⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Sorting Algorithms}} {{Sorting Algorithm}}
Sort an array of numbers (of any convenient size) into ascending order using [[wp:Patience sorting|Patience sorting]].
;Related task: :* [[Longest increasing subsequence]]
C
Takes integers as input, prints out usage on incorrect invocation
#include<stdlib.h>
#include<stdio.h>
int* patienceSort(int* arr,int size){
int decks[size][size],i,j,min,pickedRow;
int *count = (int*)calloc(sizeof(int),size),*sortedArr = (int*)malloc(size*sizeof(int));
for(i=0;i<size;i++){
for(j=0;j<size;j++){
if(count[j]==0 || (count[j]>0 && decks[j][count[j]-1]>=arr[i])){
decks[j][count[j]] = arr[i];
count[j]++;
break;
}
}
}
min = decks[0][count[0]-1];
pickedRow = 0;
for(i=0;i<size;i++){
for(j=0;j<size;j++){
if(count[j]>0 && decks[j][count[j]-1]<min){
min = decks[j][count[j]-1];
pickedRow = j;
}
}
sortedArr[i] = min;
count[pickedRow]--;
for(j=0;j<size;j++)
if(count[j]>0){
min = decks[j][count[j]-1];
pickedRow = j;
break;
}
}
free(count);
free(decks);
return sortedArr;
}
int main(int argC,char* argV[])
{
int *arr, *sortedArr, i;
if(argC==0)
printf("Usage : %s <integers to be sorted separated by space>");
else{
arr = (int*)malloc((argC-1)*sizeof(int));
for(i=1;i<=argC;i++)
arr[i-1] = atoi(argV[i]);
sortedArr = patienceSort(arr,argC-1);
for(i=0;i<argC-1;i++)
printf("%d ",sortedArr[i]);
}
return 0;
}
Invocation and output :
C:\rosettaCode>patienceSort.exe 4 65 2 -31 0 99 83 781 1
-31 0 1 2 4 65 83 99 781
C++
#include <iostream>
#include <vector>
#include <stack>
#include <iterator>
#include <algorithm>
#include <cassert>
template <class E>
struct pile_less {
bool operator()(const std::stack<E> &pile1, const std::stack<E> &pile2) const {
return pile1.top() < pile2.top();
}
};
template <class E>
struct pile_greater {
bool operator()(const std::stack<E> &pile1, const std::stack<E> &pile2) const {
return pile1.top() > pile2.top();
}
};
template <class Iterator>
void patience_sort(Iterator first, Iterator last) {
typedef typename std::iterator_traits<Iterator>::value_type E;
typedef std::stack<E> Pile;
std::vector<Pile> piles;
// sort into piles
for (Iterator it = first; it != last; it++) {
E& x = *it;
Pile newPile;
newPile.push(x);
typename std::vector<Pile>::iterator i =
std::lower_bound(piles.begin(), piles.end(), newPile, pile_less<E>());
if (i != piles.end())
i->push(x);
else
piles.push_back(newPile);
}
// priority queue allows us to merge piles efficiently
// we use greater-than comparator for min-heap
std::make_heap(piles.begin(), piles.end(), pile_greater<E>());
for (Iterator it = first; it != last; it++) {
std::pop_heap(piles.begin(), piles.end(), pile_greater<E>());
Pile &smallPile = piles.back();
*it = smallPile.top();
smallPile.pop();
if (smallPile.empty())
piles.pop_back();
else
std::push_heap(piles.begin(), piles.end(), pile_greater<E>());
}
assert(piles.empty());
}
int main() {
int a[] = {4, 65, 2, -31, 0, 99, 83, 782, 1};
patience_sort(a, a+sizeof(a)/sizeof(*a));
std::copy(a, a+sizeof(a)/sizeof(*a), std::ostream_iterator<int>(std::cout, ", "));
std::cout << std::endl;
return 0;
}
{{out}}
-31, 0, 1, 2, 4, 65, 83, 99, 782,
Clojure
(defn patience-insert
"Inserts a value into the sequence where each element is a stack.
Comparison replaces the definition of less than.
Uses the greedy strategy."
[comparison sequence value]
(lazy-seq
(if (empty? sequence) `((~value)) ;; If there are no places to put the "card", make a new stack
(let [stack (first sequence)
top (peek stack)]
(if (comparison value top)
(cons (conj stack value) ;; Either put the card in a stack or recurse to the next stack
(rest sequence))
(cons stack
(patience-insert comparison
(rest sequence)
value)))))))
(defn patience-remove
"Removes the value from the top of the first stack it shows up in.
Leaves the stacks otherwise intact."
[sequence value]
(lazy-seq
(if (empty? sequence) nil ;; If there are no stacks, we have no work to do
(let [stack (first sequence)
top (peek stack)]
(if (= top value) ;; Are we there yet?
