
/////////////////////////////////////
class MergeSortInDart {
List<int> sortedList;
// In Dart we often put helper functions at the bottom.
// You could put them anywhere, we just like it this way
// for organizational purposes. It's nice to be able to
// read them in the order they're called.
// Start here
List<int> sortTheList(List<int> sortThis){
// My parameters are listed vertically for readability. Dart
// doesn't care how you list them, vertically or horizontally.
sortedList = mSort(
sortThis,
sortThis.sublist(0, sortThis.length),
sortThis.length,
);
return sortThis;
}
mSort(
List<int> sortThisList,
List<int> tempList,
int thisListLength) {
if (thisListLength == 1) {
return;
}
// In Dart using ~/ is more efficient than using .floor()
int middle = (thisListLength ~/ 2);
// If you use something in a try/on/catch/finally block then
// be sure to declare it outside the block (for scope)
List<int> tempLeftList;
// This was used for troubleshooting. It was left here to show
// how a basic block try/on can be better than a debugPrint since
// it won't print unless there's a problem.
try {
tempLeftList = tempList.sublist(0, middle);
} on RangeError {
print(
'tempLeftList length = ${tempList.length}, thisListLength '
'was supposedly $thisListLength and Middle was $middle');
}
// If you see "myList.getRange(x,y)" that's a sign the code is
// from Dart 1 and needs to be updated. It's "myList.sublist" in Dart 2
List<int> tempRightList = tempList.sublist(middle);
// Left side.
mSort(
tempLeftList,
sortThisList.sublist(0, middle),
middle,
);
// Right side.
mSort(
tempRightList,
sortThisList.sublist(middle),
sortThisList.length - middle,
);
// Merge it.
dartMerge(
tempLeftList,
tempRightList,
sortThisList,
);
}
dartMerge(
List<int> leftSide,
List<int> rightSide,
List<int> sortThisList,
) {
int index = 0;
int elementValue;
// This should be human readable.
while (leftSide.isNotEmpty && rightSide.isNotEmpty) {
if (rightSide[0] < leftSide[0]) {
elementValue = rightSide[0];
rightSide.removeRange(0, 1);
} else {
elementValue = leftSide[0];
leftSide.removeRange(0, 1);
}
sortThisList[index++] = elementValue;
}
while (leftSide.isNotEmpty) {
elementValue = leftSide[0];
leftSide.removeRange(0, 1);
sortThisList[index++] = elementValue;
}
while (rightSide.isNotEmpty) {
elementValue = rightSide[0];
rightSide.removeRange(0, 1);
sortThisList[index++] = elementValue;
}
sortedList = sortThisList;
}
}
E
def merge(var xs :List, var ys :List) {
var result := []
while (xs =~ [x] + xr && ys =~ [y] + yr) {
if (x <= y) {
result with= x
xs := xr
} else {
result with= y
ys := yr
}
}
return result + xs + ys
}
def sort(list :List) {
if (list.size() <= 1) { return list }
def split := list.size() // 2
return merge(sort(list.run(0, split)),
sort(list.run(split)))
}
EasyLang
## Eiffel
```Eiffel
class
MERGE_SORT [G -> COMPARABLE]
create
sort
feature
sort (ar: ARRAY [G])
-- Sorted array in ascending order.
require
ar_not_empty: not ar.is_empty
do
create sorted_array.make_empty
mergesort (ar, 1, ar.count)
sorted_array := ar
ensure
sorted_array_not_empty: not sorted_array.is_empty
sorted: is_sorted (sorted_array, 1, sorted_array.count)
end
sorted_array: ARRAY [G]
feature {NONE}
mergesort (ar: ARRAY [G]; l, r: INTEGER)
-- Sorting part of mergesort.
local
m: INTEGER
do
if l < r then
m := (l + r) // 2
mergesort (ar, l, m)
mergesort (ar, m + 1, r)
merge (ar, l, m, r)
end
end
merge (ar: ARRAY [G]; l, m, r: INTEGER)
-- Merge part of mergesort.
require
positive_index_l: l >= 1
positive_index_m: m >= 1
positive_index_r: r >= 1
ar_not_empty: not ar.is_empty
local
merged: ARRAY [G]
h, i, j, k: INTEGER
do
i := l
j := m + 1
k := l
create merged.make_filled (ar [1], 1, ar.count)
from
until
i > m or j > r
loop
if ar.item (i) <= ar.item (j) then
merged.force (ar.item (i), k)
i := i + 1
elseif ar.item (i) > ar.item (j) then
merged.force (ar.item (j), k)
j := j + 1
end
k := k + 1
end
if i > m then
from
h := j
until
h > r
loop
merged.force (ar.item (h), k + h - j)
h := h + 1
end
elseif j > m then
from
h := i
until
h > m
loop
merged.force (ar.item (h), k + h - i)
h := h + 1
end
end
from
h := l
until
h > r
loop
ar.item (h) := merged.item (h)
h := h + 1
end
ensure
is_partially_sorted: is_sorted (ar, l, r)
end
is_sorted (ar: ARRAY [G]; l, r: INTEGER): BOOLEAN
-- Is 'ar' sorted in ascending order?
require
ar_not_empty: not ar.is_empty
l_in_range: l >= 1
r_in_range: r <= ar.count
local
i: INTEGER
do
Result := True
from
i := l
until
i = r
loop
if ar [i] > ar [i + 1] then
Result := False
end
i := i + 1
end
end
end
Test:
class
APPLICATION
create
make
feature
make
do
test := <<2, 5, 66, -2, 0, 7>>
io.put_string ("unsorted" + "%N")
across
test as ar
loop
io.put_string (ar.item.out + "%T")
end
io.put_string ("%N" + "sorted" + "%N")
create merge.sort (test)
across
merge.sorted_array as ar
loop
io.put_string (ar.item.out + "%T")
end
end
test: ARRAY [INTEGER]
merge: MERGE_SORT [INTEGER]
end
{{out}}
unsorted
2 5 66 -2 0 7
sorted
-2 0 2 5 7 66
Elixir
defmodule Sort do
def merge_sort(list) when length(list) <= 1, do: list
def merge_sort(list) do
{left, right} = Enum.split(list, div(length(list), 2))
:lists.merge( merge_sort(left), merge_sort(right))
end
end
Example:
iex(10)> Sort.merge_sort([5,3,9,4,1,6,8,2,7])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
Erlang
Below are two versions. Both take advantage of built-in Erlang functions, lists:split and list:merge. The multi-process version spawns a new process each time it splits. This was slightly faster on a test system with only two cores, so it may not be the best implementation, however it does illustrate how easy it can be to add multi-threaded/process capabilities to a program.
Single-threaded version:
mergeSort(L) when length(L) == 1 -> L;
mergeSort(L) when length(L) > 1 ->
{L1, L2} = lists:split(length(L) div 2, L),
lists:merge(mergeSort(L1), mergeSort(L2)).
Multi-process version:
pMergeSort(L) when length(L) == 1 -> L;
pMergeSort(L) when length(L) > 1 ->
{L1, L2} = lists:split(length(L) div 2, L),
spawn(mergesort, pMergeSort2, [L1, self()]),
spawn(mergesort, pMergeSort2, [L2, self()]),
mergeResults([]).
pMergeSort2(L, Parent) when length(L) == 1 -> Parent ! L;
pMergeSort2(L, Parent) when length(L) > 1 ->
{L1, L2} = lists:split(length(L) div 2, L),
spawn(mergesort, pMergeSort2, [L1, self()]),
spawn(mergesort, pMergeSort2, [L2, self()]),
Parent ! mergeResults([]).
another multi-process version (number of processes == number of processor cores):
merge_sort(List) -> m(List, erlang:system_info(schedulers)).
m([L],_) -> [L];
m(L, N) when N > 1 ->
{L1,L2} = lists:split(length(L) div 2, L),
{Parent, Ref} = {self(), make_ref()},
spawn(fun()-> Parent ! {l1, Ref, m(L1, N-2)} end),
spawn(fun()-> Parent ! {l2, Ref, m(L2, N-2)} end),
{L1R, L2R} = receive_results(Ref, undefined, undefined),
lists:merge(L1R, L2R);
m(L, _) -> {L1,L2} = lists:split(length(L) div 2, L), lists:merge(m(L1, 0), m(L2, 0)).
receive_results(Ref, L1, L2) ->
receive
{l1, Ref, L1R} when L2 == undefined -> receive_results(Ref, L1R, L2);
{l2, Ref, L2R} when L1 == undefined -> receive_results(Ref, L1, L2R);
{l1, Ref, L1R} -> {L1R, L2};
{l2, Ref, L2R} -> {L1, L2R}
after 5000 -> receive_results(Ref, L1, L2)
end.
ERRE
PROGRAM MERGESORT_DEMO
! Example of merge sort usage.
CONST SIZE%=100,S1%=50
DIM DTA%[SIZE%],FH%[S1%],STACK%[20,2]
PROCEDURE MERGE(START%,MIDDLE%,ENDS%)
LOCAL FHSIZE%
FHSIZE%=MIDDLE%-START%+1
FOR I%=0 TO FHSIZE%-1 DO
FH%[I%]=DTA%[START%+I%]
END FOR
I%=0
J%=MIDDLE%+1
K%=START%
REPEAT
IF FH%[I%]<=DTA%[J%] THEN
DTA%[K%]=FH%[I%]
I%=I%+1
K%=K%+1
ELSE
DTA%[K%]=DTA%[J%]
J%=J%+1
K%=K%+1
END IF
UNTIL I%=FHSIZE% OR J%>ENDS%
WHILE I%<FHSIZE% DO
DTA%[K%]=FH%[I%]
I%=I%+1
K%=K%+1
END WHILE
END PROCEDURE
PROCEDURE MERGE_SORT(LEV->LEV)
! *****************************************************************
! This procedure Merge Sorts the chunk of DTA% bounded by
! Start% & Ends%.
! *****************************************************************
LOCAL MIDDLE%
IF ENDS%=START% THEN LEV=LEV-1 EXIT PROCEDURE END IF
IF ENDS%-START%=1 THEN
IF DTA%[ENDS%]<DTA%[START%] THEN
SWAP(DTA%[START%],DTA%[ENDS%])
END IF
LEV=LEV-1
EXIT PROCEDURE
END IF
MIDDLE%=START%+(ENDS%-START%)/2
STACK%[LEV,0]=START% STACK%[LEV,1]=ENDS% STACK%[LEV,2]=MIDDLE%
START%=START% ENDS%=MIDDLE%
MERGE_SORT(LEV+1->LEV)
START%=STACK%[LEV,0] ENDS%=STACK%[LEV,1] MIDDLE%=STACK%[LEV,2]
STACK%[LEV,0]=START% STACK%[LEV,1]=ENDS% STACK%[LEV,2]=MIDDLE%
START%=MIDDLE%+1 ENDS%=ENDS%
MERGE_SORT(LEV+1->LEV)
START%=STACK%[LEV,0] ENDS%=STACK%[LEV,1] MIDDLE%=STACK%[LEV,2]
MERGE(START%,MIDDLE%,ENDS%)
LEV=LEV-1
END PROCEDURE
BEGIN
FOR I%=1 TO SIZE% DO
DTA%[I%]=RND(1)*10000
END FOR
START%=1 ENDS%=SIZE%
MERGE_SORT(0->LEV)
FOR I%=1 TO SIZE% DO
WRITE("#####";DTA%[I%];)
END FOR
PRINT
END PROGRAM
Euphoria
function merge(sequence left, sequence right)
sequence result
result = {}
while length(left) > 0 and length(right) > 0 do
if compare(left[1], right[1]) <= 0 then
result = append(result, left[1])
left = left[2..$]
else
result = append(result, right[1])
right = right[2..$]
end if
end while
return result & left & right
end function
function mergesort(sequence m)
sequence left, right
integer middle
if length(m) <= 1 then
return m
else
middle = floor(length(m)/2)
left = mergesort(m[1..middle])
right = mergesort(m[middle+1..$])
if compare(left[$], right[1]) <= 0 then
return left & right
elsif compare(right[$], left[1]) <= 0 then
return right & left
else
return merge(left, right)
end if
end if
end function
constant s = rand(repeat(1000,10))
? s
? mergesort(s)
{{out}}
{385,599,284,650,457,804,724,300,434,722}
{284,300,385,434,457,599,650,722,724,804}
=={{header|F Sharp|F#}}==
let split list =
let rec aux l acc1 acc2 =
match l with
| [] -> (acc1,acc2)
| [x] -> (x::acc1,acc2)
| x::y::tail ->
aux tail (x::acc1) (y::acc2)
in aux list [] []
let rec merge l1 l2 =
match (l1,l2) with
| (x,[]) -> x
| ([],y) -> y
| (x::tx,y::ty) ->
if x <= y then x::merge tx l2
else y::merge l1 ty
let rec mergesort list =
match list with
| [] -> []
| [x] -> [x]
| _ -> let (l1,l2) = split list
in merge (mergesort l1) (mergesort l2)
Factor
: mergestep ( accum seq1 seq2 -- accum seq1 seq2 )
2dup [ first ] bi@ <
[ [ [ first ] [ rest-slice ] bi [ suffix ] dip ] dip ]
[ [ first ] [ rest-slice ] bi [ swap [ suffix ] dip ] dip ]
if ;
: merge ( seq1 seq2 -- merged )
[ { } ] 2dip
[ 2dup [ length 0 > ] bi@ and ]
[ mergestep ] while
append append ;
: mergesort ( seq -- sorted )
dup length 1 >
[ dup length 2 / floor [ head ] [ tail ] 2bi [ mergesort ] bi@ merge ]
[ ] if ;
( scratchpad ) { 4 2 6 5 7 1 3 } mergesort .
