Implement a 2D sliding block puzzle game where blocks with numbers are combined to add their values.
Task
The rules are that on each turn the player must choose a direction (up, down, left or right) and all tiles move as far as possible in that direction, some more than others. Two adjacent tiles (in that direction only) with matching numbers combine into one bearing the sum of those numbers. A move is valid when at least one tile can be moved, if only by combination. A new tile with the value of 2 is spawned at the end of each turn at a randomly chosen empty square, if there is one. To win the player must create a tile with the number 2048. The player loses if no valid moves are possible.
The name comes from the popular open-source implementation of this game mechanic: https://gabrielecirulli.github.io/2048/.
Requirements:
- "Non-greedy" movement.
The tiles that were created by combining other tiles should not be combined again during the same turn (move).
That is to say that moving the tile row of
[2][2][2][2]
to the right should result in......[4][4]
and not.........[8]
- "Move direction priority".
If more than one variant of combining is possible, move direction shows one that will take effect.
For example, moving the tile row of
...[2][2][2]
to the right should result in......[2][4]
and not......[4][2]
- Adding a new tile on a blank space. Most of the time new "2" is to be added and occasionally (10% of the time) - "4"
- Check for valid moves. The player shouldn't be able to skip their turn by trying a move that doesn't change the board.
- Win condition.
- Lose condition.
Ada
Works with GNAT
with Ada.Text_IO; use Ada.Text_IO;
with System.Random_Numbers;
procedure Play_2048 is
-- ----- Keyboard management
type t_Keystroke is (Up, Down, Right, Left, Quit, Restart, Invalid);
-- Redefining this standard procedure as function to allow Get_Keystroke as an expression function
function Get_Immediate return Character is
begin
return Answer : Character do Ada.Text_IO.Get_Immediate(Answer);
end return;
end Get_Immediate;
Arrow_Prefix : constant Character := Character'Val(224); -- works for windows
function Get_Keystroke return t_Keystroke is
(case Get_Immediate is
when 'Q' | 'q' => Quit,
when 'R' | 'r' => Restart,
when 'W' | 'w' => Left,
when 'A' | 'a' => Up,
when 'S' | 's' => Down,
when 'D' | 'd' => Right,
-- Windows terminal
when Arrow_Prefix => (case Character'Pos(Get_Immediate) is
when 72 => Up,
when 75 => Left,
when 77 => Right,
when 80 => Down,
when others => Invalid),
-- Unix escape sequences
when ASCII.ESC => (case Get_Immediate is
when '[' => (case Get_Immediate is
when 'A' => Up,
when 'B' => Down,
when 'C' => Right,
when 'D' => Left,
when others => Invalid),
when others => Invalid),
when others => Invalid);
-- ----- Game data
function Random_Int is new System.Random_Numbers.Random_Discrete(Integer);
type t_List is array (Positive range <>) of Natural;
subtype t_Row is t_List (1..4);
type t_Board is array (1..4) of t_Row;
Board : t_Board;
New_Board : t_Board;
Blanks : Natural;
Score : Natural;
Generator : System.Random_Numbers.Generator;
-- ----- Displaying the board
procedure Display_Board is
Horizontal_Rule : constant String := "+----+----+----+----+";
function Center (Value : in String) return String is
((1..(2-(Value'Length-1)/2) => ' ') & -- Add leading spaces
Value(Value'First+1..Value'Last) & -- Trim the leading space of the raw number image
(1..(2-Value'Length/2) => ' ')); -- Add trailing spaces
begin
Put_Line (Horizontal_Rule);
for Row of Board loop
for Cell of Row loop
Put('|' & (if Cell = 0 then " " else Center(Cell'Img)));
end loop;
Put_Line("|");
Put_Line (Horizontal_Rule);
end loop;
Put_Line("Score =" & Score'Img);
end Display_Board;
-- ----- Game mechanics
procedure Add_Block is
Block_Offset : Positive := Random_Int(Generator, 1, Blanks);
begin
Blanks := Blanks-1;
for Row of Board loop
for Cell of Row loop
if Cell = 0 then
if Block_Offset = 1 then
Cell := (if Random_Int(Generator,1,10) = 1 then 4 else 2);
return;
else
Block_Offset := Block_Offset-1;
end if;
end if;
end loop;
end loop;
end Add_Block;
procedure Reset_Game is
begin
Board := (others => (others => 0));
Blanks := 16;
Score := 0;
Add_Block;
Add_Block;
end Reset_Game;
-- Moving and merging will always be performed leftward, hence the following transforms
function HFlip (What : in t_Row) return t_Row is
(What(4),What(3),What(2),What(1));
function VFlip (What : in t_Board) return t_Board is
(HFlip(What(1)),HFlip(What(2)),HFlip(What(3)),HFlip(What(4)));
function Transpose (What : in t_Board) return t_Board is
begin
return Answer : t_Board do
for Row in t_Board'Range loop
for Column in t_Row'Range loop
Answer(Column)(Row) := What(Row)(Column);
end loop;
end loop;
end return;
end Transpose;
-- For moving/merging, recursive expression functions will be used, but they
-- can't contain statements, hence the following sub-function used by Merge
function Add_Blank (Delta_Score : in Natural) return t_List is
begin
Blanks := Blanks+1;
Score := Score+Delta_Score;
return (1 => 0);
end Add_Blank;
function Move_Row (What : in t_List) return t_List is
(if What'Length = 1 then What
elsif What(What'First) = 0
then Move_Row(What(What'First+1..What'Last)) & (1 => 0)
else (1 => What(What'First)) & Move_Row(What(What'First+1..What'Last)));
function Merge (What : in t_List) return t_List is
(if What'Length <= 1 or else What(What'First) = 0 then What
elsif What(What'First) = What(What'First+1)
then (1 => 2*What(What'First)) & Merge(What(What'First+2..What'Last)) & Add_Blank(What(What'First))
else (1 => What(What'First)) & Merge(What(What'First+1..What'Last)));
function Move (What : in t_Board) return t_Board is
(Merge(Move_Row(What(1))),Merge(Move_Row(What(2))),Merge(Move_Row(What(3))),Merge(Move_Row(What(4))));
begin
System.Random_Numbers.Reset(Generator);
Reset_Game;
Main_Game_Loop: loop
Display_Board;
case Get_Keystroke is
when Restart => Reset_Game;
when Quit => exit Main_Game_Loop;
when Left => New_Board := Move(Board);
when Right => New_Board := VFlip(Move(VFlip(Board)));
when Up => New_Board := Transpose(Move(Transpose(Board)));
when Down => New_Board := Transpose(VFlip(Move(VFlip(Transpose(Board)))));
when others => null;
end case;
if New_Board = Board then
Put_Line ("Invalid move...");
elsif (for some Row of New_Board => (for some Cell of Row => Cell = 2048)) then
Display_Board;
Put_Line ("Win !");
exit Main_Game_Loop;
else
Board := New_Board;
Add_Block; -- OK since the board has changed
if Blanks = 0
and then (for all Row in 1..4 =>
(for all Column in 1..3 =>
(Board(Row)(Column) /= Board(Row)(Column+1))))
and then (for all Row in 1..3 =>
(for all Column in 1..4 =>
(Board(Row)(Column) /= Board(Row+1)(Column)))) then
Display_Board;
Put_Line ("Lost !");
exit Main_Game_Loop;
end if;
end if;
end loop Main_Game_Loop;
end Play_2048;
Output:
+----+----+----+----+
| 2 | 16 | 2 | 2 |
+----+----+----+----+
| 64 | | | |
+----+----+----+----+
| 4 | | | |
+----+----+----+----+
| | | | |
+----+----+----+----+
Score = 184
ALGOL 68
main:(
INT side = 4;
INT right = 1, up = 2, left = 3, down = 4;
[]CHAR direction letters = "ruld";
[]STRING direction descriptions = ("right", "up", "left", "down");
MODE BOARD = REF[,]INT;
MODE CELL = REF INT;
OP = = (BOARD a, BOARD b) BOOL:
(FOR i TO side DO FOR j TO side DO IF a[i,j] /= b[i,j] THEN mismatch FI OD OD;
TRUE EXIT
mismatch: FALSE);
PROC traverse board = (BOARD board, PROC(CELL)VOID callback) VOID:
FOR i FROM 1 LWB board TO 1 UPB board DO
FOR j FROM 2 LWB board TO 2 UPB board DO
callback(board[i,j])
OD OD;
PROC count blanks = (BOARD board) INT:
(INT count := 0;
traverse board(board, (CELL c)VOID: IF c = 0 THEN count +:= 1 FI);
count);
PROC nth blank = (BOARD board, INT nth) CELL:
(CELL result;
INT count := 0;
traverse board(board, (CELL c)VOID:
(IF c = 0 THEN count +:= 1 FI;
IF count = nth THEN
result := c; return
FI));
return: result);
PROC add new number = (BOARD board) VOID:
(INT nblanks = count blanks(board);
INT number := (random >= .9 | 4 | 2);
INT position := ENTIER (random * nblanks) + 1;
nth blank(board, position) := number);
PROC shift = (REF[]INT row, BOOL to the end) VOID:
(INT from = (to the end | UPB row | LWB row),
to = (to the end | LWB row | UPB row),
dir = (to the end | -1 | 1);
FOR i FROM from + dir BY dir TO to DO
IF row[i] /= 0 THEN
INT blank := 0;
FOR j FROM i - dir BY -dir TO from WHILE row[j] = 0 DO
blank := j
OD;
IF blank /= 0 THEN
row[blank] := row[i];
row[i] := 0
FI
FI
OD);
PROC combine = (REF[]INT row, BOOL to the end) VOID:
(INT from = (to the end | UPB row | LWB row),
to = (to the end | LWB row | UPB row),
dir = (to the end | -1 | 1);
FOR i FROM from BY dir TO to - dir DO
IF row[i] /= 0 AND row[i] = row[i+dir] THEN
