⚠️ Warning: This is a draft ⚠️
This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.
If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.
{{task|Programming environment operations}} [[Category:Date and time]] {{omit from|Batch File|No way to programmatically retrieving the current or elapsed time. Only human-readable formats available, which can't be parsed accurately.}} {{omit from|GUISS}} {{omit from|ML/I}}
;Task: Write a program which uses a timer (with the least granularity available on your system) to time how long a function takes to execute.
Whenever possible, use methods which measure only the processing time used by the current process; instead of the difference in [[system time]] between start and finish, which could include time used by other processes on the computer.
This task is intended as a subtask for [[Measure relative performance of sorting algorithms implementations]].
8051 Assembly
Using a timer requires knowledge on two things: the oscillator frequency (which limits the maximum precision) and the desired precision. This code uses a common crystal of 11.0592MHz - but provides values for a few others as examples. This code also uses a precision of 4 bits (2^(-4) = 0.0625 seconds). Those familiar with binary can think of this as a right shift of 4 of the multi-byte value, where the low 4 bits represent the fraction of a second, and the remaining bits represent whole seconds. The maximum time value depends on the number of bytes used and the precision. For x bytes and p precision, the maximum value you can count to is (256^x - 1) * 2^(-p).
TC EQU 8 ; number of counter registers
TSTART EQU 08h ; first register of timer counter
TEND EQU TSTART + TC - 1 ; end register of timer counter
; Note: The multi-byte value is stored in Big-endian
; Some timer reloads
_6H EQU 085h ; 6MHz
_6L EQU 0edh
_12H EQU 00bh ; 12MHz
_12L EQU 0dbh
_110592H EQU 01eh ; 11.0592MHz
_110592L EQU 0ffh
; How to calculate timer reload (e.g. for 11.0592MHz):
; Note: 1 machine cycle takes 12 oscillator periods
; 11.0592MHz / 12 * 0.0625 seconds = 57,600 cycles = e100h
; ffffh - e100h = NOT e100h = 1effh
; assuming a 11.0592MHz crystal
TIMERH EQU _110592H
TIMERL EQU _110592L
;; some timer macros (using timer0)
start_timer macro
setb tr0
endm
stop_timer macro
clr tr0
endm
reset_timer macro
mov tl0, #TIMERL
mov th0, #TIMERH
endm
increment_counter macro ;; increment counter (multi-byte increment)
push psw
push acc
push 0 ; r0
mov r0, #TEND+1
setb c
inc_reg:
dec r0
clr a
addc a, @r0
mov @r0, a
jnc inc_reg_ ; end prematurally if the higher bytes are unchanged
cjne r0, #TSTART, inc_reg
inc_reg_:
; if the carry is set here then the multi byte value has overflowed
pop 0
pop acc
pop psw
endm
ORG RESET
jmp init
ORG TIMER0
jmp timer_0
timer_0: ; interrupt every 6.25ms
stop_timer ; we only want to time the function
reset_timer
increment_counter
start_timer
reti
init:
mov sp, #TEND
setb ea ; enable interrupts
setb et0 ; enable timer0 interrupt
mov tmod, #01h ; timer0 16-bit mode
reset_timer
; reset timer counter registers
clr a
mov r0, #TSTART
clear:
mov @r0, a
inc r0
cjne r0, #TEND, clear
start_timer
call function ; the function to time
stop_timer
; at this point the registers from TSTART
; through TEND indicate the current time
; multiplying the 8/16/24/etc length value by 0.0625 (2^-4) gives
; the elapsed number of seconds
; e.g. if the three registers were 02a0f2h then the elapsed time is:
; 02a0f2h = 172,274 and 172,274 * 0.0625 = 10,767.125 seconds
;
; Or alternatively:
; (high byte) 02h = 2 and 2 * 2^(16-4) = 8192
; (mid byte) a0h = 160 and 160 * 2^(8-4) = 2560
; (low byte) f2h = 242 and 242 * 2^(0-4) = 15.125
; 8192 + 2560 + 15.125 = 10,767.125 seconds
jmp $
function:
; do whatever here
ret
END
ACL2
(time$ (nthcdr 9999999 (take 10000000 nil)))
Output (for Clozure):
; (EV-REC *RETURN-LAST-ARG3* ...) took
; 2.53 seconds realtime, 2.48 seconds runtime
; (160,001,648 bytes allocated).
(NIL)
Ada
with Ada.Calendar; use Ada.Calendar;
with Ada.Text_Io; use Ada.Text_Io;
procedure Query_Performance is
type Proc_Access is access procedure(X : in out Integer);
function Time_It(Action : Proc_Access; Arg : Integer) return Duration is
Start_Time : Time := Clock;
Finis_Time : Time;
Func_Arg : Integer := Arg;
begin
Action(Func_Arg);
Finis_Time := Clock;
return Finis_Time - Start_Time;
end Time_It;
procedure Identity(X : in out Integer) is
begin
X := X;
end Identity;
procedure Sum (Num : in out Integer) is
begin
for I in 1..1000 loop
Num := Num + I;
end loop;
end Sum;
Id_Access : Proc_Access := Identity'access;
Sum_Access : Proc_Access := Sum'access;
begin
Put_Line("Identity(4) takes" & Duration'Image(Time_It(Id_Access, 4)) & " seconds.");
Put_Line("Sum(4) takes:" & Duration'Image(Time_It(Sum_Access, 4)) & " seconds.");
end Query_Performance;
Example
Identity(4) takes 0.000001117 seconds. Sum(4) takes: 0.000003632 seconds.
Aime
integer
identity(integer x)
{
x;
}
integer
sum(integer c)
{
integer s;
s = 0;
while (c) {
s += c;
c -= 1;
}
s;
}
real
time_f(integer (*fp)(integer), integer fa)
{
date f, s;
time t;
s.now;
fp(fa);
f.now;
t.ddiff(f, s);
t.microsecond / 1000000r;
}
integer
main(void)
{
o_real(6, time_f(identity, 1));
o_text(" seconds\n");
o_real(6, time_f(sum, 1000000));
o_text(" seconds\n");
0;
}
ARM Assembly
{{works with|as|Raspberry Pi}}
/* ARM assembly Raspberry PI */
/* program fcttime.s */
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
.equ N1, 1000000 @ loop number
.equ NBMEASURE, 10 @ measure number
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessError: .asciz "Error detected !!!!. \n"
szMessSep: .asciz "****************************\n"
szMessTemps: .ascii "Function time : "
sSecondes: .fill 10,1,' '
.ascii " s "
sMicroS: .fill 10,1,' '
.asciz " micros\n"
szCarriageReturn: .asciz "\n"
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
.align 4
dwDebut: .skip 8
dwFin: .skip 8
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: @ entry of program
adr r0,mult @ function address to measure
mov r1,#1 @ parameter 1 function
mov r2,#2 @ parameter 2 function
bl timeMesure
cmp r0,#0
blt 99f
adr r0,sum @ function address to measure
mov r1,#1
mov r2,#2
bl timeMesure
cmp r0,#0
blt 99f
b 100f
99:
@ error
ldr r0,iAdrszMessError
bl affichageMess
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
iAdrszMessError: .int szMessError
iAdrszCarriageReturn: .int szCarriageReturn
/**************************************************************/
/* examble function sum */
/**************************************************************/
/* r0 contains op 1 */
/* r1 contains op 2 */
sum:
push {lr} @ save registres
add r0,r1
100:
pop {lr} @ restaur registers
bx lr @ function return
/**************************************************************/
/* exemple execution multiplication */
/**************************************************************/
/* r0 contains op 1 */
/* r1 contains op 2 */
mult:
push {lr} @ save registres
mul r0,r1,r0
100:
pop {lr} @ restaur registers
bx lr @ function return
/**************************************************************/
/* Procedure for measuring the execution time of a routine */
/**************************************************************/
/* r0 contains the function address */
timeMesure:
push {r1-r8,lr} @ save registres
mov r4,r0 @ save function address
mov r5,r1 @ save param 1
mov r6,r2 @ save param 2
mov r8,#0
1:
ldr r0,iAdrdwDebut @ start time area
mov r1,#0
mov r7, #0x4e @ call system gettimeofday
svc #0
cmp r0,#0 @ error ?