{ 1 2 3 4 5 6 7 }
Forth
This is an in-place mergesort which works on arrays of integers.
: merge-step ( right mid left -- right mid+ left+ )
over @ over @ < if
over @ >r
2dup - over dup cell+ rot move
r> over !
>r cell+ 2dup = if rdrop dup else r> then
then cell+ ;
: merge ( right mid left -- right left )
dup >r begin 2dup > while merge-step repeat 2drop r> ;
: mid ( l r -- mid ) over - 2/ cell negate and + ;
: mergesort ( right left -- right left )
2dup cell+ <= if exit then
swap 2dup mid recurse rot recurse merge ;
: sort ( addr len -- ) cells over + swap mergesort 2drop ;
create test 8 , 1 , 5 , 3 , 9 , 0 , 2 , 7 , 6 , 4 ,
: .array ( addr len -- ) 0 do dup i cells + @ . loop drop ;
test 10 2dup sort .array \ 0 1 2 3 4 5 6 7 8 9
Fortran
{{works with|Fortran|95 and later and with both free or fixed form syntax.}}
program TestMergeSort
implicit none
integer, parameter :: N = 8
integer :: A(N) = (/ 1, 5, 2, 7, 3, 9, 4, 6 /)
integer :: work((size(A) + 1) / 2)
write(*,'(A,/,10I3)')'Unsorted array :',A
call MergeSort(A, work)
write(*,'(A,/,10I3)')'Sorted array :',A
contains
subroutine merge(A, B, C)
implicit none
! The targe attribute is necessary, because A .or. B might overlap with C.
integer, target, intent(in) :: A(:), B(:)
integer, target, intent(inout) :: C(:)
integer :: i, j, k
if (size(A) + size(B) > size(C)) stop(1)
i = 1; j = 1
do k = 1, size(C)
if (i <= size(A) .and. j <= size(B)) then
if (A(i) <= B(j)) then
C(k) = A(i)
i = i + 1
else
C(k) = B(j)
j = j + 1
end if
else if (i <= size(A)) then
C(k) = A(i)
i = i + 1
else if (j <= size(B)) then
C(k) = B(j)
j = j + 1
end if
end do
end subroutine merge
subroutine swap(x, y)
implicit none
integer, intent(inout) :: x, y
integer :: tmp
tmp = x; x = y; y = tmp
end subroutine
recursive subroutine MergeSort(A, work)
implicit none
integer, intent(inout) :: A(:)
integer, intent(inout) :: work(:)
integer :: half
half = (size(A) + 1) / 2
if (size(A) < 2) then
continue
else if (size(A) == 2) then
if (A(1) > A(2)) then
call swap(A(1), A(2))
end if
else
call MergeSort(A( : half), work)
call MergeSort(A(half + 1 :), work)
if (A(half) > A(half + 1)) then
work(1 : half) = A(1 : half)
call merge(work(1 : half), A(half + 1:), A)
endif
end if
end subroutine MergeSort
end program TestMergeSort
FreeBASIC
Uses 'top down' C-like algorithm in Wikipedia article:
' FB 1.05.0 Win64
Sub copyArray(a() As Integer, iBegin As Integer, iEnd As Integer, b() As Integer)
Redim b(iBegin To iEnd - 1) As Integer
For k As Integer = iBegin To iEnd - 1
b(k) = a(k)
Next
End Sub
' Left source half is a(iBegin To iMiddle-1).
' Right source half is a(iMiddle To iEnd-1).
' Result is b(iBegin To iEnd-1).
Sub topDownMerge(a() As Integer, iBegin As Integer, iMiddle As Integer, iEnd As Integer, b() As Integer)
Dim i As Integer = iBegin
Dim j As Integer = iMiddle
' While there are elements in the left or right runs...
For k As Integer = iBegin To iEnd - 1
' If left run head exists and is <= existing right run head.
If i < iMiddle AndAlso (j >= iEnd OrElse a(i) <= a(j)) Then
b(k) = a(i)
i += 1
Else
b(k) = a(j)
j += 1
End If
Next
End Sub
' Sort the given run of array a() using array b() as a source.
' iBegin is inclusive; iEnd is exclusive (a(iEnd) is not in the set).
Sub topDownSplitMerge(b() As Integer, iBegin As Integer, iEnd As Integer, a() As Integer)
If (iEnd - iBegin) < 2 Then Return '' If run size = 1, consider it sorted
' split the run longer than 1 item into halves
Dim iMiddle As Integer = (iEnd + iBegin) \ 2 '' iMiddle = mid point
' recursively sort both runs from array a() into b()
topDownSplitMerge(a(), iBegin, iMiddle, b()) '' sort the left run
topDownSplitMerge(a(), iMiddle, iEnd, b()) '' sort the right run
' merge the resulting runs from array b() into a()
topDownMerge(b(), iBegin, iMiddle, iEnd, a())
End Sub
' Array a() has the items to sort; array b() is a work array (empty initially).
Sub topDownMergeSort(a() As Integer, b() As Integer, n As Integer)
copyArray(a(), 0, n, b()) '' duplicate array a() into b()
topDownSplitMerge(b(), 0, n, a()) '' sort data from b() into a()
End Sub
Sub printArray(a() As Integer)
For i As Integer = LBound(a) To UBound(a)
Print Using "####"; a(i);
Next
Print
End Sub
Dim a(0 To 9) As Integer = {4, 65, 2, -31, 0, 99, 2, 83, 782, 1}
Dim b() As Integer
Print "Unsorted : ";
printArray(a())
topDownMergeSort a(), b(), 10
Print "Sorted : ";
printArray(a())
Print
Dim a2(0 To 8) As Integer = {7, 5, 2, 6, 1, 4, 2, 6, 3}
Erase b
Print "Unsorted : ";
printArray(a2())
topDownMergeSort a2(), b(), 9
Print "Sorted : ";
printArray(a2())
Print
Print "Press any key to quit"
Sleep
{{out}}
Unsorted : 4 65 2 -31 0 99 2 83 782 1
Sorted : -31 0 1 2 2 4 65 83 99 782
Unsorted : 7 5 2 6 1 4 2 6 3
Sorted : 1 2 2 3 4 5 6 6 7
FunL
def
sort( [] ) = []
sort( [x] ) = [x]
sort( xs ) =
val (l, r) = xs.splitAt( xs.length()\2 )
merge( sort(l), sort(r) )
merge( [], xs ) = xs
merge( xs, [] ) = xs
merge( x:xs, y:ys )
| x <= y = x : merge( xs, y:ys )
| otherwise = y : merge( x:xs, ys )
println( sort([94, 37, 16, 56, 72, 48, 17, 27, 58, 67]) )
println( sort(['Sofía', 'Alysha', 'Sophia', 'Maya', 'Emma', 'Olivia', 'Emily']) )
{{out}}
[16, 17, 27, 37, 48, 56, 58, 67, 72, 94]
[Alysha, Emily, Emma, Maya, Olivia, Sofía, Sophia]
Go
package main
import "fmt"
var a = []int{170, 45, 75, -90, -802, 24, 2, 66}
var s = make([]int, len(a)/2+1) // scratch space for merge step
func main() {
fmt.Println("before:", a)
mergeSort(a)
fmt.Println("after: ", a)
}
func mergeSort(a []int) {
if len(a) < 2 {
return
}
mid := len(a) / 2
mergeSort(a[:mid])
mergeSort(a[mid:])
if a[mid-1] <= a[mid] {
return
}
// merge step, with the copy-half optimization
copy(s, a[:mid])
l, r := 0, mid
for i := 0; ; i++ {
if s[l] <= a[r] {
a[i] = s[l]
l++
if l == mid {
break
}
} else {
a[i] = a[r]
r++
if r == len(a) {
copy(a[i+1:], s[l:mid])
break
}
}
}
return
}
Groovy
This is the standard algorithm, except that in the looping phase of the merge we work backwards through the left and right lists to construct the merged list, to take advantage of the [[Groovy]] ''List.pop()'' method. However, this results in a partially merged list in reverse sort order; so we then reverse it to put in back into correct order. This could play havoc with the sort stability, but we compensate by picking aggressively from the right list (ties go to the right), rather than aggressively from the left as is done in the standard algorithm.
def merge = { List left, List right ->
List mergeList = []
while (left && right) {
print "."
mergeList << ((left[-1] > right[-1]) ? left.pop() : right.pop())
}
mergeList = mergeList.reverse()
mergeList = left + right + mergeList
}
def mergeSort;
mergeSort = { List list ->
def n = list.size()
if (n < 2) return list
def middle = n.intdiv(2)
def left = [] + list[0..<middle]
def right = [] + list[middle..<n]
left = mergeSort(left)
right = mergeSort(right)
if (left[-1] <= right[0]) return left + right
merge(left, right)
}
Test:
println (mergeSort([23,76,99,58,97,57,35,89,51,38,95,92,24,46,31,24,14,12,57,78,4]))
println (mergeSort([88,18,31,44,4,0,8,81,14,78,20,76,84,33,73,75,82,5,62,70,12,7,1]))
println ()
println (mergeSort([10, 10.0, 10.00, 1]))
println (mergeSort([10, 10.00, 10.0, 1]))
println (mergeSort([10.0, 10, 10.00, 1]))
println (mergeSort([10.0, 10.00, 10, 1]))
println (mergeSort([10.00, 10, 10.0, 1]))
println (mergeSort([10.00, 10.0, 10, 1]))
The presence of decimal and integer versions of the same numbers, demonstrates, but of course does not '''prove''', that the sort remains stable. {{out}}
.............................................................[4, 12, 14, 23, 24, 24, 31, 35, 38, 46, 51, 57, 57, 58, 76, 78, 89, 92, 95, 97, 99]
....................................................................[0, 1, 4, 5, 7, 8, 12, 14, 18, 20, 31, 33, 44, 62, 70, 73, 75, 76, 78, 81, 82, 84, 88]
....[1, 10, 10.0, 10.00]
....[1, 10, 10.00, 10.0]
....[1, 10.0, 10, 10.00]
....[1, 10.0, 10.00, 10]
....[1, 10.00, 10, 10.0]
....[1, 10.00, 10.0, 10]
Tail recursion version
It is possible to write a version based on tail recursion, similar to that written in Haskel, OCaml or F#. This version also takes into account stack overflow problems induced by recursion for large lists using closure trampolines:
split = { list ->
list.collate((list.size()+1)/2 as int)
}
merge = { left, right, headBuffer=[] ->
if(left.size() == 0) headBuffer+right
else if(right.size() == 0) headBuffer+left
else if(left.head() <= right.head()) merge.trampoline(left.tail(), right, headBuffer+left.head())
else merge.trampoline(right.tail(), left, headBuffer+right.head())
}.trampoline()
mergesort = { List list ->
if(list.size() < 2) list
else merge(split(list).collect {mergesort it})
}
assert mergesort((500..1)) == (1..500)
assert mergesort([5,4,6,3,1,2]) == [1,2,3,4,5,6]
assert mergesort([3,3,1,4,6,78,9,1,3,5]) == [1,1,3,3,3,4,5,6,9,78]
which uses List.collate()
, alternatively one could write a purely recursive split()
closure as:
split = { list, left=[], right=[] ->
if(list.size() <2) [list+left, right]
else split.trampoline(list.tail().tail(), [list.head()]+left,[list.tail().head()]+right)
}.trampoline()
Haskell
Splitting in half in the middle like the normal merge sort does would be inefficient on the singly-linked lists used in Haskell (since you would have to do one pass just to determine the length, and then another half-pass to do the splitting). Instead, the algorithm here splits the list in half in a different way -- by alternately assigning elements to one list and the other. That way we (lazily) construct both sublists in parallel as we traverse the original list. Unfortunately, under this way of splitting we cannot do a stable sort.