(let [left-overs (pop stack)]
(if (empty? left-overs) ;; Handle the case that the stack is empty and needs to be removed
(rest sequence)
(cons left-overs
(rest sequence))))
(cons stack
(patience-remove (rest sequence)
value)))))))
(defn patience-recover
"Builds a sorted sequence from a list of patience stacks.
The given comparison takes the place of 'less than'"
[comparison sequence]
(loop [sequence sequence
sorted []]
(if (empty? sequence) sorted
(let [smallest (reduce #(if (comparison %1 %2) %1 %2) ;; Gets the smallest element in the list
(map peek sequence))
remaining (patience-remove sequence smallest)]
(recur remaining
(conj sorted smallest)))))) ;; Recurse over the remaining values and add the new smallest to the end of the sorted list
(defn patience-sort
"Sorts the sequence by comparison.
First builds the list of valid patience stacks.
Then recovers the sorted list from those.
If you don't supply a comparison, assumes less than."
([comparison sequence]
(->> (reduce (comp doall ;; This is prevent a stack overflow by making sure all work is done when it needs to be
(partial patience-insert comparison)) ;; Insert all the values into the list of stacks
nil
sequence)
(patience-recover comparison))) ;; After we have the stacks, send it off to recover the sorted list
([sequence]
;; In the case we don't have an operator, defer to ourselves with less than
(patience-sort < sequence)))
;; Sort the test sequence and print it
(println (patience-sort [4 65 2 -31 0 99 83 782 1]))
{{out}}
[-31 0 1 2 4 65 83 99 782]
D
{{trans|Python}}
import std.stdio, std.array, std.range, std.algorithm;
void patienceSort(T)(T[] items) /*pure nothrow @safe*/
if (__traits(compiles, T.init < T.init)) {
//SortedRange!(int[][], q{ a.back < b.back }) piles;
T[][] piles;
foreach (x; items) {
auto p = [x];
immutable i = piles.length -
piles
.assumeSorted!q{ a.back < b.back }
.upperBound(p)
.length;
if (i != piles.length)
piles[i] ~= x;
else
piles ~= p;
}
piles.nWayUnion!q{ a > b }.copy(items.retro);
}
void main() {
auto data = [4, 65, 2, -31, 0, 99, 83, 782, 1];
data.patienceSort;
assert(data.isSorted);
data.writeln;
}
{{out}}
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
Elixir
defmodule Sort do
def patience_sort(list) do
piles = deal_pile(list, [])
merge_pile(piles, [])
end
defp deal_pile([], piles), do: piles
defp deal_pile([h|t], piles) do
index = Enum.find_index(piles, fn pile -> hd(pile) <= h end)
new_piles = if index, do: add_element(piles, index, h, []),
else: piles ++ [[h]]
deal_pile(t, new_piles)
end
defp add_element([h|t], 0, elm, work), do: Enum.reverse(work, [[elm | h] | t])
defp add_element([h|t], index, elm, work), do: add_element(t, index-1, elm, [h | work])
defp merge_pile([], list), do: list
defp merge_pile(piles, list) do
{max, index} = max_index(piles)
merge_pile(delete_element(piles, index, []), [max | list])
end
defp max_index([h|t]), do: max_index(t, hd(h), 1, 0)
defp max_index([], max, _, max_i), do: {max, max_i}
defp max_index([h|t], max, index, _) when hd(h)>max, do: max_index(t, hd(h), index+1, index)
defp max_index([_|t], max, index, max_i) , do: max_index(t, max, index+1, max_i)
defp delete_element([h|t], 0, work) when length(h)==1, do: Enum.reverse(work, t)
defp delete_element([h|t], 0, work) , do: Enum.reverse(work, [tl(h) | t])
defp delete_element([h|t], index, work), do: delete_element(t, index-1, [h | work])
end
IO.inspect Sort.patience_sort [4, 65, 2, -31, 0, 99, 83, 782, 1]
{{out}}
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
Go
This version is written for int slices, but can be easily modified to sort other types.