blt 100f @ return error
ldr r7,iMax @ run number
mov r0,r5 @ param function 1
mov r1,r6 @ param function 2
2: @ loop
blx r4 @ call of the function to be measured
subs r7,#1 @ decrement run
bge 2b @ loop if not zero
@
ldr r0,iAdrdwFin @ end time area
mov r1,#0
mov r7, #0x4e @ call system gettimeofday
svc #0
cmp r0,#0 @ error ?
blt 100f @ return error
@ compute time
ldr r0,iAdrdwDebut @ start time area
//vidmemtit mesure r0 2
ldr r2,[r0] @ secondes
ldr r3,[r0,#4] @ micro secondes
ldr r0,iAdrdwFin @ end time area
ldr r1,[r0] @ secondes
ldr r0,[r0,#4] @ micro secondes
sub r2,r1,r2 @ secondes number
subs r3,r0,r3 @ microsecondes number
sublt r2,#1 @ if negative sub 1 seconde to secondes
ldr r1,iSecMicro
addlt r3,r1 @ and add 1000000 to microsecondes number
mov r0,r2 @ conversion secondes
ldr r1,iAdrsSecondes
bl conversion10
mov r0,r3 @ conversion microsecondes
ldr r1,iAdrsMicroS
bl conversion10
ldr r0,iAdrszMessTemps
bl affichageMess @ display message
add r8,#1
cmp r8,#NBMEASURE
ble 1b
ldr r0,iAdrszMessSep @ display separator
bl affichageMess
100:
pop {r1-r8,lr} @ restaur registers
bx lr @ function return
iMax: .int N1
iAdrdwDebut: .int dwDebut
iAdrdwFin: .int dwFin
iSecMicro: .int 1000000
iAdrsSecondes: .int sSecondes
iAdrsMicroS: .int sMicroS
iAdrszMessTemps: .int szMessTemps
iAdrszMessSep: .int szMessSep
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr} @ save registres
mov r2,#0 @ counter length
1: @ loop length calculation
ldrb r1,[r0,r2] @ read octet start position + index
cmp r1,#0 @ if 0 its over
addne r2,r2,#1 @ else add 1 in the length
bne 1b @ and loop
@ so here r2 contains the length of the message
mov r1,r0 @ address message in r1
mov r0,#STDOUT @ code to write to the standard output Linux
mov r7, #WRITE @ code call system "write"
svc #0 @ call systeme
pop {r0,r1,r2,r7,lr} @ restaur registers */
bx lr @ return
/******************************************************************/
/* Converting a register to a decimal */
/******************************************************************/
/* r0 contains value and r1 address area */
.equ LGZONECAL, 10
conversion10:
push {r1-r4,lr} @ save registers
mov r3,r1
mov r2,#LGZONECAL
1: @ start loop
bl divisionpar10 @ r0 <- dividende. quotient ->r0 reste -> r1
add r1,#48 @ digit
strb r1,[r3,r2] @ store digit on area
cmp r0,#0 @ stop if quotient = 0
subne r2,#1 @ previous position
bne 1b @ else loop
@ end replaces digit in front of area
mov r4,#0
2:
ldrb r1,[r3,r2]
strb r1,[r3,r4] @ store in area begin
add r4,#1
add r2,#1 @ previous position
cmp r2,#LGZONECAL @ end
ble 2b @ loop
mov r1,#' '
3:
strb r1,[r3,r4]
add r4,#1
cmp r4,#LGZONECAL @ end
ble 3b
100:
pop {r1-r4,lr} @ restaur registres
bx lr @return
/***************************************************/
/* division par 10 signé */
/* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/*
/* and http://www.hackersdelight.org/ */
/***************************************************/
/* r0 dividende */
/* r0 quotient */
/* r1 remainder */
divisionpar10:
/* r0 contains the argument to be divided by 10 */
push {r2-r4} @ save registers */
mov r4,r0
mov r3,#0x6667 @ r3 <- magic_number lower
movt r3,#0x6666 @ r3 <- magic_number upper
smull r1, r2, r3, r0 @ r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0)
mov r2, r2, ASR #2 @ r2 <- r2 >> 2
mov r1, r0, LSR #31 @ r1 <- r0 >> 31
add r0, r2, r1 @ r0 <- r2 + r1
add r2,r0,r0, lsl #2 @ r2 <- r0 * 5
sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10)
pop {r2-r4}
bx lr @ return
{{out}}
Function time : 0 s 16881 micros
Function time : 0 s 16728 micros
Function time : 0 s 16690 micros
Function time : 0 s 16904 micros
Function time : 0 s 16703 micros
Function time : 0 s 16686 micros
Function time : 0 s 16703 micros
Function time : 0 s 8240 micros
Function time : 0 s 7152 micros
Function time : 0 s 7143 micros
Function time : 0 s 7153 micros
****************************
Function time : 0 s 7153 micros
Function time : 0 s 7143 micros
Function time : 0 s 7153 micros
Function time : 0 s 7151 micros
Function time : 0 s 7151 micros
Function time : 0 s 7144 micros
Function time : 0 s 7153 micros
Function time : 0 s 7177 micros
Function time : 0 s 7143 micros
Function time : 0 s 7156 micros
Function time : 0 s 7154 micros
****************************
Arturo
func {
delay 2000
}
print "Function took: " + $(timer func) + "ms"
{{out}}
Function took: 2001ms
AutoHotkey
System time
Uses system time, not process time
MsgBox % time("fx")
Return
fx()
{
Sleep, 1000
}
time(function, parameter=0)
{
SetBatchLines -1 ; don't sleep for other green threads
StartTime := A_TickCount
%function%(parameter)
Return ElapsedTime := A_TickCount - StartTime . " milliseconds"
}
Using QueryPerformanceCounter
QueryPerformanceCounter allows even more precision:
MsgBox % time("fx")
time(function, parameter=0){
SetBatchLines -1
DllCall("QueryPerformanceCounter", "Int64*", CounterBefore)
DllCall("QueryPerformanceFrequency", "Int64*", Freq)
%function%(parameter)
DllCall("QueryPerformanceCounter", "Int64*", CounterAfter)
return (CounterAfter-CounterBefore)/Freq * 1000 " milliseconds"
}
fx(){
Sleep 1000
}
BaCon
The BaCon '''TIMER''' function keeps track of time spent running, in milliseconds (which is also the time unit used by '''SLEEP'''). This is not process specific, but a wall clock time counter which starts at 0 during process initialization. As BaCon can easily use external C libraries, process specific ''CLOCK_PROCESS_CPUTIME_ID'' '''clock_gettime''' could also be used.
' Time a function
SUB timed()
SLEEP 7000
END SUB
st = TIMER
timed()
et = TIMER
PRINT st, ", ", et
{{out}}
prompt$ ./time-function
0, 7000
BASIC
{{works with|QBasic}}
DIM timestart AS SINGLE, timedone AS SINGLE, timeelapsed AS SINGLE
timestart = TIMER
SLEEP 1 'code or function to execute goes here
timedone = TIMER
'midnight check:
IF timedone < timestart THEN timedone = timedone + 86400
timeelapsed = timedone - timestart
See also: [[#BBC BASIC|BBC BASIC]], [[#PureBasic|PureBasic]].
Batch File
Granularity: hundredths of second.
@echo off
Setlocal EnableDelayedExpansion
call :clock
::timed function:fibonacci series.....................................
set /a a=0 ,b=1,c=1
:loop
if %c% lss 2000000000 echo %c% & set /a c=a+b,a=b, b=c & goto loop
::....................................................................
call :clock
echo Function executed in %timed% hundredths of second
goto:eof
:clock
if not defined timed set timed=0
for /F "tokens=1-4 delims=:.," %%a in ("%time%") do (
set /A timed = "(((1%%a - 100) * 60 + (1%%b - 100)) * 60 + (1%%c - 100)) * 100 + (1%%d - 100)- %timed%"
)
goto:eof
BBC BASIC
start%=TIME:REM centi-second timer
REM perform processing
lapsed%=TIME-start%
Bracmat
( ( time
= fun funarg t0 ret
. !arg:(?fun.?funarg)
& clk$:?t0
& !fun$!funarg:?ret
& (!ret.flt$(clk$+-1*!t0,3) s)
)
& ( fib
=
. !arg:<2&1
| fib$(!arg+-1)+fib$(!arg+-2)
)
& time$(fib.30)
)
Output:
1346269.5,141*10E0 s
C
{{works with|POSIX|.1-2001}} On some system (like GNU/Linux) to be able to use the clock_gettime function you must link with the rt (RealTime) library.