merge [] ys = ys
merge xs [] = xs
merge xs@(x:xt) ys@(y:yt) | x <= y = x : merge xt ys
| otherwise = y : merge xs yt
split (x:y:zs) = let (xs,ys) = split zs in (x:xs,y:ys)
split [x] = ([x],[])
split [] = ([],[])
mergeSort [] = []
mergeSort [x] = [x]
mergeSort xs = let (as,bs) = split xs
in merge (mergeSort as) (mergeSort bs)
Alternatively, we can use bottom-up mergesort. This starts with lots of tiny sorted lists, and repeatedly merges pairs of them, building a larger and larger sorted list
mergePairs (sorted1 : sorted2 : sorteds) = merge sorted1 sorted2 : mergePairs sorteds
mergePairs sorteds = sorteds
mergeSortBottomUp list = mergeAll (map (\x -> [x]) list)
mergeAll [sorted] = sorted
mergeAll sorteds = mergeAll (mergePairs sorteds)
The standard library's sort function in GHC takes a similar approach to the bottom-up code, the differece being that, instead of starting with lists of size one, which are sorted by default, it detects runs in original list and uses those:
sort = sortBy compare
sortBy cmp = mergeAll . sequences
where
sequences (a:b:xs)
| a `cmp` b == GT = descending b [a] xs
| otherwise = ascending b (a:) xs
sequences xs = [xs]
descending a as (b:bs)
| a `cmp` b == GT = descending b (a:as) bs
descending a as bs = (a:as): sequences bs
ascending a as (b:bs)
| a `cmp` b /= GT = ascending b (\ys -> as (a:ys)) bs
ascending a as bs = as [a]: sequences bs
In this code, mergeAll, mergePairs, and merge are as above, except using the specialized cmp function in merge.
Io
List do (
merge := method(lst1, lst2,
result := list()
while(lst1 isNotEmpty or lst2 isNotEmpty,
if(lst1 first <= lst2 first) then(
result append(lst1 removeFirst)
) else (
result append(lst2 removeFirst)
)
)
result)
mergeSort := method(
if (size > 1) then(
half_size := (size / 2) ceil
return merge(slice(0, half_size) mergeSort,
slice(half_size, size) mergeSort)
) else (return self)
)
mergeSortInPlace := method(
copy(mergeSort)
)
)
lst := list(9, 5, 3, -1, 15, -2)
lst mergeSort println # ==> list(-2, -1, 3, 5, 9, 15)
lst mergeSortInPlace println # ==> list(-2, -1, 3, 5, 9, 15)
=={{header|Icon}} and {{header|Unicon}}==
procedure main() #: demonstrate various ways to sort a list and string
demosort(mergesort,[3, 14, 1, 5, 9, 2, 6, 3],"qwerty")
end
procedure mergesort(X,op,lower,upper) #: return sorted list ascending(or descending)
local middle
if /lower := 1 then { # top level call setup
upper := *X
op := sortop(op,X) # select how and what we sort
}
if upper ~= lower then { # sort all sections with 2 or more elements
X := mergesort(X,op,lower,middle := lower + (upper - lower) / 2)
X := mergesort(X,op,middle+1,upper)
if op(X[middle+1],X[middle]) then # @middle+1 < @middle merge if halves reversed
X := merge(X,op,lower,middle,upper)
}
return X
end
procedure merge(X,op,lower,middle,upper) # merge two list sections within a larger list
local p1,p2,add
p1 := lower
p2 := middle + 1
add := if type(X) ~== "string" then put else "||" # extend X, strings require X := add (until ||:= is invocable)
while p1 <= middle & p2 <= upper do
if op(X[p1],X[p2]) then { # @p1 < @p2
X := add(X,X[p1]) # extend X temporarily (rather than use a separate temporary list)
p1 +:= 1
}
else {
X := add(X,X[p2]) # extend X temporarily
p2 +:= 1
}
while X := add(X,X[middle >= p1]) do p1 +:= 1 # and rest of lower or ...
while X := add(X,X[upper >= p2]) do p2 +:= 1 # ... upper trailers if any
if type(X) ~== "string" then # pull section's sorted elements from extension
every X[upper to lower by -1] := pull(X)
else
(X[lower+:(upper-lower+1)] := X[0-:(upper-lower+1)])[0-:(upper-lower+1)] := ""
return X
end
Note: This example relies on [[Sorting_algorithms/Bubble_sort#Icon| the supporting procedures 'sortop', and 'demosort' in Bubble Sort]]. The full demosort exercises the named sort of a list with op = "numeric", "string", ">>" (lexically gt, descending),">" (numerically gt, descending), a custom comparator, and also a string.
{{out}} Abbreviated sample
Sorting Demo using procedure mergesort
on list : [ 3 14 1 5 9 2 6 3 ]
with op = &null: [ 1 2 3 3 5 6 9 14 ] (0 ms)
...
on string : "qwerty"
with op = &null: "eqrtwy" (0 ms)
J
{{eff note|J|/:~}} '''Solution'''
merge =: ,`(({.@] , ($: }.))~` ({.@] , ($: }.)) @.(>&{.))@.(*@*&#)
split =: </.~ 0 1$~#
mergeSort =: merge & $: &>/ @ split ` ] @. (1>:#)
This version is usable for relative small arrays due to stack limitations for the recursive verb 'merge'. For larger arrays replace 'merge' with the following explicit non-recursive version:
merge=: 4 : 0
if. 0= x *@*&# y do. x,y return. end.
la=.x
ra=.y
z=.i.0
while. la *@*&# ra do.
if. la >&{. ra do.
z=.z,{.ra
ra=.}.ra
else.
z=.z,{.la
la=.}.la
end.
end.
z,la,ra
)
But don't forget to use J's primitives /: or : if you really need a sort-function.
Java
{{works with|Java|1.5+}}
import java.util.List;
import java.util.ArrayList;
import java.util.Iterator;
public class Merge{
public static <E extends Comparable<? super E>> List<E> mergeSort(List<E> m){
if(m.size() <= 1) return m;
int middle = m.size() / 2;
List<E> left = m.subList(0, middle);
List<E> right = m.subList(middle, m.size());
right = mergeSort(right);
left = mergeSort(left);
List<E> result = merge(left, right);
return result;
}
public static <E extends Comparable<? super E>> List<E> merge(List<E> left, List<E> right){
List<E> result = new ArrayList<E>();
Iterator<E> it1 = left.iterator();
Iterator<E> it2 = right.iterator();
E x = it1.next();
E y = it2.next();
while (true){
//change the direction of this comparison to change the direction of the sort
if(x.compareTo(y) <= 0){
result.add(x);
if(it1.hasNext()){
x = it1.next();
}else{
result.add(y);
while(it2.hasNext()){
result.add(it2.next());
}
break;
}
}else{
result.add(y);
if(it2.hasNext()){
y = it2.next();
}else{
result.add(x);
while (it1.hasNext()){
result.add(it1.next());
}
break;
}
}
}
return result;
}
}
JavaScript
function merge(left, right, arr) {
var a = 0;
while (left.length && right.length) {
arr[a++] = (right[0] < left[0]) ? right.shift() : left.shift();
}
while (left.length) {
arr[a++] = left.shift();
}
while (right.length) {
arr[a++] = right.shift();
}
}
function mergeSort(arr) {
var len = arr.length;
if (len === 1) { return; }
var mid = Math.floor(len / 2),
left = arr.slice(0, mid),
right = arr.slice(mid);
mergeSort(left);
mergeSort(right);
merge(left, right, arr);
}
var arr = [1, 5, 2, 7, 3, 9, 4, 6, 8];
mergeSort(arr); // arr will now: 1, 2, 3, 4, 5, 6, 7, 8, 9
jq
The sort function defined here will sort any JSON array.
# Input: [x,y] -- the two arrays to be merged
# If x and y are sorted as by "sort", then the result will also be sorted:
def merge:
def m: # state: [x, y, array] (array being the answer)
.[0] as $x
| .[1] as $y
| if 0 == ($x|length) then .[2] + $y
elif 0 == ($y|length) then .[2] + $x
else
(if $x[0] <= $y[0] then [$x[1:], $y, .[2] + [$x[0] ]]
else [$x, $y[1:], .[2] + [$y[0] ]]
end) | m
end;
[.[0], .[1], []] | m;
def merge_sort:
if length <= 1 then .
else
(length/2 |floor) as $len
| . as $in
| [ ($in[0:$len] | merge_sort), ($in[$len:] | merge_sort) ] | merge
end;
'''Example''':
( [1, 3, 8, 9, 0, 0, 8, 7, 1, 6],
[170, 45, 75, 90, 2, 24, 802, 66],
[170, 45, 75, 90, 2, 24, -802, -66] )
| (merge_sort == sort)
{{Out}} true true true
Julia
{{works with|Julia|0.6}}
function mergesort(arr::Vector)
if length(arr) ≤ 1 return arr end
mid = length(arr) ÷ 2
lpart = mergesort(arr[1:mid])
rpart = mergesort(arr[mid+1:end])
rst = similar(arr)
i = ri = li = 1
@inbounds while li ≤ length(lpart) && ri ≤ length(rpart)
if lpart[li] ≤ rpart[ri]
rst[i] = lpart[li]
li += 1
else
rst[i] = rpart[ri]
ri += 1
end
i += 1
end
if li ≤ length(lpart)
copy!(rst, i, lpart, li)
else
copy!(rst, i, rpart, ri)
end
return rst
end
v = rand(-10:10, 10)
println("# unordered: $v\n -> ordered: ", mergesort(v))
{{out}}
# unordered: [8, 6, 7, 1, -1, 0, -4, 7, -7, 0]
-> ordered: [-7, -4, -1, 0, 0, 1, 6, 7, 7, 8]
Kotlin
fun mergeSort(list: List<Int>): List<Int> {
if (list.size <= 1) {
return list
}
val left = mutableListOf<Int>()
val right = mutableListOf<Int>()
val middle = list.size / 2
list.forEachIndexed { index, number ->
if (index < middle) {
left.add(number)
} else {
right.add(number)
}
}
fun merge(left: List<Int>, right: List<Int>): List<Int> = mutableListOf<Int>().apply {
var indexLeft = 0
var indexRight = 0
while (indexLeft < left.size && indexRight < right.size) {
if (left[indexLeft] <= right[indexRight]) {
add(left[indexLeft])
indexLeft++
} else {
add(right[indexRight])
indexRight++
}
}
while (indexLeft < left.size) {
add(left[indexLeft])
indexLeft++
}
while (indexRight < right.size) {
add(right[indexRight])
indexRight++
}
}
return merge(mergeSort(left), mergeSort(right))
}
fun main(args: Array<String>) {
val numbers = listOf(5, 2, 3, 17, 12, 1, 8, 3, 4, 9, 7)
println("Unsorted: $numbers")
println("Sorted: ${mergeSort(numbers)}")
}
{{out}}
Unsorted: [5, 2, 3, 17, 12, 1, 8, 3, 4, 9, 7]
Sorted: [1, 2, 3, 3, 4, 5, 7, 8, 9, 12, 17]
Liberty BASIC
itemCount = 20
dim A(itemCount)
dim tmp(itemCount) 'merge sort needs additionally same amount of storage
for i = 1 to itemCount
A(i) = int(rnd(1) * 100)
next i
print "Before Sort"
call printArray itemCount
call mergeSort 1,itemCount
print "After Sort"
call printArray itemCount
end
'------------------------------------------
sub mergeSort start, theEnd
if theEnd-start < 1 then exit sub
if theEnd-start = 1 then
if A(start)>A(theEnd) then
tmp=A(start)
A(start)=A(theEnd)
A(theEnd)=tmp
end if
exit sub
end if
middle = int((start+theEnd)/2)
call mergeSort start, middle
call mergeSort middle+1, theEnd
call merge start, middle, theEnd
end sub
sub merge start, middle, theEnd
i = start: j = middle+1: k = start
while i<=middle OR j<=theEnd
select case
case i<=middle AND j<=theEnd
if A(i)<=A(j) then
tmp(k)=A(i)
i=i+1
else
tmp(k)=A(j)
j=j+1
end if
k=k+1
case i<=middle
tmp(k)=A(i)
i=i+1
k=k+1
case else 'j<=theEnd
tmp(k)=A(j)
j=j+1
k=k+1
end select
wend
for i = start to theEnd
A(i)=tmp(i)
next
end sub
'
### =====================================
sub printArray itemCount
for i = 1 to itemCount
print using("###", A(i));
next i
print
end sub
Logo
{{works with|UCB Logo}}
to split :size :front :list
if :size < 1 [output list :front :list]
output split :size-1 (lput first :list :front) (butfirst :list)
end
to merge :small :large
if empty? :small [output :large]
ifelse lessequal? first :small first :large ~
[output fput first :small merge butfirst :small :large] ~
[output fput first :large merge butfirst :large :small]
end
to mergesort :list
localmake "half split (count :list) / 2 [] :list
if empty? first :half [output :list]
output merge mergesort first :half mergesort last :half
end
Logtalk
msort([], []) :- !.