row[i] *:= 2;
row[i+dir] := 0
FI
OD);
PROC move = (BOARD board, INT direction) VOID:
FOR i TO side DO
CASE direction IN
# right # (shift(board[i,], TRUE); combine(board[i,], TRUE); shift(board[i,], TRUE)),
# up # (shift(board[,i], FALSE); combine(board[,i], FALSE); shift(board[,i], FALSE)),
# left # (shift(board[i,], FALSE); combine(board[i,], FALSE); shift(board[i,], FALSE)),
# down # (shift(board[,i], TRUE); combine(board[,i], TRUE); shift(board[,i], TRUE))
ESAC
OD;
PROC print board = (BOARD board)VOID:
(FOR i FROM 1 LWB board TO 1 UPB board DO
print("+");
FOR j FROM 2 LWB board TO 2 UPB board DO print("------+") OD;
print((new line, "|"));
FOR j FROM 2 LWB board TO 2 UPB board DO
print(((board[i,j] = 0 | " " | whole(board[i,j],-5)), " |"))
OD;
print(new line)
OD;
print("+"); FOR j FROM 2 LWB board TO 2 UPB board DO print("------+") OD;
print(new line)
);
PROC score = (BOARD board) INT:
(INT result := 0;
traverse board(board, (CELL c)VOID: result +:= c);
result);
PROC join = ([]STRING strings, STRING joiner) STRING:
IF UPB strings > 0 THEN
STRING result := strings[1];
FOR i FROM 2 TO UPB strings DO result +:= joiner +:= strings[i] OD;
result
ELSE
""
FI;
BOARD board = LOC [side,side]INT;
BOARD previous = LOC [side,side]INT;
traverse board(board, (CELL c)VOID: c := 0);
# start with two numbers #
TO 2 DO add new number(board) OD;
# play! #
STRING prompt := "enter one of [" + direction letters + "] (for " + join(direction descriptions, "/") + "): ";
DO
CHAR key;
INT dir;
print board(board);
print(("score: ", whole(score(board),0), new line));
WHILE
print(prompt);
read((key, new line));
NOT char in string(key, dir, direction letters)
DO SKIP OD;
previous := board;
move(board, dir);
IF count blanks(board) = 0 THEN lose FI;
traverse board(board, (CELL c)VOID: IF c = 2048 THEN win FI);
IF previous = board THEN
print(("try again!", new line))
ELSE
add new number(board)
FI
OD;
win: print board(board); print(("you win!", new line)) EXIT
lose: print(("you lose!", new line))
)
AutoHotkey
Grid := [], s := 16, w := h := S * 4.5
Gui, font, s%s%
Gui, add, text, y1
loop, 4
{
row := A_Index
loop, 4
{
col := A_Index
if col = 1
Gui, add, button, v%row%_%col% xs y+1 w%w% h%h% -TabStop, % Grid[row,col] := 0
else
Gui, add, button, v%row%_%col% x+1 yp w%w% h%h% -TabStop, % Grid[row,col] := 0
}
}
Gui, show,, 2048
;------------------------------
Start:
for row, obj in Grid
for col, val in obj
Grid[row,col] := 0
Grid[1,1]:=2
ShowGrid()
return
;------------------------------
GuiClose:
ExitApp
return
;------------------------------
#IfWinActive, 2048
;------------------------------
up::
move := false
loop, 4
{
col := A_Index
Loop, 3
{
row := A_Index
if Grid[row, col] && (Grid[row, col] = Grid[row+1, col])
Grid[row, col] *=2 , Grid[row+1, col] := 0, move := true
}
}
loop, 4
{
row := A_Index
loop, 4
{
col := A_Index
loop, 4
if !Grid[row, col]
loop, 3
if !Grid[row, col] && Grid[row+A_Index, col]
{
Grid[row, col] := Grid[row+A_Index, col] , Grid[row+A_Index, col] := 0, move := true
if (Grid[row, col] = Grid[row-1, col])
Grid[row-1, col] *=2 , Grid[row, col] := 0, move := true
}
}
}
gosub, AddNew
return
;------------------------------
Down::
move := false
loop, 4
{
col := A_Index
Loop, 3
{
row := 5-A_Index
if Grid[row, col] && (Grid[row, col] = Grid[row-1, col])
Grid[row, col] *=2 , Grid[row-1, col] := 0, move := true
}
}
loop, 4
{
row := 5-A_Index
loop, 4
{
col := A_Index
loop, 4
if !Grid[row, col]
loop, 3
if !Grid[row, col] && Grid[row-A_Index, col]
{
Grid[row, col] := Grid[row-A_Index, col] , Grid[row-A_Index, col] := 0, move := true
if (Grid[row, col] = Grid[row+1, col])
Grid[row+1, col] *=2 , Grid[row, col] := 0, move := true
}
}
}
gosub, AddNew
return
;------------------------------
Left::
move := false
loop, 4
{
row := A_Index
Loop, 3
{
col := A_Index
if Grid[row, col] && (Grid[row, col] = Grid[row, col+1])
Grid[row, col] *=2 , Grid[row, col+1] := 0, move := true
}
}
loop, 4
{
col := A_Index
loop, 4
{
row := A_Index
loop, 4
if !Grid[row, col]
loop, 3
if !Grid[row, col] && Grid[row, col+A_Index]
{
Grid[row, col] := Grid[row, col+A_Index] , Grid[row, col+A_Index] := 0, move := true
if (Grid[row, col] = Grid[row, col-1])
Grid[row, col-1] *=2 , Grid[row, col] := 0, move := true
}
}
}
gosub, AddNew
return
;------------------------------
Right::
move := false
loop, 4
{
row := A_Index
Loop, 3
{
col := 5-A_Index
if Grid[row, col] && (Grid[row, col] = Grid[row, col-1])
Grid[row, col] *=2 , Grid[row, col-1] := 0, move := true
}
}
loop, 4
{
col := 5-A_Index
loop, 4
{
row := A_Index
loop, 4
if !Grid[row, col]
loop, 3
if !Grid[row, col] && Grid[row, col-A_Index]
{
Grid[row, col] := Grid[row, col-A_Index] , Grid[row, col-A_Index] := 0, move := true
if (Grid[row, col] = Grid[row, col+1])
Grid[row, col+1] *=2 , Grid[row, col] := 0, move := true
}
}
}
gosub, AddNew
return
;------------------------------
#IfWinActive
;------------------------------
AddNew:
if EndOfGame()
{
MsgBox Done `nPress OK to retry
goto start
}
return
;------------------------------
EndOfGame(){
global
if Move
AddRandom()
ShowGrid()
for row, obj in Grid
for col, val in obj
if !grid[row,col]
return 0
for row, obj in Grid
for col, val in obj
if (grid[row,col] = grid[row+1,col]) || (grid[row,col] = grid[row-1,col]) || (grid[row,col] = grid[row,col+1]) || (grid[row,col] = grid[row,col-1])
return 0
return 1
}
;------------------------------
ShowGrid(){
global Grid
for row, obj in Grid
for col, val in obj
{
GuiControl,, %row%_%col%, %val%
if val
GuiControl, Show, %row%_%col%
else
GuiControl, Hide, %row%_%col%
}
}
;------------------------------
AddRandom(){
global Grid
ShowGrid()
Sleep, 200
for row, obj in Grid
for col, val in obj
if !grid[row,col]
list .= (list?"`n":"") row "," col
Sort, list, random
Rnd := StrSplit(list, "`n").1
Grid[StrSplit(rnd, ",").1, StrSplit(rnd, ",").2] := 2
}
;------------------------------
Batch File
::2048 Game Task from RosettaCode.org
::Batch File Implementation
@echo off
setlocal enabledelayedexpansion
cls
:begin_game
%== Set variables ==%
set "score=0"
set "won=0"
set "SUP_score=0"
for /l %%A in (1,1,4) do for /l %%B in (1,1,4) do set /a "X_%%A%%B=0"
call :addtile
call :addtile
%== Main game loop ==%
:main_loop
set "changed=0"
call :display
echo(
echo Keys: WASD (Slide Movement^), N (New game^), P (Exit^)
%== Get Keypress ==%
set "key="
for /f "delims=" %%? in ('xcopy /w "%~f0" "%~f0" 2^>nul') do if not defined key set "key=%%?"
set "key=%key:~-1%"
%== Process keypress ==%
if /i "!key!"=="W" (
for /l %%? in (1,1,4) do call :slide X_1%%? X_2%%? X_3%%? X_4%%?
)
if /i "!key!"=="A" (
for /l %%? in (1,1,4) do call :slide X_%%?1 X_%%?2 X_%%?3 X_%%?4
)
if /i "!key!"=="S" (
for /l %%? in (1,1,4) do call :slide X_4%%? X_3%%? X_2%%? X_1%%?
)
if /i "!key!"=="D" (
for /l %%? in (1,1,4) do call :slide X_%%?4 X_%%?3 X_%%?2 X_%%?1
)
if /i "!key!"=="N" goto :begin_game
if /i "!key!"=="P" exit /b
%== Check if the board changed ==%
if %changed% neq 0 call :addtile
%== Check if already won ==%
if %won% equ 1 (
set "msg=Nice one... You WON^!^!"
goto :gameover
)
%== Check for lose condition ==%
set /a "real_blanks=blank_count-1"
if %real_blanks% leq 0 (
for /l %%A in (1,1,4) do for /l %%B in (1,1,4) do set "TRY_%%A%%B=!X_%%A%%B!"
set "TRY_changed=%changed%" & set "changed=0"
set "SUP_score=1"
for /l %%? in (1,1,4) do call :slide TRY_%%?1 TRY_%%?2 TRY_%%?3 TRY_%%?4
for /l %%? in (1,1,4) do call :slide TRY_1%%? TRY_2%%? TRY_3%%? TRY_4%%?
if !changed! equ 0 (
set "msg=No moves are possible... Game Over :("
goto :gameover
) else (set "changed=!TRY_changed!" & set "SUP_score=0")
)
goto main_loop
::~~~~~~~~~~~~~~~~~~~~ Sub Procedures ~~~~~~~~~~~~~~~~~~~~::
%== Game Over xD ==%
:gameover
call :display
echo(
echo(!msg!
echo(
echo(Keys: N (New game^), P (Exit^)
:key_loop
set "key="
for /f "delims=" %%? in ('xcopy /w "%~f0" "%~f0" 2^>nul') do if not defined key set "key=%%?"
set "key=%key:~-1%"
if /i "!key!"=="N" goto :begin_game
if /i "!key!"=="P" exit /b
goto :key_loop
%== The main slider of numbers in tiles ==%
:slide
set "next="
set "slide_1="
set "slide_2="
for %%? in (%*) do if !%%?! neq 0 set "slide_1=!slide_1! !%%?!"
for %%? in (!slide_1!) do (
set "scan=%%?"
if "!scan!"=="!next!" (
set /a "next*=2"
if !SUP_score! equ 0 set /a "score+=!next!"
%== WINNING CONDITION!!! ==%
if "!next!" equ "2048" set "won=1"
set "scan="
)
set "slide_2=!slide_2! !next!"
set "next=!scan!"
)
set "slide_2=!slide_2! !next!"
for /l %%? in (1,1,4) do set "final_%%?=0"
set "cnt=0" & for %%? in (!slide_2!) do if !cnt! lss 4 (
set /a "cnt+=1"
set "final_!cnt!=%%?"
)
if not "!%1!!%2!!%3!!%4!"=="!final_1!!final_2!!final_3!!final_4!" set "changed=1"
set "cnt=0" & for %%? in (%*) do (
set /a "cnt+=1"
set /a "%%?=final_!cnt!"