CLOCK_PROCESS_CPUTIME_ID
is preferred when available (eg. Linux kernel 2.6.12 up), being CPU time used by the current process. (CLOCK_MONOTONIC
generally includes CPU time of unrelated processes, and may be drifted by adjtime()
.)
#include <stdio.h>
#include <time.h>
int identity(int x) { return x; }
int sum(int s)
{
int i;
for(i=0; i < 1000000; i++) s += i;
return s;
}
#ifdef CLOCK_PROCESS_CPUTIME_ID
/* cpu time in the current process */
#define CLOCKTYPE CLOCK_PROCESS_CPUTIME_ID
#else
/* this one should be appropriate to avoid errors on multiprocessors systems */
#define CLOCKTYPE CLOCK_MONOTONIC
#endif
double time_it(int (*action)(int), int arg)
{
struct timespec tsi, tsf;
clock_gettime(CLOCKTYPE, &tsi);
action(arg);
clock_gettime(CLOCKTYPE, &tsf);
double elaps_s = difftime(tsf.tv_sec, tsi.tv_sec);
long elaps_ns = tsf.tv_nsec - tsi.tv_nsec;
return elaps_s + ((double)elaps_ns) / 1.0e9;
}
int main()
{
printf("identity (4) takes %lf s\n", time_it(identity, 4));
printf("sum (4) takes %lf s\n", time_it(sum, 4));
return 0;
}
C++
#include <ctime>
#include <iostream>
using namespace std;
int identity(int x) { return x; }
int sum(int num) {
for (int i = 0; i < 1000000; i++)
num += i;
return num;
}
double time_it(int (*action)(int), int arg) {
clock_t start_time = clock();
action(arg);
clock_t finis_time = clock();
return ((double) (finis_time - start_time)) / CLOCKS_PER_SEC;
}
int main() {
cout << "Identity(4) takes " << time_it(identity, 4) << " seconds." << endl;
cout << "Sum(4) takes " << time_it(sum, 4) << " seconds." << endl;
return 0;
}
Example
Identity(4) takes 0 seconds. Sum(4) takes 0.01 seconds.
C#
Using Stopwatch.
using System;
using System.Linq;
using System.Threading;
using System.Diagnostics;
class Program {
static void Main(string[] args) {
Stopwatch sw = new Stopwatch();
sw.Start();
DoSomething();
sw.Stop();
Console.WriteLine("DoSomething() took {0}ms.", sw.Elapsed.TotalMilliseconds);
}
static void DoSomething() {
Thread.Sleep(1000);
Enumerable.Range(1, 10000).Where(x => x % 2 == 0).Sum(); // Sum even numers from 1 to 10000
}
}
Using DateTime.
using System;
using System.Linq;
using System.Threading;
class Program {
static void Main(string[] args) {
DateTime start, end;
start = DateTime.Now;
DoSomething();
end = DateTime.Now;
Console.WriteLine("DoSomething() took " + (end - start).TotalMilliseconds + "ms");
}
static void DoSomething() {
Thread.Sleep(1000);
Enumerable.Range(1, 10000).Where(x => x % 2 == 0).Sum(); // Sum even numers from 1 to 10000
}
}
Output: DoSomething() took 1071,5408ms
Clojure
(defn fib []
(map first
(iterate
(fn [[a b]] [b (+ a b)])
[0 1])))
(time (take 100 (fib)))
Output: "Elapsed time: 0.028 msecs" (0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181)
Common Lisp
Common Lisp provides a standard utility for performance measurement, [http://www.lispworks.com/documentation/HyperSpec/Body/m_time.htm time]:
CL-USER> (time (reduce #'+ (make-list 100000 :initial-element 1)))
Evaluation took:
0.151 seconds of real time
0.019035 seconds of user run time
0.01807 seconds of system run time
0 calls to %EVAL
0 page faults and
2,400,256 bytes consed.
(The example output here is from [[SBCL]].)
However, it merely prints textual information to [http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_t.htm#trace_output trace output], so the information is not readily available for further processing (except by parsing it in a CL-implementation-specific manner).
The functions [http://www.lispworks.com/documentation/HyperSpec/Body/f_get__1.htm get-internal-run-time] and [http://www.lispworks.com/documentation/HyperSpec/Body/f_get_in.htm get-internal-real-time] may be used to get time information programmatically, with at least one-second granularity (and usually more). Here is a function which uses them to measure the time taken for one execution of a provided function:
(defun timings (function)
(let ((real-base (get-internal-real-time))
(run-base (get-internal-run-time)))
(funcall function)
(values (/ (- (get-internal-real-time) real-base) internal-time-units-per-second)
(/ (- (get-internal-run-time) run-base) internal-time-units-per-second))))
CL-USER> (timings (lambda () (reduce #'+ (make-list 100000 :initial-element 1))))
17/500
7/250
D
import std.stdio, std.datetime;
int identity(int x) {
return x;
}
int sum(int num) {
foreach (i; 0 .. 100_000_000)
num += i;
return num;
}
double timeIt(int function(int) func, int arg) {
StopWatch sw;
sw.start();
func(arg);
sw.stop();
return sw.peek().usecs / 1_000_000.0;
}
void main() {
writefln("identity(4) takes %f6 seconds.", timeIt(&identity, 4));
writefln("sum(4) takes %f seconds.", timeIt(&sum, 4));
}
Output:
identity(4) takes 0.0000016 seconds.
sum(4) takes 0.522065 seconds.
Using Tango
import tango.io.Stdout;
import tango.time.Clock;
int identity (int x)
{
return x;
}
int sum (int num)
{
for (int i = 0; i < 1000000; i++)
num += i;
return num;
}
double timeIt(int function(int) func, int arg)
{
long before = Clock.now.ticks;
func(arg);
return (Clock.now.ticks - before) / cast(double)TimeSpan.TicksPerSecond;
}
void main ()
{
Stdout.format("Identity(4) takes {:f6} seconds",timeIt(&identity,4)).newline;
Stdout.format("Sum(4) takes {:f6} seconds",timeIt(&sum,4)).newline;
}
E
{{trans|Java}} — E has no ''standardized'' facility for CPU time measurement; this {{works with|E-on-Java}}.
def countTo(x) {
println("Counting...")
for _ in 1..x {}
println("Done!")
}
def MX := <unsafe:java.lang.management.makeManagementFactory>
def threadMX := MX.getThreadMXBean()
require(threadMX.isCurrentThreadCpuTimeSupported())
threadMX.setThreadCpuTimeEnabled(true)
for count in [10000, 100000] {
def start := threadMX.getCurrentThreadCpuTime()
countTo(count)
def finish := threadMX.getCurrentThreadCpuTime()
println(`Counting to $count takes ${(finish-start)//1000000}ms`)
}
Elena
{{trans|C#}} ELENA 4.x :
import system'calendar;
import system'routines;
import system'threading;
import system'math;
import extensions;
someProcess()
{
threadControl.sleep(1000);
new Range(0,10000).filterBy:(x => x.mod:2 == 0).summarize();
}
public program()
{
var start := now;
someProcess();
var end := now;
console.printLine("Time elapsed in msec:",(end - start).Milliseconds)
}
{{out}}
Time elapsed in msec:1015
Elixir
{{trans|Erlang}} '''tc/1'''
iex(10)> :timer.tc(fn -> Enum.each(1..100000, fn x -> x*x end) end)
{236000, :ok}
'''tc/2'''
iex(11)> :timer.tc(fn x -> Enum.each(1..x, fn y -> y*y end) end, [1000000])
{2300000, :ok}
'''tc/3'''
iex(12)> :timer.tc(Enum, :to_list, [1..1000000])
{224000,
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, ...]}
Erlang
Erlang's timer module has three implementations of the tc function.