msort([X], [X]) :- !.
msort([X, Y| Xs], Ys) :-
split([X, Y| Xs], X1s, X2s),
msort(X1s, Y1s),
msort(X2s, Y2s),
merge(Y1s, Y2s, Ys).
split([], [], []).
split([X| Xs], [X| Ys], Zs) :-
split(Xs, Zs, Ys).
merge([X| Xs], [Y| Ys], [X| Zs]) :-
X @=< Y, !,
merge(Xs, [Y| Ys], Zs).
merge([X| Xs], [Y| Ys], [Y| Zs]) :-
X @> Y, !,
merge([X | Xs], Ys, Zs).
merge([], Xs, Xs) :- !.
merge(Xs, [], Xs).
Lua
function getLower(a,b)
local i,j=1,1
return function()
if not b[j] or a[i] and a[i]<b[j] then
i=i+1; return a[i-1]
else
j=j+1; return b[j-1]
end
end
end
function merge(a,b)
local res={}
for v in getLower(a,b) do res[#res+1]=v end
return res
end
function mergesort(list)
if #list<=1 then return list end
local s=math.floor(#list/2)
return merge(mergesort{unpack(list,1,s)}, mergesort{unpack(list,s+1)})
end
Lucid
[http://i.csc.uvic.ca/home/hei/lup/06.html]
msort(a) = if iseod(first next a) then a else merge(msort(b0),msort(b1)) fi
where
p = false fby not p;
b0 = a whenever p;
b1 = a whenever not p;
just(a) = ja
where
ja = a fby if iseod ja then eod else next a fi;
end;
merge(x,y) = if takexx then xx else yy fi
where
xx = (x) upon takexx;
yy = (y) upon not takexx;
takexx = if iseod(yy) then true elseif
iseod(xx) then false else xx <= yy fi;
end;
end;
M2000 Interpreter
module checkit {
\\ merge sort
group merge {
function sort(right as stack) {
if len(right)<=1 then =right : exit
left=.sort(stack up right, len(right) div 2 )
right=.sort(right)
\\ stackitem(right) is same as stackitem(right,1)
if stackitem(left, len(left))<=stackitem(right) then
\\ !left take items from left for merging
\\ so after this left and right became empty stacks
=stack:=!left, !right
exit
end if
=.merge(left, right)
}
function sortdown(right as stack) {
if len(right)<=1 then =right : exit
left=.sortdown(stack up right, len(right) div 2 )
right=.sortdown(right)
if stackitem(left, len(left))>stackitem(right) then
=stack:=!left, !right : exit
end if
=.mergedown(left, right)
}
\\ left and right are pointers to stack objects
\\ here we pass by value the pointer not the data
function merge(left as stack, right as stack) {
result=stack
while len(left) > 0 and len(right) > 0
if stackitem(left,1) <= stackitem(right) then
result=stack:=!result, !(stack up left, 1)
else
result=stack:=!result, !(stack up right, 1)
end if
end while
if len(right) > 0 then result=stack:= !result,!right
if len(left) > 0 then result=stack:= !result,!left
=result
}
function mergedown(left as stack, right as stack) {
result=stack
while len(left) > 0 and len(right) > 0
if stackitem(left,1) > stackitem(right) then
result=stack:=!result, !(stack up left, 1)
else
result=stack:=!result, !(stack up right, 1)
end if
end while
if len(right) > 0 then result=stack:= !result,!right
if len(left) > 0 then result=stack:= !result,!left
=result
}
}
k=stack:=7, 5, 2, 6, 1, 4, 2, 6, 3
print merge.sort(k)
print len(k)=0 ' we have to use merge.sort(stack(k)) to pass a copy of k
\\ input array (arr is a pointer to array)
arr=(10,8,9,7,5,6,2,3,0,1)
\\ stack(array pointer) return a stack with a copy of array items
\\ array(stack pointer) return an array, empty the stack
arr2=array(merge.sort(stack(arr)))
Print type$(arr2)
Dim a()
\\ a() is an array as a value, so we just copy arr2 to a()
a()=arr2
\\ to prove we add 1 to each element of arr2
arr2++
Print a() ' 0,1,2,3,4,5,6,7,8,9
Print arr2 ' 1,2,3,4,5,6,7,8,9,11
p=a() ' we get a pointer
\\ a() has a double pointer inside
\\ so a() get just the inner pointer
a()=array(merge.sortdown(stack(p)))
\\ so now p (which use the outer pointer)
\\ still points to a()
print p ' p point to a()
}
checkit
Maple
{{Out|Output}}
```txt
[0,0,2,3,3,8,17,36,40,72]
=={{header|Mathematica}} / {{header|Wolfram Language}}== {{works with|Mathematica|7.0}}
MergeSort[m_List] := Module[{middle},
If[Length[m] >= 2,
middle = Ceiling[Length[m]/2];
Apply[Merge,
Map[MergeSort, Partition[m, middle, middle, {1, 1}, {}]]],
m
]
]
Merge[left_List, right_List] := Module[
{leftIndex = 1, rightIndex = 1},
Table[
Which[
leftIndex > Length[left], right[[rightIndex++]],
rightIndex > Length[right], left[[leftIndex++]],
left[[leftIndex]] <= right[[rightIndex]], left[[leftIndex++]],
True, right[[rightIndex++]]],
{Length[left] + Length[right]}]
]
MATLAB
function list = mergeSort(list)
if numel(list) <= 1
return
else
middle = ceil(numel(list) / 2);
left = list(1:middle);
right = list(middle+1:end);
left = mergeSort(left);
right = mergeSort(right);
if left(end) <= right(1)
list = [left right];
return
end
%merge(left,right)
counter = 1;
while (numel(left) > 0) && (numel(right) > 0)
if(left(1) <= right(1))
list(counter) = left(1);
left(1) = [];
else
list(counter) = right(1);
right(1) = [];
end
counter = counter + 1;
end
if numel(left) > 0
list(counter:end) = left;
elseif numel(right) > 0
list(counter:end) = right;
end
%end merge
end %if
end %mergeSort
Sample Usage:
mergeSort([4 3 1 5 6 2])
ans =
1 2 3 4 5 6
Maxima
merge(a, b) := block(
[c: [ ], i: 1, j: 1, p: length(a), q: length(b)],
while i <= p and j <= q do (
if a[i] < b[j] then (
c: endcons(a[i], c),
i: i + 1
) else (
c: endcons(b[j], c),
j: j + 1
)
),
if i > p then append(c, rest(b, j - 1)) else append(c, rest(a, i - 1))
)$
mergesort(u) := block(
[n: length(u), k, a, b],
if n <= 1 then u else (
a: rest(u, k: quotient(n, 2)),
b: rest(u, k - n),
merge(mergesort(a), mergesort(b))
)
)$
MAXScript
fn mergesort arr =
(
local left = #()
local right = #()
local result = #()
if arr.count < 2 then return arr
else
(
local mid = arr.count/2
for i = 1 to mid do
(
append left arr[i]
)
for i = (mid+1) to arr.count do
(
append right arr[i]
)
left = mergesort left
right = mergesort right
if left[left.count] <= right[1] do
(
join left right
return left
)
result = _merge left right
return result
)
)
fn _merge a b =
(
local result = #()
while a.count > 0 and b.count > 0 do
(
if a[1] <= b[1] then
(
append result a[1]
a = for i in 2 to a.count collect a[i]
)
else
(
append result b[1]
b = for i in 2 to b.count collect b[i]
)
)
if a.count > 0 do
(
join result a
)
if b.count > 0 do
(
join result b
)
return result
)
Output:
a = for i in 1 to 15 collect random -5 20
#(-3, 13, 2, -2, 13, 9, 17, 7, 16, 19, 0, 0, 20, 18, 1)
mergeSort a
#(-3, -2, 0, 0, 1, 2, 7, 9, 13, 13, 16, 17, 18, 19, 20)
Mercury
This version of a sort will sort a list of any type for which there is an ordering predicate defined. Both a function form and a predicate form are defined here with the function implemented in terms of the predicate. Some of the ceremony has been elided.
:- module merge_sort.
:- interface.
:- import_module list.
:- type split_error ---> split_error.
:- func merge_sort(list(T)) = list(T).
:- pred merge_sort(list(T)::in, list(T)::out) is det.
:- implementation.
:- import_module int, exception.
merge_sort(U) = S :- merge_sort(U, S).
merge_sort(U, S) :- merge_sort(list.length(U), U, S).
:- pred merge_sort(int::in, list(T)::in, list(T)::out) is det.
merge_sort(L, U, S) :-
( L > 1 ->
H = L // 2,
( split(H, U, F, B) ->
merge_sort(H, F, SF),
merge_sort(L - H, B, SB),
merge_sort.merge(SF, SB, S)
; throw(split_error) )
; S = U ).
:- pred split(int::in, list(T)::in, list(T)::out, list(T)::out) is semidet.
split(N, L, S, E) :-
( N = 0 -> S = [], E = L
; N > 0, L = [H | L1], S = [H | S1],
split(N - 1, L1, S1, E) ).
:- pred merge(list(T)::in, list(T)::in, list(T)::out) is det.
merge([], [], []).
merge([X|Xs], [], [X|Xs]).
merge([], [Y|Ys], [Y|Ys]).
merge([X|Xs], [Y|Ys], M) :-
( compare(>, X, Y) ->
merge_sort.merge([X|Xs], Ys, M0),
M = [Y|M0]
; merge_sort.merge(Xs, [Y|Ys], M0),
M = [X|M0] ).
