⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Arithmetic operations}} Compute the '''n'''th term of a [[wp:Series (mathematics)|series]], i.e. the sum of the '''n''' first terms of the corresponding [[wp:sequence|sequence]].
Informally this value, or its limit when '''n''' tends to infinity, is also called the ''sum of the series'', thus the title of this task.
For this task, use: ::::::
:: and compute
This approximates the [[wp:Riemann zeta function|zeta function]] for S=2, whose exact value
::::::
is the solution of the [[wp:Basel problem|Basel problem]].
360 Assembly
* Sum of a series 30/03/2017
SUMSER CSECT
USING SUMSER,12 base register
LR 12,15 set addressability
LR 10,14 save r14
LE 4,=E'0' s=0
LE 2,=E'1' i=1
DO WHILE=(CE,2,LE,=E'1000') do i=1 to 1000
LER 0,2 i
MER 0,2 *i
LE 6,=E'1' 1
DER 6,0 1/i**2
AER 4,6 s=s+1/i**2
AE 2,=E'1' i=i+1
ENDDO , enddo i
LA 0,4 format F13.4
LER 0,4 s
BAL 14,FORMATF call formatf
MVC PG(13),0(1) retrieve result
XPRNT PG,80 print buffer
BR 10 exit
COPY FORMATF formatf code
PG DC CL80' ' buffer
END SUMSER
{{out}}
1.6439
ACL2
(defun sum-x^-2 (max-x)
(if (zp max-x)
0
(+ (/ (* max-x max-x))
(sum-x^-2 (1- max-x)))))
ActionScript
function partialSum(n:uint):Number
{
var sum:Number = 0;
for(var i:uint = 1; i <= n; i++)
sum += 1/(i*i);
return sum;
}
trace(partialSum(1000));
Ada
with Ada.Text_Io; use Ada.Text_Io;
procedure Sum_Series is
function F(X : Long_Float) return Long_Float is
begin
return 1.0 / X**2;
end F;
package Lf_Io is new Ada.Text_Io.Float_Io(Long_Float);
use Lf_Io;
Sum : Long_Float := 0.0;
subtype Param_Range is Integer range 1..1000;
begin
for I in Param_Range loop
Sum := Sum + F(Long_Float(I));
end loop;
Put("Sum of F(x) from" & Integer'Image(Param_Range'First) &
" to" & Integer'Image(Param_Range'Last) & " is ");
Put(Item => Sum, Aft => 10, Exp => 0);
New_Line;
end Sum_Series;
Aime
real
Invsqr(real n)
{
1 / (n * n);
}
integer
main(void)
{
integer i;
real sum;
sum = 0;
i = 1;
while (i < 1000) {
sum += Invsqr(i);
i += 1;
}
o_real(14, sum);
o_byte('\n');
0;
}
ALGOL 68
{{works with|ALGOL 68|Revision 1 - no extensions to language used}}
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}}
{{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d]}}
MODE RANGE = STRUCT(INT lwb, upb);
PROC sum = (PROC (INT)LONG REAL f, RANGE range)LONG REAL:(
LONG REAL sum := LENG 0.0;
FOR i FROM lwb OF range TO upb OF range DO
sum := sum + f(i)
OD;
sum
);
test:(
RANGE range = (1,100);
PROC f = (INT x)LONG REAL: LENG REAL(1) / LENG REAL(x)**2;
print(("Sum of f(x) from", lwb OF range, " to ",upb OF range," is ", SHORTEN sum(f,range),".", new line))
)
Output:
Sum of f(x) from +1 to +100 is +1.63498390018489e +0.
APL
+/÷2*⍨⍳1000
1.64393
AppleScript
{{Trans|JavaScript}} {{Trans|Haskell}}
-- SUM OF SERIES ------------------------------------------
-- seriesSum :: Num a => (a -> a) -> [a] -> a
on seriesSum(f, xs)
script go
property mf : |λ| of mReturn(f)
on |λ|(a, x)
a + mf(x)
end |λ|
end script
foldl(go, 0, xs)
end seriesSum
-- TEST ---------------------------------------------------
-- inverseSquare :: Num -> Num
on inverseSquare(x)
1 / (x ^ 2)
end inverseSquare
on run
seriesSum(inverseSquare, enumFromTo(1, 1000))
--> 1.643934566682
end run
-- GENERIC FUNCTIONS --------------------------------------
-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if m ≤ n then
set lst to {}
repeat with i from m to n
set end of lst to i
end repeat
lst
else
{}
end if
end enumFromTo
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
{{Out}}
## AutoHotkey
AutoHotkey allows the precision of floating point numbers generated by math operations to be adjusted via the SetFormat command. The default is 6 decimal places.
```autohotkey
SetFormat, FloatFast, 0.15
While A_Index <= 1000
sum += 1/A_Index**2
MsgBox,% sum ;1.643934566681554
AWK
$ awk 'BEGIN{for(i=1;i<=1000;i++)s+=1/(i*i);print s}'
1.64393
BASIC
{{works with|QuickBasic|4.5}}
function s(x%)
s = 1 / x ^ 2
end function
function sum(low%, high%)
ret = 0
for i = low to high
ret = ret + s(i)
next i
sum = ret
end function
print sum(1, 1000)
BBC BASIC
FOR i% = 1 TO 1000
sum += 1/i%^2
NEXT
PRINT sum
bc
define f(x) {
return(1 / (x * x))
}
define s(n) {
auto i, s
for (i = 1; i <= n; i++) {
s += f(i)
}
return(s)
}
scale = 20
s(1000)
{{Out}}
1.64393456668155979824
Befunge
Emulates fixed point arithmetic with a 32 bit integer so the result is not very accurate.
05558***>::"~"%00p"~"/10p"( }}2"*v
v*8555$_^#!:-1+*"~"g01g00+/*:\***<
<@$_,#!>#:<+*<v+*86%+55:p00<6\0/**
"."\55+%68^>\55+/00g1-:#^_$
{{out}}
1.643934
Bracmat
( 0:?i
& 0:?S
& whl'(1+!i:~>1000:?i&!i^-2+!S:?S)
& out$!S
& out$(flt$(!S,10))
);
Output:
8354593848314...../5082072010432..... (1732 digits and a slash)
1,6439345667*10E0
Brat
p 1.to(1000).reduce 0 { sum, x | sum + 1.0 / x ^ 2 } #Prints 1.6439345666816
C
#include <stdio.h>
double Invsqr(double n)
{
return 1 / (n*n);
}
int main (int argc, char *argv[])
{
int i, start = 1, end = 1000;
double sum = 0.0;
for( i = start; i <= end; i++)
sum += Invsqr((double)i);
printf("%16.14f\n", sum);
return 0;
}
C++
#include <iostream>
double f(double x);
int main()
{
unsigned int start = 1;
unsigned int end = 1000;
double sum = 0;
for( unsigned int x = start; x <= end; ++x )
{
sum += f(x);
}
std::cout << "Sum of f(x) from " << start << " to " << end << " is " << sum << std::endl;
return 0;
}
double f(double x)
{
return ( 1.0 / ( x * x ) );
}
C#
class Program
{
static void Main(string[] args)
{
// Create and fill a list of number 1 to 1000
List<double> myList = new List<double>();
for (double i = 1; i < 1001; i++)
{
myList.Add(i);
}
// Calculate the sum of 1/x^2
var sum = myList.Sum(x => 1/(x*x));
Console.WriteLine(sum);
Console.ReadLine();
}
}
An alternative approach using Enumerable.Range() to generate the numbers.
class Program
{
static void Main(string[] args)
{
double sum = Enumerable.Range(1, 1000).Sum(x => 1.0 / (x * x));
Console.WriteLine(sum);
Console.ReadLine();
}
}
CLIPS
(deffunction S (?x) (/ 1 (* ?x ?x)))
(deffunction partial-sum-S
(?start ?stop)
(bind ?sum 0)
(loop-for-count (?i ?start ?stop) do
(bind ?sum (+ ?sum (S ?i)))
)
(return ?sum)
)
Usage:
CLIPS> (partial-sum-S 1 1000)
1.64393456668156
Clojure
(reduce + (map #(/ 1.0 % %) (range 1 1001)))
COBOL
IDENTIFICATION DIVISION.