'''tc/1''' takes a 0-arity function and executes it:
5> {Time,Result} = timer:tc(fun () -> lists:foreach(fun(X) -> X*X end, lists:seq(1,100000)) end).
{226391,ok}
6> Time/1000000. % Time is in microseconds.
0.226391
7> % Time is in microseconds.
'''tc/2''' takes an n-arity function and its arguments:
9> timer:tc(fun (X) -> lists:foreach(fun(Y) -> Y*Y end, lists:seq(1,X)) end, [1000000]).
{2293844,ok}
'''tc/3''' takes a module name, function name and the list of arguments to the function:
8> timer:tc(lists,seq,[1,1000000]).
{62370,
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,24,25,26,27|...]}
Euphoria
atom t
t = time()
some_procedure()
t = time() - t
printf(1,"Elapsed %f seconds.\n",t)
=={{header|F Sharp|F#}}== The .Net framework provides a Stopwatch class which provides a performance counter.
open System.Diagnostics
let myfunc data =
let timer = new Stopwatch()
timer.Start()
let result = data |> expensive_processing
timer.Stop()
printf "elapsed %d ms" timer.ElapsedMilliseconds
result
Factor
[ 10000 iota sum drop ] time
Output: Running time: 0.002888635 seconds
Additional information was collected. dispatch-stats. - Print method dispatch statistics gc-events. - Print all garbage collection events gc-stats. - Print breakdown of different garbage collection events gc-summary. - Print aggregate garbage collection statistics
Forth
{{works with|GNU Forth}}
: time: ( "word" -- )
utime 2>R ' EXECUTE
utime 2R> D-
<# # # # # # # [CHAR] . HOLD #S #> TYPE ." seconds" ;
1000 time: MS \ 1.000081 seconds ok
Fortran
{{works with|Gfortran}} version 4.4.5 (Debian 4.4.5-8) on x86_64-linux-gnu
c The subroutine to analyze
subroutine do_something()
c For testing we just do nothing for 3 seconds
call sleep(3)
return
end
c Main Program
program timing
integer(kind=8) start,finish,rate
call system_clock(count_rate=rate)
call system_clock(start)
c Here comes the function we want to time
call do_something()
call system_clock(finish)
write(6,*) 'Elapsed Time in seconds:',float(finish-start)/rate
return
end
FreeBASIC
' FB 1.05.0 Win64
Function sumToLimit(limit As UInteger) As UInteger
Dim sum As UInteger = 0
For i As UInteger = 1 To limit
sum += i
Next
Return sum
End Function
Dim As Double start = timer
Dim limit As UInteger = 100000000
Dim result As UInteger = sumToLimit(limit)
Dim ms As UInteger = Int(1000 * (timer - start) + 0.5)
Print "sumToLimit("; Str(limit); ") = "; result
Print "took "; ms; " milliseconds to calculate"
Print
Print "Press any key to quit"
Sleep
{{out}}
sumToLimit(100000000) = 5000000050000000
took 314 milliseconds to calculate
GAP
# Return the time passed in last function
time;
Go
go test
The Go command line tool go test
includes [http://golang.org/pkg/testing/#hdr-Benchmarks benchmarking support].
Given a package with functions:
package empty
func Empty() {}
func Count() {
// count to a million
for i := 0; i < 1e6; i++ {
}
}
the following code, placed in a file whose name ends in _test.go, will time them:
package empty
import "testing"
func BenchmarkEmpty(b *testing.B) {
for i := 0; i < b.N; i++ {
Empty()
}
}
func BenchmarkCount(b *testing.B) {
for i := 0; i < b.N; i++ {
Count()
}
}
go test
varies b.N
to get meaningful resolution.
Example:
$ go test -bench=.
testing: warning: no tests to run
PASS
BenchmarkEmpty 2000000000 0.30 ns/op
BenchmarkCount 10000 298734 ns/op
ok 3.642s
The first number is the value of b.N
chosen and the second the average time per iteration.
The testing
package can optionally include memory use and throughput benchmarks.
There is also a [https://golang.org/x/tools/cmd/benchcmp standard tool] to compare the multiple benchmark outputs (installable via go get golang.org/x/tools/cmd/benchcmp
).
testing.Benchmark
The benchmarking features of the testing
package are exported for use within a Go program.
package main
import (
"fmt"
"testing"
)
func empty() {}
func count() {
for i := 0; i < 1e6; i++ {
}
}
func main() {
e := testing.Benchmark(func(b *testing.B) {
for i := 0; i < b.N; i++ {
empty()
}
})
c := testing.Benchmark(func(b *testing.B) {
for i := 0; i < b.N; i++ {
count()
}
})
fmt.Println("Empty function: ", e)
fmt.Println("Count to a million:", c)
fmt.Println()
fmt.Printf("Empty: %12.4f\n", float64(e.T.Nanoseconds())/float64(e.N))
fmt.Printf("Count: %12.4f\n", float64(c.T.Nanoseconds())/float64(c.N))
}
{{out}}
Empty function: 2000000000 0.80 ns/op
Count to a million: 2000 796071 ns/op
Empty: 0.7974
Count: 796071.6555
Alternative technique
The go test
command and the testing
package are the preferred techniques for benchmarking or timing any Go code. Ignoring the well-tested and carefully crafted standard tools though, here is a simplistic alternative:
As the first line of the function you wish to time, use defer with an argument of time.Now() to print the elapsed time to the return of any function. For example, define the function from as shown below. It works because defer evaluates its function's arguments at the time the function is deferred, so the current time gets captured at the point of the defer. When the function containing the defer returns, the deferred from function runs, computes the elapsed time as a time.Duration, and prints it with standard formatting, which adds a nicely scaled unit suffix.
package main
import (
"fmt"
"time"
)
func from(t0 time.Time) {
fmt.Println(time.Now().Sub(t0))
}
func empty() {
defer from(time.Now())
}
func count() {
defer from(time.Now())
for i := 0; i < 1e6; i++ {
}
}
func main() {
empty()
count()
}
Output:
2us
643us
Groovy
{{trans|Java}}
CPU Timing
import java.lang.management.ManagementFactory
import java.lang.management.ThreadMXBean
def threadMX = ManagementFactory.threadMXBean
assert threadMX.currentThreadCpuTimeSupported
threadMX.threadCpuTimeEnabled = true
def clockCpuTime = { Closure c ->
def start = threadMX.currentThreadCpuTime
c.call()
(threadMX.currentThreadCpuTime - start)/1000000
}
Wall Clock Timing
def clockRealTime = { Closure c ->
def start = System.currentTimeMillis()
c.call()
System.currentTimeMillis() - start
}
Test:
def countTo = { Long n ->
long i = 0; while(i < n) { i += 1L }
}
["CPU time":clockCpuTime, "wall clock time":clockRealTime].each { measurementType, timer ->
println '\n'
[100000000L, 1000000000L].each { testSize ->
def measuredTime = timer(countTo.curry(testSize))
println "Counting to ${testSize} takes ${measuredTime}ms of ${measurementType}"
}
}
Output:
Counting to 100000000 takes 23150.5484ms of CPU time
Counting to 1000000000 takes 233861.0991ms of CPU time
Counting to 100000000 takes 24314ms of wall clock time
Counting to 1000000000 takes 249005ms of wall clock time
Halon
$t = uptime();
sleep(1);
echo uptime() - $t;
Haskell
import System.CPUTime (getCPUTime)
-- We assume the function we are timing is an IO monad computation
timeIt :: (Fractional c) => (a -> IO b) -> a -> IO c
timeIt action arg = do
startTime <- getCPUTime
action arg
finishTime <- getCPUTime
return $ fromIntegral (finishTime - startTime) / 1000000000000
-- Version for use with evaluating regular non-monadic functions
timeIt_ :: (Fractional c) => (a -> b) -> a -> IO c
timeIt_ f = timeIt ((`seq` return ()) . f)
Example
*Main> :m + Text.Printf Data.List *Main Data.List Text.Printf> timeIt' id 4 >>= printf "Identity(4) takes %f seconds.\n" Identity(4) takes 0.0 seconds. *Main Data.List Text.Printf> timeIt' (\x -> foldl' (+) x [1..1000000]) 4 >>= printf "Sum(4) takes %f seconds.\n" Sum(4) takes 0.248015 seconds.