Nim
proc merge[T](a, b: var openarray[T], left, middle, right) =
let
leftLen = middle - left
rightLen = right - middle
var
l = 0
r = leftLen
for i in left .. <middle:
b[l] = a[i]
inc l
for i in middle .. < right:
b[r] = a[i]
inc r
l = 0
r = leftLen
var i = left
while l < leftLen and r < leftLen + rightLen:
if b[l] < b[r]:
a[i] = b[l]
inc l
else:
a[i] = b[r]
inc r
inc i
while l < leftLen:
a[i] = b[l]
inc l
inc i
while r < leftLen + rightLen:
a[i] = b[r]
inc r
inc i
proc mergeSort[T](a, b: var openarray[T], left, right) =
if right - left <= 1: return
let middle = (left + right) div 2
mergeSort(a, b, left, middle)
mergeSort(a, b, middle, right)
merge(a, b, left, middle, right)
proc mergeSort[T](a: var openarray[T]) =
var b = newSeq[T](a.len)
mergeSort(a, b, 0, a.len)
var a = @[4, 65, 2, -31, 0, 99, 2, 83, 782]
mergeSort a
echo a
{{out}}
@[-31, 0, 2, 2, 4, 65, 83, 99, 782]
OCaml
let rec split_at n xs =
match n, xs with
0, xs ->
[], xs
| _, [] ->
failwith "index too large"
| n, x::xs when n > 0 ->
let xs', xs'' = split_at (pred n) xs in
x::xs', xs''
| _, _ ->
invalid_arg "negative argument"
let rec merge_sort cmp = function
[] -> []
| [x] -> [x]
| xs ->
let xs, ys = split_at (List.length xs / 2) xs in
List.merge cmp (merge_sort cmp xs) (merge_sort cmp ys)
let _ =
merge_sort compare [8;6;4;2;1;3;5;7;9]
Oz
declare
fun {MergeSort Xs}
case Xs
of nil then nil
[] [X] then [X]
else
Middle = {Length Xs} div 2
Left Right
{List.takeDrop Xs Middle ?Left ?Right}
in
{List.merge {MergeSort Left} {MergeSort Right} Value.'<'}
end
end
in
{Show {MergeSort [3 1 4 1 5 9 2 6 5]}}
Nemerle
This is a translation of a Standard ML example from [[wp:Standard_ML#Mergesort|Wikipedia]].
using System;
using System.Console;
using Nemerle.Collections;
module Mergesort
{
MergeSort[TEnu, TItem] (sort_me : TEnu) : list[TItem]
where TEnu : Seq[TItem]
where TItem : IComparable
{
def split(xs) {
def loop (zs, xs, ys) {
|(x::y::zs, xs, ys) => loop(zs, x::xs, y::ys)
|(x::[], xs, ys) => (x::xs, ys)
|([], xs, ys) => (xs, ys)
}
loop(xs, [], [])
}
def merge(xs, ys) {
def loop(res, xs, ys) {
|(res, [], []) => res.Reverse()
|(res, x::xs, []) => loop(x::res, xs, [])
|(res, [], y::ys) => loop(y::res, [], ys)
|(res, x::xs, y::ys) => if (x.CompareTo(y) < 0) loop(x::res, xs, y::ys)
else loop(y::res, x::xs, ys)
}
loop ([], xs, ys)
}
def ms(xs) {
|[] => []
|[x] => [x]
|_ => { def (left, right) = split(xs); merge(ms(left), ms(right)) }
}
ms(sort_me.NToList())
}
Main() : void
{
def test1 = MergeSort([1, 5, 9, 2, 7, 8, 4, 6, 3]);
def test2 = MergeSort(array['a', 't', 'w', 'f', 'c', 'y', 'l']);
WriteLine(test1);
WriteLine(test2);
}
}
{{out}}
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[a, c, f, l, t, w, y]
NetRexx
/* NetRexx */
options replace format comments java crossref savelog symbols binary
import java.util.List
placesList = [String -
"UK London", "US New York", "US Boston", "US Washington" -
, "UK Washington", "US Birmingham", "UK Birmingham", "UK Boston" -
]
lists = [ -
placesList -
, mergeSort(String[] Arrays.copyOf(placesList, placesList.length)) -
]
loop ln = 0 to lists.length - 1
cl = lists[ln]
loop ct = 0 to cl.length - 1
say cl[ct]
end ct
say
end ln
return
method mergeSort(m = String[]) public constant binary returns String[]
rl = String[m.length]
al = List mergeSort(Arrays.asList(m))
al.toArray(rl)
return rl
method mergeSort(m = List) public constant binary returns ArrayList
result = ArrayList(m.size)
left = ArrayList()
right = ArrayList()
if m.size > 1 then do
middle = m.size % 2
loop x_ = 0 to middle - 1
left.add(m.get(x_))
end x_
loop x_ = middle to m.size - 1
right.add(m.get(x_))
end x_
left = mergeSort(left)
right = mergeSort(right)
if (Comparable left.get(left.size - 1)).compareTo(Comparable right.get(0)) <= 0 then do
left.addAll(right)
result.addAll(m)
end
else do
result = merge(left, right)
end
end
else do
result.addAll(m)
end
return result
method merge(left = List, right = List) public constant binary returns ArrayList
result = ArrayList()
loop label mx while left.size > 0 & right.size > 0
if (Comparable left.get(0)).compareTo(Comparable right.get(0)) <= 0 then do
result.add(left.get(0))
left.remove(0)
end
else do
result.add(right.get(0))
right.remove(0)
end
end mx
if left.size > 0 then do
result.addAll(left)
end
if right.size > 0 then do
result.addAll(right)
end
return result
{{out}}
UK London
US New York
US Boston
US Washington
UK Washington
US Birmingham
UK Birmingham
UK Boston
UK Birmingham
UK Boston
UK London
UK Washington
US Birmingham
US Boston
US New York
US Washington
PARI/GP
Note also that the built-in vecsort
and listsort
use a merge sort internally.
mergeSort(v)={
if(#v<2, return(v));
my(m=#v\2,left=vector(m,i,v[i]),right=vector(#v-m,i,v[m+i]));
left=mergeSort(left);
right=mergeSort(right);
merge(left, right)
};
merge(u,v)={
my(ret=vector(#u+#v),i=1,j=1);
for(k=1,#ret,
if(i<=#u & (j>#v | u[i]<v[j]),
ret[k]=u[i];
i++
,
ret[k]=v[j];
j++
)
);
ret
};
Pascal
program MergeSortDemo;
type
TIntArray = array of integer;
function merge(left, right: TIntArray): TIntArray;
var
i, j: integer;
begin
j := 0;
setlength(merge, length(left) + length(right));
while (length(left) > 0) and (length(right) > 0) do
begin
if left[0] <= right[0] then
begin
merge[j] := left[0];
inc(j);
for i := low(left) to high(left) - 1 do
left[i] := left[i+1];
setlength(left, length(left) - 1);
end
else
begin
merge[j] := right[0];
inc(j);
for i := low(right) to high(right) - 1 do
right[i] := right[i+1];
setlength(right, length(right) - 1);
end;
end;
if length(left) > 0 then
for i := low(left) to high(left) do
merge[j + i] := left[i];
j := j + length(left);
if length(right) > 0 then
for i := low(right) to high(right) do
merge[j + i] := right[i];
end;
function mergeSort(m: TIntArray): TIntArray;
var
left, right: TIntArray;
i, middle: integer;
begin
setlength(mergeSort, length(m));
if length(m) = 1 then
mergeSort[0] := m[0]
else if length(m) > 1 then
begin
middle := length(m) div 2;
setlength(left, middle);
setlength(right, length(m)-middle);
for i := low(left) to high(left) do
left[i] := m[i];
for i := low(right) to high(right) do
right[i] := m[middle+i];
left := mergeSort(left);
right := mergeSort(right);
mergeSort := merge(left, right);
end;
end;
var
data: TIntArray;
i: integer;
begin
setlength(data, 8);
Randomize;
writeln('The data before sorting:');
for i := low(data) to high(data) do
begin
data[i] := Random(high(data));
write(data[i]:4);
end;
writeln;
data := mergeSort(data);
writeln('The data after sorting:');
for i := low(data) to high(data) do
begin
write(data[i]:4);
end;
writeln;
end.
{{out}}
./MergeSort
The data before sorting:
6 1 2 1 5 2 1 5
The data after sorting:
1 1 1 2 2 5 5 6
improvement
uses "only" one halfsized temporary array for merging, which are set to the right size in before. small sized fields are sorted via insertion sort. Only an array of Pointers is sorted, so no complex data transfers are needed.Sort for X,Y or whatever is easy to implement.
Works with ( Turbo -) Delphi too.
{$IFDEF FPC}
{$MODE DELPHI}
{$OPTIMIZATION ON,Regvar,ASMCSE,CSE,PEEPHOLE}
{$ELSE}
{$APPTYPE CONSOLE}
{$ENDIF}
uses
sysutils; //for timing
type
tDataElem = record
myText : AnsiString;
myX,
myY : double;
myTag,
myOrgIdx : LongInt;
end;
tpDataElem = ^tDataElem;
tData = array of tDataElem;
tSortData = array of tpDataElem;
tCompFunc = function(A,B:tpDataElem):integer;
var
Data : tData;
Sortdata,
tmpData : tSortData;
procedure InitData(var D:tData;cnt: LongWord);
var
i,k: LongInt;
begin
Setlength(D,cnt);
Setlength(SortData,cnt);
Setlength(tmpData,cnt shr 1 +1 );
k := 10*cnt;
For i := cnt-1 downto 0 do
Begin
Sortdata[i] := @D[i];
with D[i] do
Begin
myText := Format('_%.9d',[random(cnt)+1]);
myX := Random*k;
myY := Random*k;
myTag := Random(k);
myOrgIdx := i;
end;
end;
end;
procedure FreeData(var D:tData);
begin
Setlength(tmpData,0);
Setlength(SortData,0);
Setlength(D,0);
end;
function CompLowercase(A,B:tpDataElem):integer;
var
lcA,lcB: String;
Begin
lcA := lowercase(A^.myText);
lcB := lowercase(B^.myText);
result := ORD(lcA > lcB)-ORD(lcA < lcB);
end;
function myCompText(A,B:tpDataElem):integer;
{sort an array (or list) of strings in order of descending length,
and in ascending lexicographic order for strings of equal length.}
var
lA,lB:integer;
Begin
lA := Length(A^.myText);
lB := Length(B^.myText);
result := ORD(lA<lB)-ORD(lA>lB);
IF result = 0 then
result := CompLowercase(A,B);
end;
function myCompX(A,B:tpDataElem):integer;
//same as sign without jumps in assembler code
begin
result := ORD(A^.myX > B^.myX)-ORD(A^.myX < B^.myX);
end;
function myCompY(A,B:tpDataElem):integer;
Begin
result := ORD(A^.myY > B^.myY)-ORD(A^.myY < B^.myY);
end;
function myCompTag(A,B:tpDataElem):integer;
Begin
result := ORD(A^.myTag > B^.myTag)-ORD(A^.myTag < B^.myTag);
end;
procedure InsertionSort(left,right:integer;var a: tSortData;CompFunc: tCompFunc);
var
Pivot : tpDataElem;
i,j : LongInt;
begin
for i:=left+1 to right do
begin
j :=i;
Pivot := A[j];
while (j>left) AND (CompFunc(A[j-1],Pivot)>0) do
begin
A[j] := A[j-1];
dec(j);
end;
A[j] :=PiVot;// s.o.
end;
end;
procedure mergesort(left,right:integer;var a: tSortData;CompFunc: tCompFunc);
var
i,j,k,mid :integer;
begin
{// without insertion sort
If right>left then
}
//{ test insertion sort
If right-left<=14 then
InsertionSort(left,right,a,CompFunc)
else
//}
begin
//recursion
mid := (right+left) div 2;
mergesort(left, mid,a,CompFunc);
mergesort(mid+1, right,a,CompFunc);
//already sorted ?