)
goto :EOF
%== Add number to tile ==%
:addtile
set "blank_list="
set "blank_count=0"
for /l %%A in (1,1,4) do for /l %%B in (1,1,4) do (
if !X_%%A%%B! equ 0 (
set "blank_list=!blank_list!X_%%A%%B"
set /a blank_count+=1
)
)
set /a "pick_tile=(%random% %% %blank_count%)*4"
set /a "rnd=%random%%%10+1"
set "tile_new=!blank_list:~%pick_tile%,4!"
if %rnd%==5 (set !tile_new!=4) else (set !tile_new!=2)
goto :EOF
%== Display the table ==%
:display
cls
echo 2048 Game in Batch
echo(
for /l %%A in (1,1,4) do (
for /l %%B in (1,1,4) do (
set "DX_%%A%%B=!X_%%A%%B!"
if !tile_new!==X_%%A%%B (set "DX_%%A%%B= +!X_%%A%%B!") else (
if !X_%%A%%B! lss 1000 set "DX_%%A%%B= !DX_%%A%%B!"
if !X_%%A%%B! lss 100 set "DX_%%A%%B= !DX_%%A%%B!"
if !X_%%A%%B! lss 10 set "DX_%%A%%B= !DX_%%A%%B!"
if !X_%%A%%B! equ 0 set "DX_%%A%%B= "
)
)
echo +----+----+----+----+
echo ^|!DX_%%A1!^|!DX_%%A2!^|!DX_%%A3!^|!DX_%%A4!^|
)
echo +----+----+----+----+
echo(
echo Score: %score%
goto :EOF
Output:
2048 Game in Batch
+----+----+----+----+
| | +2| | |
+----+----+----+----+
| 4| | | |
+----+----+----+----+
| 4| | | |
+----+----+----+----+
| 16| 4| | 2|
+----+----+----+----+
Score: 60
Keys: WASD (Slide Movement), N (New game), P (Exit)
BBC BASIC
Works with BBC BASIC for Windows
SIZE = 4 : MAX = SIZE-1
Won% = FALSE : Lost% = FALSE
@% = 5
DIM Board(MAX,MAX),Stuck% 3
PROCBreed
PROCPrint
REPEAT
Direction = GET-135
IF Direction > 0 AND Direction < 5 THEN
Moved% = FALSE
PROCShift
PROCMerge
PROCShift
IF Moved% THEN PROCBreed : !Stuck%=0 ELSE ?(Stuck%+Direction-1)=-1 : Lost% = !Stuck%=-1
PROCPrint
ENDIF
UNTIL Won% OR Lost%
IF Won% THEN PRINT "You WON! :-)" ELSE PRINT "You lost :-("
END
REM -----------------------------------------------------------------------------------------------------------------------
DEF PROCPrint
FOR i = 0 TO SIZE*SIZE-1
IF Board(i DIV SIZE,i MOD SIZE) THEN PRINT Board(i DIV SIZE,i MOD SIZE); ELSE PRINT " _";
IF i MOD SIZE = MAX THEN PRINT
NEXT
PRINT STRING$(SIZE,"-----")
ENDPROC
REM ----------------------------------------------------------------------------------------------------------------------
DEF PROCShift
IF Direction = 2 OR Direction = 3 THEN loopend = MAX : step = -1 ELSE loopend = 0 : step = 1
FOR row = loopend TO MAX-loopend STEP step
zeros = 0
FOR col = loopend TO MAX-loopend STEP step
IF Direction < 3 THEN
IF Board(row,col) = 0 THEN zeros += step ELSE IF zeros THEN SWAP Board(row,col),Board(row,col-zeros) : Moved% = TRUE
ELSE
IF Board(col,row) = 0 THEN zeros += step ELSE IF zeros THEN SWAP Board(col,row),Board(col-zeros,row) : Moved% = TRUE
ENDIF
NEXT
NEXT
ENDPROC
REM -----------------------------------------------------------------------------------------------------------------------
DEF PROCMerge
IF Direction = 1 THEN loopend = 0 : rowoff = 0 : coloff = 1 : step = 1
IF Direction = 2 THEN loopend = MAX : rowoff = 0 : coloff = -1 : step = -1
IF Direction = 3 THEN loopend = MAX : rowoff = -1 : coloff = 0 : step = -1
IF Direction = 4 THEN loopend = 0 : rowoff = 1 : coloff = 0 : step = 1
FOR row = loopend TO MAX-loopend-rowoff STEP step
FOR col = loopend TO MAX-loopend-coloff STEP step
IF Board(row,col) THEN IF Board(row,col) = Board(row+rowoff,col+coloff) THEN
Board(row,col) *= 2 : Board(row+rowoff,col+coloff) = 0
Moved% = TRUE
IF NOT Won% THEN Won% = Board(row,col)=2048
ENDIF
NEXT
NEXT
ENDPROC
REM -----------------------------------------------------------------------------------------------------------------------
DEF PROCBreed
cell = RND(SIZE*SIZE)-1
FOR i = 0 TO SIZE*SIZE-1
z = (cell+i) MOD (SIZE*SIZE)
IF Board(z DIV SIZE,z MOD SIZE) = 0 THEN Board(z DIV SIZE,z MOD SIZE) = 2-(RND(10)=1)*2 : EXIT FOR
NEXT
ENDPROC
Output:
_ _ _ _
_ _ _ _
_ _ 2 _
_ _ _ _
--------------------
_ _ _ _
_ _ _ _
2 _ _ _
_ 2 _ _
--------------------
2 2 _ _
_ _ 2 _
_ _ _ _
_ _ _ _
--------------------
4 2 _ _
2 _ _ _
_ _ _ _
_ _ _ _
--------------------
.
.
.
.
2 8 4 2
4 2 16 4
16 4 8 32
4 32 2 4
--------------------
You lost :-(
C
Version 1
Supports limited colours through vt100 escape codes. Requires a posix machine for termios.h and unistd.h headers. Provides simplistic animations when moving and merging blocks.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <termios.h>
#include <time.h>
#include <unistd.h>
#define D_INVALID -1
#define D_UP 1
#define D_DOWN 2
#define D_RIGHT 3
#define D_LEFT 4
const long values[] = {
0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048
};
const char *colors[] = {
"39", "31", "32", "33", "34", "35", "36", "37", "91", "92", "93", "94"
};
struct gamestate_struct__ {
int grid[4][4];
int have_moved;
long total_score;
long score_last_move;
int blocks_in_play;
} game;
struct termios oldt, newt;
void do_draw(void)
{
printf("\033[2J\033[HScore: %ld", game.total_score);
if (game.score_last_move)
printf(" (+%ld)", game.score_last_move);
printf("\n");
for (int i = 0; i < 25; ++i)
printf("-");
printf("\n");
for (int y = 0; y < 4; ++y) {
printf("|");
for (int x = 0; x < 4; ++x) {
if (game.grid[x][y])
printf("\033[7m\033[%sm%*zd \033[0m|", colors[game.grid[x][y]],
4, values[game.grid[x][y]]);
else
printf("%*s |", 4, "");
}
printf("\n");
}
for (int i = 0; i < 25; ++i) {
printf("-");
}
printf("\n");
}
void do_merge(int d)
{
/* These macros look pretty scary, but mainly demonstrate some space saving */
#define MERGE_DIRECTION(_v1, _v2, _xs, _xc, _xi, _ys, _yc, _yi, _x, _y) \
do { \
for (int _v1 = _xs; _v1 _xc; _v1 += _xi) { \
for (int _v2 = _ys; _v2 _yc; _v2 += _yi) { \
if (game.grid[x][y] && (game.grid[x][y] == \
game.grid[x + _x][y + _y])) { \
game.grid[x][y] += (game.have_moved = 1); \
game.grid[x + _x][y + _y] = (0 * game.blocks_in_play--);\
game.score_last_move += values[game.grid[x][y]]; \
game.total_score += values[game.grid[x][y]]; \
} \
} \
} \
} while (0)
game.score_last_move = 0;
switch (d) {
case D_LEFT:
MERGE_DIRECTION(x, y, 0, < 3, 1, 0, < 4, 1, 1, 0);
break;
case D_RIGHT:
MERGE_DIRECTION(x, y, 3, > 0, -1, 0, < 4, 1, -1, 0);
break;
case D_DOWN:
MERGE_DIRECTION(y, x, 3, > 0, -1, 0, < 4, 1, 0, -1);
break;
case D_UP:
MERGE_DIRECTION(y, x, 0, < 3, 1, 0, < 4, 1, 0, 1);
break;
}
#undef MERGE_DIRECTION
}
void do_gravity(int d)
{
#define GRAVITATE_DIRECTION(_v1, _v2, _xs, _xc, _xi, _ys, _yc, _yi, _x, _y) \
do { \
int break_cond = 0; \
while (!break_cond) { \
break_cond = 1; \
for (int _v1 = _xs; _v1 _xc; _v1 += _xi) { \
for (int _v2 = _ys; _v2 _yc; _v2 += _yi) { \
if (!game.grid[x][y] && game.grid[x + _x][y + _y]) { \
game.grid[x][y] = game.grid[x + _x][y + _y]; \
game.grid[x + _x][y + _y] = break_cond = 0; \
game.have_moved = 1; \
} \
} \
} \
do_draw(); usleep(40000); \
} \
} while (0)
switch (d) {
case D_LEFT:
GRAVITATE_DIRECTION(x, y, 0, < 3, 1, 0, < 4, 1, 1, 0);
break;
case D_RIGHT:
GRAVITATE_DIRECTION(x, y, 3, > 0, -1, 0, < 4, 1, -1, 0);
break;
case D_DOWN:
GRAVITATE_DIRECTION(y, x, 3, > 0, -1, 0, < 4, 1, 0, -1);
break;
case D_UP:
GRAVITATE_DIRECTION(y, x, 0, < 3, 1, 0, < 4, 1, 0, 1);
break;
}
#undef GRAVITATE_DIRECTION
}
int do_check_end_condition(void)
{
int ret = -1;
for (int x = 0; x < 4; ++x) {
for (int y = 0; y < 4; ++y) {
if (values[game.grid[x][y]] == 2048)
return 1;
if (!game.grid[x][y] ||
((x + 1 < 4) && (game.grid[x][y] == game.grid[x + 1][y])) ||
((y + 1 < 4) && (game.grid[x][y] == game.grid[x][y + 1])))
ret = 0;
}
}
return ret;
}
int do_tick(int d)
{
game.have_moved = 0;
do_gravity(d);
do_merge(d);
do_gravity(d);
return game.have_moved;
}
void do_newblock(void) {
if (game.blocks_in_play >= 16) return;
int bn = rand() % (16 - game.blocks_in_play);
int pn = 0;
for (int x = 0; x < 4; ++x) {
for (int y = 0; y < 4; ++y) {
if (game.grid[x][y])
continue;
if (pn == bn){
game.grid[x][y] = rand() % 10 ? 1 : 2;
game.blocks_in_play += 1;
return;
}
else {
++pn;
}
}
}
}
int main(void)
{
/* Initialize terminal settings */
tcgetattr(STDIN_FILENO, &oldt);
newt = oldt;
newt.c_lflag &= ~(ICANON | ECHO);
tcsetattr(STDIN_FILENO, TCSANOW, &newt);
srand(time(NULL));
memset(&game, sizeof(game), 0);
do_newblock();
do_newblock();
do_draw();
while (1) {
int found_valid_key, direction, value;
do {
found_valid_key = 1;
direction = D_INVALID;
value = getchar();
switch (value) {
case 'h': case 'a':
direction = D_LEFT;
break;
case 'l': case 'd':
direction = D_RIGHT;
break;
case 'j': case 's':
direction = D_DOWN;
break;
case 'k': case 'w':
direction = D_UP;
break;
case 'q':
goto game_quit;
break;
case 27:
if (getchar() == 91) {
value = getchar();
switch (value) {
case 65:
direction = D_UP;
break;
case 66:
direction = D_DOWN;
break;
case 67:
direction = D_RIGHT;
break;
case 68:
direction = D_LEFT;
break;
default:
found_valid_key = 0;
break;
}
}
break;
default:
found_valid_key = 0;
break;
}
} while (!found_valid_key);
do_tick(direction);
if (game.have_moved != 0){
do_newblock();
}
do_draw();
switch (do_check_end_condition()) {
case -1:
goto game_lose;
case 1:
goto game_win;
case 0:
break;
}
}
if (0)
game_lose:
printf("You lose!\n");
goto game_quit;
if (0)
game_win:
printf("You win!\n");
goto game_quit;
if (0)
game_quit:
/* Restore terminal settings */
tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
return 0;
}
Output:
Score: 1100 (+4)
-------------------------
| 64 | 32 | 64 | 32 |
| 32 | 16 | 2 | 8 |
| 16 | 4 | 8 | 4 |
| 4 | 2 | 4 | 2 |
-------------------------
You lose!
Version 2
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#define EMPTY_TILE 0
#define ROWS 4
#define COLUMNS 4
/*
* GENERAL CONCEPT
*
* How do you add up tiles when there is whitespace between them?