PROGRAM-ID. sum-of-series.
DATA DIVISION.
WORKING-STORAGE SECTION.
78 N VALUE 1000.
01 series-term USAGE FLOAT-LONG.
01 i PIC 9(4).
PROCEDURE DIVISION.
PERFORM VARYING i FROM 1 BY 1 UNTIL N < i
COMPUTE series-term = series-term + (1 / i ** 2)
END-PERFORM
DISPLAY series-term
GOBACK
.
{{out}}
1.643933784000000120
CoffeeScript
console.log [1..1000].reduce((acc, x) -> acc + (1.0 / (x*x)))
Common Lisp
(loop for x from 1 to 1000 summing (expt x -2))
Crystal
{{trans|Ruby}}
puts (1..1000).sum{ |x| 1.0 / x ** 2 }
puts (1..5000).sum{ |x| 1.0 / x ** 2 }
puts (1..9999).sum{ |x| 1.0 / x ** 2 }
puts Math::PI ** 2 / 6
{{out}}
1.6439345666815615
1.6447340868469014
1.6448340618480652
1.6449340668482264
D
More Procedural Style
import std.stdio, std.traits;
ReturnType!TF series(TF)(TF func, int end, int start=1)
pure nothrow @safe @nogc {
typeof(return) sum = 0;
foreach (immutable i; start .. end + 1)
sum += func(i);
return sum;
}
void main() {
writeln("Sum: ", series((in int n) => 1.0L / (n ^^ 2), 1_000));
}
{{out}}
Sum: 1.64393
More functional Style
Same output.
import std.stdio, std.algorithm, std.range;
enum series(alias F) = (in int end, in int start=1)
pure nothrow @nogc => iota(start, end + 1).map!F.sum;
void main() {
writeln("Sum: ", series!q{1.0L / (a ^^ 2)}(1_000));
}
Dart
{{trans|Scala}}
main() {
var list = new List<int>.generate(1000, (i) => i + 1);
num sum = 0;
(list.map((x) => 1.0 / (x * x))).forEach((num e) {
sum += e;
});
print(sum);
}
{{trans|F#}}
f(double x) {
if (x == 0)
return x;
else
return (1.0 / (x * x)) + f(x - 1.0);
}
main() {
print(f(1000));
}
Delphi
unit Form_SumOfASeries_Unit;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;
type
TFormSumOfASeries = class(TForm)
M_Log: TMemo;
B_Calc: TButton;
procedure B_CalcClick(Sender: TObject);
private
{ Private-Deklarationen }
public
{ Public-Deklarationen }
end;
var
FormSumOfASeries: TFormSumOfASeries;
implementation
{$R *.dfm}
function Sum_Of_A_Series(_from,_to:int64):extended;
begin
result:=0;
while _from<=_to do
begin
result:=result+1.0/(_from*_from);
inc(_from);
end;
end;
procedure TFormSumOfASeries.B_CalcClick(Sender: TObject);
begin
try
M_Log.Lines.Add(FloatToStr(Sum_Of_A_Series(1, 1000)));
except
M_Log.Lines.Add('Error');
end;
end;
end.
{{out}}
1.64393456668156
DWScript
var s : Float;
for var i := 1 to 1000 do
s += 1 / Sqr(i);
PrintLn(s);
E
pragma.enable("accumulator")
accum 0 for x in 1..1000 { _ + 1 / x ** 2 }
EchoLisp
(lib 'math) ;; for (sigma f(n) nfrom nto) function
(Σ (λ(n) (// (* n n))) 1 1000)
;; or
(sigma (lambda(n) (// (* n n))) 1 1000)
→ 1.6439345666815615
(// (* PI PI) 6)
→ 1.6449340668482264
Eiffel
note
description: "Compute the n-th term of a series"
class
SUM_OF_SERIES_EXAMPLE
inherit
MATH_CONST
create
make
feature -- Initialization
make
local
approximated, known: REAL_64
do
known := Pi^2 / 6
approximated := sum_until (agent g, 1001)
print ("%Nzeta function exact value: %N")
print (known)
print ("%Nzeta function approximated value: %N")
print (approximated)
end
feature -- Access
g (k: INTEGER): REAL_64
-- 'k'-th term of the serie
require
k_positive: k > 0
do
Result := 1 / (k * k)
end
sum_until (s: FUNCTION [ANY, TUPLE [INTEGER], REAL_64]; n: INTEGER): REAL_64
-- sum of the 'n' first terms of 's'
require
n_positive: n > 0
one_parameter: s.open_count = 1
do
Result := 0
across 1 |..| n as it loop
Result := Result + s.item ([it.item])
end
end
end
Elixir
iex(1)> Enum.reduce(1..1000, 0, fn x,sum -> sum + 1/(x*x) end)
1.6439345666815615
Elena
ELENA 4.x :
import system'routines;
import extensions;
public program()
{
var sum := new Range(1, 1000).selectBy:(x => 1.0r / (x * x)).summarize(new Real());
console.printLine:sum
}
{{out}}
1.643933566682
Emacs Lisp
(defun serie (n)
(if (< 0 n)
(apply '+ (mapcar (lambda (k) (/ 1.0 (* k k) )) (number-sequence 1 n) ))
(error "input error") ))
(insert (format "%.10f" (serie 1000) ))
Output:
1.6439345667
Erlang
lists:sum([1/math:pow(X,2) || X <- lists:seq(1,1000)]).
Euphoria
{{works with|Euphoria|4.0.0}} This is based on the [[BASIC]] example.
function s( atom x )
return 1 / power( x, 2 )
end function
function sum( atom low, atom high )
atom ret = 0.0
for i = low to high do
ret = ret + s( i )
end for
return ret
end function
printf( 1, "%.15f\n", sum( 1, 1000 ) )
Ezhil
## இந்த நிரல் தொடர் கூட்டல் (Sum Of Series) என்ற வகையைச் சேர்ந்தது
## இந்த நிரல் ஒன்று முதல் தரப்பட்ட எண் வரை 1/(எண் * எண்) எனக் கணக்கிட்டுக் கூட்டி விடை தரும்
நிரல்பாகம் தொடர்க்கூட்டல்(எண்1)
எண்2 = 0
@(எண்3 = 1, எண்3 <= எண்1, எண்3 = எண்3 + 1) ஆக
## ஒவ்வோர் எண்ணின் வர்க்கத்தைக் கணக்கிட்டு, ஒன்றை அதனால் வகுத்துக் கூட்டுகிறோம்
எண்2 = எண்2 + (1 / (எண்3 * எண்3))
முடி
பின்கொடு (எண்2)
முடி
அ = int(உள்ளீடு("ஓர் எண்ணைச் சொல்லுங்கள்: "))
பதிப்பி "நீங்கள் தந்த எண் " அ
பதிப்பி "அதன் தொடர்க் கூட்டல் " தொடர்க்கூட்டல்(அ)
Factor
1000 [1,b] [ >float sq recip ] map-sum
Fantom
Within 'fansh':
fansh> (1..1000).toList.reduce(0.0f) |Obj a, Int v -> Obj| { (Float)a + (1.0f/(v*v)) }
1.6439345666815615
Fish
0&aaa**>::*1$,&v
;n&^?:-1&+ <
=={{header|Fōrmulæ}}==
In [http://wiki.formulae.org/Sum_of_a_series this] page you can see the solution of this task.
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text ([http://wiki.formulae.org/Editing_F%C5%8Drmul%C3%A6_expressions more info]). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.
The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.