IF CompFunc(A[Mid],A[Mid+1])<0 then
exit;
//########## Merge ##########
//copy lower half to temporary array
move(A[left],tmpData[0],(mid-left+1)*SizeOf(Pointer));
i := 0;
j := mid+1;
k := left;
// re-integrate
while (k<j) AND (j<=right) do
begin
IF CompFunc(tmpData[i],A[j])<=0 then
begin
A[k] := tmpData[i];
inc(i);
end
else
begin
A[k]:= A[j];
inc(j);
end;
inc(k);
end;
//the rest of tmpdata a move should do too, in next life
while (k<j) do
begin
A[k] := tmpData[i];
inc(i);
inc(k);
end;
end;
end;
var
T1,T0: TDateTime;
i : integer;
Begin
randomize;
InitData(Data,1*1000*1000);
T0 := Time;
mergesort(Low(SortData),High(SortData),SortData,@myCompText);
T1 := Time;
Writeln('myText ',FormatDateTime('NN:SS.ZZZ',T1-T0));
// For i := 0 to High(Data) do Write(SortData[i].myText); writeln;
T0 := Time;
mergesort(Low(SortData),High(SortData),SortData,@myCompX);
T1 := Time;
Writeln('myX ',FormatDateTime('NN:SS.ZZZ',T1-T0));
//check
For i := 1 to High(Data) do
IF myCompX(SortData[i-1],SortData[i]) = 1 then
Write(i:8);
T0 := Time;
mergesort(Low(SortData),High(SortData),SortData,@myCompY);
T1 := Time;
Writeln('myY ',FormatDateTime('NN:SS.ZZZ',T1-T0));
T0 := Time;
mergesort(Low(SortData),High(SortData),SortData,@myCompTag);
T1 := Time;
Writeln('myTag ',FormatDateTime('NN:SS.ZZZ',T1-T0));
FreeData (Data);
end.
;output:
Free pascal 2.6.4 32bit / Win7 / i 4330 3.5 Ghz
myText 00:03.158 / nearly worst case , all strings same sized and starting with '_000..'
myX 00:00.360
myY 00:00.363
myTag 00:00.283
Perl
sub merge_sort {
my @x = @_;
return @x if @x < 2;
my $m = int @x / 2;
my @a = merge_sort(@x[0 .. $m - 1]);
my @b = merge_sort(@x[$m .. $#x]);
for (@x) {
$_ = !@a ? shift @b
: !@b ? shift @a
: $a[0] <= $b[0] ? shift @a
: shift @b;
}
@x;
}
my @a = (4, 65, 2, -31, 0, 99, 83, 782, 1);
@a = merge_sort @a;
print "@a\n";
Also note, the built-in function [http://perldoc.perl.org/functions/sort.html sort] uses mergesort.
Perl 6
{{works with|Rakudo Star|2015.10}}
sub merge_sort ( @a ) {
return @a if @a <= 1;
my $m = @a.elems div 2;
my @l = flat merge_sort @a[ 0 ..^ $m ];
my @r = flat merge_sort @a[ $m ..^ @a ];
return flat @l, @r if @l[*-1] !after @r[0];
return flat gather {
take @l[0] before @r[0] ?? @l.shift !! @r.shift
while @l and @r;
take @l, @r;
}
}
my @data = 6, 7, 2, 1, 8, 9, 5, 3, 4;
say 'input = ' ~ @data;
say 'output = ' ~ @data.&merge_sort;
{{out}}
input = 6 7 2 1 8 9 5 3 4
output = 1 2 3 4 5 6 7 8 9
Phix
Copy of [[Sorting_algorithms/Merge_sort#Euphoria|Euphoria]]
function merge(sequence left, sequence right)
sequence result = {}
while length(left)>0 and length(right)>0 do
if left[1]<=right[1] then
result = append(result, left[1])
left = left[2..$]
else
result = append(result, right[1])
right = right[2..$]
end if
end while
return result & left & right
end function
function mergesort(sequence m)
sequence left, right
integer middle
if length(m)<=1 then
return m
end if
middle = floor(length(m)/2)
left = mergesort(m[1..middle])
right = mergesort(m[middle+1..$])
if left[$]<=right[1] then
return left & right
elsif right[$]<=left[1] then
return right & left
end if
return merge(left, right)
end function
constant s = shuffle(tagset(10))
? s
? mergesort(s)
{{out}}
{8,1,2,5,10,3,9,6,7,4}
{1,2,3,4,5,6,7,8,9,10}
PHP
function mergesort($arr){
if(count($arr) == 1 ) return $arr;
$mid = count($arr) / 2;
$left = array_slice($arr, 0, $mid);
$right = array_slice($arr, $mid);
$left = mergesort($left);
$right = mergesort($right);
return merge($left, $right);
}
function merge($left, $right){
$res = array();
while (count($left) > 0 && count($right) > 0){
if($left[0] > $right[0]){
$res[] = $right[0];
$right = array_slice($right , 1);
}else{
$res[] = $left[0];
$left = array_slice($left, 1);
}
}
while (count($left) > 0){
$res[] = $left[0];
$left = array_slice($left, 1);
}
while (count($right) > 0){
$res[] = $right[0];
$right = array_slice($right, 1);
}
return $res;
}
$arr = array( 1, 5, 2, 7, 3, 9, 4, 6, 8);
$arr = mergesort($arr);
echo implode(',',$arr);
{{out}}
1,2,3,4,5,6,7,8,9
PicoLisp
PicoLisp's built-in sort routine uses merge sort. This is a high level implementation.
(de alt (List)
(if List (cons (car List) (alt (cddr List))) ()) )
(de merge (L1 L2)
(cond
((not L2) L1)
((< (car L1) (car L2))
(cons (car L1) (merge L2 (cdr L1))))
(T (cons (car L2) (merge L1 (cdr L2)))) ) )
(de mergesort (List)
(if (cdr List)
(merge (mergesort (alt List)) (mergesort (alt (cdr List))))
List) )
(mergesort (8 1 5 3 9 0 2 7 6 4))
PL/I
MERGE: PROCEDURE (A,LA,B,LB,C);
/* Merge A(1:LA) with B(1:LB), putting the result in C
B and C may share the same memory, but not with A.
*/
DECLARE (A(*),B(*),C(*)) BYADDR POINTER;
DECLARE (LA,LB) BYVALUE NONASGN FIXED BIN(31);
DECLARE (I,J,K) FIXED BIN(31);
DECLARE (SX) CHAR(58) VAR BASED (PX);
DECLARE (SY) CHAR(58) VAR BASED (PY);
DECLARE (PX,PY) POINTER;
I=1; J=1; K=1;
DO WHILE ((I <= LA) & (J <= LB));
PX=A(I); PY=B(J);
IF(SX <= SY) THEN
DO; C(K)=A(I); K=K+1; I=I+1; END;
ELSE
DO; C(K)=B(J); K=K+1; J=J+1; END;
END;
DO WHILE (I <= LA);
C(K)=A(I); I=I+1; K=K+1;
END;
RETURN;
END MERGE;
MERGESORT: PROCEDURE (AP,N) RECURSIVE ;
/* Sort the array AP containing N pointers to strings */
DECLARE (AP(*)) BYADDR POINTER;
DECLARE (N) BYVALUE NONASGN FIXED BINARY(31);
DECLARE (M,I) FIXED BINARY;
DECLARE AMP1(1) POINTER BASED(PAM);
DECLARE (pX,pY,PAM) POINTER;
DECLARE SX CHAR(58) VAR BASED(pX);
DECLARE SY CHAR(58) VAR BASED(pY);
IF (N=1) THEN RETURN;
M = trunc((N+1)/2);
IF (M>1) THEN CALL MERGESORT(AP,M);
PAM=ADDR(AP(M+1));
IF (N-M > 1) THEN CALL MERGESORT(AMP1,N-M);
pX=AP(M); pY=AP(M+1);
IF SX <= SY then return; /* Skip Merge */
DO I=1 to M; TP(I)=AP(I); END;
CALL MERGE(TP,M,AMP1,N-M,AP);
RETURN;
END MERGESORT;
PowerShell
function MergeSort([object[]] $SortInput)
{
# The base case exits for minimal lists that are sorted by definition
if ($SortInput.Length -le 1) {return $SortInput}
# Divide and conquer
[int] $midPoint = $SortInput.Length/2
# The @() operators ensure a single result remains typed as an array
[object[]] $left = @(MergeSort @($SortInput[0..($midPoint-1)]))
[object[]] $right = @(MergeSort @($SortInput[$midPoint..($SortInput.Length-1)]))
# Merge
[object[]] $result = @()
while (($left.Length -gt 0) -and ($right.Length -gt 0))
{
if ($left[0] -lt $right[0])
{
$result += $left[0]
# Use an if/else rather than accessing the array range as $array[1..0]
if ($left.Length -gt 1){$left = $left[1..$($left.Length-1)]}
else {$left = @()}
}
else
{
$result += $right[0]
# Without the if/else, $array[1..0] would return the whole array when $array.Length == 1
if ($right.Length -gt 1){$right = $right[1..$($right.Length-1)]}
else {$right = @()}
}
}
# If we get here, either $left or $right is an empty array (or both are empty!). Since the
# rest of the unmerged array is already sorted, we can simply string together what we have.
# This line outputs the concatenated result. An explicit 'return' statement is not needed.
$result + $left + $right
}
Prolog
% msort( L, S )
% True if S is a sorted copy of L, using merge sort
msort( [], [] ).
msort( [X], [X] ).
msort( U, S ) :- split(U, L, R), msort(L, SL), msort(R, SR), merge(SL, SR, S).
% split( LIST, L, R )
% Alternate elements of LIST in L and R
split( [], [], [] ).
split( [X], [X], [] ).
split( [L,R|T], [L|LT], [R|RT] ) :- split( T, LT, RT ).
% merge( LS, RS, M )
% Assuming LS and RS are sorted, True if M is the sorted merge of the two
merge( [], RS, RS ).
merge( LS, [], LS ).
merge( [L|LS], [R|RS], [L|T] ) :- L =< R, merge( LS, [R|RS], T).
merge( [L|LS], [R|RS], [R|T] ) :- L > R, merge( [L|LS], RS, T).
PureBasic
A non-optimized version with lists.