* You sort the array so that there are no empty tiles between them while stacking them all to one side
* then the addition function always adds up from left to right or up to bottom. It does not care
* about the left movements or the down movement. This can be achieved by reversing the array
* whenever the player chooses to move to the right or down, when the addition is finished
* the array gets reversed back and its like it had been added from right to left or bottom to top
* When the addition is done, the program scans for the number of empty tiles and uses that
* in its selection of the next tile to be filled. 10% of times a tile gets occupied with a 4
*
*/
/*
* the remove_whitespace functions; it is pretty clear what they do.
* they use a bubble short algorith to move the 0's or empty tiles to the end of the array
* depending on the direction moved (without carring about going right or up
*
*/
void remove_whitespace_horizontaly(int board[ROWS][COLUMNS], int rows, int columns)
{
int a = columns;
int tmp;
for (; a < COLUMNS - 1; ++a) {
tmp = board[rows][a];
board[rows][a] = board[rows][a+1];
board[rows][a+1] = tmp;
}
}
void remove_whitespace_verticaly(int board[ROWS][COLUMNS], int columns, int rows)
{
int a = rows;
int tmp;
for (; a < ROWS - 1; ++a) {
tmp = board[a][columns];
board[a][columns] = board[a+1][columns];
board[a+1][columns] = tmp;
}
}
/*
* the add_tiles functions. those functions do the heavy work of adding the tiles and
* taking care of special situations such as when adding two equal tiles a 0 gets generated
* they are quite difficult to understand i think (which means not that you need to be too clever
* but that i have done a poor job of creating them) and it took around 4 hours to get the
* proper result
*/
void add_tiles_horizontaly(int board[ROWS][COLUMNS])
{
int a, b, flag;
for (a = 0; a < ROWS; ++a) {
for (b = 0, flag = 0; b < COLUMNS - 1 && flag != 4; ++b) {
if (board[a][b] == EMPTY_TILE) {
remove_whitespace_horizontaly(board, a, b);
--b;
++flag;
}
else {
if (board[a][b+1] == EMPTY_TILE) {
board[a][b+1] = board[a][b];
board[a][b] = EMPTY_TILE;
--b;
} else if (board[a][b] == board[a][b+1]) {
board[a][b] += board[a][b+1];
board[a][b+1] = EMPTY_TILE;
}
}
}
}
}
void add_tiles_verticaly(int board[ROWS][COLUMNS])
{
int a, b, flag;
for (a = 0; a < COLUMNS; ++a) {
for (b = 0, flag = 0; b < ROWS-1 && flag != 4; ++b) {
if (board[b][a] == EMPTY_TILE) {
remove_whitespace_verticaly(board, a, b);
--b;
++flag;
}
else {
if (board[b+1][a] == EMPTY_TILE) {
board[b+1][a] = board[b][a];
board[b][a] = EMPTY_TILE;
--b;
} else if (board[b][a] == board[b+1][a]) {
board[b][a] += board[b+1][a];
board[b+1][a] = EMPTY_TILE;
}
}
}
}
}
/*
* ... print the board
*/
void print_board(int board[ROWS][COLUMNS])
{
int a, b;
for (a = 0; a < ROWS; ++a) {
printf("\n");
for (b = 0; b < COLUMNS; ++b) {
printf("%5i", board[a][b]);
}
}
printf("\n");
}
/*
* The reverse_board function reverses the array
* if the movement is right or down reverse the array
*/
void reverse_board(char input[], int board[ROWS][COLUMNS])
{
int a, b, c, tmp;
if (!strcmp(input, "right")) {
for (a = 0; a < ROWS; ++a) {
for (b = 0, c = 3; b < 2; ++b, --c) {
tmp = board[a][b];
board[a][b] = board[a][c];
board[a][c] = tmp;
}
}
}
else if (!strcmp(input, "down")) {
for (a = 0; a < COLUMNS; ++a) {
for (b = 0, c = 3; b < 2; ++b, --c) {
tmp = board[b][a];
board[b][a] = board[c][a];
board[c][a] = tmp;
}
}
}
}
/*
* the check_board function is the one which evaluates the win or lose condition
* for each turn and at the same time providing the number of empty tiles for the random generator
* function
*/
int check_board (int board[ROWS][COLUMNS])
{
int a, b;
int result = 0;
int empty_tiles = 0;
for (a = 0; a < ROWS; ++a)
for (b = 0; b < COLUMNS; ++b)
if (board[a][b] == 2048)
result = -1;
else if (board[a][b] == EMPTY_TILE)
++empty_tiles;
result = result == -1 ? result : empty_tiles;
return result;
}
/*
* the generate_random functin generates a random number between 0 and the number of
* empty tiles. the generated number will assign to the Nth empty tile = (random_number)
* the new value, it also takes care of the 10% chance for producing a 4 tile
*/
void generate_random(int board[ROWS][COLUMNS], int empty_tiles )
{
srand(time(NULL));
int a, b;
int random = 0;
int tile = 0;
random = rand() % empty_tiles;
tile = (rand() % 9 == 4) ? 4 : 2;
for (a = 0; a < ROWS; ++a)
for (b = 0; b < COLUMNS; ++b)
if (board[a][b] == EMPTY_TILE && random != 0)
--random;
else if (board[a][b] == EMPTY_TILE && random == 0) {
board[a][b] = tile;
return;
}
}
/*
* infinite loop, get the movements or exit code and act accordingly
*/
int play_game(int board[ROWS][COLUMNS])
{
char movement[81];
int tiles = 0;
printf("this is the 2048 game\n" \
"The goal of this game is make a tile reach the value of 2048\n"\
"The board starts of with only one occupied tile.\n"\
"On each round a new tile gets added with the value of 2\n"\
"or at 10%% of the times with the value of 4\n"\
"If you run out of tiles you lose\n"\
"There are 4 movements you can supply to the game\n"\
"right, left, up, and down.\n"\
"For each of this movements the tiles move to the direction specified\n"\
"If two tiles have the same value the get added up just once.\n"\
"If 2 occupied tiles share the same row or column but are seperated by empty tiles\n"\
"then the occupied tiles travel along the empty tiles stacking in the direction\n"\
"they were directed\n"\
"For a more visual explanation you can check the wikipedia entry\n"
" if you search for 2058 board game\n" \
"Here we go\n");
print_board(board);
while (1) {
printf("(enter: left,right,up,down,exit)>> ");
scanf("%s", movement);
if (!strcmp(movement, "down")) {
reverse_board(movement,board);
add_tiles_verticaly(board);
tiles = check_board(board);
if (tiles == -1)
return -1;
else if (tiles == 0)
return 0;
generate_random(board,tiles);
reverse_board(movement, board);
}
else if (!strcmp(movement, "up")) {
add_tiles_verticaly(board);
tiles = check_board(board);
if (tiles == -1)
return -1;
else if (tiles == 0)
return 0;
generate_random(board,tiles);
}
else if (!strcmp(movement, "right")) {
reverse_board(movement,board);
add_tiles_horizontaly(board);
tiles = check_board(board);
if (tiles == -1)
return -1;
else if (tiles == 0)
return 0;
generate_random(board,tiles);
reverse_board(movement, board);
}
else if (!strcmp(movement, "left")) {
add_tiles_horizontaly(board);
tiles = check_board(board);
if (tiles == -1)
return -1;
else if (tiles == 0)
return 0;
generate_random(board,tiles);
}
else if (!strcmp(movement, "exit")) {
return 1;
}
else {
printf("Do not recognize this movement please type again\n");
continue;
}
print_board(board);
}
}
int main(void)
{
int play_game(int board[ROWS][COLUMNS]);
void generate_random(int board[ROWS][COLUMNS], int empty_tiles );
int check_board (int board[ROWS][COLUMNS]);
void reverse_board(char input[], int board[ROWS][COLUMNS]);
void print_board(int board[ROWS][COLUMNS]);
void add_tiles_verticaly(int board[ROWS][COLUMNS]);
void add_tiles_horizontaly(int board[ROWS][COLUMNS]);
void remove_whitespace_verticaly(int board[ROWS][COLUMNS], int columns, int rows);
void remove_whitespace_horizontaly(int board[ROWS][COLUMNS], int rows, int columns);
int win_condition;
int board[ROWS][COLUMNS] = {
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0}
};
generate_random(board, 16); /* initialize the board */
win_condition = play_game(board);
switch (win_condition) {
case 1:
printf("But you are not done yet!!!\n" \
"Fine, see you another day\n");
break;
case 0:
printf("Ohh noo, you run out of tiles\n" \
"Run me agan to play some more\n" \
"Byyyeee\n");
break;
case -1:
printf("WooooW you did it, Good job!!!\n" \
"See ya later homie\n");
break;
}
return 0;
}
C#
Translated from C++.