Forth
: sum ( fn start count -- fsum )
0e
bounds do
i s>d d>f dup execute f+
loop drop ;
:noname ( x -- 1/x^2 ) fdup f* 1/f ; ( xt )
1 1000 sum f. \ 1.64393456668156
pi pi f* 6e f/ f. \ 1.64493406684823
Fortran
In ISO Fortran 90 and later, use SUM intrinsic:
real, dimension(1000) :: a = (/ (1.0/(i*i), i=1, 1000) /)
real :: result
result = sum(a);
Or in Fortran 77:
s=0
do i=1,1000
s=s+1./i**2
end do
write (*,*) s
end
FreeBASIC
' FB 1.05.0 Win64
Const pi As Double = 3.141592653589793
Function sumSeries (n As UInteger) As Double
If n = 0 Then Return 0
Dim sum As Double = 0
For k As Integer = 1 To n
sum += 1.0/(k * k)
Next
Return sum
End Function
Print "s(1000) = "; sumSeries(1000)
Print "zeta(2) = "; Pi * pi / 6
Print
Print "Press any key to quit"
Sleep
{{out}}
s(1000) = 1.643934566681562
zeta(2) = 1.644934066848226
Frink
Frink can calculate the series with exact rational numbers or floating-point values.
sum[map[{|k| 1/k^2}, 1 to 1000]]
{{out}}
83545938483149689478187854264854884386044454314086472930763839512603803291207881839588904977469387999844962675327115010933903589145654299730231109091124308462732153297321867661093162618281746011828755017021645889046777854795025297006943669294330752479399654716368801794529682603741344724733173765262964463970763934463926259796895140901128384286333311745462863716753134735154188954742414035836608258393970996630553795415075904205673610359458498106833291961256452756993199997231825920203667952667546787052535763624910912251107083702817265087341966845358732584971361645348091123849687614886682117125784781422103460192439394780707024963279033532646857677925648889105430050030795563141941157379481719403833258405980463950499887302926152552848089894630843538497552630691676216896740675701385847032173192623833881016332493844186817408141003602396236858699094240207812766449/50820720104325812617835292273000760481839790754374852703215456050992581046448162621598030244504097240825920773913981926305208272518886258627010933716354037062979680120674828102224650586465553482032614190502746121717248161892239954030493982549422690846180552358769564169076876408783086920322038142618269982747137757706040198826719424371333781947889528085329853597116893889786983109597085041878513917342099206896166585859839289193299599163669641323895022932959750057616390808553697984192067774252834860398458100840611325353202165675189472559524948330224159123505567527375848194800452556940453530457590024173749704941834382709198515664897344438584947842793131829050180589581507273988682409028088248800576590497216884808783192565859896957125449502802395453976401743504938336291933628859306247684023233969172475385327442707968328512729836445886537101453118476390400000000 (approx. 1.6439345666815598)
Change 1/k^2
to 1.0/k^2
to use floating-point math.
=={{header|F_Sharp|F#}}== The following function will do the task specified.
let rec f (x : float) =
match x with
| 0. -> x
| x -> (1. / (x * x)) + f (x - 1.)
In the interactive F# console, using the above gives:
f 1000. ;;
val it : float = 1.643934567
However this recursive function will run out of stack space eventually (try 100000). A [[:Category:Recursion|tail-recursive]] implementation will not consume stack space and can therefore handle much larger ranges. Here is such a version:
#light
let sum_series (max : float) =
let rec f (a:float, x : float) =
match x with
| 0. -> a
| x -> f ((1. / (x * x) + a), x - 1.)
f (0., max)
[<EntryPoint>]
let main args =
let (b, max) = System.Double.TryParse(args.[0])
printfn "%A" (sum_series max)
0
This block can be compiled using ''fsc --target exe filename.fs'' or used interactively without the main function.
GAP
# We will compute the sum exactly
# Computing an approximation of a rationnal (giving a string)
# Value is truncated toward zero
Approx := function(x, d)
local neg, a, b, n, m, s;
if x < 0 then
x := -x;
neg := true;
else
neg := false;
fi;
a := NumeratorRat(x);
b := DenominatorRat(x);
n := QuoInt(a, b);
a := RemInt(a, b);
m := 10^d;
s := "";
if neg then
Append(s, "-");
fi;
Append(s, String(n));
n := Size(s) + 1;
Append(s, String(m + QuoInt(a*m, b)));
s[n] := '.';
return s;
end;
a := Sum([1 .. 1000], n -> 1/n^2);;
Approx(a, 10);
"1.6439345666"
# and pi^2/6 is 1.6449340668, truncated to ten digits
Genie
[indent=4]
/*
Sum of series, in Genie
valac sumOfSeries.gs
./sumOfSeries
*/
delegate sumFunc(n:int):double
def sum_series(start:int, end:int, f:sumFunc):double
sum:double = 0.0
for var i = start to end do sum += f(i)
return sum
def oneOverSquare(n:int):double
return (1 / (double)(n * n))
init
Intl.setlocale()
print "ζ(2) approximation: %16.15f", sum_series(1, 1000, oneOverSquare)
print "π² / 6 : %16.15f", Math.PI * Math.PI / 6.0
{{out}}
prompt$ valac sumOfSeries.gs
prompt$ ./sumOfSeries
ζ(2) approximation: 1.643934566681561
π² / 6 : 1.644934066848226
GEORGE
0 (s)
1, 1000 rep (i)
s 1 i dup × / + (s) ;
]
P
Output:-
1.643934566681561
Go
package main
import ("fmt"; "math")
func main() {
fmt.Println("known: ", math.Pi*math.Pi/6)
sum := 0.
for i := 1e3; i > 0; i-- {
sum += 1 / (i * i)
}
fmt.Println("computed:", sum)
}
Output:
known: 1.6449340668482264
computed: 1.6439345666815597
Groovy
Start with smallest terms first to minimize rounding error:
println ((1000..1).collect { x -> 1/(x*x) }.sum())
Output:
1.6439345654
Haskell
With a list comprehension:
sum [1 / x ^ 2 | x <- [1..1000]]
With higher-order functions:
sum $ map (\x -> 1 / x ^ 2) [1..1000]
In [http://haskell.org/haskellwiki/Pointfree point-free] style:
(sum . map (1/) . map (^2)) [1..1000]
or
(sum . map ((1 /) . (^ 2))) [1 .. 1000]
or, as a single fold:
seriesSum f = foldr ((+) . f) 0
inverseSquare = (1 /) . (^ 2)
main :: IO ()
main = print $ seriesSum inverseSquare [1 .. 1000]
{{Out}}
1.6439345666815615
HicEst
REAL :: a(1000)
a = 1 / $^2
WRITE(ClipBoard, Format='F17.15') SUM(a)
=={{header|Icon}} and {{header|Unicon}}==
```icon
procedure main()
local i, sum
sum := 0 & i := 0
every sum +:= 1.0/((| i +:= 1 ) ^ 2) \1000
write(sum)
end
or
procedure main()
every (sum := 0) +:= 1.0/((1 to 1000)^2)
write(sum)
end
Note: The terse version requires some explanation. Icon expressions all return values or references if they succeed. As a result, it is possible to have expressions like these below:
x := y := 0 # := is right associative so, y is assigned 0, then x
1 < x < 99 # comparison operators are left associative so, 1 < x returns x (if it is greater than 1), then x < 99 returns 99 if the comparison succeeds
(sum := 0) # returns a reference to sum which can in turn be used with augmented assignment +:=
IDL
print,total( 1/(1+findgen(1000))^2)
Io
Io 20110905
Io> sum := 0 ; Range 1 to(1000) foreach(k, sum = sum + 1/(k*k))
==> 1.6439345666815615
Io> 1 to(1000) map(k, 1/(k*k)) sum
==> 1.6439345666815615
Io>
The expression using map
generates a list internally. Using foreach
does not.