package main
import (
"fmt"
"container/heap"
"sort"
)
type IntPile []int
func (self IntPile) Top() int { return self[len(self)-1] }
func (self *IntPile) Pop() int {
x := (*self)[len(*self)-1]
*self = (*self)[:len(*self)-1]
return x
}
type IntPilesHeap []IntPile
func (self IntPilesHeap) Len() int { return len(self) }
func (self IntPilesHeap) Less(i, j int) bool { return self[i].Top() < self[j].Top() }
func (self IntPilesHeap) Swap(i, j int) { self[i], self[j] = self[j], self[i] }
func (self *IntPilesHeap) Push(x interface{}) { *self = append(*self, x.(IntPile)) }
func (self *IntPilesHeap) Pop() interface{} {
x := (*self)[len(*self)-1]
*self = (*self)[:len(*self)-1]
return x
}
func patience_sort (n []int) {
var piles []IntPile
// sort into piles
for _, x := range n {
j := sort.Search(len(piles), func (i int) bool { return piles[i].Top() >= x })
if j != len(piles) {
piles[j] = append(piles[j], x)
} else {
piles = append(piles, IntPile{ x })
}
}
// priority queue allows us to merge piles efficiently
hp := IntPilesHeap(piles)
heap.Init(&hp)
for i, _ := range n {
smallPile := heap.Pop(&hp).(IntPile)
n[i] = smallPile.Pop()
if len(smallPile) != 0 {
heap.Push(&hp, smallPile)
}
}
if len(hp) != 0 {
panic("something went wrong")
}
}
func main() {
a := []int{4, 65, 2, -31, 0, 99, 83, 782, 1}
patience_sort(a)
fmt.Println(a)
}
{{out}}
[-31 0 1 2 4 65 83 99 782]
Haskell
import Control.Monad.ST
import Control.Monad
import Data.Array.ST
import Data.List
import qualified Data.Set as S
newtype Pile a = Pile [a]
instance Eq a => Eq (Pile a) where
Pile (x:_) == Pile (y:_) = x == y
instance Ord a => Ord (Pile a) where
Pile (x:_) `compare` Pile (y:_) = x `compare` y
patienceSort :: Ord a => [a] -> [a]
patienceSort = mergePiles . sortIntoPiles where
sortIntoPiles :: Ord a => [a] -> [[a]]
sortIntoPiles lst = runST $ do
piles <- newSTArray (1, length lst) []
let bsearchPiles x len = aux 1 len where
aux lo hi | lo > hi = return lo
| otherwise = do
let mid = (lo + hi) `div` 2
m <- readArray piles mid
if head m < x then
aux (mid+1) hi
else
aux lo (mid-1)
f len x = do
i <- bsearchPiles x len
writeArray piles i . (x:) =<< readArray piles i
return $ if i == len+1 then len+1 else len
len <- foldM f 0 lst
e <- getElems piles
return $ take len e
where newSTArray :: Ix i => (i,i) -> e -> ST s (STArray s i e)
newSTArray = newArray
mergePiles :: Ord a => [[a]] -> [a]
mergePiles = unfoldr f . S.fromList . map Pile where
f pq = case S.minView pq of
Nothing -> Nothing
Just (Pile [x], pq') -> Just (x, pq')
Just (Pile (x:xs), pq') -> Just (x, S.insert (Pile xs) pq')
main :: IO ()
main = print $ patienceSort [4, 65, 2, -31, 0, 99, 83, 782, 1]
{{out}}
[-31,0,1,2,4,65,83,99,782]
J
The data structure for append and transfer are as x argument a list with [[wp:CAR_and_CDR|cdr]] as the stacks and [[wp:CAR_and_CDR|car]] as the data to sort or growing sorted list; and the y argument being the index of pile to operate on. New piles are created by using the new value, accomplished by selecting the entire x argument as a result. Filtering removes empty stacks during unpiling.
Until =: 2 :'u^:(0=v)^:_'
Filter =: (#~`)(`:6)
locate_for_append =: 1 i.~ (<&> {:S:0) NB. returns an index
append =: (<@:(({::~ >:) , 0 {:: [)`]`(}.@:[)}) :: [
pile =: (, append locate_for_append)/@:(;/) NB. pile DATA
smallest =: ((>:@:i. , ]) <./)@:({:S:0@:}.) NB. index of pile with smallest value , that value
transfer =: (}:&.>@:({~ {.) , <@:((0{::[),{:@:]))`(1 0 * ])`[}
unpile =: >@:{.@:((0<#S:0)Filter@:(transfer smallest)Until(1=#))@:(a:&,)
patience_sort =: unpile@:pile
assert (/:~ -: patience_sort) ?@$~30 NB. test with 30 randomly chosen integers
Show =: 1 : 0
smoutput y
u y
:
smoutput A=:x ,&:< y
x u y
)
pile_demo =: (, append Show locate_for_append)/@:(;/) NB. pile DATA
unpile_demo =: >@:{.@:((0<#S:0)Filter@:(transfer Show smallest)Until(1=#))@:(a:&,)
patience_sort_demo =: unpile_demo@:pile_demo
JVERSION
Engine: j701/2011-01-10/11:25
Library: 8.02.12
Platform: Linux 64
Installer: unknown
InstallPath: /usr/share/j/8.0.2
patience_sort_demo Show ?.@$~10
4 6 8 6 5 8 6 6 6 9
┌─────┬─┐
│┌─┬─┐│0│
││6│9││ │
│└─┴─┘│ │
└─────┴─┘
┌───────┬─┐
│┌─┬───┐│1│
││6│9 6││ │
│└─┴───┘│ │
└───────┴─┘
┌─────────┬─┐
│┌─┬─┬───┐│2│
││6│6│9 6││ │
│└─┴─┴───┘│ │
└─────────┴─┘
┌───────────┬─┐
│┌─┬─┬─┬───┐│3│
││8│6│6│9 6││ │
│└─┴─┴─┴───┘│ │
└───────────┴─┘
┌─────────────┬─┐
│┌─┬─┬─┬─┬───┐│0│
││5│8│6│6│9 6││ │
│└─┴─┴─┴─┴───┘│ │
└─────────────┴─┘
┌───────────────┬─┐
│┌─┬───┬─┬─┬───┐│4│
││6│8 5│6│6│9 6││ │
│└─┴───┴─┴─┴───┘│ │
└───────────────┴─┘
┌─────────────────┬─┐
│┌─┬─┬───┬─┬─┬───┐│5│
││8│6│8 5│6│6│9 6││ │
│└─┴─┴───┴─┴─┴───┘│ │
└─────────────────┴─┘
┌───────────────────┬─┐
│┌─┬─┬─┬───┬─┬─┬───┐│0│
││6│8│6│8 5│6│6│9 6││ │
│└─┴─┴─┴───┴─┴─┴───┘│ │
└───────────────────┴─┘
┌─────────────────────┬─┐
│┌─┬───┬─┬───┬─┬─┬───┐│0│
││4│8 6│6│8 5│6│6│9 6││ │
│└─┴───┴─┴───┴─┴─┴───┘│ │
└─────────────────────┴─┘
┌──────────────────────┬───┐
│┌┬─────┬─┬───┬─┬─┬───┐│1 4│
│││8 6 4│6│8 5│6│6│9 6││ │
│└┴─────┴─┴───┴─┴─┴───┘│ │
└──────────────────────┴───┘
┌─────────────────────┬───┐
│┌─┬───┬─┬───┬─┬─┬───┐│3 5│
││4│8 6│6│8 5│6│6│9 6││ │
│└─┴───┴─┴───┴─┴─┴───┘│ │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌───┬───┬─┬─┬─┬─┬───┐│1 6│
││4 5│8 6│6│8│6│6│9 6││ │
│└───┴───┴─┴─┴─┴─┴───┘│ │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌─────┬─┬─┬─┬─┬─┬───┐│2 6│
││4 5 6│8│6│8│6│6│9 6││ │
│└─────┴─┴─┴─┴─┴─┴───┘│ │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌───────┬─┬─┬─┬─┬───┐│3 6│
││4 5 6 6│8│8│6│6│9 6││ │
│└───────┴─┴─┴─┴─┴───┘│ │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌─────────┬─┬─┬─┬───┐│3 6│
││4 5 6 6 6│8│8│6│9 6││ │
│└─────────┴─┴─┴─┴───┘│ │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌───────────┬─┬─┬───┐│3 6│
││4 5 6 6 6 6│8│8│9 6││ │
│└───────────┴─┴─┴───┘│ │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌─────────────┬─┬─┬─┐│1 8│
││4 5 6 6 6 6 6│8│8│9││ │
│└─────────────┴─┴─┴─┘│ │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌───────────────┬─┬─┐│1 8│
││4 5 6 6 6 6 6 8│8│9││ │
│└───────────────┴─┴─┘│ │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌─────────────────┬─┐│1 9│
││4 5 6 6 6 6 6 8 8│9││ │
│└─────────────────┴─┘│ │
└─────────────────────┴───┘
4 5 6 6 6 6 6 8 8 9
Java
import java.util.*;
public class PatienceSort {
public static <E extends Comparable<? super E>> void sort (E[] n) {
List<Pile<E>> piles = new ArrayList<Pile<E>>();
// sort into piles
for (E x : n) {
Pile<E> newPile = new Pile<E>();
newPile.push(x);
int i = Collections.binarySearch(piles, newPile);
if (i < 0) i = ~i;
if (i != piles.size())
piles.get(i).push(x);
else
piles.add(newPile);
}
// priority queue allows us to retrieve least pile efficiently
PriorityQueue<Pile<E>> heap = new PriorityQueue<Pile<E>>(piles);
for (int c = 0; c < n.length; c++) {
Pile<E> smallPile = heap.poll();
n[c] = smallPile.pop();
if (!smallPile.isEmpty())
heap.offer(smallPile);
}
assert(heap.isEmpty());
}
private static class Pile<E extends Comparable<? super E>> extends Stack<E> implements Comparable<Pile<E>> {
public int compareTo(Pile<E> y) { return peek().compareTo(y.peek()); }
}
public static void main(String[] args) {
Integer[] a = {4, 65, 2, -31, 0, 99, 83, 782, 1};
sort(a);
System.out.println(Arrays.toString(a));
}
}
{{out}}
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
Julia
function patiencesort(list::Vector{T}) where T