using System;
namespace g2048_csharp
{
internal class Tile
{
public Tile()
{
Value = 0;
IsBlocked = false;
}
public int Value { get; set; }
public bool IsBlocked { get; set; }
}
internal enum MoveDirection
{
Up,
Down,
Left,
Right
}
internal class G2048
{
public G2048()
{
_isDone = false;
_isWon = false;
_isMoved = true;
_score = 0;
InitializeBoard();
}
private void InitializeBoard()
{
for (int y = 0; y < 4; y++)
{
for (int x = 0; x < 4; x++)
{
_board[x, y] = new Tile();
}
}
}
private bool _isDone;
private bool _isWon;
private bool _isMoved;
private int _score;
private readonly Tile[,] _board = new Tile[4, 4];
private readonly Random _rand = new Random();
public void Loop()
{
AddTile();
while (true)
{
if (_isMoved)
{
AddTile();
}
DrawBoard();
if (_isDone)
{
break;
}
WaitKey();
}
string endMessage = _isWon ? "You've made it!" : "Game Over!";
Console.WriteLine(endMessage);
}
private void DrawBoard()
{
Console.Clear();
Console.WriteLine("Score: " + _score + "\n");
for (int y = 0; y < 4; y++)
{
Console.WriteLine("+------+------+------+------+");
Console.Write("| ");
for (int x = 0; x < 4; x++)
{
if (_board[x, y].Value == 0)
{
const string empty = " ";
Console.Write(empty.PadRight(4));
}
else
{
Console.Write(_board[x, y].Value.ToString().PadRight(4));
}
Console.Write(" | ");
}
Console.WriteLine();
}
Console.WriteLine("+------+------+------+------+\n\n");
}
private void WaitKey()
{
_isMoved = false;
Console.WriteLine("(W) Up (S) Down (A) Left (D) Right");
char input;
char.TryParse(Console.ReadKey().Key.ToString(), out input);
switch (input)
{
case 'W':
Move(MoveDirection.Up);
break;
case 'A':
Move(MoveDirection.Left);
break;
case 'S':
Move(MoveDirection.Down);
break;
case 'D':
Move(MoveDirection.Right);
break;
}
for (int y = 0; y < 4; y++)
{
for (int x = 0; x < 4; x++)
{
_board[x, y].IsBlocked = false;
}
}
}
private void AddTile()
{
for (int y = 0; y < 4; y++)
{
for (int x = 0; x < 4; x++)
{
if (_board[x, y].Value != 0) continue;
int a, b;
do
{
a = _rand.Next(0, 4);
b = _rand.Next(0, 4);
} while (_board[a, b].Value != 0);
double r = _rand.NextDouble();
_board[a, b].Value = r > 0.89f ? 4 : 2;
if (CanMove())
{
return;
}
}
}
_isDone = true;
}
private bool CanMove()
{
for (int y = 0; y < 4; y++)
{
for (int x = 0; x < 4; x++)
{
if (_board[x, y].Value == 0)
{
return true;
}
}
}
for (int y = 0; y < 4; y++)
{
for (int x = 0; x < 4; x++)
{
if (TestAdd(x + 1, y, _board[x, y].Value)
|| TestAdd(x - 1, y, _board[x, y].Value)
|| TestAdd(x, y + 1, _board[x, y].Value)
|| TestAdd(x, y - 1, _board[x, y].Value))
{
return true;
}
}
}
return false;
}
private bool TestAdd(int x, int y, int value)
{
if (x < 0 || x > 3 || y < 0 || y > 3)
{
return false;
}
return _board[x, y].Value == value;
}
private void MoveVertically(int x, int y, int d)
{
if (_board[x, y + d].Value != 0
&& _board[x, y + d].Value == _board[x, y].Value
&& !_board[x, y].IsBlocked
&& !_board[x, y + d].IsBlocked)
{
_board[x, y].Value = 0;
_board[x, y + d].Value *= 2;
_score += _board[x, y + d].Value;
_board[x, y + d].IsBlocked = true;
_isMoved = true;
}
else if (_board[x, y + d].Value == 0
&& _board[x, y].Value != 0)
{
_board[x, y + d].Value = _board[x, y].Value;
_board[x, y].Value = 0;
_isMoved = true;
}
if (d > 0)
{
if (y + d < 3)
{
MoveVertically(x, y + d, 1);
}
}
else
{
if (y + d > 0)
{
MoveVertically(x, y + d, -1);
}
}
}
private void MoveHorizontally(int x, int y, int d)
{
if (_board[x + d, y].Value != 0
&& _board[x + d, y].Value == _board[x, y].Value
&& !_board[x + d, y].IsBlocked
&& !_board[x, y].IsBlocked)
{
_board[x, y].Value = 0;
_board[x + d, y].Value *= 2;
_score += _board[x + d, y].Value;
_board[x + d, y].IsBlocked = true;
_isMoved = true;
}
else if (_board[x + d, y].Value == 0
&& _board[x, y].Value != 0)
{
_board[x + d, y].Value = _board[x, y].Value;
_board[x, y].Value = 0;
_isMoved = true;
}
if (d > 0)
{
if (x + d < 3)
{
MoveHorizontally(x + d, y, 1);
}
}
else
{
if (x + d > 0)
{
MoveHorizontally(x + d, y, -1);
}
}
}
private void Move(MoveDirection direction)
{
switch (direction)
{
case MoveDirection.Up:
for (int x = 0; x < 4; x++)
{
int y = 1;
while (y < 4)
{
if (_board[x, y].Value != 0)
{
MoveVertically(x, y, -1);
}
y++;
}
}
break;
case MoveDirection.Down:
for (int x = 0; x < 4; x++)
{
int y = 2;
while (y >= 0)
{
if (_board[x, y].Value != 0)
{
MoveVertically(x, y, 1);
}
y--;
}
}
break;
case MoveDirection.Left:
for (int y = 0; y < 4; y++)
{
int x = 1;
while (x < 4)
{
if (_board[x, y].Value != 0)
{
MoveHorizontally(x, y, -1);
}
x++;
}
}
break;
case MoveDirection.Right:
for (int y = 0; y < 4; y++)
{
int x = 2;
while (x >= 0)
{
if (_board[x, y].Value != 0)
{
MoveHorizontally(x, y, 1);
}
x--;
}
}
break;
}
}
}
internal static class Program
{
public static void Main(string[] args)
{
RunGame();
}
private static void RunGame()
{
G2048 game = new G2048();
game.Loop();
CheckRestart();
}
private static void CheckRestart()
{
Console.WriteLine("(N) New game (P) Exit");
while (true)
{
char input;
char.TryParse(Console.ReadKey().Key.ToString(), out input);
switch (input)
{
case 'N':
RunGame();
break;
case 'P':
return;
default:
ClearLastLine();
break;
}
}
}
private static void ClearLastLine()
{
Console.SetCursorPosition(0, Console.CursorTop);
Console.Write(new string(' ', Console.BufferWidth));
Console.SetCursorPosition(0, Console.CursorTop - 1);
}
}
}
Output:
Score: 572
+------+------+------+------+
| | 2 | 16 | 4 |
+------+------+------+------+
| | 2 | 4 | 64 |
+------+------+------+------+
| 4 | 16 | 32 | 4 |
+------+------+------+------+
| 2 | 4 | 2 | 16 |
+------+------+------+------+
(W) Up (S) Down (A) Left (D) Right
C++
#include <time.h>
#include <iostream>
#include <string>
#include <iomanip>
#include <cstdlib>
typedef unsigned int uint;
using namespace std;
enum movDir { UP, DOWN, LEFT, RIGHT };
class tile
{
public:
tile() : val( 0 ), blocked( false ) {}
uint val;
bool blocked;
};
class g2048
{
public:
g2048() : done( false ), win( false ), moved( true ), score( 0 ) {}
void loop()
{
addTile();
while( true )
{
if( moved ) addTile();
drawBoard();
if( done ) break;
waitKey();
}
string s = "Game Over!";
if( win ) s = "You've made it!";
cout << s << endl << endl;
}
private:
void drawBoard()
{
system( "cls" );
cout << "SCORE: " << score << endl << endl;
for( int y = 0; y < 4; y++ )
{
cout << "+------+------+------+------+" << endl << "| ";
for( int x = 0; x < 4; x++ )
{
if( !board[x][y].val ) cout << setw( 4 ) << " ";
else cout << setw( 4 ) << board[x][y].val;
cout << " | ";
}
cout << endl;
}
cout << "+------+------+------+------+" << endl << endl;
}
void waitKey()
{
moved = false; char c;
cout << "(W)Up (S)Down (A)Left (D)Right "; cin >> c; c &= 0x5F;
switch( c )
{
case 'W': move( UP );break;
case 'A': move( LEFT ); break;
case 'S': move( DOWN ); break;
case 'D': move( RIGHT );
}
for( int y = 0; y < 4; y++ )
for( int x = 0; x < 4; x++ )
board[x][y].blocked = false;
}
void addTile()
{
for( int y = 0; y < 4; y++ )
for( int x = 0; x < 4; x++ )
if( !board[x][y].val )
{
uint a, b;
do
{ a = rand() % 4; b = rand() % 4; }
while( board[a][b].val );
int s = rand() % 100;
if( s > 89 ) board[a][b].val = 4;
else board[a][b].val = 2;
if( canMove() ) return;
}
done = true;
}
bool canMove()
{
for( int y = 0; y < 4; y++ )
for( int x = 0; x < 4; x++ )
if( !board[x][y].val ) return true;
for( int y = 0; y < 4; y++ )
for( int x = 0; x < 4; x++ )
{
if( testAdd( x + 1, y, board[x][y].val ) ) return true;
if( testAdd( x - 1, y, board[x][y].val ) ) return true;
if( testAdd( x, y + 1, board[x][y].val ) ) return true;
if( testAdd( x, y - 1, board[x][y].val ) ) return true;
}
return false;
}
bool testAdd( int x, int y, uint v )
{
if( x < 0 || x > 3 || y < 0 || y > 3 ) return false;
return board[x][y].val == v;
}
void moveVert( int x, int y, int d )
{
if( board[x][y + d].val && board[x][y + d].val == board[x][y].val && !board[x][y].blocked && !board[x][y + d].blocked )
{
board[x][y].val = 0;
board[x][y + d].val *= 2;
score += board[x][y + d].val;
board[x][y + d].blocked = true;
moved = true;
}
else if( !board[x][y + d].val && board[x][y].val )
{
board[x][y + d].val = board[x][y].val;
board[x][y].val = 0;
moved = true;
}
if( d > 0 ) { if( y + d < 3 ) moveVert( x, y + d, 1 ); }
else { if( y + d > 0 ) moveVert( x, y + d, -1 ); }
}
void moveHori( int x, int y, int d )
{
if( board[x + d][y].val && board[x + d][y].val == board[x][y].val && !board[x][y].blocked && !board[x + d][y].blocked )
{
board[x][y].val = 0;
board[x + d][y].val *= 2;
score += board[x + d][y].val;
board[x + d][y].blocked = true;
moved = true;
}
else if( !board[x + d][y].val && board[x][y].val )
{
board[x + d][y].val = board[x][y].val;
board[x][y].val = 0;
moved = true;
}
if( d > 0 ) { if( x + d < 3 ) moveHori( x + d, y, 1 ); }
else { if( x + d > 0 ) moveHori( x + d, y, -1 ); }
}
void move( movDir d )
{
switch( d )
{
case UP:
for( int x = 0; x < 4; x++ )
{
int y = 1;
while( y < 4 )
{ if( board[x][y].val ) moveVert( x, y, -1 ); y++;}
}
break;
case DOWN:
for( int x = 0; x < 4; x++ )
{
int y = 2;
while( y >= 0 )
{ if( board[x][y].val ) moveVert( x, y, 1 ); y--;}
}
break;
case LEFT:
for( int y = 0; y < 4; y++ )
{
int x = 1;
while( x < 4 )
{ if( board[x][y].val ) moveHori( x, y, -1 ); x++;}
}
break;
case RIGHT:
for( int y = 0; y < 4; y++ )
{
int x = 2;
while( x >= 0 )
{ if( board[x][y].val ) moveHori( x, y, 1 ); x--;}
}
}
}
tile board[4][4];
bool win, done, moved;
uint score;
};
int main( int argc, char* argv[] )
{
srand( static_cast<uint>( time( NULL ) ) );
g2048 g; g.loop();
return system( "pause" );
}
Output:
SCORE: 2024
+------+------+------+------+
| 2 | 8 | 32 | 256 |
+------+------+------+------+
| | | 4 | 32 |
+------+------+------+------+
| | | 2 | 8 |
+------+------+------+------+
| | | | 2 |
+------+------+------+------+
(W)Up (S)Down (A)Left (D)Right
Clojure
(ns 2048
(:require [clojure.string :as str]))
;Preferences
(def textures {:wall "----+"
:cell "%4s|"
:cell-edge "|"
:wall-edge "+"})
(def directions {:w :up
:s :down
:a :left
:d :right})
(def field-size {:y 4 :x 4})
;Output
(defn cells->str [line]
(str (:cell-edge textures)
(str/join (map (partial format (:cell textures)) line))
"\n"))
(defn walls->str [width]
(str (:wall-edge textures)
(str/join (repeat width (:wall textures)))
"\n"))
(defn field->str [field]
(let [height (count field)
width (count (first field))]
(str (str/join (interleave (repeat height (walls->str width))
(map cells->str field)))
(walls->str width))))
;Misc
(defn handle-input []
(let [input (read)
try-dir ((keyword input) directions)]
(if try-dir try-dir (recur))))
(defn get-columns [field]
(vec (for [x (range (count (first field)))]
(vec (for [y (range (count field))]
(get-in field [y x]))))))
(defn reverse-lines [field]
(mapv #(vec (reverse %)) field))
(defn padding [coll n sym]
(vec (concat coll (repeat n sym))))
(defn find-empties [field]
(remove
nil?
(for [y (range (count field))
x (range (count (nth field y)))]
(when (= (get-in field [y x]) \space) [y x]))))
(defn random-add [field]
(let [empties (vec (find-empties field))]
(assoc-in field
(rand-nth empties)
(rand-nth (conj (vec (repeat 9 2)) 4)))))
(defn win-check [field]
(= 2048
(transduce
(filter number?)
(completing max)
0
(flatten field))))
(defn lose-check [field]
(empty? (filter (partial = \space) (flatten field))))
(defn create-start-field [y x]
(->> (vec (repeat y (vec (repeat x \space))))
(random-add)
(random-add)))
;Algo
(defn lines-by-dir [back? direction field]
(case direction
:left field
:right (reverse-lines field)
:down (if back?