Procedure display(List m())
ForEach m()
Print(LSet(Str(m()), 3," "))
Next
PrintN("")
EndProcedure
;overwrites list m() with the merger of lists ma() and mb()
Procedure merge(List m(), List ma(), List mb())
FirstElement(m())
Protected ma_elementExists = FirstElement(ma())
Protected mb_elementExists = FirstElement(mb())
Repeat
If ma() <= mb()
m() = ma(): NextElement(m())
ma_elementExists = NextElement(ma())
Else
m() = mb(): NextElement(m())
mb_elementExists = NextElement(mb())
EndIf
Until Not (ma_elementExists And mb_elementExists)
If ma_elementExists
Repeat
m() = ma(): NextElement(m())
Until Not NextElement(ma())
ElseIf mb_elementExists
Repeat
m() = mb(): NextElement(m())
Until Not NextElement(mb())
EndIf
EndProcedure
Procedure mergesort(List m())
Protected NewList ma()
Protected NewList mb()
If ListSize(m()) > 1
Protected current, middle = (ListSize(m()) / 2 ) - 1
FirstElement(m())
While current <= middle
AddElement(ma())
ma() = m()
NextElement(m()): current + 1
Wend
PreviousElement(m())
While NextElement(m())
AddElement(mb())
mb() = m()
Wend
mergesort(ma())
mergesort(mb())
LastElement(ma()): FirstElement(mb())
If ma() <= mb()
FirstElement(m())
FirstElement(ma())
Repeat
m() = ma(): NextElement(m())
Until Not NextElement(ma())
Repeat
m() = mb(): NextElement(m())
Until Not NextElement(mb())
Else
merge(m(), ma(), mb())
EndIf
EndIf
EndProcedure
If OpenConsole()
Define i
NewList x()
For i = 1 To 21: AddElement(x()): x() = Random(60): Next
display(x())
mergesort(x())
display(x())
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
Input()
CloseConsole()
EndIf
{{out|Sample output}}
22 51 31 59 58 45 11 2 16 56 38 42 2 10 23 41 42 25 45 28 42
2 2 10 11 16 22 23 25 28 31 38 41 42 42 42 45 45 51 56 58 59
Python
{{works with|Python|2.6+}}
from heapq import merge
def merge_sort(m):
if len(m) <= 1:
return m
middle = len(m) // 2
left = m[:middle]
right = m[middle:]
left = merge_sort(left)
right = merge_sort(right)
return list(merge(left, right))
Pre-2.6, merge() could be implemented like this:
def merge(left, right):
result = []
left_idx, right_idx = 0, 0
while left_idx < len(left) and right_idx < len(right):
# change the direction of this comparison to change the direction of the sort
if left[left_idx] <= right[right_idx]:
result.append(left[left_idx])
left_idx += 1
else:
result.append(right[right_idx])
right_idx += 1
if left_idx < len(left):
result.extend(left[left_idx:])
if right_idx < len(right):
result.extend(right[right_idx:])
return result
R
mergesort <- function(m)
{
merge_ <- function(left, right)
{
result <- c()
while(length(left) > 0 && length(right) > 0)
{
if(left[1] <= right[1])
{
result <- c(result, left[1])
left <- left[-1]
} else
{
result <- c(result, right[1])
right <- right[-1]
}
}
if(length(left) > 0) result <- c(result, left)
if(length(right) > 0) result <- c(result, right)
result
}
len <- length(m)
if(len <= 1) m else
{
middle <- length(m) / 2
left <- m[1:floor(middle)]
right <- m[floor(middle+1):len]
left <- mergesort(left)
right <- mergesort(right)
if(left[length(left)] <= right[1])
{
c(left, right)
} else
{
merge_(left, right)
}
}
}
mergesort(c(4, 65, 2, -31, 0, 99, 83, 782, 1)) # -31 0 1 2 4 65 83 99 782
Racket
#lang racket
(define (merge xs ys)
(cond [(empty? xs) ys]
[(empty? ys) xs]
[(match* (xs ys)
[((list* a as) (list* b bs))
(cond [(<= a b) (cons a (merge as ys))]
[ (cons b (merge xs bs))])])]))
(define (merge-sort xs)
(match xs
[(or (list) (list _)) xs]
[_ (define-values (ys zs) (split-at xs (quotient (length xs) 2)))
(merge (merge-sort ys) (merge-sort zs))]))
This variation is bottom up:
#lang racket
(define (merge-sort xs)
(merge* (map list xs)))
(define (merge* xss)
(match xss
[(list) '()]
[(list xs) xss]
[(list xs ys zss ...)
(merge* (cons (merge xs ys) (merge* zss)))]))
(define (merge xs ys)
(cond [(empty? xs) ys]
[(empty? ys) xs]
[(match* (xs ys)
[((list* a as) (list* b bs))
(cond [(<= a b) (cons a (merge as ys))]
[ (cons b (merge xs bs))])])]))
REBOL
msort: function [a compare] [msort-do merge] [
if (length? a) < 2 [return a]
; define a recursive Msort-do function
msort-do: function [a b l] [mid] [
either l < 4 [
if l = 3 [msort-do next b next a 2]
merge a b 1 next b l - 1
] [
mid: make integer! l / 2
msort-do b a mid
msort-do skip b mid skip a mid l - mid
merge a b mid skip b mid l - mid
]
]
; function Merge is the key part of the algorithm
merge: func [a b lb c lc] [
until [
either (compare first b first c) [
change/only a first b
b: next b
a: next a
zero? lb: lb - 1
] [
change/only a first c
c: next c
a: next a
zero? lc: lc - 1
]
]
loop lb [
change/only a first b
b: next b
a: next a
]
loop lc [
change/only a first c
c: next c
a: next a
]
]
msort-do a copy a length? a
a
]
REXX
Note: the array elements can be anything: integers, floating point (exponentiated), character strings ···
/*REXX program sorts a stemmed array (numbers or chars) using the merge─sort algorithm.*/
@.=; @.1 = '---The seven deadly sins---'
@.2 = '
### =====================
' ; @.6 = "envy"
@.3 = 'pride' ; @.7 = "gluttony"
@.4 = 'avarice' ; @.8 = "sloth"
@.5 = 'wrath' ; @.9 = "lust"
do #=1 until @.#==''; end; #=#-1 /*# ≡ the number of entries in @ array.*/
call show@ 'before sort' /*show the "before" array elements. */
say copies('▒', 75) /*display a separator line to the term.*/
call mergeSort # /*invoke the merge sort for the array*/
call show@ ' after sort' /*show the "after" array elements. */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
mergeSort: procedure expose @.; call mergeTo@ 1,arg(1); return
show@: do j=1 for #; say right('element',20) right(j,length(#)) arg(1)":" @.j; end; return
/*──────────────────────────────────────────────────────────────────────────────────────*/
mergeTo@: procedure expose @. !.; parse arg L,n; if n==1 then return; h=L+1
if n==2 then do; if @.L>@.h then do; _=@.h; @.h=@.L; @.L=_; end; return; end
m=n % 2 /* [↑] handle case of two items.*/
call mergeTo@ L+m,n-m /*divide items to the left ···*/
call mergeTo! L,m,1 /* " " " " right ···*/
i=1; j=L+m; do k=L while k<j /*whilst items on right exist ···*/
if j==L+n | !.i<=@.j then do; @.k=!.i; i=i+1; end
else do; @.k=@.j; j=j+1; end
end /*k*/
return
/*──────────────────────────────────────────────────────────────────────────────────────*/
mergeTo!: procedure expose @. !.; parse arg L,n,T; if n==1 then do; !.T=@.L; return; end
if n==2 then do; h=L+1; q=T+1; !.q=@.L; !.T=@.h; return; end
m=n % 2 /* [↑] handle case of two items.*/
call mergeTo@ L,m /*divide items to the left ···*/
call mergeTo! L+m,n-m,m+T /* " " " " right ···*/
i=L; j=m+T; do k=T while k<j /*whilst items on left exist ···*/
if j==T+n | @.i<=!.j then do; !.k=@.i; i=i+1; end
else do; !.k=!.j; j=j+1; end
end /*k*/
return
{{out|output|text= when using the default input:}}
element 1 before sort: ---The seven deadly sins---
element 2 before sort:
### =====================
element 3 before sort: pride
element 4 before sort: avarice
element 5 before sort: wrath
element 6 before sort: envy
element 7 before sort: gluttony
element 8 before sort: sloth
element 9 before sort: lust
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
element 1 after sort: ---The seven deadly sins---
element 2 after sort:
### =====================
element 3 after sort: avarice
element 4 after sort: envy
element 5 after sort: gluttony
element 6 after sort: lust
element 7 after sort: pride
element 8 after sort: sloth
element 9 after sort: wrath
Ruby
def merge_sort(m)
return m if m.length <= 1
middle = m.length / 2
left = merge_sort(m[0...middle])
right = merge_sort(m[middle..-1])
merge(left, right)
end
def merge(left, right)
result = []
until left.empty? || right.empty?
result << (left.first<=right.first ? left.shift : right.shift)
end
result + left + right
end
ary = [7,6,5,9,8,4,3,1,2,0]
p merge_sort(ary) # => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Here's a version that monkey patches the Array class, with an example that demonstrates it's a stable sort
class Array
def mergesort(&comparitor)
return self if length <= 1
comparitor ||= proc{|a, b| a <=> b}
middle = length / 2
left = self[0...middle].mergesort(&comparitor)
right = self[middle..-1].mergesort(&comparitor)
merge(left, right, comparitor)
end
private
def merge(left, right, comparitor)
result = []
until left.empty? || right.empty?
# change the direction of this comparison to change the direction of the sort
if comparitor[left.first, right.first] <= 0
result << left.shift
else
result << right.shift
end
end
result + left + right
end
end
ary = [7,6,5,9,8,4,3,1,2,0]
p ary.mergesort # => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
p ary.mergesort {|a, b| b <=> a} # => [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
ary = [["UK", "London"], ["US", "New York"], ["US", "Birmingham"], ["UK", "Birmingham"]]
p ary.mergesort
# => [["UK", "Birmingham"], ["UK", "London"], ["US", "Birmingham"], ["US", "New York"]]
p ary.mergesort {|a, b| a[1] <=> b[1]}
# => [["US", "Birmingham"], ["UK", "Birmingham"], ["UK", "London"], ["US", "New York"]]
Rust
{{works with|rustc|1.9.0}}
fn merge<T: Copy + PartialOrd>(x1: &[T], x2: &[T], y: &mut [T]) {
assert_eq!(x1.len() + x2.len(), y.len());
let mut i = 0;
let mut j = 0;
let mut k = 0;
while i < x1.len() && j < x2.len() {
if x1[i] < x2[j] {
y[k] = x1[i];
k += 1;
i += 1;
} else {
y[k] = x2[j];
k += 1;
j += 1;
}
}
if i < x1.len() {
y[k..].copy_from_slice(&x1[i..]);
}
if j < x2.len() {
y[k..].copy_from_slice(&x2[j..]);
}
}
The sort algorithm :
fn merge_sort_rec<T: Copy + Ord>(x: &mut [T]) {
let n = x.len();
let m = n / 2;
if n <= 1 {
return;
}
merge_sort_rec(&mut x[0..m]);
merge_sort_rec(&mut x[m..n]);
let mut y: Vec<T> = x.to_vec();
merge(&x[0..m], &x[m..n], &mut y[..]);
x.copy_from_slice(&y);
}
Version without recursion call (faster) :
fn merge_sort<T: Copy + PartialOrd>(x: &mut [T]) {
let n = x.len();
let mut y = x.to_vec();
let mut len = 1;
while len < n {
let mut i = 0;
while i < n {
if i + len >= n {
y[i..].copy_from_slice(&x[i..]);
} else if i + 2 * len > n {
merge(&x[i..i+len], &x[i+len..], &mut y[i..]);
} else {
merge(&x[i..i+len], &x[i+len..i+2*len], &mut y[i..i+2*len]);
}
i += 2 * len;
}
len *= 2;
if len >= n {
x.copy_from_slice(&y);
return;
}
i = 0;
while i < n {
if i + len >= n {
x[i..].copy_from_slice(&y[i..]);
} else if i + 2 * len > n {
merge(&y[i..i+len], &y[i+len..], &mut x[i..]);
} else {
merge(&y[i..i+len], &y[i+len..i+2*len], &mut x[i..i+2*len]);
}
i += 2 * len;
}
len *= 2;
}
}
Scala
The use of Stream as the merge result avoids stack overflows without resorting to tail recursion, which would typically require reversing the result, as well as being a bit more convoluted. {{works with|Scala|2.8}}
def mergeSort(input: List[Int]) = {
def merge(left: List[Int], right: List[Int]): Stream[Int] = (left, right) match {
case (x :: xs, y :: ys) if x <= y => x #:: merge(xs, right)
case (x :: xs, y :: ys) => y #:: merge(left, ys)
case _ => if (left.isEmpty) right.toStream else left.toStream
}
def sort(input: List[Int], length: Int): List[Int] = input match {
case Nil | List(_) => input
case _ =>
val middle = length / 2
val (left, right) = input splitAt middle
merge(sort(left, middle), sort(right, middle + length % 2)).toList
}
sort(input, input.length)
}
{{works with|Scala|2.7}}
Replace the first two lines of merge
by the following:
case (x :: xs, y :: ys) if x < y => Stream.cons(x, merge(xs, right))
case (x :: xs, y :: ys) => Stream.cons(y, merge(left, ys))
I suppose I should have written this version to begin with, but I think the 2.8 version is more clear.
Scheme
(define (merge-sort l gt?)
(define (merge left right)
(cond
((null? left)
right)
((null? right)
left)
((gt? (car left) (car right))
(cons (car right)
(merge left (cdr right))))
(else
(cons (car left)
(merge (cdr left) right)))))
(define (take l n)
(if (zero? n)
(list)
(cons (car l)
(take (cdr l) (- n 1)))))
(let ((half (quotient (length l) 2)))
(if (zero? half)
l
(merge (merge-sort (take l half) gt?)
(merge-sort (list-tail l half) gt?)))))