piles = Vector{Vector{T}}()
for n in list
if isempty(piles) ||
(i = findfirst(pile -> n <= pile[end], piles)) == nothing
push!(piles, [n])
else
push!(piles[i], n)
end
end
mergesorted(piles)
end
function mergesorted(vecvec)
lengths = map(length, vecvec)
allsum = sum(lengths)
sorted = similar(vecvec[1], allsum)
for i in 1:allsum
(val, idx) = findmin(map(x -> x[end], vecvec))
sorted[i] = pop!(vecvec[idx])
if isempty(vecvec[idx])
deleteat!(vecvec, idx)
end
end
sorted
end
println(patiencesort(rand(collect(1:1000), 12)))
{{out}}
[186, 243, 255, 257, 427, 486, 513, 613, 657, 734, 866, 907]
Kotlin
// version 1.1.2
fun <T : Comparable<T>> patienceSort(arr: Array<T>) {
if (arr.size < 2) return
val piles = mutableListOf<MutableList<T>>()
outer@ for (el in arr) {
for (pile in piles) {
if (pile.last() > el) {
pile.add(el)
continue@outer
}
}
piles.add(mutableListOf(el))
}
for (i in 0 until arr.size) {
var min = piles[0].last()
var minPileIndex = 0
for (j in 1 until piles.size) {
if (piles[j].last() < min) {
min = piles[j].last()
minPileIndex = j
}
}
arr[i] = min
val minPile = piles[minPileIndex]
minPile.removeAt(minPile.lastIndex)
if (minPile.size == 0) piles.removeAt(minPileIndex)
}
}
fun main(args: Array<String>) {
val iArr = arrayOf(4, 65, 2, -31, 0, 99, 83, 782, 1)
patienceSort(iArr)
println(iArr.contentToString())
val cArr = arrayOf('n', 'o', 'n', 'z', 'e', 'r', 'o', 's', 'u','m')
patienceSort(cArr)
println(cArr.contentToString())
val sArr = arrayOf("dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu")
patienceSort(sArr)
println(sArr.contentToString())
}
{{out}}
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
[e, m, n, n, o, o, r, s, u, z]
[ant, ape, ass, cat, cow, dog, gnu, man, pig]
OCaml
module PatienceSortFn (Ord : Set.OrderedType) : sig
val patience_sort : Ord.t list -> Ord.t list
end = struct
module PilesSet = Set.Make
(struct
type t = Ord.t list
let compare x y = Ord.compare (List.hd x) (List.hd y)
end);;
let sort_into_piles list =
let piles = Array.make (List.length list) [] in
let bsearch_piles x len =
let rec aux lo hi =
if lo > hi then
lo
else
let mid = (lo + hi) / 2 in
if Ord.compare (List.hd piles.(mid)) x < 0 then
aux (mid+1) hi
else
aux lo (mid-1)
in
aux 0 (len-1)
in
let f len x =
let i = bsearch_piles x len in
piles.(i) <- x :: piles.(i);
if i = len then len+1 else len
in
let len = List.fold_left f 0 list in
Array.sub piles 0 len
let merge_piles piles =
let pq = Array.fold_right PilesSet.add piles PilesSet.empty in
let rec f pq acc =
if PilesSet.is_empty pq then
acc
else
let elt = PilesSet.min_elt pq in
match elt with
[] -> failwith "Impossible"
| x::xs ->
let pq' = PilesSet.remove elt pq in
f (if xs = [] then pq' else PilesSet.add xs pq') (x::acc)
in
List.rev (f pq [])
let patience_sort n =
merge_piles (sort_into_piles n)
end
Usage:
# module IntPatienceSort = PatienceSortFn
(struct
type t = int
let compare = compare
end);;
module IntPatienceSort : sig val patience_sort : int list -> int list end
# IntPatienceSort.patience_sort [4; 65; 2; -31; 0; 99; 83; 782; 1];;
- : int list = [-31; 0; 1; 2; 4; 65; 83; 99; 782]
Perl
{{trans|Perl 6}}
sub patience_sort {
my @s = [shift];
for my $card (@_) {
my @t = grep { $_->[-1] > $card } @s;
if (@t) { push @{shift(@t)}, $card }
else { push @s, [$card] }
}
my @u;
while (my @v = grep @$_, @s) {
my $value = (my $min = shift @v)->[-1];
for (@v) {
($min, $value) =
($_, $_->[-1]) if $_->[-1] < $value
}
push @u, pop @$min;
}
return @u
}
print join ' ', patience_sort qw(4 3 6 2 -1 13 12 9);
{{out}}
-1 2 3 4 6 9 12 13
Perl 6
{{works with|rakudo|2015-10-22}}
multi patience(*@deck) {
my @stacks;
for @deck -> $card {
with @stacks.first: $card before *[*-1] -> $stack {