HicEst
t_start = TIME() ! returns seconds since midnight
SYSTEM(WAIT = 1234) ! wait 1234 milliseconds
t_end = TIME()
WRITE(StatusBar) t_end - t_start, " seconds"
=={{header|Icon}} and {{header|Unicon}}== The function 'timef' takes as argument a procedure name and collects performance and timing information including run time (in milliseconds), garbage collection, and memory usage by region.
procedure timef(f) #: time a function f
local gcol,alloc,used,size,runtime,header,x,i
title := ["","total","static","string","block"] # headings
collect() # start with collected memory (before baseline)
every put(gcol := [], -&collections) # baseline collections count
every put(alloc := [], -&allocated) # . total allocated space by region
every put(used := [], -&storage) # . currently used space by region - no total
every put(size := [], -®ions) # . current size of regions - no total
write("Performance and Timing measurement for ",image(f),":")
runtime := &time # base time
f()
write("Execution time=",&time-runtime," ms.")
every (i := 0, x := &collections) do gcol[i +:= 1] +:= x
every (i := 0, x := &allocated ) do alloc[i +:= 1] +:= x
every (i := 0, x := &storage ) do used[i +:= 1] +:= x
every (i := 0, x := ®ions ) do size[i +:= 1] +:= x
push(gcol,"garbage collections:")
push(alloc,"memory allocated:")
push(used,"N/A","currently used:")
push(size,"N/A","current size:")
write("Memory Region and Garbage Collection Summary (delta):")
every (i := 0) <:= *!(title|gcol|alloc|used|size)
every x := (title|gcol|alloc|used|size) do {
f := left
every writes(f(!x,i + 3)) do f := right
write()
}
write("Note: static region values should be zero and may not be meaningful.")
return
end
Sample usage:
procedure main()
timef(perfectnumbers)
end
procedure perfectnumbers()
...
Sample output (from the [[Perfect_numbers#Icon_and_Unicon|Perfect Numbers]] task): Performance and Timing measurement for procedure perfectnumbers: Perfect numbers from 1 to 10000: 6 28 496 8128 Done. Execution time=416 ms. Memory Region and Garbage Collection Summary (delta): total static string block garbage collections: 2 0 0 2 memory allocated: 1247012 0 24 1246988 currently used: N/A 0 0 248040 current size: N/A 0 0 0 Note: static region values should be zero and may not be meaningful.
Ioke
use("benchmark")
func = method((1..50000) reduce(+))
Benchmark report(1, 1, func)
J
Time and space requirements are tested using verbs obtained through the Foreign conjunction (!:
). 6!:2
returns time required for execution, in floating-point measurement of seconds. 7!:2
returns a measurement of space required to execute. Both receive as input a sentence for execution. The verb timespacex
combines these and is available in the standard library.
When the [http://www.jsoftware.com/help/dictionary/dmcapdot.htm Memoize] feature or similar techniques are used, execution time and space can both be affected by prior calculations.
Example
(6!:2 , 7!:2) '|: 50 50 50 $ i. 50^3'
0.00488008 3.14829e6
timespacex '|: 50 50 50 $ i. 50^3'
0.00388519 3.14829e6
Java
{{works with|Java|1.5+}}
import java.lang.management.ManagementFactory;
import java.lang.management.ThreadMXBean;
public class TimeIt {
public static void main(String[] args) {
final ThreadMXBean threadMX = ManagementFactory.getThreadMXBean();
assert threadMX.isCurrentThreadCpuTimeSupported();
threadMX.setThreadCpuTimeEnabled(true);
long start, end;
start = threadMX.getCurrentThreadCpuTime();
countTo(100000000);
end = threadMX.getCurrentThreadCpuTime();
System.out.println("Counting to 100000000 takes "+(end-start)/1000000+"ms");
start = threadMX.getCurrentThreadCpuTime();
countTo(1000000000L);
end = threadMX.getCurrentThreadCpuTime();
System.out.println("Counting to 1000000000 takes "+(end-start)/1000000+"ms");
}
public static void countTo(long x){
System.out.println("Counting...");
for(long i=0;i<x;i++);
System.out.println("Done!");
}
}
Measures real time rather than CPU time: {{works with|Java|(all versions)}}
public static void main(String[] args){
long start, end;
start = System.currentTimeMillis();
countTo(100000000);
end = System.currentTimeMillis();
System.out.println("Counting to 100000000 takes "+(end-start)+"ms");
start = System.currentTimeMillis();
countTo(1000000000L);
end = System.currentTimeMillis();
System.out.println("Counting to 1000000000 takes "+(end-start)+"ms");
}
Output: Counting... Done! Counting to 100000000 takes 370ms Counting... Done! Counting to 1000000000 takes 3391ms
Julia
# v0.6.0
function countto(n::Integer)
i = zero(n)
println("Counting...")
while i < n
i += 1
end
println("Done!")
end
@time countto(10 ^ 5)
@time countto(10 ^ 10)
{{out}}
Counting...
Done!
Counting...
Done!
0.000109 seconds (15 allocations: 400 bytes)
Counting...
Done!
0.000127 seconds (15 allocations: 400 bytes)
Kotlin
{{trans|Java}}
// version 1.1.2
// need to enable runtime assertions with JVM -ea option
import java.lang.management.ManagementFactory
import java.lang.management.ThreadMXBean
fun countTo(x: Int) {
println("Counting...");
(1..x).forEach {}
println("Done!")
}
fun main(args: Array<String>) {
val counts = intArrayOf(100_000_000, 1_000_000_000)
val threadMX = ManagementFactory.getThreadMXBean()
assert(threadMX.isCurrentThreadCpuTimeSupported)
threadMX.isThreadCpuTimeEnabled = true
for (count in counts) {
val start = threadMX.currentThreadCpuTime
countTo(count)
val end = threadMX.currentThreadCpuTime
println("Counting to $count takes ${(end-start)/1000000}ms")
}
}
This is a typical result (sometimes the second figure is only about 1400ms - no idea why) {{out}}
Counting...
Done!
Counting to 100000000 takes 179ms
Counting...
Done!
Counting to 1000000000 takes 3527ms
Lasso
local(start = micros)
loop(100000) => {
'nothing is outout because no autocollect'
}
'time for 100,000 loop repititions: '+(micros - #start)+' microseconds'
Lingo
on testFunc ()
repeat with i = 1 to 1000000
x = sqrt(log(i))
end repeat
end
ms = _system.milliseconds
testFunc()
ms = _system.milliseconds - ms
put "Execution time in ms:" && ms
-- "Execution time in ms: 983"
Logo
{{works with|UCB Logo}} on a Unix system
This is not an ideal method; Logo does not expose a timer (except for the WAIT command) so we use the Unix "date" command to get a second timer.
to time
output first first shell "|date +%s|
end
to elapsed :block
localmake "start time
run :block
(print time - :start [seconds elapsed])
end
elapsed [wait 300] ; 5 seconds elapsed
Lua
function Test_Function()
for i = 1, 10000000 do
local s = math.log( i )
s = math.sqrt( s )
end
end
t1 = os.clock()
Test_Function()
t2 = os.clock()
print( os.difftime( t2, t1 ) )
M2000 Interpreter
We use Profiler to reset timer, and Timecount to read time in milliseconds as a double, with nanoseconds for resolution. Internal use of QueryPerformanceCounter from Windows Api. In this example we get times for use of same module with different variable types. sum=limit-limit make sum 0 to the same type of limit,and using n=sum and n++ we make n=1 using same type as sum.
10000% is Integer 16bit
10000& is Long 32bit
10000@ is Decimal
10000# is Currency
10000~ is Float
10000 is Double (default)
Module Checkit {
Module sumtolimit (limit) {
sum=limit-limit
n=sum
n++
while limit {sum+=limit*n:limit--:n-!}
}
Cls ' clear screen
Profiler
sumtolimit 10000%
Print TimeCount
Profiler
sumtolimit 10000&
Print TimeCount
Profiler
sumtolimit 10000#
Print TimeCount
Profiler
sumtolimit 10000@
Print TimeCount
Profiler
sumtolimit 10000~
Print TimeCount
Profiler
sumtolimit 10000
Print TimeCount
}
Checkit
Maple
The built-in command CodeTools:-Usage can compute the "real" time for the length of the computation or the "cpu" time for the computation. The following examples find the real time and cpu time for computing the integer factors for 32!+1.