J
NB. sum of reciprocals of squares of first thousand positive integers
+/ % *: >: i. 1000
1.64393
(*:o.1)%6 NB. pi squared over six, for comparison
1.64493
1r6p2 NB. As a constant (J has a rich constant notation)
1.64493
Java
public class Sum{
public static double f(double x){
return 1/(x*x);
}
public static void main(String[] args){
double start = 1;
double end = 1000;
double sum = 0;
for(double x = start;x <= end;x++) sum += f(x);
System.out.println("Sum of f(x) from " + start + " to " + end +" is " + sum);
}
}
JavaScript
ES5
function sum(a,b,fn) {
var s = 0;
for ( ; a <= b; a++) s += fn(a);
return s;
}
sum(1,1000, function(x) { return 1/(x*x) } ) // 1.64393456668156
or, in a functional idiom:
(function () {
function sum(fn, lstRange) {
return lstRange.reduce(
function (lngSum, x) {
return lngSum + fn(x);
}, 0
);
}
function range(m, n) {
return Array.apply(null, Array(n - m + 1)).map(function (x, i) {
return m + i;
});
}
return sum(
function (x) {
return 1 / (x * x);
},
range(1, 1000)
);
})();
{{Out}}
### ES6
{{Trans|Haskell}}
```JavaScript
(() => {
'use strict';
// SUM OF A SERIES -------------------------------------------------------
// seriesSum :: Num a => (a -> a) -> [a] -> a
const seriesSum = (f, xs) =>
foldl((a, x) => a + f(x), 0, xs);
// GENERIC ---------------------------------------------------------------
// enumFromToInt :: Int -> Int -> [Int]
const enumFromTo = (m, n) =>
Array.from({
length: Math.floor(n - m) + 1
}, (_, i) => m + i);
// foldl :: (b -> a -> b) -> b -> [a] -> b
const foldl = (f, a, xs) => xs.reduce(f, a);
// TEST ------------------------------------------------------------------
return seriesSum(x => 1 / (x * x), enumFromTo(1, 1000));
})();
{{Out}}
## jq
The jq idiom for efficient computation of this kind of sum is to use "reduce", either directly or using a summation wrapper function.
Directly:
```jq
def s(n): reduce range(1; n+1) as $k (0; . + 1/($k * $k) );
s(1000)
{{Out}} 1.6439345666815615
Using a generic summation wrapper function allows problems specified in "sigma" notation to be solved using syntax that closely resembles that notation:
def summation(s): reduce s as $k (0; . + $k);
summation( range(1; 1001) | (1/(. * .) ) )
An important point is that nothing is lost in efficiency using the declarative and quite elegant approach using "summation".
Jsish
From Javascript ES5.
#!/usr/bin/jsish
/* Sum of a series */
function sum(a:number, b:number , fn:function):number {
var s = 0;
for ( ; a <= b; a++) s += fn(a);
return s;
}
;sum(1, 1000, function(x) { return 1/(x*x); } );
/*
=!EXPECTSTART!=
sum(1, 1000, function(x) { return 1/(x*x); } ) ==> 1.643934566681561
=!EXPECTEND!=
*/
{{out}}
prompt$ jsish --U sumOfSeries.jsi
sum(1, 1000, function(x) { return 1/(x*x); } ) ==> 1.643934566681561
Julia
Using a higher-order function:
sum(k -> 1/k^2, 1:1000)
1.643934566681559
julia> pi^2/6
1.6449340668482264
A simple loop is more optimized:
function f(n)
s = 0.0
for k = 1:n
s += 1/k^2
end
return s
end
julia> f(1000)
1.6439345666815615
K
ssr: +/1%_sqr
ssr 1+!1000
1.643935
Kotlin
// version 1.0.6
fun main(args: Array<String>) {
val n = 1000
val sum = (1..n).sumByDouble { 1.0 / (it * it) }
println("Actual sum is $sum")
println("zeta(2) is ${Math.PI * Math.PI / 6.0}")
}
{{out}}
Actual sum is 1.6439345666815615
zeta(2) is 1.6449340668482264
Lang5
1000 iota 1 + 1 swap / 2 ** '+ reduce .
Lasso
define sum_of_a_series(n::integer,k::integer) => {
local(sum = 0)
loop(-from=#k,-to=#n) => {
#sum += 1.00/(math_pow(loop_count,2))
}
return #sum
}
sum_of_a_series(1000,1)
{{out}}
1.643935
LFE
With lists:foldl
(defun sum-series (nums)
(lists:foldl
#'+/2
0
(lists:map
(lambda (x) (/ 1 x x))
nums)))
With lists:sum
(defun sum-series (nums)
(lists:sum
(lists:map
(lambda (x) (/ 1 x x))
nums)))
Both have the same result:
> (sum-series (lists:seq 1 100000))
1.6449240668982423
Liberty BASIC
for i =1 to 1000
sum =sum +1 /( i^2)
next i
print sum
end
Lingo
the floatprecision = 8
sum = 0
repeat with i = 1 to 1000
sum = sum + 1/power(i, 2)
end repeat
put sum
-- 1.64393457
LiveCode
repeat with i = 1 to 1000
add 1/(i^2) to summ
end repeat
put summ //1.643935
Logo
to series :fn :a :b
localmake "sigma 0
for [i :a :b] [make "sigma :sigma + invoke :fn :i]
output :sigma
end
to zeta.2 :x
output 1 / (:x * :x)
end
print series "zeta.2 1 1000
make "pi (radarctan 0 1) * 2
print :pi * :pi / 6
Lua
sum = 0
for i = 1, 1000 do sum = sum + 1/i^2 end
print(sum)
Lucid
= 1000
where
num = 1 fby num + 1;
ssum = ssum + 1/(num * num)
end;
Maple
sum(1/k^2, k=1..1000);
{{Out|Output}}
-Psi(1, 1001)+(1/6)*Pi^2
Mathematica
This is the straightforward solution of the task:
Sum[1/x^2, {x, 1, 1000}]
However this returns a quotient of two huge integers (namely the ''exact'' sum); to get a floating point approximation, use N:
N[Sum[1/x^2, {x, 1, 1000}]]
or better:
NSum[1/x^2, {x, 1, 1000}]
Which gives a higher or equal accuracy/precision. Alternatively, get Mathematica to do the whole calculation in floating point by using a floating point value in the formula:
Sum[1./x^2, {x, 1, 1000}]
Other ways include (exact, approximate,exact,approximate):
Total[Table[1/x^2, {x, 1, 1000}]]
Total[Table[1./x^2, {x, 1, 1000}]]
Plus@@Table[1/x^2, {x, 1, 1000}]
Plus@@Table[1./x^2, {x, 1, 1000}]
MATLAB
sum([1:1000].^(-2))
Maxima
(%i45) sum(1/x^2, x, 1, 1000);
835459384831496894781878542648[806 digits]396236858699094240207812766449
(%o45) ------------------------------------------------------------------------
508207201043258126178352922730[806 digits]886537101453118476390400000000
(%i46) sum(1/x^2, x, 1, 1000),numer;
(%o46) 1.643934566681561
MAXScript
total = 0
for i in 1 to 1000 do
(
total += 1.0 / pow i 2
)
print total
min
{{works with|min|0.19.3}}
0 1 (
((dup * 1 swap /) (id)) cleave
((+) (succ)) spread
) 1000 times pop print
{{out}}
1.643934566681562
MiniScript
zeta = function(num)
return 1 / num^2
end function
sum = function(start, finish, formula)
total = 0
for i in range(start, finish)
total = total + formula(i)
end for
return total
end function
print sum(1, 1000, @zeta)
{{out}}
1.643935
=={{header|MK-61/52}}==
- П0 ИП1 1 0 0 0 - x>=0 03 ИП0 С/П
## ML
=
## Standard ML
=
```Standard ML
(* 1.64393456668 *)
List.foldl op+ 0.0 (List.tabulate(1000, fn x => 1.0 / Math.pow(real(x + 1),2.0)))
=
mLite
=
println ` fold (+, 0) ` map (fn x = 1 / x ^ 2) ` iota (1,1000);
Output:
1.6439345666815549
MMIX
x IS $1 % flt calculations
y IS $2 % id
z IS $3 % z = sum series
t IS $4 % temp var
LOC Data_Segment
GREG @
BUF OCTA 0,0,0 % print buffer
LOC #1000
GREG @
// print floating point number in scientific format: 0.xxx...ey..