$stack.push: $card;
}
else {
@stacks.push: [$card];
}
}
gather while @stacks {
take .pop given min :by(*[*-1]), @stacks;
@stacks .= grep: +*;
}
}
say ~patience ^10 . pick(*);
{{out}}
0 1 2 3 4 5 6 7 8 9
Phix
function patience_sort(sequence s)
-- create list of sorted lists
sequence piles = {}
for i=1 to length(s) do
object n = s[i]
for p=1 to length(piles)+1 do
if p>length(piles) then
piles = append(piles,{n})
elsif n>=piles[p][$] then
piles[p] = append(piles[p],n)
exit
end if
end for
end for
-- merge sort the piles
sequence res = {}
while length(piles) do
integer idx = smallest(piles,return_index:=true)
res = append(res,piles[idx][1])
if length(piles[idx])=1 then
piles[idx..idx] = {}
else
piles[idx] = piles[idx][2..$]
end if
end while
return res
end function
constant tests = {{4,65,2,-31,0,99,83,782,1},
{0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15},
"nonzerosum",
{"dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu"}}
for i=1 to length(tests) do
pp(patience_sort(tests[i]),{pp_StrFmt,-2})
end for
{{out}}
{-31,0,1,2,4,65,83,99,782}
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
"emnnoorsuz"
{"ant", "ape", "ass", "cat", "cow", "dog", "gnu", "man", "pig"}
PHP
<?php
class PilesHeap extends SplMinHeap {
public function compare($pile1, $pile2) {
return parent::compare($pile1->top(), $pile2->top());
}
}
function patience_sort(&$n) {
$piles = array();
// sort into piles
foreach ($n as $x) {
// binary search
$low = 0; $high = count($piles)-1;
while ($low <= $high) {
$mid = (int)(($low + $high) / 2);
if ($piles[$mid]->top() >= $x)
$high = $mid - 1;
else
$low = $mid + 1;
}
$i = $low;
if ($i == count($piles))
$piles[] = new SplStack();
$piles[$i]->push($x);
}
// priority queue allows us to merge piles efficiently
$heap = new PilesHeap();
foreach ($piles as $pile)
$heap->insert($pile);
for ($c = 0; $c < count($n); $c++) {
$smallPile = $heap->extract();
$n[$c] = $smallPile->pop();
if (!$smallPile->isEmpty())
$heap->insert($smallPile);
}
assert($heap->isEmpty());
}
$a = array(4, 65, 2, -31, 0, 99, 83, 782, 1);
patience_sort($a);
print_r($a);
?>
{{out}}
Array
(
[0] => -31
[1] => 0
[2] => 1
[3] => 2
[4] => 4
[5] => 65
[6] => 83
[7] => 99
[8] => 782
)
PicoLisp
(de leftmost (Lst N H)
(let L 1
(while (<= L H)
(use (X)
(setq X (/ (+ L H) 2))
(if (>= (caar (nth Lst X)) N)
(setq H (dec X))
(setq L (inc X)) ) ) )
L ) )
(de patience (Lst)
(let (L (cons (cons (car Lst))) C 1 M NIL)
(for N (cdr Lst)
(let I (leftmost L N C)
(and
(> I C)
(conc L (cons NIL))
(inc 'C) )
(push (nth L I) N) ) )
(make
(loop
(setq M (cons 0 T))
(for (I . Y) L
(let? S (car Y)
(and
(< S (cdr M))
(setq M (cons I S)) ) ) )
(T (=T (cdr M)))
(link (pop (nth L (car M)))) ) ) ) )
(println
(patience (4 65 2 -31 0 99 83 782 1)) )
(bye)
Python
{{works with|Python|2.7+ and 3.2+}} (for functools.total_ordering)
from functools import total_ordering
from bisect import bisect_left
from heapq import merge
@total_ordering
class Pile(list):
def __lt__(self, other): return self[-1] < other[-1]
def __eq__(self, other): return self[-1] == other[-1]
def patience_sort(n):
piles = []
# sort into piles
for x in n:
new_pile = Pile([x])
i = bisect_left(piles, new_pile)
if i != len(piles):
piles[i].append(x)
else:
piles.append(new_pile)
# use a heap-based merge to merge piles efficiently
n[:] = merge(*[reversed(pile) for pile in piles])
if __name__ == "__main__":
a = [4, 65, 2, -31, 0, 99, 83, 782, 1]
patience_sort(a)
print a
{{out}}
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
Racket
#lang racket/base
(require racket/match racket/list)
;; the car of a pile is the "bottom", i.e. where we place a card
(define (place-greedily ps-in c <?)