CodeTools:-Usage(ifactor(32!+1), output = realtime, quiet);
CodeTools:-Usage(ifactor(32!+1), output = cputime, quiet);
Mathematica
AbsoluteTiming[x];
where x is an operation. Example calculating a million digits of Sqrt[3]:
AbsoluteTiming[N[Sqrt[3], 10^6]]
gives:
{0.000657, 1.7320508075688772935274463......}
First elements if the time in seconds, second elements if the result from the operation. Note that I truncated the result.
Maxima
f(n) := if n < 2 then n else f(n - 1) + f(n - 2)$
/* First solution, call the time function with an output line number, it gives the time taken to compute that line.
Here it's assumed to be %o2 */
f(24);
46368
time(%o2);
[0.99]
/* Second solution, change a system flag to print timings for all following lines */
showtime: true$
f(24);
Evaluation took 0.9400 seconds (0.9400 elapsed)
46368
MiniScript
start = time
for i in range(1,100000)
end for
duration = time - start
print "Process took " + duration + " seconds"
{{out}}
Process took 0.312109 seconds
Nim
import times, os
proc doWork(x) =
var n = x
for i in 0..10000000:
n += i
echo n
template time(s: stmt): expr =
let t0 = cpuTime()
s
cpuTime() - t0
echo time(doWork(100))
Output:
2.2000000000000000e-01
OCaml
let time_it action arg =
let start_time = Sys.time () in
ignore (action arg);
let finish_time = Sys.time () in
finish_time -. start_time
Example
Printf.printf "Identity(4) takes %f seconds.\n" (time_it (fun x -> x) 4);;
Identity(4) takes 0.000000 seconds.
- : unit = ()
let sum x = let num = ref x in for i = 0 to 999999 do num := !num + i done; !num;;
val sum : int -> int =
Printf.printf "Sum(4) takes %f seconds.\n" (time_it sum 4);;
Sum(4) takes 0.084005 seconds.
- : unit = ()
Oforth
bench allows to calculate how long a runnable takes to execute.
Result is microseconds.
It uses difference between system time, not processing time.
{{Out}}
>#[ 0 1000 seq apply(#+) ] bench .
267
500500 ok
Oz
declare
%% returns milliseconds
fun {TimeIt Proc}
Before = {Now}
in
{Proc}
{Now} - Before
end
fun {Now}
{Property.get 'time.total'}
end
in
{Show
{TimeIt
proc {$}
{FoldL {List.number 1 1000000 1} Number.'+' 4 _}
end}
}
PARI/GP
This version, by default, returns just the CPU time used by gp, not the delta of wall times. PARI can be compiled to use wall time if you prefer: configure with --time=ftime
instead of --time=
getrusage
, --time=clock_gettime
, or --time=times
. See Appendix A, section 2.2 of the User's Guide to PARI/GP.
time(foo)={
foo();
gettime();
}
Alternate version: {{works with|PARI/GP|2.6.2+}}
time(foo)={
my(start=getabstime());
foo();
getabstime()-start;
}
Perl
Example of using the built-in Benchmark core module - it compares two versions of recursive factorial functions:
use Benchmark;
use Memoize;
sub fac1 {
my $n = shift;
return $n == 0 ? 1 : $n * fac1($n - 1);
}
sub fac2 {
my $n = shift;
return $n == 0 ? 1 : $n * fac2($n - 1);
}
memoize('fac2');
my $result = timethese(100000, {
'fac1' => sub { fac1(50) },
'fac2' => sub { fac2(50) },
});
Benchmark::cmpthese($result);
Output: Benchmark: timing 100000 iterations of fac1, fac2... fac1: 6 wallclock secs ( 5.45 usr + 0.00 sys = 5.45 CPU) @ 18348.62/s (n=100000) fac2: 1 wallclock secs ( 0.84 usr + 0.00 sys = 0.84 CPU) @ 119047.62/s (n=100000) Rate fac1 fac2 fac1 18349/s -- -85% fac2 119048/s 549% --
Example without using Benchmark:
sub cpu_time {
my ($user,$system,$cuser,$csystem) = times;
$user + $system
}
sub time_it {
my $action = shift;
my $startTime = cpu_time();
$action->(@_);
my $finishTime = cpu_time();
$finishTime - $startTime
}
printf "Identity(4) takes %f seconds.\n", time_it(sub {@_}, 4);
# outputs "Identity(4) takes 0.000000 seconds."
sub sum {
my $x = shift;
foreach (0 .. 999999) {
$x += $_;
}
$x
}
printf "Sum(4) takes %f seconds.\n", time_it(\&sum, 4);
# outputs "Sum(4) takes 0.280000 seconds."
Perl 6
Follows modern trend toward measuring wall-clock time, since CPU time is becoming rather ill-defined in the age of multicore, and doesn't reflect IO overhead in any case.
my $start = now;
(^100000).pick(1000);
say now - $start;
{{out}}
0.02301709
Phix
Measures wall-clock time. On Windows the resolution is about 15ms.
atom t0 = time()
some_procedure()
printf(1,"%3.2fs.\n",time()-t0)
PicoLisp
There is a built-in function '[http://software-lab.de/doc/refB.html#bench bench]' for that. However, it measures wall-clock time, because for practical purposes the real time needed by a task (including I/O and communication) is more meaningful. There is another function, '[http://software-lab.de/doc/refT.html#tick tick]', which also measures user time, and is used by the profiling tools.
: (bench (do 1000000 (* 3 4)))
0.080 sec
-> 12
PL/I
declare (start_time, finish_time) float (18);
start_time = secs();
do i = 1 to 10000000;
/* something to be repeated goes here. */
end;
finish_time = secs();
put skip edit ('elapsed time=', finish_time - start_time, ' seconds')
(A, F(10,3), A);
/* gives the result to thousandths of a second. */
/* Note: using the SECS function takes into account the clock */
/* going past midnight. */
PowerShell
function fun($n){
$res = 0
if($n -gt 0) {
1..$n | foreach{
$a, $b = $_, ($n+$_)
$res += $a + $b
}
}
$res
}
"$((Measure-Command {fun 10000}).TotalSeconds) Seconds"
Output:
0.820712 Seconds
PureBasic
Built in timer
This version uses the built in timer, on Windows it has an accuracy of ~10-15 msec.
Procedure Foo(Limit)
Protected i, palindromic, String$
For i=0 To Limit
String$=Str(i)
If String$=ReverseString(String$)
palindromic+1
EndIf
Next
ProcedureReturn palindromic
EndProcedure
If OpenConsole()
Define Start, Stop, cnt
PrintN("Starting timing of a calculation,")
PrintN("for this we test how many of 0-1000000 are palindromic.")
Start=ElapsedMilliseconds()
cnt=Foo(1000000)
Stop=ElapsedMilliseconds()
PrintN("The function need "+Str(stop-Start)+" msec,")
PrintN("and "+Str(cnt)+" are palindromic.")
Print("Press ENTER to exit."): Input()
EndIf
Starting timing of a calculation, for this we test how many of 0-1000000 are palindromic. The function need 577 msec, and 1999 are palindromic. Press ENTER to exit.
===Hi-res version=== {{libheader|Droopy}}
This version uses a hi-res timer, but it is Windows only.
If OpenConsole()
Define Timed.f, cnt
PrintN("Starting timing of a calculation,")
PrintN("for this we test how many of 0-1000000 are palindromic.")
; Dependent on Droopy-library
If MeasureHiResIntervalStart()
; Same Foo() as above...
cnt=Foo(1000000)
Timed=MeasureHiResIntervalStop()
EndIf
PrintN("The function need "+StrF(Timed*1000,3)+" msec,")
PrintN("and "+Str(cnt)+" are palindromic.")
Print("Press ENTER to exit."): Input()
EndIf
Starting timing of a calculation, for this we test how many of 0-1000000 are palindromic. The function need 604.341 msec, and 1999 are palindromic. Press ENTER to exit.