// most of this routine is adopted from:
// http://www.pspu.ru/personal/eremin/emmi/rom_subs/printreal.html
// float number in z
GREG @
NaN BYTE "NaN..",0
NewLn BYTE #a,0
1H LDA x,NaN
TRAP 0,Fputs,StdOut
GO $127,$127,0
prtFlt FUN x,z,z % test if z == NaN
BNZ x,1B
CMP $73,z,0 % if necessary remember it is neg
BNN $73,4F
Sign BYTE '-'
LDA $255,Sign
TRAP 0,Fputs,StdOut
ANDNH z,#8000 % make number pos
// normalizing float number
4H SETH $74,#4024 % initialize mulfactor = 10.0
SETH $73,#0023
INCMH $73,#86f2
INCML $73,#6fc1 %
FLOT $73,$73 % $73 = float 10^16
SET $75,16 % set # decimals to 16
8H FCMP $72,z,$73 % while z >= 10^16 do
BN $72,9F %
FDIV z,z,$74 % z = z / 10.0
ADD $75,$75,1 % incr exponent
JMP 8B % wend
9H FDIV $73,$73,$74 % 10^16 / 10.0
5H FCMP $72,z,$73 % while z < 10^15 do
BNN $72,6F
FMUL z,z,$74 % z = z * 10.0
SUB $75,$75,1 % exp = exp - 1
JMP 5B
NulPnt BYTE '0','.',#00
6H LDA $255,NulPnt % print '0.' to StdOut
TRAP 0,Fputs,StdOut
FIX z,0,z % convert float z to integer
// print mantissa
0H GREG #3030303030303030
STO 0B,BUF
STO 0B,BUF+8 % store print mask in buffer
LDA $255,BUF+16 % points after LSD
% repeat
2H SUB $255,$255,1 % move pointer down
DIV z,z,10 % (q,r) = divmod z 10
GET t,rR % get remainder
INCL t,'0' % convert to ascii digit
STBU t,$255,0 % store digit in buffer
BNZ z,2B % until q == 0
TRAP 0,Fputs,StdOut % print mantissa
Exp BYTE 'e',#00
LDA $255,Exp % print 'exponent' indicator
TRAP 0,Fputs,StdOut
// print exponent
0H GREG #3030300000000000
STO 0B,BUF
LDA $255,BUF+2 % store print mask in buffer
CMP $73,$75,0 % if exp neg then place - in buffer
BNN $73,2F
ExpSign BYTE '-'
LDA $255,ExpSign
TRAP 0,Fputs,StdOut
NEG $75,$75 % make exp positive
2H LDA $255,BUF+3 % points after LSD
% repeat
3H SUB $255,$255,1 % move pointer down
DIV $75,$75,10 % (q,r) = divmod exp 10
GET t,rR
INCL t,'0'
STBU t,$255,0 % store exp. digit in buffer
BNZ $75,3B % until q == 0
TRAP 0,Fputs,StdOut % print exponent
LDA $255,NewLn
TRAP 0,Fputs,StdOut % do a NL
GO $127,$127,0 % return
i IS $5 ;iu IS $6
Main SET iu,1000
SETH y,#3ff0 y = 1.0
SETH z,#0000 z = 0.0
SET i,1 for (i=1;i<=1000; i++ ) {
1H FLOT x,i x = int i
FMUL x,x,x x = x^2
FDIV x,y,x x = 1 / x
FADD z,z,x s = s + x
ADD i,i,1
CMP t,i,iu
PBNP t,1B } z = sum
GO $127,prtFlt print sum --> StdOut
TRAP 0,Halt,0
Output:
~/MIX/MMIX/Rosetta> mmix sumseries
0.1643934566681562e1
=={{header|Modula-3}}== Modula-3 uses D0 after a floating point number as a literal for LONGREAL.
MODULE Sum EXPORTS Main;
IMPORT IO, Fmt, Math;
VAR sum: LONGREAL := 0.0D0;
PROCEDURE F(x: LONGREAL): LONGREAL =
BEGIN
RETURN 1.0D0 / Math.pow(x, 2.0D0);
END F;
BEGIN
FOR i := 1 TO 1000 DO
sum := sum + F(FLOAT(i, LONGREAL));
END;
IO.Put("Sum of F(x) from 1 to 1000 is ");
IO.Put(Fmt.LongReal(sum));
IO.Put("\n");
END Sum.
Output:
Sum of F(x) from 1 to 1000 is 1.6439345666815612
MUMPS
SOAS(N)
NEW SUM,I SET SUM=0
FOR I=1:1:N DO
.SET SUM=SUM+(1/((I*I)))
QUIT SUM
This is an extrinsic function so the usage is:
USER>SET X=$$SOAS^ROSETTA(1000) WRITE X
1.643934566681559806
Nial
|sum (1 / power (count 1000) 2)
=1.64393
NewLISP
(let (s 0)
(for (i 1 1000)
(inc s (div 1 (* i i))))
(println s))
Nim
import math
var ls: seq[float] = @[]
for x in 1..1000:
ls.add(1.0 / float(x * x))
echo sum(ls)
Objeck
bundle Default {
class SumSeries {
function : Main(args : String[]) ~ Nil {
DoSumSeries();
}
function : native : DoSumSeries() ~ Nil {
start := 1;
end := 1000;
sum := 0.0;
for(x : Float := start; x <= end; x += 1;) {
sum += f(x);
};
IO.Console->GetInstance()->Print("Sum of f(x) from ")->Print(start)->Print(" to ")->Print(end)->Print(" is ")->PrintLine(sum);
}
function : native : f(x : Float) ~ Float {
return 1.0 / (x * x);
}
}
}
OCaml
let sum a b fn =
let result = ref 0. in
for i = a to b do
result := !result +. fn i
done;
!result
sum 1 1000 (fun x -> 1. /. (float x ** 2.))
- : float = 1.64393456668156124
or in a functional programming style:
let sum a b fn =
let rec aux i r =
if i > b then r
else aux (succ i) (r +. fn i)
in
aux a 0.
;;
Simple recursive solution:
let rec sum n = if n < 1 then 0.0 else sum (n-1) +. 1.0 /. float (n*n)
in sum 1000
Octave
Given a vector, the sum of all its elements is simply sum(vector)
; a range can be ''generated'' through the range notation: sum(1:1000)
computes the sum of all numbers from 1 to 1000. To compute the requested series, we can simply write:
sum(1 ./ [1:1000] .^ 2)
Oforth
: sumSerie(s, n) 0 n seq apply(#[ s perform + ]) ;
Usage :
#[ sq inv ] 1000 sumSerie println
{{out}}
1.64393456668156
OpenEdge/Progress
Conventionally like elsewhere:
<lang Progress (Openedge ABL)>def var dcResult as decimal no-undo. def var n as int no-undo.
do n = 1 to 1000 : dcResult = dcResult + 1 / (n * n) . end.
display dcResult .
or like this:
<lang Progress (Openedge ABL)>def var n as int no-undo.
repeat n = 1 to 1000 :
accumulate 1 / (n * n) (total).
end.
display ( accum total 1 / (n * n) ) .