(let inr ((vr null) (ps ps-in))
(match ps
[(list) (reverse (cons (list c) vr))]
[(list (and psh (list ph _ ...)) pst ...)
#:when (<? c ph) (append (reverse (cons (cons c psh) vr)) pst)]
[(list psh pst ...) (inr (cons psh vr) pst)])))
(define (patience-sort cs-in <?)
;; Scatter
(define piles
(let scatter ((cs cs-in) (ps null))
(match cs [(list) ps] [(cons a d) (scatter d (place-greedily ps a <?))])))
;; Gather
(let gather ((rv null) (ps piles))
(match ps
[(list) (reverse rv)]
[(list psh pst ...)
(let scan ((least psh) (seens null) (unseens pst))
(define least-card (car least))
(match* (unseens least)
[((list) (list l)) (gather (cons l rv) seens)]
[((list) (cons l lt)) (gather (cons l rv) (cons lt seens))]
[((cons (and ush (cons u _)) ust) (cons l _))
#:when (<? l u) (scan least (cons ush seens) ust)]
[((cons ush ust) least) (scan ush (cons least seens) ust)]))])))
(patience-sort (shuffle (for/list ((_ 10)) (random 7))) <)
{{out}}
'(1 1 2 2 2 3 4 4 4 5)
REXX
The items to be sorted can be any form of REXX number, not just integers; the items may also be character strings.
Duplicates are also sorted correctly.
/*REXX program sorts a list of things (or items) using the patience sort algorithm. */
parse arg xxx; say ' input: ' xxx /*obtain a list of things from the C.L.*/
n=words(xxx); #=0; !.=1 /*N: # of things; #: number of piles*/
@.= /* [↓] append or create a pile (@.j) */
do i=1 for n; q=word(xxx, i) /* [↓] construct the piles of things. */
do j=1 for # /*add the Q thing (item) to a pile.*/
if q>word(@.j,1) then iterate /*Is this item greater? Then skip it.*/
@.j=q @.j; iterate i /*add this item to the top of the pile.*/
end /*j*/ /* [↑] find a pile, or make a new pile*/
#=#+1; @.#=q /*increase the pile count; a new pile.*/
end /*i*/ /*we are done with creating the piles. */
$= /* [↓] build a thingy list from piles*/
do k=1 until words($)==n /*pick off the smallest from the piles.*/
_= /*this is the smallest thingy so far···*/
do m=1 for #; z=word(@.m, !.m) /*traipse through many piles of items. */
if z=='' then iterate /*Is this pile null? Then skip pile.*/
if _=='' then _=z /*assume this one is the low pile value*/
if _>=z then do; _=z; p=m; end /*found a low value in a pile of items.*/
end /*m*/ /*the traipsing is done, we found a low*/
$=$ _ /*add to the output thingy ($) list. */
!.p=!.p + 1 /*bump the thingy pointer in pile P. */
end /*k*/ /* [↑] each iteration finds a low item*/
/* [↓] string $ has a leading blank.*/
say 'output: ' strip($) /*stick a fork in it, we're all done. */
{{out|output|text= when using the input of: 4 65 2 -31 0 99 83 782 7.88 1e1 1 }}
input: 4 65 2 -31 0 99 83 782 7.88 1e1 1
output: -31 0 1 2 4 7.88 1e1 65 83 99 782
{{out|output|text= when using the input of: dog cow cat ape ant man pterodactyl }}
input: dog cow cat ape ant man pterodactyl
output: ant ape cat cow dog man pterodactyl
Ruby
class Array
def patience_sort
piles = []
each do |i|
if (idx = piles.index{|pile| pile.last <= i})
piles[idx] << i
else
piles << [i] #create a new pile
end
end
# merge piles
result = []
until piles.empty?
first = piles.map(&:first)
idx = first.index(first.min)
result << piles[idx].shift
piles.delete_at(idx) if piles[idx].empty?
end
result
end
end
a = [4, 65, 2, -31, 0, 99, 83, 782, 1]
p a.patience_sort
{{out}}
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
Scala
{{libheader|Scala Concise}} {{libheader|Scala Time complexity O(n log n)}} {{works with|Scala|2.13}}
import scala.collection.mutable
object PatienceSort extends App {
def sort[A](source: Iterable[A])(implicit bound: A => Ordered[A]): Iterable[A] = {
val piles = mutable.ListBuffer[mutable.Stack[A]]()
def PileOrdering: Ordering[mutable.Stack[A]] =
(a: mutable.Stack[A], b: mutable.Stack[A]) => b.head.compare(a.head)
// Use a priority queue, to simplify extracting minimum elements.