(get-columns (reverse-lines field))
(reverse-lines (get-columns field)))
:up (get-columns field)))
(defn shift-line [line]
(let [len (count line)
line (vec (filter number? line))
max-idx (dec (count line))]
(loop [new [] idx 0]
(if (> idx max-idx)
(padding new (- len (count new)) \space)
(if (= (nth line idx) (get line (inc idx)))
(recur (conj new (* 2 (nth line idx))) (+ 2 idx))
(recur (conj new (nth line idx)) (inc idx)))))))
(defn shift-field [direction field]
(->> (lines-by-dir false direction field)
(mapv shift-line)
(lines-by-dir true direction)))
(defn handle-turn [field]
(let [direction (handle-input)]
(->> (shift-field direction field)
(random-add))))
(defn play-2048 []
(loop [field (create-start-field (:y field-size) (:x field-size))]
(println (field->str field))
(cond (win-check field) (println "You win")
(lose-check field) (println "You lose")
:default (recur (handle-turn field)))))
(play-2048)
Output:
+----+----+----+----+
| | 2| | |
+----+----+----+----+
| 2| | | |
+----+----+----+----+
| 4| | | |
+----+----+----+----+
| 16| 2| | |
+----+----+----+----+
Common Lisp
Depends on Windows msvcrt.dll for _getch
.
Depends on quicklisp.
Use arrow keys to make moves and press "Q" to quit.
Tested with SBCL.
(ql:quickload '(cffi alexandria))
(defpackage :2048-lisp
(:use :common-lisp :cffi :alexandria))
(in-package :2048-lisp)
(defvar *lib-loaded* nil)
(unless *lib-loaded*
;; Load msvcrt.dll to access _getch.
(define-foreign-library msvcrt
(:windows (:default "msvcrt")))
(use-foreign-library msvcrt)
(defcfun "_getch" :int)
(setf *lib-loaded* t))
(defun read-arrow ()
"Get an arrow key from input as UP, DOWN, LEFT, or RIGHT, otherwise
return a char of whatever was pressed."
(let ((first-char (-getch)))
(if (= 224 first-char)
(case (-getch)
(75 'left)
(80 'down)
(77 'right)
(72 'up))
(code-char first-char))))
(defmacro swap (place1 place2)
"Exchange the values of two places."
(let ((temp (gensym "TEMP")))
`(cl:let ((,temp ,place1))
(cl:setf ,place1 ,place2)
(cl:setf ,place2 ,temp))))
(defun nflip (board &optional (left-right t))
"Flip the elements of a BOARD left and right or optionally up and down."
(let* ((y-len (array-dimension board 0))
(x-len (array-dimension board 1))
(y-max (if left-right y-len (truncate y-len 2)))
(x-max (if left-right (truncate x-len 2) x-len)))
(loop for y from 0 below y-max
for y-place = (- y-len 1 y) do
(loop for x from 0 below x-max
for x-place = (- x-len 1 x) do
(if left-right
(swap (aref board y x) (aref board y x-place))
(swap (aref board y x) (aref board y-place x)))))
board))
(defun flip (board &optional (left-right t))
"Flip the elements of a BOARD left and right or optionally up and down.
Non-destructive version."
(nflip (copy-array board) left-right))
(defun transpose (board)
"Transpose the elements of BOARD into a new array."
(let* ((y-len (array-dimension board 0))
(x-len (array-dimension board 1))
(new-board (make-array (reverse (array-dimensions board)))))
(loop for y from 0 below y-len do
(loop for x from 0 below x-len do
(setf (aref new-board x y) (aref board y x))))
new-board))
(defun add-random-piece (board)
"Find a random empty spot on the BOARD to add a new piece.
Return T if successful, NIL otherwise."
(loop
for x from 0 below (array-total-size board)
unless (row-major-aref board x)
count 1 into count
and collect x into indices
finally
(unless (= 0 count)
(setf (row-major-aref board (nth (random count) indices))
(if (= 0 (random 10)) 4 2))
(return t))))
(defun squash-line (line)
"Reduce a sequence of numbers from left to right according to
the rules of 2048. Return the score of squashing as well."
(let* ((squashed
(reduce
(lambda (acc x)
(if (equal x (car acc))
(cons (list (* 2 x)) (cdr acc))
(cons x acc)))
(nreverse (remove-if #'null line))
:initial-value nil))
(new-line (flatten squashed)))
(list (append (make-list (- (length line) (length new-line))) new-line)
(reduce #'+ (flatten (remove-if-not #'listp squashed))))))
(defun squash-board (board)
"Reduce each row of a board from left to right according to
the rules of 2048. Return the total score of squashing the board as well."
(let ((y-len (array-dimension board 0))
(x-len (array-dimension board 1))
(total 0))
(list (make-array (array-dimensions board) :initial-contents
(loop for y from 0 below y-len
for (line score) =
(squash-line
(make-array x-len
:displaced-to board
:displaced-index-offset
(array-row-major-index board y 0)))
collect line
do (incf total score)))
total)))
(defun make-move (board direction)
"Make a move in the given DIRECTION on a new board."
;; Move by always squashing right, but transforming the board as needed.
(destructuring-bind (new-board score)
(case direction
(up (squash-board (flip (transpose board))))
(down (squash-board (flip (transpose board) nil)))
(left (squash-board (nflip (flip board nil))))
(right (squash-board board)))
(let ((new-board
;; Reverse the transformation.
(case direction
(up (transpose (nflip new-board)))
(down (transpose (nflip new-board nil)))
(left (nflip (nflip new-board nil)))
(right new-board))))
(unless (equalp board new-board)
(add-random-piece new-board)
(list new-board score)))))
(defun winp (board winning-tile)
"Determine if a BOARD is in a winning state."
(loop for x from 0 below (array-total-size board)
for val = (row-major-aref board x)
when (eql val winning-tile) do (return t)))
(defun game-overp (board)
"Determine if a BOARD is in a game over state."
;; If a move is simulated in every direction and nothing changes,
;; then we can assume there are no valid moves left.
(notany (lambda (dir) (car (make-move board dir)))
'(up down left right)))
(defun print-divider (cells cell-size)
"A print helper function for PRINT-BOARD."
(dotimes (_ cells)
(princ "+")
(dotimes (_ cell-size)
(princ "-")))
(princ "+")
(terpri))
(defun print-board (board cell-size)
"Pretty print the given BOARD with a particular CELL-SIZE."
(let* ((y-len (array-dimension board 0))
(x-len (array-dimension board 1))
(super-size (+ 2 cell-size)))
(loop for y from 0 below y-len do
(print-divider x-len super-size)
(loop for x from 0 below x-len
for val = (aref board y x)
do
(princ "|")
(if val
(format t " ~VD " cell-size val)
(dotimes (_ super-size) (princ " "))))
(princ "|")
(terpri))
(print-divider x-len super-size)))
(defun init-board ()
(let ((board (make-array '(4 4) :initial-element nil)))
(setf (row-major-aref board (random (array-total-size board))) 2)
board))
(defun prompt-input (board score &optional (check t))
(cond
((and check (winp board 2048)) (format t "You win!"))
((and check (game-overp board)) (format t "Game over..."))
(t (let ((choice (read-arrow)))
(cond
((symbolp choice)
(destructuring-bind (&optional move (new-score 0))
(make-move board choice)
(if move
(prompt move (+ score new-score))
(prompt-input board score))))
((find choice "qQ")
(format t "Quitting."))
(t (prompt-input board score nil)))))))
(defun prompt (&optional (board (init-board)) (score 0))
(format t "~% Score: ~D~%" score)
(print-board board 4)
(prompt-input board score))
Output:
* (2048-lisp::prompt)
Score: 0
+------+------+------+------+
| | | | |
+------+------+------+------+
| | | | |
+------+------+------+------+
| | | 2 | |
+------+------+------+------+
| | | | |
+------+------+------+------+
Some time later...
Score: 336
+------+------+------+------+
| | 4 | 16 | 32 |
+------+------+------+------+
| | | 4 | 16 |
+------+------+------+------+
| | | 32 | |
+------+------+------+------+
| | 2 | | |
+------+------+------+------+
D
{{trans|C++}}
import std.stdio, std.string, std.random;
import core.stdc.stdlib: exit;
struct G2048 {
public void gameLoop() /*@safe @nogc*/ {
addTile;
while (true) {
if (moved)
addTile;
drawBoard;
if (done)
break;
waitKey;
}
writeln(win ? "You win!" : "Game Over!");
}
private:
static struct Tile {
uint val = 0;
bool blocked = false;
}
enum moveDir { up, down, left, right }
enum uint side = 4;
Tile[side][side] board;
bool win = false, done = false, moved = true;
uint score = 0;
void drawBoard() const /*@safe @nogc*/ {
writeln("SCORE: ", score, "\n");
foreach (immutable y; 0 .. side) {
write("+------+------+------+------+\n| ");
foreach (immutable x; 0 .. side) {
if (board[x][y].val)
writef("%4d", board[x][y].val);
else
writef("%4s", " ");
write(" | ");
}
writeln;
}
"+------+------+------+------+\n".writeln;
}
void waitKey() /*@safe*/ {
moved = false;
"(W)Up (S)Down (A)Left (D)Right (Q)Quit: ".write;
immutable c = readln.strip.toLower;
switch (c) {
case "w": move(moveDir.up); break;
case "a": move(moveDir.left); break;
case "s": move(moveDir.down); break;
case "d": move(moveDir.right); break;
case "q": endGame; break;
default: break;
}
foreach (immutable y; 0 .. side)
foreach (immutable x; 0 .. side)
board[x][y].blocked = false;
}
void endGame() const {
writeln("Game ended with score: ", score);
exit(0);
}
void addTile() /*nothrow*/ @safe /*@nogc*/ {
foreach (immutable y; 0 .. side) {
foreach (immutable x; 0 .. side) {
if (!board[x][y].val) {
uint a, b;
do {
a = uniform(0, side);
b = uniform(0, side);
} while (board[a][b].val);
board[a][b].val = (uniform01 > 0.89) ? side : 2;
if (canMove)
return;
}
}
}
done = true;
}
bool canMove() const pure nothrow @safe @nogc {
foreach (immutable y; 0 .. side)
foreach (immutable x; 0 .. side)
if (!board[x][y].val)
return true;
foreach (immutable y; 0 .. side) {
foreach (immutable x; 0 .. side) {
if (testAdd(x + 1, y, board[x][y].val) ||
testAdd(x - 1, y, board[x][y].val) ||
testAdd(x, y + 1, board[x][y].val) ||
testAdd(x, y - 1, board[x][y].val))
return true;
}
}
return false;
}
bool testAdd(in uint x, in uint y, in uint v) const pure nothrow @safe @nogc {
if (x > 3 || y > 3)
return false;
return board[x][y].val == v;
}
void moveVertically(in uint x, in uint y, in uint d) pure nothrow @safe @nogc {
if (board[x][y + d].val && board[x][y + d].val == board[x][y].val &&
!board[x][y].blocked && !board[x][y + d].blocked) {
board[x][y].val = 0;
board[x][y + d].val *= 2;
score += board[x][y + d].val;
board[x][y + d].blocked = true;
moved = true;
} else if (!board[x][y + d].val && board[x][y].val) {
board[x][y + d].val = board[x][y].val;
board[x][y].val = 0;
moved = true;
}
if (d > 0) {
if (y + d < 3)
moveVertically(x, y + d, 1);
} else {
if (y + d > 0)
moveVertically(x, y + d, -1);
}
}
void moveHorizontally(in uint x, in uint y, in uint d) pure nothrow @safe @nogc {
if (board[x + d][y].val && board[x + d][y].val == board[x][y].val &&
!board[x][y].blocked && !board[x + d][y].blocked) {
board[x][y].val = 0;
board[x + d][y].val *= 2;
score += board[x + d][y].val;
board[x + d][y].blocked = true;
moved = true;
} else if (!board[x + d][y].val && board[x][y].val) {
board[x + d][y].val = board[x][y].val;
board[x][y].val = 0;
moved = true;
}
if (d > 0) {
if (x + d < 3)
moveHorizontally(x + d, y, 1);
} else {
if (x + d > 0)
moveHorizontally(x + d, y, -1);
}
}
void move(in moveDir d) pure nothrow @safe @nogc {
final switch (d) with(moveDir) {
case up:
foreach (immutable x; 0 .. side)
foreach (immutable y; 1 .. side)
if (board[x][y].val)
moveVertically(x, y, -1);
break;
case down:
foreach (immutable x; 0 .. side)
foreach_reverse (immutable y; 0 .. 3)
if (board[x][y].val)
moveVertically(x, y, 1);
break;
case left:
foreach (immutable y; 0 .. side)
foreach (immutable x; 1 .. side)
if (board[x][y].val)
moveHorizontally(x, y, -1);
break;
case right:
foreach (immutable y; 0 .. side)
foreach_reverse (immutable x; 0 .. 3)
if (board[x][y].val)
moveHorizontally(x, y, 1);
}
}
}
void main() /*safe*/ {
G2048 g;
g.gameLoop;
}
The output is the same as the C++ version.