Oz
With higher-order functions:
declare
fun {SumSeries S N}
{FoldL {Map {List.number 1 N 1} S}
Number.'+' 0.}
end
fun {S X}
1. / {Int.toFloat X*X}
end
in
{Show {SumSeries S 1000}}
Iterative:
fun {SumSeries S N}
R = {NewCell 0.}
in
for I in 1..N do
R := @R + {S I}
end
@R
end
PARI/GP
Exact rational solution:
sum(n=1,1000,1/n^2)
Real number solution (accurate to at standard precision):
sum(n=1,1000,1./n^2)
Approximate solution (accurate to at standard precision):
zeta(2)-intnum(x=1000.5,[1],1/x^2)
or
zeta(2)-1/1000.5
Panda
sum{{1.0.divide(1..1000.sqr)}}
Output:
1.6439345666815615
Pascal
Program SumSeries;
type
tOutput = double;//extended;
tmyFunc = function(number: LongInt): tOutput;
function f(number: LongInt): tOutput;
begin
f := 1/sqr(tOutput(number));
end;
function Sum(from,upto: LongInt;func:tmyFunc):tOutput;
var
res: tOutput;
begin
res := 0.0;
// for from:= from to upto do res := res + f(from);
for upTo := upto downto from do res := res + f(upTo);
Sum := res;
end;
BEGIN
writeln('The sum of 1/x^2 from 1 to 1000 is: ', Sum(1,1000,@f));
writeln('Whereas pi^2/6 is: ', pi*pi/6:10:8);
end.
Output
different version of type and calculation
extended low to high 1.64393456668155980263E+0000
extended high to low 1.64393456668155980307E+0000
double low to high 1.6439345666815612E+000
double high to low 1.6439345666815597E+000
Out:
The sum of 1/x^2 from 1 to 1000 is: 1.6439345666815612E+000
Whereas pi^2/6 is: 1.64493407
Perl
my $sum = 0;
$sum += 1 / $_ ** 2 foreach 1..1000;
print "$sum\n";
or
use List::Util qw(reduce);
$sum = reduce { $a + 1 / $b ** 2 } 0, 1..1000;
print "$sum\n";
An other way of doing it is to define the series as a closure:
my $S = do { my ($sum, $k); sub { $sum += 1/++$k**2 } };
my @S = map &$S, 1 .. 1000;
print $S[-1];
Perl 6
{{Works with|rakudo|2016.04}}
In general, the $n
th partial sum of a series whose terms are given by a unary function &f
is
[+] map &f, 1 .. $n
So what's needed in this case is
say [+] map { 1 / $^n**2 }, 1 .. 1000;
Or, using the "hyper" metaoperator to vectorize, we can use a more "point free" style while keeping traditional precedence:
say [+] 1 «/« (1..1000) »**» 2;
Or we can use the X "cross" metaoperator, which is convenient even if one side or the other is a scalar. In this case, we demonstrate a scalar on either side:
say [+] 1 X/ (1..1000 X** 2);
Note that cross ops are parsed as list infix precedence rather than using the precedence of the base op as hypers do. Hence the difference in parenthesization.
With list comprehensions, you can write:
say [+] (1 / $_**2 for 1..1000);
That's fine for a single result, but if you're going to be evaluating the sequence multiple times, you don't want to be recalculating the sum each time, so it's more efficient to define the sequence as a constant to let the run-time automatically cache those values already calculated. In a lazy language like Perl 6, it's generally considered a stronger abstraction to write the correct infinite sequence, and then take the part of it you're interested in. Here we define an infinite sequence of partial sums (by adding a backslash into the reduction to make it look "triangular"), then take the 1000th term of that:
constant @x = [\+] 0, { 1 / ++(state $n) ** 2 } ... *;
say @x[1000]; # prints 1.64393456668156
Note that infinite constant sequences can be lazily generated in Perl 6, or this wouldn't work so well...
A cleaner style is to combine these approaches with a more FP look:
constant ζish = [\+] map -> \𝑖 { 1 / 𝑖**2 }, 1..*;
say ζish[1000];
Perhaps the cleanest way is to just define the zeta function and evaluate it for s=2, possibly using memoization:
use experimental :cached;
sub ζ($s) is cached { [\+] 1..* X** -$s }
say ζ(2)[1000];
Notice how the thus-defined zeta function returns a lazy list of approximated values, which is arguably the closest we can get from the mathematical definition.
Phix
function sumto(atom n)
atom res = 0
for i=1 to n do
res += 1/(i*i)
end for
return res
end function
?sumto(1000)
{{out}}
1.643934567
PHP
<?php
/**
* @author Elad Yosifon
*/
/**
* @param int $n
* @param int $k
* @return float|int
*/
function sum_of_a_series($n,$k)
{
$sum_of_a_series = 0;
for($i=$k;$i<=$n;$i++)
{
$sum_of_a_series += (1/($i*$i));
}
return $sum_of_a_series;
}
echo sum_of_a_series(1000,1);
{{out}}
1.6439345666816
PicoLisp
(scl 9) # Calculate with 9 digits precision
(let S 0
(for I 1000
(inc 'S (*/ 1.0 (* I I))) )
(prinl (round S 6)) ) # Round result to 6 digits
Output:
1.643935
Pike
array(int) x = enumerate(1000,1,1);
`+(@(1.0/pow(x[*],2)[*]));
Result: 1.64393
PL/I
/* sum the first 1000 terms of the series 1/n**2. */
s = 0;
do i = 1000 to 1 by -1;
s = s + 1/float(i**2);
end;
put skip list (s);
{{out}}
1.64393456668155980E+0000
Pop11
lvars s = 0, j;
for j from 1 to 1000 do
s + 1.0/(j*j) -> s;
endfor;
s =>
PostScript
1000 aproxriemann
Output:
<lang>
1.64393485
{{libheader|initlib}}
% using map
[1 1000] 1 range {dup * 1 exch div} map 0 {+} fold
% just using fold
[1 1000] 1 range 0 {dup * 1 exch div +} fold
Potion
sum = 0.0
1 to 1000 (i): sum = sum + 1.0 / (i * i).
sum print
PowerShell
$x = 1..1000 `
| ForEach-Object { 1 / ($_ * $_) } `
| Measure-Object -Sum
Write-Host Sum = $x.Sum
Prolog
Works with SWI-Prolog.
sum(S) :-
findall(L, (between(1,1000,N),L is 1/N^2), Ls),
sumlist(Ls, S).
Ouptput :
?- sum(S).
S = 1.643934566681562.
PureBasic
Define i, sum.d
For i=1 To 1000
sum+1.0/(i*i)
Next i
Debug sum
Answer = 1.6439345666815615
Python
print ( sum(1.0 / (x * x) for x in range(1, 1001)) )
Or, as a generalised map, or fold / reduction – (see [[Catamorphism#Python]]):
'''The sum of a series'''
from functools import reduce
# seriesSumA :: (a -> b) -> [a] -> b
def seriesSumA(f):
'''The sum of the map of f over xs.'''
return lambda xs: sum(map(f, xs))
# seriesSumB :: (a -> b) -> [a] -> b
def seriesSumB(f):
'''Folding acc + f(x) over xs where acc begins at 0.'''
return lambda xs: reduce(
lambda a, x: a + f(x), xs, 0
)
# TEST ----------------------------------------------------
# main:: IO ()
def main():
'''Summing 1/x^2 over x = 1..1000'''
def f(x):
return 1 / (x * x)
print(
fTable(
__doc__ + ':\n' + '(1/x^2 over x = 1..1000)'
)(lambda f: '\tby ' + f.__name__)(str)(
lambda g: g(f)(enumFromTo(1)(1000))
)([seriesSumA, seriesSumB])
)
# GENERIC -------------------------------------------------
# compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
def compose(g):
'''Right to left function composition.'''
return lambda f: lambda x: g(f(x))
# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: list(range(m, 1 + n))
# fTable :: String -> (a -> String) ->
# (b -> String) ->
# (a -> b) -> [a] -> String
def fTable(s):
'''Heading -> x display function -> fx display function ->
f -> value list -> tabular string.'''
def go(xShow, fxShow, f, xs):
w = max(map(compose(len)(xShow), xs))
return s + '\n' + '\n'.join([
xShow(x).rjust(w, ' ') + (
' -> '
) + fxShow(f(x)) for x in xs
])
return lambda xShow: lambda fxShow: (
lambda f: lambda xs: go(
xShow, fxShow, f, xs
)
)
# MAIN ---
if __name__ == '__main__':
main()
{{Out}}
The sum of a series:
(1/x^2 over x = 1..1000)
by seriesSumA -> 1.6439345666815615
by seriesSumB -> 1.6439345666815615
Q
sn:{sum xexp[;-2] 1+til x}
sn 1000
{{Out}}
1.643935
R
print( sum( 1/seq(1000)^2 ) )
Racket
A solution using Typed Racket:
#lang typed/racket
(: S : Natural -> Real)
(define (S n)
(for/sum: : Real ([k : Natural (in-range 1 (+ n 1))])
(/ 1.0 (* k k))))
Raven
0 1 1000 1 range each 1.0 swap dup * / +
"%g\n" print
{{out}}
1.64393
Raven uses a 32 bit float, so precision limits the accuracy of the result for large iterations.