(merge-sort '(1 3 5 7 9 8 6 4 2) >)
Seed7
const proc: mergeSort2 (inout array elemType: arr, in integer: lo, in integer: hi, inout array elemType: scratch) is func
local
var integer: mid is 0;
var integer: k is 0;
var integer: t_lo is 0;
var integer: t_hi is 0;
begin
if lo < hi then
mid := (lo + hi) div 2;
mergeSort2(arr, lo, mid, scratch);
mergeSort2(arr, succ(mid), hi, scratch);
t_lo := lo;
t_hi := succ(mid);
for k range lo to hi do
if t_lo <= mid and (t_hi > hi or arr[t_lo] <= arr[t_hi]) then
scratch[k] := arr[t_lo];
incr(t_lo);
else
scratch[k] := arr[t_hi];
incr(t_hi);
end if;
end for;
for k range lo to hi do
arr[k] := scratch[k];
end for;
end if;
end func;
const proc: mergeSort2 (inout array elemType: arr) is func
local
var array elemType: scratch is 0 times elemType.value;
begin
scratch := length(arr) times elemType.value;
mergeSort2(arr, 1, length(arr), scratch);
end func;
Original source: [http://seed7.sourceforge.net/algorith/sorting.htm#mergeSort2]
Sidef
func merge(left, right) {
var result = []
while (left && right) {
result << [right,left].min_by{.first}.shift
}
result + left + right
}
func mergesort(array) {
var len = array.len
len < 2 && return array
var (left, right) = array.part(len//2)
left = __FUNC__(left)
right = __FUNC__(right)
merge(left, right)
}
# Numeric sort
var nums = rand(1..100, 10)
say mergesort(nums)
# String sort
var strings = rand('a'..'z', 10)
say mergesort(strings)
Standard ML
fun merge cmp ([], ys) = ys
| merge cmp (xs, []) = xs
| merge cmp (xs as x::xs', ys as y::ys') =
case cmp (x, y) of GREATER => y :: merge cmp (xs, ys')
| _ => x :: merge cmp (xs', ys)
;
fun merge_sort cmp [] = []
| merge_sort cmp [x] = [x]
| merge_sort cmp xs = let
val ys = List.take (xs, length xs div 2)
val zs = List.drop (xs, length xs div 2)
in
merge cmp (merge_sort cmp ys, merge_sort cmp zs)
end
;
merge_sort Int.compare [8,6,4,2,1,3,5,7,9]
Swift
// Merge Sort in Swift 4.2
// Source: https://github.com/raywenderlich/swift-algorithm-club/tree/master/Merge%20Sort
// NOTE: by use of generics you can make it sort arrays of any type that conforms to
// Comparable protocol, however this is not always optimal
import Foundation
func mergeSort(_ array: [Int]) -> [Int] {
guard array.count > 1 else { return array }
let middleIndex = array.count / 2
let leftPart = mergeSort(Array(array[0..<middleIndex]))
let rightPart = mergeSort(Array(array[middleIndex..<array.count]))
func merge(left: [Int], right: [Int]) -> [Int] {
var leftIndex = 0
var rightIndex = 0
var merged = [Int]()
merged.reserveCapacity(left.count + right.count)
while leftIndex < left.count && rightIndex < right.count {
if left[leftIndex] < right[rightIndex] {
merged.append(left[leftIndex])
leftIndex += 1
} else if left[leftIndex] > right[rightIndex] {
merged.append(right[rightIndex])
rightIndex += 1
} else {
merged.append(left[leftIndex])
leftIndex += 1
merged.append(right[rightIndex])
rightIndex += 1
}
}
while leftIndex < left.count {
merged.append(left[leftIndex])
leftIndex += 1
}
while rightIndex < right.count {
merged.append(right[rightIndex])
rightIndex += 1
}
return merged
}
return merge(left: leftPart, right: rightPart)
}
Tailspin
The standard recursive merge sort
templates mergesort
templates merge
@: $(2);
[ $(1)... -> (
<?($@merge<[](0)>)
| ..$@merge(1)>
$ !
<>
^@merge(1) !
$ -> #
),
$@...] !
end merge
$ -> #
<[](0..1)> $!
<>
def half: $::length / 2;
[$(1..$half) -> mergesort, $($half+1..-1) -> mergesort] -> merge !
end mergesort
[4,5,3,8,1,2,6,7,9,8,5] -> mergesort -> !OUT::write
{{out}}
[1, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9]
A little different spin where the array is first split into a list of single-element lists and then merged.
templates mergesort
templates merge
@: $(2);
$(1)... -> (
<?($@merge<[](0)>)
| ..$@merge(1)>
$ !
<>
^@merge(1) !
$ -> #
) !
$@... !
end merge
templates mergePairs
<[](1)>
$(1) !
<[](2..)>
[$(1..2) -> merge] !
$(3..-1) -> #
end mergePairs
templates mergeAll
<[](0)>
$ !
<[](1)>
$(1) !
<>
[ $ -> mergePairs ] -> #
end mergeAll
$ -> [ $... -> [ $ ] ] -> mergeAll !
end mergesort
[4,5,3,8,1,2,6,7,9,8,5] -> mergesort -> !OUT::write
{{out}}
[1, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9]
Tcl
package require Tcl 8.5
proc mergesort m {
set len [llength $m]
if {$len <= 1} {
return $m
}
set middle [expr {$len / 2}]
set left [lrange $m 0 [expr {$middle - 1}]]
set right [lrange $m $middle end]
return [merge [mergesort $left] [mergesort $right]]
}
proc merge {left right} {
set result [list]
while {[set lleft [llength $left]] > 0 && [set lright [llength $right]] > 0} {
if {[lindex $left 0] <= [lindex $right 0]} {
set left [lassign $left value]
} else {
set right [lassign $right value]
}
lappend result $value
}
if {$lleft > 0} {
lappend result {*}$left
}
if {$lright > 0} {
set result [concat $result $right] ;# another way append elements
}
return $result
}
puts [mergesort {8 6 4 2 1 3 5 7 9}] ;# => 1 2 3 4 5 6 7 8 9
Also note that Tcl's built-in lsort command uses the mergesort algorithm.
UnixPipes
{{works with|Zsh}}
split() {
(while read a b ; do
echo $a > $1 ; echo $b > $2
done)
}
mergesort() {
xargs -n 2 | (read a b; test -n "$b" && (
lc="1.$1" ; gc="2.$1"
(echo $a $b;cat)|split >(mergesort $lc >$lc) >( mergesort $gc >$gc)
sort -m $lc $gc
rm -f $lc $gc;
) || echo $a)
}
cat to.sort | mergesort
Ursala
#import std
mergesort "p" = @iNCS :-0 ~&B^?a\~&YaO "p"?abh/~&alh2faltPrXPRC ~&arh2falrtPXPRC
#show+
example = mergesort(lleq) <'zoh','zpb','hhh','egi','bff','cii','yid'>
{{out}}
bff
cii
egi
hhh
yid
zoh
zpb
The mergesort function could also have been defined using the built in sorting operator, -<, because the same algorithm is used.
mergesort "p" = "p"-<
V
merge uses the helper mergei to merge two lists. The mergei takes a stack of the form [mergedlist] [list1] [list2] it then extracts one element from list2, splits the list1 with it, joins the older merged list, first part of list1 and the element that was used for splitting (taken from list2) into the new merged list. the new list1 is the second part of the split on older list1. new list2 is the list remaining after the element e2 was extracted from it.
[merge
[mergei
uncons [swap [>] split] dip
[[*m] e2 [*a1] b1 a2 : [*m *a1 e2] b1 a2] view].
[a b : [] a b] view
[size zero?] [pop concat]
[mergei]
tailrec].
[msort
[splitat [arr a : [arr a take arr a drop]] view i].
[splitarr dup size 2 / >int splitat].
[small?] []
[splitarr]
[merge]
binrec].
[8 7 6 5 4 2 1 3 9] msort puts
XPL0
This is based on an example in "Fundamentals of Computer Algorithms" by Horowitz & Sahni.
code Reserve=3, ChOut=8, IntOut=11;
proc MergeSort(A, Low, High); \Sort array A from Low to High
int A, Low, High;
int B, Mid, H, I, J, K;
[if Low >= High then return;
Mid:= (Low+High) >> 1; \split array in half (roughly)
MergeSort(A, Low, Mid); \sort left half
MergeSort(A, Mid+1, High); \sort right half
\Merge the two halves in to sorted order
B:= Reserve((High-Low+1)*4); \reserve space for working array (4 bytes/int)
H:= Low; I:= Low; J:= Mid+1;
while H<=Mid & J<=High do \merge while both halves have items
if A(H) <= A(J) then [B(I):= A(H); I:= I+1; H:= H+1]
else [B(I):= A(J); I:= I+1; J:= J+1];
if H > Mid then \copy any remaining elements
for K:= J to High do [B(I):= A(K); I:= I+1]
else for K:= H to Mid do [B(I):= A(K); I:= I+1];
for K:= Low to High do A(K):= B(K);
];
int A, I;
[A:= [3, 1, 4, 1, -5, 9, 2, 6, 5, 4];
MergeSort(A, 0, 10-1);
for I:= 0 to 10-1 do [IntOut(0, A(I)); ChOut(0, ^ )];
]
{{out}}
-5 1 1 2 3 4 4 5 6 9
{{omit from|GUISS}}
ZED
Source -> http://ideone.com/uZEPL4 Compiled -> http://ideone.com/SJ5EGu
This is a bottom up version of merge sort:
(append) list1 list2
comment:
#true
(003) "append" list1 list2
(car) pair
comment:
#true
(002) "car" pair
(cdr) pair
comment:
#true
(002) "cdr" pair
(cons) one two
comment:
#true
(003) "cons" one two
(map) function list
comment:
#true
(003) "map" function list
(merge) comparator list1 list2
comment:
#true
(merge1) comparator list1 list2 nil
(merge1) comparator list1 list2 collect
comment:
(null?) list2
(append) (reverse) collect list1
(merge1) comparator list1 list2 collect
comment:
(null?) list1
(append) (reverse) collect list2
(merge1) comparator list1 list2 collect
comment:
(003) comparator (car) list2 (car) list1
(merge1) comparator list1 (cdr) list2 (cons) (car) list2 collect
(merge1) comparator list1 list2 collect
comment:
#true
(merge1) comparator (cdr) list1 list2 (cons) (car) list1 collect
(null?) value
comment:
#true
(002) "null?" value
(reverse) list
comment:
#true
(002) "reverse" list
(sort) comparator jumble
comment:
#true
(car) (sort11) comparator (sort1) jumble
(sort1) jumble
comment:
#true
(map) "list" jumble
(sort11) comparator jumble
comment:
(null?) jumble
nil
(sort11) comparator jumble
comment:
(null?) (cdr) jumble
jumble
(sort11) comparator jumble
comment:
#true
(sort11) comparator
(cons) (merge) comparator (car) jumble (002) "cadr" jumble
(sort11) comparator (002) "cddr" jumble
zkl
Pretty wasteful memory wise, probably not suitable for large sorts. {{trans|Clojure}}
fcn _merge(left,right){
if (not left) return(right);
if (not right) return(left);
l:=left[0]; r:=right[0];
if (l<=r) return(L(l).extend(self.fcn(left[1,*],right)));
else return(L(r).extend(self.fcn(left,right[1,*])));
}
fcn merge_sort(L){
if (L.len()<2) return(L);
n:=L.len()/2;
return(_merge(self.fcn(L[0,n]), self.fcn(L[n,*])));
}
merge_sort(T(1,3,5,7,9,8,6,4,2)).println();
merge_sort("big fjords vex quick waltz nymph").concat().println();
{{out}}
L(1,2,3,4,5,6,7,8,9)
abcdefghiijklmnopqrstuvwxyz
Or, for lists only:
fcn mergeSort(L){
if (L.len()<2) return(L.copy());
n:=L.len()/2;
self.fcn(L[0,n]).merge(self.fcn(L[n,*]));
}
mergeSort(T(1,3,5,7,9,8,6,4,2)).println();
mergeSort("big fjords vex quick waltz nymph".split("")).concat().println();
{{out}}
L(1,2,3,4,5,6,7,8,9)
abcdefghiijklmnopqrstuvwxyz