Elixir
Works with Elixir|1.3
defmodule Game2048 do
@size 4
@range 0..@size-1
def play(goal \\ 2048), do: setup() |> play(goal)
defp play(board, goal) do
show(board)
cond do
goal in Map.values(board) ->
IO.puts "You win!"
exit(:normal)
0 in Map.values(board) or combinable?(board) ->
moved = move(board, keyin())
if moved == board, do: play(board, goal), else: add_tile(moved) |> play(goal)
true ->
IO.puts "Game Over!"
exit(:normal)
end
end
defp setup do
(for i <- @range, j <- @range, into: %{}, do: {{i,j},0})
|> add_tile
|> add_tile
end
defp add_tile(board) do
position = blank_space(board) |> Enum.random
tile = if :rand.uniform(10)==1, do: 4, else: 2
%{board | position => tile}
end
defp blank_space(board) do
for {key, 0} <- board, do: key
end
defp keyin do
key = IO.gets("key in wasd or q: ")
case String.first(key) do
"w" -> :up
"a" -> :left
"s" -> :down
"d" -> :right
"q" -> exit(:normal)
_ -> keyin()
end
end
defp move(board, :up) do
Enum.reduce(@range, board, fn j,acc ->
Enum.map(@range, fn i -> acc[{i,j}] end)
|> move_and_combine
|> Enum.with_index
|> Enum.reduce(acc, fn {v,i},map -> Map.put(map, {i,j}, v) end)
end)
end
defp move(board, :down) do
Enum.reduce(@range, board, fn j,acc ->
Enum.map(@size-1..0, fn i -> acc[{i,j}] end)
|> move_and_combine
|> Enum.reverse
|> Enum.with_index
|> Enum.reduce(acc, fn {v,i},map -> Map.put(map, {i,j}, v) end)
end)
end
defp move(board, :left) do
Enum.reduce(@range, board, fn i,acc ->
Enum.map(@range, fn j -> acc[{i,j}] end)
|> move_and_combine
|> Enum.with_index
|> Enum.reduce(acc, fn {v,j},map -> Map.put(map, {i,j}, v) end)
end)
end
defp move(board, :right) do
Enum.reduce(@range, board, fn i,acc ->
Enum.map(@size-1..0, fn j -> acc[{i,j}] end)
|> move_and_combine
|> Enum.reverse
|> Enum.with_index
|> Enum.reduce(acc, fn {v,j},map -> Map.put(map, {i,j}, v) end)
end)
end
defp move_and_combine(tiles) do
(Enum.filter(tiles, &(&1>0)) ++ [0,0,0,0])
|> Enum.take(@size)
|> case do
[a,a,b,b] -> [a*2, b*2, 0, 0]
[a,a,b,c] -> [a*2, b, c, 0]
[a,b,b,c] -> [a, b*2, c, 0]
[a,b,c,c] -> [a, b, c*2, 0]
x -> x
end
end
defp combinable?(board) do
Enum.any?(for i <- @range, j <- 0..@size-2, do: board[{i,j}]==board[{i,j+1}]) or
Enum.any?(for j <- @range, i <- 0..@size-2, do: board[{i,j}]==board[{i+1,j}])
end
@frame String.duplicate("+----", @size) <> "+"
@format (String.duplicate("|~4w", @size) <> "|") |> to_charlist # before 1.3 to_char_list
defp show(board) do
Enum.each(@range, fn i ->
IO.puts @frame
row = for j <- @range, do: board[{i,j}]
IO.puts (:io_lib.fwrite @format, row) |> to_string |> String.replace(" 0|", " |")
end)
IO.puts @frame
end
end
Game2048.play 512
Output:
+----+----+----+----+
| | 2| | |
+----+----+----+----+
| | | | |
+----+----+----+----+
| 2| | | |
+----+----+----+----+
| | | | |
+----+----+----+----+
key in wasd or q: s
.
.
.
+----+----+----+----+
| 2| 4| 2| |
+----+----+----+----+
| 16| | | |
+----+----+----+----+
| 8| 16| 32| 2|
+----+----+----+----+
| 64| 256| 128| 4|
+----+----+----+----+
key in wasd or q: q
Elm
Works with Elm 0.18.0 Try online [https://ellie-app.com/3ZMMpYsbfcMa1/3]
module Main exposing (..)
import Html exposing (Html, div, p, text, button, span, h2)
import Html.Attributes exposing (class, style)
import Html.Events exposing (onClick)
import Keyboard exposing (KeyCode)
import Random
import Tuple
main =
Html.program
{ init = ( { initialModel | waitingForRandom = True }, generateRandomTiles 2 )
, view = view
, update = update
, subscriptions = always (Keyboard.downs KeyPress)
}
-- MODEL
-- tiles either have a value (2, 4, 8, ...) or are empty
type alias Tile =
Maybe Int
type alias Model =
{ score : Int
, tiles : List Tile
, hasLost : Bool
, winKeepPlaying : Bool
, waitingForRandom : Bool -- prevent user from giving input while waiting for Random Cmd to return
}
initialModel : Model
initialModel =
{ score = 0, tiles = List.repeat 16 Nothing, waitingForRandom = False, hasLost = False, winKeepPlaying = False}
-- UPDATE
type alias RandomTileInfo =
( Int, Int )
type Msg
= KeyPress KeyCode
| AddRandomTiles (List RandomTileInfo)
| NewGame
| KeepPlaying
-- asks the random generator to generate the information required for later adding random tiles
-- generate a random position for the and value (4 10%, 2 90%) for each tile
-- this uses Random.pair and Random.list to get a variable number of such pairs with one Cmd
generateRandomTiles : Int -> Cmd Msg
generateRandomTiles num =
let
randomPosition =
Random.int 0 15
randomValue =
Random.int 1 10
|> Random.map
(\rnd ->
if rnd == 10 then
4
else
2
)
-- 10% chance
randomPositionAndValue =
Random.pair randomPosition randomValue
in
Random.list num randomPositionAndValue |> Random.generate AddRandomTiles
-- actually add a random tile to the model
addRandomTile : RandomTileInfo -> List Tile -> List Tile
addRandomTile ( newPosition, newValue ) tiles =
let
-- newPosition is a value between 0 and 15
-- go through the list and count the amount of empty tiles we've seen.
-- if we reached the newPosition % emptyTileCount'th empty tile, set its value to newValue
emptyTileCount =
List.filter ((==) Nothing) tiles |> List.length
-- if there are less than 16 empty tiles this is the number of empty tiles we pass
targetCount =
newPosition % emptyTileCount
set_ith_empty_tile tile ( countEmpty, newList ) =
case tile of
Just value ->
( countEmpty, (Just value) :: newList )
Nothing ->
if countEmpty == targetCount then
-- replace this empty tile with the new value
( countEmpty + 1, (Just newValue) :: newList )
else
( countEmpty + 1, Nothing :: newList )
in
List.foldr set_ith_empty_tile ( 0, [] ) tiles |> Tuple.second
-- core game mechanic: move numbers (to the left,
-- moving to the right is equivalent to moving left on the reversed array)
-- this function works on single columns/rows
moveNumbers : List Tile -> ( List Tile, Int )
moveNumbers tiles =
let
last =
List.head << List.reverse
-- init is to last what tail is to head
init =
List.reverse << List.drop 1 << List.reverse
doMove tile ( newTiles, addScore ) =
case tile of
-- omit empty tiles when shifting
Nothing ->
( newTiles, addScore )
Just value ->
case last newTiles of
-- if the last already moved tile ...