This version still relies on the Windows API but does not make use of any additional libraries.
Procedure.f ticksHQ(reportIfPresent = #False)
Static maxfreq.q
Protected T.q
If reportIfPresent Or maxfreq = 0
QueryPerformanceFrequency_(@maxfreq)
If maxfreq
ProcedureReturn 1.0
Else
ProcedureReturn 0
EndIf
EndIf
QueryPerformanceCounter_(@T)
ProcedureReturn T / maxfreq ;Result is in milliseconds
EndProcedure
If OpenConsole()
Define timed.f, cnt
PrintN("Starting timing of a calculation,")
PrintN("for this we test how many of 0-1000000 are palindromic.")
; Dependent on Windows API
If ticksHQ(#True)
timed = ticksHQ() ;start time
; Same Foo() as above...
cnt = Foo(1000000)
timed = ticksHQ() - timed ;difference
EndIf
PrintN("The function need " + StrF(timed * 1000, 3) + " msec,")
PrintN("and " + Str(cnt) + " are palindromic.")
Print("Press ENTER to exit."): Input()
EndIf
Sample output: Starting timing of a calculation, for this we test how many of 0-1000000 are palindromic. The function need 174.811 msec, and 1999 are palindromic.
Python
Given ''function'' and ''arguments'' return a time (in microseconds) it takes to make the call.
'''Note:''' There is an overhead in executing a function that does nothing.
import sys, timeit
def usec(function, arguments):
modname, funcname = __name__, function.__name__
timer = timeit.Timer(stmt='%(funcname)s(*args)' % vars(),
setup='from %(modname)s import %(funcname)s; args=%(arguments)r' % vars())
try:
t, N = 0, 1
while t < 0.2:
t = min(timer.repeat(repeat=3, number=N))
N *= 10
microseconds = round(10000000 * t / N, 1) # per loop
return microseconds
except:
timer.print_exc(file=sys.stderr)
raise
def nothing(): pass
def identity(x): return x
Example
print usec(nothing, []) 1.7 print usec(identity, [1]) 2.2 print usec(pow, (2, 100)) 3.3 print [usec(qsort, (range(n),)) for n in range(10)] [2.7, 2.8, 31.4, 38.1, 58.0, 76.2, 100.5, 130.0, 149.3, 180.0] using ''qsort()'' from [[Quicksort#Python|Quicksort]]. Timings show that the implementation of ''qsort()'' has quadratic dependence on sequence length ''N'' for already sorted sequences (instead of ''O(N*log(N))'' in average).
R
R has a built-in function, system.time, to calculate this.
# A task
foo <- function()
{
for(i in 1:10)
{
mat <- matrix(rnorm(1e6), nrow=1e3)
mat^-0.5
}
}
# Time the task
timer <- system.time(foo())
# Extract the processing time
timer["user.self"]
For a breakdown of processing time by function, there is Rprof.
Rprof()
foo()
Rprof(NULL)
summaryRprof()
Racket
#lang racket
(define (fact n) (if (zero? n) 1 (* n (fact (sub1 n)))))
(time (fact 5000))
Raven
define doId use $x
$x dup * $x /
define doPower use $v, $p
$v $p pow
define doSort
group
20000 each choose
list sort reverse
define timeFunc use $fName
time as $t1
$fName "" prefer call
time as $t2
$fName $t2 $t1 -"%.4g secs for %s\n" print
"NULL" timeFunc
42 "doId" timeFunc
12 2 "doPower" timeFunc
"doSort" timeFunc
{{out}}
2.193e-05 secs for NULL
2.003e-05 secs for doId
4.601e-05 secs for doPower
3.028 secs for doSort
Retro
Retro has a '''time''' function returning the current time in seconds. This can be used to build a simple timing function:
: .runtime ( a- ) time [ do time ] dip - "\n%d\n" puts ;
: test 20000 [ putn space ] iterd ;
&test .runtime
Finer measurements are not possible with the standard implementation.
REXX
elapsed time version
REXX doesn't have a language feature for obtaining true CPU time (except under
IBM mainframes which have commands that can retrieve such times), but it does
have a built-in function for elapsed time(s).
The main reason for the true CPU time omission is that REXX was developed under VM/CMS and
there's a way to easily query the host (VM/CP) to indicate how much ''true'' CPU time was used by
(normally) your own userID. The result can then be placed into a REXX variable (as an option).
/*REXX program displays the elapsed time for a REXX function (or subroutine). */
arg reps . /*obtain an optional argument from C.L.*/
if reps=='' then reps=100000 /*Not specified? No, then use default.*/
call time 'Reset' /*only the 1st character is examined. */
junk = silly(reps) /*invoke the SILLY function (below). */
/*───► CALL SILLY REPS also works.*/
/* The E is for elapsed time.*/
/* │ ─ */
/* ┌────◄───┘ */
/* │ */
/* ↓ */
say 'function SILLY took' format(time("E"),,2) 'seconds for' reps "iterations."
/* ↑ */
/* │ */
/* ┌────────►───────┘ */
/* │ */
/* The above 2 for the FORMAT function displays the time with*/
/* two decimal digits (rounded) past the decimal point). Using */
/* a 0 (zero) would round the time to whole seconds. */
exit /*stick a fork in it, we're all done. */
/*────────────────────────────────────────────────────────────────────────────*/
silly: procedure /*chew up some CPU time doing some silly stuff.*/
do j=1 for arg(1) /*wash, apply, lather, rinse, repeat. ··· */
@.j=random() date() time() digits() fuzz() form() xrange() queued()
end /*j*/
return j-1
'''output''' when using a personal computer built in the 20th century:
function SILLY took 3.54 seconds for 100000 iterations.
'''output''' when using a personal computer built in the 21st century:
function SILLY took 0.44 seconds for 100000 iterations.
'''output''' when using an IBM mainframe with MVS/TSO:
function SILLY took 0.69 seconds for 100000 iterations.
CPU time used version
This version ''only'' works with Regina REXX as the '''J''' option (for the '''time''' BIF) is a Regina extension.
Since the '''silly''' function (by far) consumes the bulk of the CPU time of the REXX program, what is
being measured is essentially the same as the wall clock time (duration) of the function execution; the
overhead of the invocation is minimal compared to the overall time used.
/*REXX program displays the elapsed time for a REXX function (or subroutine). */
arg reps . /*obtain an optional argument from C.L.*/
if reps=='' then reps=100000 /*Not specified? No, then use default.*/
call time 'Reset' /*only the 1st character is examined. */
junk = silly(reps) /*invoke the SILLY function (below). */
/*───► CALL SILLY REPS also works.*/
/* The J is for the CPU time used */
/* │ by the REXX program since */
/* ┌───────┘ since the time was RESET. */
/* │ This is a Regina extension.*/
/* ↓ */
say 'function SILLY took' format(time("J"),,2) 'seconds for' reps "iterations."
/* ↑ */
/* │ */
/* ┌────────►───────┘ */
/* │ */
/* The above 2 for the FORMAT function displays the time with*/
/* two decimal digits (rounded) past the decimal point). Using */
/* a 0 (zero) would round the time to whole seconds. */
exit /*stick a fork in it, we're all done. */
/*────────────────────────────────────────────────────────────────────────────*/
silly: procedure /*chew up some CPU time doing some silly stuff.*/
do j=1 for arg(1) /*wash, apply, lather, rinse, repeat. ··· */
@.j=random() date() time() digits() fuzz() form() xrange() queued()
end /*j*/
return j-1
'''output''' is essentially identical to the previous examples.