Red
Red []
s: 0
repeat n 1000 [ s: 1.0 / n ** 2 + s ]
print s
REXX
sums specific terms
/*REXX program sums the first N terms of 1/(k**2), k=1 ──► N. */
parse arg N D . /*obtain optional arguments from the CL*/
if N=='' | N=="," then N=1000 /*Not specified? Then use the default.*/
if D=='' | D=="," then D= 60 /* " " " " " " */
numeric digits D /*use D digits (9 is the REXX default).*/
$=0 /*initialize the sum to zero. */
do k=1 for N /* [↓] compute for N terms. */
$=$ + 1/k**2 /*add a squared reciprocal to the sum. */
end /*k*/
say 'The sum of' N "terms is:" $ /*stick a fork in it, we're all done. */
'''output''' when using the default input:
The sum of 1000 terms is: 1.64393456668155980313905802382221558965210344649368531671713
sums with running total
This REXX version shows the ''running total'' for every 10th term.
/*REXX program sums the first N terms o f 1/(k**2), k=1 ──► N. */
parse arg N D . /*obtain optional arguments from the CL*/
if N=='' | N=="," then N=1000 /*Not specified? Then use the default.*/
if D=='' | D=="," then D= 60 /* " " " " " " */
numeric digits D /*use D digits (9 is the REXX default).*/
w=length(N) /*W is used for aligning the output. */
$=0 /*initialize the sum to zero. */
do k=1 for N /* [↓] compute for N terms. */
$=$ + 1/k**2 /*add a squared reciprocal to the sum. */
parse var k s 2 m '' -1 e /*obtain the start and end decimal digs*/
if e\==0 then iterate /*does K end with the dec digit 0 ? */
if s\==1 then iterate /* " " start " " " " 1 ? */
if m\=0 then iterate /* " " middle contain any non-zero ?*/
if k==N then iterate /* " " equal N, then skip running sum*/
say 'The sum of' right(k,w) "terms is:" $ /*display a running sum.*/
end /*k*/
say /*a blank line for sep. */
say 'The sum of' right(k-1,w) "terms is:" $ /*display the final sum.*/
/*stick a fork in it, we're all done. */
'''output''' when using the input of: 1000000000
The sum of 10 terms is: 1.54976773116654069035021415973796926177878558830939783320736
The sum of 100 terms is: 1.63498390018489286507716949818032376668332170003126381385307
The sum of 1000 terms is: 1.64393456668155980313905802382221558965210344649368531671713
The sum of 10000 terms is: 1.64483407184805976980608183331031090353799751949684175308996
The sum of 100000 terms is: 1.64492406689822626980574850331269185564752132981156034248806
The sum of 1000000 terms is: 1.64493306684872643630574849997939185588561654406394129491321
The sum of 10000000 terms is: 1.64493396684823143647224849997935852288561656787346272343397
The sum of 100000000 terms is: 1.64493405684822648647241499997935852255228656787346510441026
The sum of 1000000000 terms is: 1.64493406584822643697241516647935852255228323457346510444171
'''output''' from a calculator computing 2/6, (using 60 digits) showing the correct number (nine) of decimal digits [the superscripting of the digits was edited after-the-fact]:
1.64493406684822643647241516664602518921894990120679843773556
sums with running significance
This is a technique to show a ''running significance'' (based on the previous calculation).
If the '''old''' REXX variable would be set to '''1.64''' (instead of '''1'''), the first noise digits could be bypassed to make the display ''cleaner''.
/*REXX program sums the first N terms of 1/(k**2), k=1 ──► N. */
parse arg N D . /*obtain optional arguments from the CL*/
if N=='' | N=="," then N=1000 /*Not specified? Then use the default.*/
if D=='' | D=="," then D= 60 /* " " " " " " */
numeric digits D /*use D digits (9 is the REXX default).*/
w=length(N) /*W is used for aligning the output. */
$=0 /*initialize the sum to zero. */
old=1 /*the new sum to compared to the old. */
p=0 /*significant decimal precision so far.*/
do k=1 for N /* [↓] compute for N terms. */
$=$ + 1/k**2 /*add a squared reciprocal to the sum. */
c=compare($,old) /*see how we're doing with precision. */
if c>p then do /*Got another significant decimal dig? */
say 'The significant sum of' right(k,w) "terms is:" left($,c)
p=c /*use the new significant precision. */
end /* [↑] display significant part of sum*/
old=$ /*use "old" sum for the next compare. */
end /*k*/
say /*display blank line for the separator.*/
say 'The sum of' right(N,w) "terms is:" /*display the sum's preamble line. */
say $ /*stick a fork in it, we're all done. */
'''output''' when using the input of (one billion [limit], and one hundred decimal digits): 1000000000 100
The significant sum of 3 terms is: 1.3
The significant sum of 5 terms is: 1.46
The significant sum of 14 terms is: 1.575
The significant sum of 34 terms is: 1.6159
The significant sum of 110 terms is: 1.63588
The significant sum of 328 terms is: 1.641889
The significant sum of 1024 terms is: 1.6439579
The significant sum of 3207 terms is: 1.64462229
The significant sum of 10043 terms is: 1.644834499
The significant sum of 31782 terms is: 1.6449026029
The significant sum of 100314 terms is: 1.64492409819
The significant sum of 316728 terms is: 1.644930909569
The significant sum of 1000853 terms is: 1.6449330677009
The significant sum of 3163463 terms is: 1.64493375073899
The significant sum of 10001199 terms is: 1.644933966860219
The significant sum of 31627592 terms is: 1.6449340352302649
The significant sum of 100009299 terms is: 1.64493405684915629
The significant sum of 316233759 terms is: 1.644934063686008709
The sum of 1000000000 terms is:
1.644934065848226436972415166479358522552283234573465104402224896012864613260343731009819376810240620
One can see a pattern in the number of significant digits computed based on the ''number of terms used''. (See a discussion in the ''talk'' section.)
Ring
sum = 0
for i =1 to 1000
sum = sum + 1 /(pow(i,2))
next
decimals(8)
see sum
RLaB
>> sum( (1 ./ [1:1000]) .^ 2 ) - const.pi^2/6
-0.000999500167
Ruby
puts (1..1000).inject{ |sum, x| sum + 1.0 / x ** 2 }
{{out}}
1.64393456668156
Run BASIC
for i =1 to 1000
sum = sum + 1 /( i^2)
next i
print sum
Rust
const LOWER: i32 = 1;
const UPPER: i32 = 1000;
// Because the rule for our series is simply adding one, the number of terms are the number of
// digits between LOWER and UPPER
const NUMBER_OF_TERMS: i32 = (UPPER + 1) - LOWER;
fn main() {
// Formulaic method
println!("{}", (NUMBER_OF_TERMS * (LOWER + UPPER)) / 2);
// Naive method
println!("{}", (LOWER..UPPER + 1).fold(0, |sum, x| sum + x));
}
SAS
data _null_;
s=0;
do n=1 to 1000;
s+1/n**2; /* s+x is synonym of s=s+x */
end;
e=s-constant('pi')**2/6;
put s e;
run;
Scala
1 to 1000 map (x => 1.0 / (x * x)) sum
res30: Double = 1.6439345666815615
Scheme
(define (sum a b fn)
(do ((i a (+ i 1))
(result 0 (+ result (fn i))))
((> i b) result)))
(sum 1 1000 (lambda (x) (/ 1 (* x x)))) ; fraction
(exact->inexact (sum 1 1000 (lambda (x) (/ 1 (* x x))))) ; decimal
More idiomatic way (or so they say) by tail recursion:
(define (invsq f to)
(let loop ((f f) (s 0))
(if (> f to)
s
(loop (+ 1 f) (+ s (/ 1 f f))))))
;; whether you get a rational or a float depends on implementation
(invsq 1 1000) ; 835459384831...766449/50820...90400000000
(exact->inexact (invsq 1 1000)) ; 1.64393456668156
Seed7
$ include "seed7_05.s7i";
include "float.s7i";
const func float: invsqr (in float: n) is
return 1.0 / n**2;
const proc: main is func
local
var integer: i is 0;
var float: sum is 0.0;
begin
for i range 1 to 1000 do
sum +:= invsqr(flt(i));
end for;
writeln(sum digits 6 lpad 8);
end func;
Sidef
say sum(1..1000, {|n| 1 / n**2 })
Alternatively, using the ''reduce{}'' method:
say (1..1000 -> reduce { |a,b| a + (1 / b**2) })
{{out}}
1.64393456668155980313905802382221558965210344649369
Slate
Manually coerce it to a float, otherwise you will get an exact (and slow) answer:
((1 to: 1000) reduce: [|:x :y | x + (y squared reciprocal as: Float)]).