val pq = new mutable.PriorityQueue[mutable.Stack[A]]()(PileOrdering)
// Create ordered piles of elements
for (elem <- source) {
// Find leftmost "possible" pile
// If there isn't a pile available, add a new one.
piles.find(p => p.head >= elem) match {
case Some(p) => p.push(elem)
case _ => piles += mutable.Stack(elem)
}
}
pq ++= piles
// Return a new list, by taking the smallest stack head
// until all stacks are empty.
for (_ <- source) yield {
val smallestList = pq.dequeue
val smallestVal = smallestList.pop
if (smallestList.nonEmpty) pq.enqueue(smallestList)
smallestVal
}
}
println(sort(List(4, 65, 2, -31, 0, 99, 83, 782, 1)))
}
Sidef
func patience(deck) {
var stacks = [];
deck.each { |card|
given (stacks.first { card < .last }) { |stack|
case (defined stack) {
stack << card
}
default {
stacks << [card]
}
}
}
gather {
while (stacks) {
take stacks.min_by { .last }.pop
stacks.grep!{ !.is_empty }
}
}
}
var a = [4, 65, 2, -31, 0, 99, 83, 782, 1]
say patience(a)
{{out}}
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
Standard ML
{{works with|SML/NJ}}
structure PilePriority = struct
type priority = int
fun compare (x, y) = Int.compare (y, x) (* we want min-heap *)
type item = int list
val priority = hd
end
structure PQ = LeftPriorityQFn (PilePriority)
fun sort_into_piles n =
let
val piles = DynamicArray.array (length n, [])
fun bsearch_piles x =
let
fun aux (lo, hi) =
if lo > hi then
lo
else
let
val mid = (lo + hi) div 2
in
if hd (DynamicArray.sub (piles, mid)) < x then
aux (mid+1, hi)
else
aux (lo, mid-1)
end
in
aux (0, DynamicArray.bound piles)
end
fun f x =
let
val i = bsearch_piles x
in
DynamicArray.update (piles, i, x :: DynamicArray.sub (piles, i))
end
in
app f n;
piles
end
fun merge_piles piles =
let
val heap = DynamicArray.foldl PQ.insert PQ.empty piles
fun f (heap, acc) =
case PQ.next heap of
NONE => acc
| SOME (x::xs, heap') =>
f ((if null xs then heap' else PQ.insert (xs, heap')),
x::acc)
in
rev (f (heap, []))
end
fun patience_sort n =
merge_piles (sort_into_piles n)
Usage:
- patience_sort [4, 65, 2, ~31, 0, 99, 83, 782, 1];
val it = [~31,0,1,2,4,65,83,99,782] : int list
Tcl
{{works with|Tcl|8.6}}
This uses the -bisect
option to lsearch
in order to do an efficient binary search (in combination with -index end
, which means that the search is indexed by the end of the sublist).
package require Tcl 8.6
proc patienceSort {items} {
# Make the piles
set piles {}
foreach item $items {
set p [lsearch -bisect -index end $piles $item]
if {$p == -1} {
lappend piles [list $item]
} else {
lset piles $p end+1 $item
}
}
# Merge the piles; no suitable builtin, alas
set indices [lrepeat [llength $piles] 0]
set result {}
while 1 {
set j 0
foreach pile $piles i $indices {
set val [lindex $pile $i]
if {$i < [llength $pile] && (![info exist min] || $min > $val)} {
set k $j
set next [incr i]
set min $val
}
incr j
}
if {![info exist min]} break
lappend result $min
unset min
lset indices $k $next
}
return $result
}
Demonstrating:
puts [patienceSort {4 65 2 -31 0 99 83 782 1}]
{{out}}
-31 0 1 2 4 65 83 99 782
zkl
fcn patienceSort(ns){
piles:=L();
foreach n in (ns){ newPile:=True; // create list of sorted lists
foreach p in (piles){
if(n>=p[-1]) { p.append(n); newPile=False; break; }
}
if(newPile)piles.append(L(n));
}
// merge sort the piles
r:=Sink(List); while(piles){
mins:=piles.apply("get",0).enumerate();
min :=mins.reduce(fcn(a,b){ (a[1]<b[1]) and a or b },mins[0])[0];
r.write(piles[min].pop(0));
if(not piles[min]) piles.del(min);
}
r.close();
}
T(T(3,2,6,4,3,5,1),
T(4,65,2,-31,0,99,83,782,1),
T(0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15),
"foobar")
.pump(Console.println,patienceSort);
{{out}}
L(1,2,3,3,4,5,6)
L(-31,0,1,2,4,65,83,99,782)
L(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
L("a","b","f","o","o","r")