⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
== J == I smiled at that end comment, but there may be an issue with the choice of an end value to search over. It seems that unlike testing incrementing values you have to put a ceiling on the range searched for.
But then you would have to do that in many solutions such as choosing an integer type in C or a range to search over in constraint solvers so just ignore me.
--[[User:Paddy3118|Paddy3118]] ([[User talk:Paddy3118|talk]]) 08:35, 3 May 2015 (UTC)
I do have to put in a ceiling - that gives me bound search time and protects me from "infinite loop" bugs while I'm playing with the code. But if a given value doesn't give me good results, it's trivial for me to multiply it by 10 and try again. I guess what I'm saying is that for this problem, this approach saved time for me. (But I guess you basically said this already, in your second paragraph.) --[[User:Rdm|Rdm]] ([[User talk:Rdm|talk]]) 11:55, 3 May 2015 (UTC)
== Analysis ==
Let the solution be described by:
n6 g6
n5 g5
n4 g4
n3 g3
n2 g2
n1 g1
where n is the number of coconuts at each stage and g is the number of coconuts in each pile.
note that g1 is n1/5 and g24, which implies that n1 is divisible by 20. It is simple to calculate the entire table given n1. It is obvious that n1 is of the form X + (45)2(2*)(22)(2222) or 5120. X is divisible by 20 and less than 5120. Which implies that J's maximum value is justified if over generous. By examination X must be a member of the series 20 + 40*z. Let us look at that:
20 26 33.5 42.875
60 76 96 121
100 126 158.5 199.125
140 176 221 277.25
180 226 283.5 355.375
220 276 346 433.5
260 326 408.5 511.625
300 376 471 589.75
340 426 533.5 667.875
380 476 596 746
420 526 658.5 824.125
460 576 721 902.25
By examining the 4th column we can see that when the step is 320 ((45)2(2)(22) X is 60. So X must be a member of the series 60 + 320*z. Let us look at that:
60 76 96 121 152.25 191.3125
380 476 596 746 933.5 1167.875
700 876 1096 1371 1714.75 2144.4375
1020 1276 1596 1996 2496 3121
1340 1676 2096 2621 3277.25 4097.5625
1660 2076 2596 3246 4058.5 5074.125
1980 2476 3096 3871 4839.75 6050.6875
2300 2876 3596 4496 5621 7027.25
2620 3276 4096 5121 6402.25 8003.8125
2940 3676 4596 5746 7183.5 8980.375
3260 4076 5096 6371 7964.75 9956.9375
3580 4476 5596 6996 8746 10933.5
3900 4876 6096 7621 9527.25 11910.0625
4220 5276 6596 8246 10308.5 12886.625
4540 5676 7096 8871 11089.75 13863.1875
4860 6076 7596 9496 11871 14839.75
5180 6476 8096 10121 12652.25 15816.3125
5500 6876 8596 10746 13433.5 16792.875
5820 7276 9096 11371 14214.75 17769.4375
6140 7676 9596 11996 14996 18746
6460 8076 10096 12621 15777.25 19722.5625
6780 8476 10596 13246 16558.5 20699.125
7100 8876 11096 13871 17339.75 21675.6875
7420 9276 11596 14496 18121 22652.25
7740 9676 12096 15121 18902.25 23628.8125
8060 10076 12596 15746 19683.5 24605.375
8380 10476 13096 16371 20464.75 25581.9375
8700 10876 13596 16996 21246 26558.5
9020 11276 14096 17621 22027.25 27535.0625
9340 11676 14596 18246 22808.5 28511.625
9660 12076 15096 18871 23589.75 29488.1875
9980 12476 15596 19496 24371 30464.75
10300 12876 16096 20121 25152.25 31441.3125
10620 13276 16596 20746 25933.5 32417.875
10940 13676 17096 21371 26714.75 33394.4375
11260 14076 17596 21996 27496 34371
11580 14476 18096 22621 28277.25 35347.5625
11900 14876 18596 23246 29058.5 36324.125
12220 15276 19096 23871 29839.75 37300.6875
12540 15676 19596 24496 30621 38277.25
12860 16076 20096 25121 31402.25 39253.8125
13180 16476 20596 25746 32183.5 40230.375
13500 16876 21096 26371 32964.75 41206.9375
13820 17276 21596 26996 33746 42183.5
14140 17676 22096 27621 34527.25 43160.0625
14460 18076 22596 28246 35308.5 44136.625
14780 18476 23096 28871 36089.75 45113.1875
15100 18876 23596 29496 36871 46089.75
15420 19276 24096 30121 37652.25 47066.3125
Examination of the final column we see that for the step of 5120 "(45)2(2)(22)(2222)" X is 1020.
--[[User:Nigel Galloway|Nigel Galloway]] ([[User talk:Nigel Galloway|talk]]) 09:44, 5 May 2015 (UTC)
==Haskell version==
Testing the Haskell version here with GHC 7.8.4 and finding that ''pure'' is out of scope.
Perhaps add '''Control.Applicative''' to the imports ? [[User:Hout|Hout]] ([[User talk:Hout|talk]]) 19:04, 28 October 2015 (UTC)