Smalltalk
( (1 to: 1000) fold: [:sum :aNumber |
sum + (aNumber squared reciprocal) ] ) asFloat displayNl.
SQL
create table t1 (n real);
-- this is postgresql specific, fill the table
insert into t1 (select generate_series(1,1000)::real);
with tt as (
select 1/(n*n) as recip from t1
) select sum(recip) from tt;
Result of select (with locale DE):
sum
------------------
1.64393456668156
(1 Zeile)
Stata
function series(n) {
return(sum((n..1):^-2))
}
series(1000)-pi()^2/6
-.0009995002
Swift
func sumSeries(var n: Int) -> Double {
var ret: Double = 0
for i in 1...n {
ret += (1 / pow(Double(i), 2))
}
return ret
}
output: 1.64393456668156
extension Int { func SumSeries() -> Double { var ret: Double = 0
for i in 1...self {
ret += (1 / pow(Double(i), 2))
}
return ret
}
}
var x: Int = 1000 var y: Double
y = x.sumSeries() /* y = 1.64393456668156 */
Swift also allows you to do this:
y = 1000.sumSeries()
## Tcl
{{works with|Tcl|8.5}}
```tcl
package require Tcl 8.5
proc partial_sum {func - start - stop} {
for {set x $start; set sum 0} {$x <= $stop} {incr x} {
set sum [expr {$sum + [apply $func $x]}]
}
return $sum
}
set S {x {expr {1.0 / $x**2}}}
partial_sum $S from 1 to 1000 ;# => 1.6439345666815615
{{tcllib|struct::list}}
package require Tcl 8.5
package require struct::list
proc sum_of {lambda nums} {
struct::list fold [struct::list map $nums [list apply $lambda]] 0 ::tcl::mathop::+
}
sum_of $S [range 1 1001] ;# ==> 1.6439345666815615
The helper range
procedure is:
# a range command akin to Python's
proc range args {
foreach {start stop step} [switch -exact -- [llength $args] {
1 {concat 0 $args 1}
2 {concat $args 1}
3 {concat $args }
default {error {wrong # of args: should be "range ?start? stop ?step?"}}
}] break
if {$step == 0} {error "cannot create a range when step == 0"}
set range [list]
while {$step > 0 ? $start < $stop : $stop < $start} {
lappend range $start
incr start $step
}
return $range
}
=={{header|TI-83 BASIC}}== {{trans|TI-89 BASIC}} {{works with|TI-83 BASIC|TI-84Plus 2.55MP}}
∑(1/X²,X,1,1000)
{{out}}
1.643934567
=={{header|TI-89 BASIC}}==
∑(1/x^2,x,1,1000)
TXR
Reduce with + operator over a lazily generated list.
Variant A1: limit the list generation inside the gen
operator.
txr -p '[reduce-left + (let ((i 0)) (gen (< i 1000) (/ 1.0 (* (inc i) i)))) 0]'
1.64393456668156
Variant A2: generate infinite list, but take only the first 1000 items using [list-expr 0..999]
.
txr -p '[reduce-left + [(let ((i 0)) (gen t (/ 1.0 (* (inc i) i)))) 0..999] 0]'
1.64393456668156
Variant B: generate lazy integer range, and pump it through a series of function with the help of the chain
functional combinator and the op
partial evaluation/binding operator.
txr -p '[[chain range (op mapcar (op / 1.0 (* @1 @1))) (op reduce-left + @1 0)] 1 1000]'
1.64393456668156
Variant C: unravel the chain in Variant B using straightforward nesting.
txr -p '[reduce-left + (mapcar (op / 1.0 (* @1 @1)) (range 1 1000)) 0]'
1.64393456668156
Variant D: bring Variant B's inverse square calculation into the fold, eliminating mapcar. Final answer.
txr -p '[reduce-left (op + @1 (/ 1.0 (* @2 @2))) (range 1 1000) 0]'
1.64393456668156
UnixPipes
term() {
b=$1;res=$2
echo "scale=5;1/($res*$res)+$b" | bc
}
sum() {
(read B; res=$1;
test -n "$B" && (term $B $res) || (term 0 $res))
}
fold() {
func=$1
(while read a ; do
fold $func | $func $a
done)
}
(echo 3; echo 1; echo 4) | fold sum
Unicon
See [[#Icon|Icon]].
Ursala
The expression plus:-0. represents a function returning the sum of any given list of floating point numbers, or zero if it's empty, using the built in reduction operator, :-, and the binary addition function, plus. The rest the expression constructs the series by inverting the square of each number in the list from 1 to 1000.
#import flo
#import nat
#cast %e
total = plus:-0 div/*1. sqr* float*t iota 1001
output:
1.643935e+00
Vala
public static void main(){
int i, start = 1, end = 1000;
double sum = 0.0;
for(i = start; i<= end; i++)
sum += (1 / (double)(i * i));
stdout.printf("%s\n", sum.to_string());
}
Output:
1.6439345666815615
VBA
Private Function sumto(n As Integer) As Double
Dim res As Double
For i = 1 To n
res = res + 1 / i ^ 2
Next i
sumto = res
End Function
Public Sub main()
Debug.Print sumto(1000)
End Sub
{{out}}
1,64393456668156
VBScript
' Sum of a series
for i=1 to 1000
s=s+1/i^2
next
wscript.echo s
{{out}}
1.64393456668156
Visual Basic .NET
{{trans|VBScript}} {{works with|Visual Basic .NET|2013}}
' Sum of a series
Sub SumOfaSeries()
Dim s As Double
s = 0
For i = 1 To 1000
s = s + 1 / i ^ 2
Next 'i
Console.WriteLine(s)
End Sub
{{out}}
1.64393456668156
WDTE
import 'stream';
s.range 1 1001
-> s.map (@ inner k => / 1 (* k k))
-> s.reduce 0 +
-- io.writeln io.stdout
;
{{out}}
1.643933567
Wortel
@sum !*#~V1Sn @to 1000 ; returns 1.6439345666815615
@to 1000 ; generates a list of 1 to 1000 (inclusive)
#~V1Sn ; number expression which stands for: square push(1) swap divide
!* ; maps the number expression over the list
@sum ; sums the list
XPL0
code CrLf=9; code real RlOut=48;
int X; real S;
[S:= 0.0;
for X:= 1 to 1000 do S:= S + 1.0/float(X*X);
RlOut(0, S); CrLf(0);
]
Output:
1.64393
Yorick
(1./indgen(1:1000)^2)(sum)
zkl
[1.0..1000].reduce(fcn(p,n){ p + 1.0/(n*n) },0.0) //-->1.64394