Ring
beginTime = TimeList()[13]
for n = 1 to 10000000
n = n + 1
next
endTime = TimeList()[13]
elapsedTime = endTime - beginTime
see "Elapsed time = " + elapsedTime + nl
Ruby
Ruby's Benchmark module provides a way to generate nice reports (numbers are in seconds):
require 'benchmark'
Benchmark.bm(8) do |x|
x.report("nothing:") { }
x.report("sum:") { (1..1_000_000).inject(4) {|sum, x| sum + x} }
end
Output: user system total real nothing: 0.000000 0.000000 0.000000 ( 0.000014) sum: 2.700000 0.400000 3.100000 ( 3.258348)
You can get the total time as a number for later processing like this:
Benchmark.measure { whatever }.total
Scala
Define a time
function that returns the elapsed time (in ms) to execute a block of code.
def time(f: => Unit)={
val s = System.currentTimeMillis
f
System.currentTimeMillis - s
}
Can be called with a code block:
println(time {
for(i <- 1 to 10000000) {}
})
Or with a function:
def count(i:Int) = for(j <- 1 to i){}
println(time (count(10000000)))
Scheme
(time (some-function))
Seed7
$ include "seed7_05.s7i";
include "time.s7i";
include "duration.s7i";
const func integer: identity (in integer: x) is
return x;
const func integer: sum (in integer: num) is func
result
var integer: result is 0;
local
var integer: number is 0;
begin
result := num;
for number range 1 to 1000000 do
result +:= number;
end for;
end func;
const func duration: timeIt (ref func integer: aFunction) is func
result
var duration: result is duration.value;
local
var time: before is time.value;
begin
before := time(NOW);
ignore(aFunction);
result := time(NOW) - before;
end func;
const proc: main is func
begin
writeln("Identity(4) takes " <& timeIt(identity(4)));
writeln("Sum(4) takes " <& timeIt(sum(4)));
end func;
{{out}} of interpreted program: Identity(4) takes 0-00-00 00:00:00.000163 Sum(4) takes 0-00-00 00:00:00.131823
{{out}} of compiled program (optimized with -O2): Identity(4) takes 0-00-00 00:00:00.000072 Sum(4) takes 0-00-00 00:00:00.000857
Sidef
var benchmark = frequire('Benchmark')
func fac_rec(n) {
n == 0 ? 1 : (n * __FUNC__(n - 1))
}
func fac_iter(n) {
var prod = 1
n.times { |i|
prod *= i
}
prod
}
var result = benchmark.timethese(-3, Hash(
'fac_rec' => { fac_rec(20) },
'fac_iter' => { fac_iter(20) },
))
benchmark.cmpthese(result)
{{out}}
Benchmark: running fac_iter, fac_rec for at least 3 CPU seconds...
fac_iter: 3 wallclock secs ( 3.23 usr + 0.00 sys = 3.23 CPU) @ 7331.89/s (n=23682)
fac_rec: 3 wallclock secs ( 3.19 usr + 0.00 sys = 3.19 CPU) @ 3551.72/s (n=11330)
Rate fac_rec fac_iter
fac_rec 3552/s -- -52%
fac_iter 7332/s 106% --
Slate
[inform: 2000 factorial] timeToRun.
Smalltalk
(Squeak/Pharo)
Time millisecondsToRun: [
Transcript show: 2000 factorial ].
Standard ML
fun time_it (action, arg) = let
val timer = Timer.startCPUTimer ()
val _ = action arg
val times = Timer.checkCPUTimer timer
in
Time.+ (#usr times, #sys times)
end
Example
- print ("Identity(4) takes " ^ Time.toString (time_it (fn x => x, 4)) ^ " seconds.\n"); Identity(4) takes 0.000 seconds. val it = () : unit
- fun sum (x:IntInf.int) = let fun loop (i, sum) = if i >= 1000000 then sum else loop (i + 1, sum + i) in loop (0, x) end; val sum = fn : IntInf.int -> IntInf.int
- print ("Sum(4) takes " ^ Time.toString (time_it (sum, 4)) ^ " seconds.\n"); Sum(4) takes 0.220 seconds. val it = () : unit
Stata
Stata can track up to 100 timers. See '''[http://www.stata.com/help.cgi?timer timer]''' in Stata help.
program timer_test
timer clear 1
timer on 1
sleep `0'
timer off 1
timer list 1
end
. timer_test 1000
1: 1.01 / 1 = 1.0140
Tcl
The Tcl time
command returns the real time elapsed
averaged over a number of iterations.
proc sum_n {n} {
for {set i 1; set sum 0.0} {$i <= $n} {incr i} {set sum [expr {$sum + $i}]}
return [expr {wide($sum)}]
}
puts [time {sum_n 1e6} 100]
puts [time {} 100]
{{out}} 163551.0 microseconds per iteration 0.2 microseconds per iteration
TorqueScript
[[User:Greek2me|Greek2me]] 02:16, 19 June 2012 (UTC)
Returns average time elapsed from many iterations.
function benchmark(%times,%function,%a,%b,%c,%d,%e,%f,%g,%h,%i,%j,%k,%l,%m,%n,%o)
{
if(!isFunction(%function))
{
warn("BENCHMARKING RESULT FOR" SPC %function @ ":" NL "Function does not exist.");
return -1;
}
%start = getRealTime();
for(%i=0; %i < %times; %i++)
{
call(%function,%a,%b,%c,%d,%e,%f,%g,%h,%i,%j,%k,%l,%m,%n,%o);
}
%end = getRealTime();
%result = (%end-%start) / %times;
warn("BENCHMARKING RESULT FOR" SPC %function @ ":" NL %result);
return %result;
}
{{out|Example}}
function exampleFunction(%var1,%var2)
{
//put stuff here
}
benchmark(500,"exampleFunction","blah","variables");
==> BENCHMARKING RESULT FOR exampleFunction:
==> 13.257
TUSCRIPT
$$ MODE TUSCRIPT
SECTION test
LOOP n=1,999999
rest=MOD (n,1000)
IF (rest==0) Print n
ENDLOOP
ENDSECTION
time_beg=TIME ()
DO test
time_end=TIME ()
interval=TIME_INTERVAL (seconds,time_beg,time_end)
PRINT "'test' start at ",time_beg
PRINT "'test' ends at ",time_end
PRINT "'test' takes ",interval," seconds"
{{out}} 'test' start at 2011-01-15 14:38:22 'test' ends at 2011-01-15 14:38:31 'test' takes 9 seconds
UNIX Shell
$ time sleep 1
real 0m1.074s user 0m0.001s sys 0m0.006s
VBA
Public Declare Function GetTickCount Lib "kernel32.dll" () As Long
Private Function identity(x As Long) As Long
For j = 0 To 1000
identity = x
Next j
End Function
Private Function sum(ByVal num As Long) As Long
Dim t As Long
For j = 0 To 1000
t = num
For i = 0 To 10000
t = t + i
Next i
Next j
sum = t
End Function
Private Sub time_it()
Dim start_time As Long, finis_time As Long
start_time = GetTickCount
identity 1
finis_time = GetTickCount
Debug.Print "1000 times Identity(1) takes "; (finis_time - start_time); " milliseconds"
start_time = GetTickCount
sum 1
finis_time = GetTickCount
Debug.Print "1000 times Sum(1) takes "; (finis_time - start_time); " milliseconds"
End Sub
{{out}}
1000 times Identity(1) takes 0 seconds
1000 times Sum(1) takes 296 seconds
Wart
time 1+1
30000/1000000 # in microseconds
=> 2
XPL0
This works fine under pure DOS but has problems under Windows. Windows can execute other processes, although it could be argued that this should be included as part of the total time to accomplish the task at hand. DOS does go off to service a timer interrupt, but it's usually very fast, although beware of TSRs that hook this interrupt handler.
There's a more serious problem with the GetTime intrinsic under Windows XP. GetTime provides microsecond resolution by combining the BIOS timer interrupt count at location 046C with the count in the 8254 chip (or its equivalent). Unfortunately, Windows virtualizes the 8254 and thus the two values can be out of sync.
include c:\cxpl\codes;
int T0, T1, I;
[T0:= GetTime;
for I:= 1, 1_000_000 do [];
T1:= GetTime;
IntOut(0, T1-T0); Text(0, " microseconds^M^J");
]
{{out|Example output}} for a Duron 850 running DOS 5.0:
2354 microseconds
Yabasic
sub count(n)
local i
for i = 1 to n
next i
end sub
count(1000000)
print peek("millisrunning"), " milliseconds"
t0 = peek("millisrunning")
count(10000000)
print peek("millisrunning")-t0, " milliseconds"
zkl
In order to be as OS independent as possible, only system time is available.
t:=Time.Clock.time; Atomic.sleep(3); (Time.Clock.time - t).println();
{{out}}
3