Just (Just value2) ->
-- ... has the same value, add a tile with the summed value
if value == value2 then
( (init newTiles) ++ [ Just (2 * value) ]
, addScore + 2 * value )
else
-- ... else just add the tile
( newTiles ++ [ Just value ], addScore )
_ ->
-- ... else just add the tile
( newTiles ++ [ Just value ], addScore )
( movedTiles, addScore ) =
List.foldl doMove ( [], 0 ) tiles
in
( movedTiles ++ List.repeat (4 - List.length movedTiles) Nothing, addScore )
update : Msg -> Model -> ( Model, Cmd Msg )
update msg model =
case msg of
-- new game button press
NewGame ->
if not model.waitingForRandom then
( { initialModel | waitingForRandom = True }, generateRandomTiles 2 )
else
( model, Cmd.none )
-- "keep playing" button on win screen
KeepPlaying ->
( { model | winKeepPlaying = True }, Cmd.none)
-- Random generator Cmd response
AddRandomTiles tileInfos ->
let
newTiles =
List.foldl addRandomTile model.tiles tileInfos
in
( { model | tiles = newTiles, waitingForRandom = False }, Cmd.none )
KeyPress code ->
let
-- zip list and indices, apply filter, unzip
indexedFilter func list =
List.map2 (,) (List.range 0 (List.length list - 1)) list
|> List.filter func
|> List.map Tuple.second
-- the i'th row (of 4) contains elements i*4, i*4+1, i*4+2, i*4+3
-- so all elements for which index//4 == i
i_th_row list i =
indexedFilter (((==) i) << (flip (//) 4) << Tuple.first) list
-- the i'th col (of 4) contain elements i, i+4, i+2*4, i+3*4
-- so all elements for which index%4 == i
i_th_col list i =
indexedFilter (((==) i) << (flip (%) 4) << Tuple.first) list
-- rows and columns of the grid
rows list =
List.map (i_th_row list) (List.range 0 3)
cols list =
List.map (i_th_col list) (List.range 0 3)
-- move each row or column and unzip the results from each call to moveNumbers
move =
List.unzip << List.map moveNumbers
moveReverse =
List.unzip << List.map (Tuple.mapFirst List.reverse << moveNumbers << List.reverse)
-- concat rows back into a flat array and sum all addScores
unrows =
Tuple.mapSecond List.sum << Tuple.mapFirst List.concat
-- turn columns back into a flat array and sum all addScores
uncols =
Tuple.mapSecond List.sum << Tuple.mapFirst (List.concat << cols << List.concat)
-- when shifting left or right each row can be (reverse-) shifted separately
-- when shifting up or down each column can be (reveerse-) shifted separately
( newTiles, addScore ) =
case code of
37 ->
-- left
unrows <| move <| rows model.tiles
38 ->
-- up
uncols <| move <| cols model.tiles
39 ->
-- right
unrows <| moveReverse <| rows model.tiles
40 ->
-- down
uncols <| moveReverse <| cols model.tiles
_ ->
( model.tiles, 0 )
containsEmptyTiles =
List.any ((==) Nothing)
containsAnySameNeighbours : List Tile -> Bool
containsAnySameNeighbours list =
let
tail = List.drop 1 list
init = List.reverse <| List.drop 1 <| List.reverse list
in
List.any (uncurry (==)) <| List.map2 (,) init tail
hasLost =
-- grid full
(not (containsEmptyTiles newTiles))
-- and no left/right move possible
&& (not <| List.any containsAnySameNeighbours <| rows newTiles)
-- and no up/down move possible
&& (not <| List.any containsAnySameNeighbours <| cols newTiles)
( cmd, waiting ) =
if List.all identity <| List.map2 (==) model.tiles newTiles then
( Cmd.none, False )
else
( generateRandomTiles 1, True )
score =
model.score + addScore
in
-- unsure whether this actually happens but regardless:
-- keep the program from accepting a new keyboard input when a new tile hasn't been spawned yet
if model.waitingForRandom then
( model, Cmd.none )
else
( { model | tiles = newTiles, waitingForRandom = waiting, score = score, hasLost = hasLost }, cmd )
-- VIEW
containerStyle : List ( String, String )
containerStyle =
[ ( "width", "450px" )
, ( "height", "450px" )
, ( "background-color", "#bbada0" )
, ( "float", "left" )
, ( "border-radius", "6px")
]
tileStyle : Int -> List ( String, String )
tileStyle value =
let
color =
case value of
0 ->
"#776e65"
2 ->
"#eee4da"
4 ->
"#ede0c8"
8 ->
"#f2b179"
16 ->
"#f59563"
32 ->
"#f67c5f"
64 ->
"#f65e3b"
128 ->
"#edcf72"
256 ->
"#edcc61"
512 ->
"#edc850"
1024 ->
"#edc53f"
2048 ->
"#edc22e"
_ ->
"#edc22e"
in
[ ( "width", "100px" )
, ( "height", "70px" )
, ( "background-color", color )
, ( "float", "left" )
, ( "margin-left", "10px" )
, ( "margin-top", "10px" )
, ( "padding-top", "30px" )
, ( "text-align", "center" )
, ( "font-size", "30px" )
, ( "font-weight", "bold" )
, ( "border-radius", "6px")
]
viewTile : Tile -> Html Msg
viewTile tile =
div [ style <| tileStyle <| Maybe.withDefault 0 tile ]
[ span [] [ text <| Maybe.withDefault "" <| Maybe.map toString tile ]
]
viewGrid : List Tile -> Html Msg
viewGrid tiles =
div [ style containerStyle ] <| List.map viewTile tiles
viewLost : Html Msg
viewLost =
div
[ style containerStyle ]
[ div
[ style [ ( "text-align", "center" ) ] ]
[ h2 [] [ text "You lost!" ]
]
]
viewWin : Html Msg
viewWin =
div
[ style containerStyle ]
[ div
[ style [ ( "text-align", "center" ) ] ]
[ h2 [] [ text "Congratulations, You won!" ]
, button
[ style [ ( "margin-bottom", "16px" ), ( "margin-top", "16px" ) ], onClick KeepPlaying ]
[ text "Keep playing" ]
]
]
view : Model -> Html Msg
view model =
div [ style [ ( "width", "450px" ) ] ]
[ p [ style [ ( "float", "left" ) ] ] [ text <| "Your Score: " ++ toString model.score ]
, button
[ style [ ( "margin-bottom", "16px" ), ( "margin-top", "16px" ), ( "float", "right" ) ], onClick NewGame ]
[ text "New Game" ]
, if model.hasLost then
viewLost
else if List.any ((==) (Just 2048)) model.tiles && not model.winKeepPlaying then
viewWin
else
viewGrid model.tiles
]
Factor
Can be loaded and run as a module by copying the code to a file and executing "factor 2048.factor".
For every step prints an ASCII representation of the board on the console. Controlled by feeding the program lines with a single character:
- W - up
- S - down
- A - left
- D - right
- Q - exit the game
USE: accessors
FROM: arrays => <array> array ;
FROM: assocs => assoc-filter keys zip ;
FROM: combinators => case cleave cond ;
FROM: combinators.short-circuit => 1|| 1&& 2&& ;
FROM: continuations => cleanup ;
FROM: formatting => printf sprintf ;
FROM: fry => '[ _ ;
FROM: grouping => all-equal? clump group ;
FROM: io => bl flush nl readln write ;
FROM: kernel => = 2bi 2dup 2drop and bi bi* bi@ boa boolean clone equal? dip drop dup if if* keep loop nip not over swap throw tri unless when with xor ;
FROM: math => integer times * + > >= ;
FROM: math.functions => ^ ;
FROM: math.parser => hex> ;
FROM: math.order => +lt+ +gt+ +eq+ ;
FROM: random => random sample ;
FROM: sequences => <iota> <repetition> any? all? append concat each first flip head if-empty interleave length map pop push reduce reverse second set-nth tail ;
FROM: sorting => sort ;
FROM: vectors => <vector> ;
IN: 2048-game
ERROR: invalid-board ;
SYMBOL: left
SYMBOL: right
SYMBOL: up
SYMBOL: down
TUPLE: tile
{ level integer }
;
TUPLE: board
{ width integer }
{ height integer }
{ tiles array }
;
M: tile equal?
{
[ and ] ! test for f
[ [ level>> ] bi@ = ]
}
2&&
;
: valid-board? ( w h -- ? )
* 0 > ! board with 0 tiles does not have a meaningful representation
;
: <board> ( w h -- board )
[ valid-board? [ invalid-board throw ] unless ]
[ 2dup * f <array> board boa ] 2bi
;
: <tile> ( n -- tile )
tile boa
;
! 1 in 10 tile starts as 4
: new-tile ( -- tile )
10 random 0 = [ 2 ] [ 1 ] if
<tile>
;
<PRIVATE
: space-left? ( board -- ? )
tiles>> [ f = ] any?
;
: rows>> ( board -- seq )
dup tiles>>
[ drop { } ] [ swap width>> group ] if-empty
;
: rows<< ( seq board -- )
[ concat ] dip tiles<<
;
: columns>> ( board -- seq )
rows>> flip
;
: columns<< ( seq board -- )
[ flip concat ] dip tiles<<
;
: change-rows ( board quote -- board )
over [ rows>> swap call( seq -- seq ) ] [ rows<< ] bi
; inline
: change-columns ( board quote -- board )
over [ columns>> swap call( seq -- seq ) ] [ columns<< ] bi
; inline
: can-move-left? ( seq -- ? )
{
! one element seq cannot move
[ length 1 = not ]
! empty seq cannot move
[ [ f = ] all? not ]
[ 2 clump
[
{
! test for identical adjescent tiles
[ [ first ] [ second ] bi [ and ] [ = ] 2bi and ]
! test for empty space on the left and tile on the right
[ [ first ] [ second ] bi [ xor ] [ drop f = ] 2bi and ]
} 1||
] any?
]
} 1&&
;
: can-move-direction? ( board direction -- ? )
{
{ left [ rows>> [ can-move-left? ] any? ] }
{ right [ rows>> [ reverse can-move-left? ] any? ] }
{ up [ columns>> [ can-move-left? ] any? ] }
{ down [ columns>> [ reverse can-move-left? ] any? ] }
} case
;
: can-move-any? ( board -- ? )
{ left right up down } [ can-move-direction? ] with any?
;
: empty-indices ( seq -- seq )
[ length <iota> ] keep zip
[ nip f = ] assoc-filter keys
;
: pick-random ( seq -- elem )
1 sample first
;
! create a new tile on an empty space
: add-tile ( board -- )
[ new-tile swap [ empty-indices pick-random ] keep [ set-nth ] keep ] change-tiles drop
;
! combines equal tiles justified right or does nothing
: combine-tiles ( tile1 tile2 -- tile3 tile4 )
2dup { [ and ] [ = ] } 2&&
[ drop [ 1 + ] change-level f swap ] when
;
: justify-left ( seq -- seq )
[
{
{ [ dup f = ] [ 2drop +lt+ ] }
{ [ over f = ] [ 2drop +gt+ ] }
[ 2drop +eq+ ]
} cond
] sort
;
: collapse ( seq -- seq )
justify-left
! combine adjescent
dup length <vector>
[ over
[ swap [ push ] keep ]
[
{
[ pop combine-tiles ]
[ push ]
[ push ]
} cleave
] if-empty
] reduce
! fill in the gaps after combination
justify-left
;
! draws an object
GENERIC: draw ( obj -- )
PRIVATE>
! a single tile is higher than 2048 (level 10)
: won? ( board -- ? )
tiles>> [ dup [ level>> 11 >= ] when ] any?
;
! if there is no space left and no neightboring tiles are the same, end the board
: lost? ( board -- ? )
{
[ space-left? ]
[ won? ]
[ can-move-any? ]
} 1|| not
;
: serialize ( board -- str )
[ width>> ]
[ height>> ]
[ tiles>>
[ dup f = [ drop 0 ] [ level>> ] if "%02x" sprintf ] map concat
] tri
"%02x%02x%s" sprintf
;
: deserialize ( str -- board )
[ 2 head hex> ] [ 2 tail ] bi
[ 2 head hex> ] [ 2 tail ] bi
2 group [ hex> dup 0 = [ drop f ] [ tile boa ] if ] map
board boa
;
: move ( board direction -- )
{
{ left [ [ [ collapse ] map ] change-rows ] }
{ right [ [ [ reverse collapse reverse ] map ] change-rows ] }
{ up [ [ [ collapse ] map ] change-columns ] }
{ down [ [ [ reverse collapse reverse ] map ] change-columns ] }
} case drop
;
: get-input ( -- line )
readln
;
: parse-input ( line -- direction/f )
{
{ "a" [ left ] }
{ "d" [ right ] }
{ "w" [ up ] }
{ "s" [ down ] }
{ "q" [ f ] }
[ "Wrong input: %s\n" printf flush
get-input parse-input ]
} case
;
<PRIVATE
: init ( board -- )
'[ _ add-tile ] 2 swap times
;
M: tile draw ( tile -- )
level>> 2 swap ^ "% 4d" printf
;
M: boolean draw ( _ -- )
drop 4 [ bl ] times
;
: horizontal-line ( board -- )
width>>
" " write
"+------" <repetition> concat
write "+ " write nl
;
: separator ( -- )
" | " write
;
M: board draw ( board -- )
[ horizontal-line ] keep
[ rows>> ]
[
'[ _ horizontal-line ]
[ separator
[ separator ] [ draw ] interleave
separator nl
] interleave
]
[ horizontal-line ]
tri
flush
;
: update ( board -- f )
{
[
get-input parse-input [
{
[ can-move-direction? ]
[ over [ move ] [ add-tile ] bi* t ]
} 2&& drop t
] [ drop f ] if*
]
[ can-move-any? ]
} 1&&
;
: exit ( board -- )
{
{ [ dup lost? ] [ "You lost! Better luck next time." write nl ] }
{ [ dup won? ] [ "You won! Congratulations!" write nl ] }
[ "Bye!" write nl ]
} cond drop
;
PRIVATE>
: start-2048 ( -- )
4 4 <board>
[
! Initialization
[ init ]
[ draw ]
! Event loop
[ [ dup [ update ] [ draw ] bi ] loop ] tri
]
! Cleanup
[ exit ]
[ ]
cleanup
;
MAIN: start-2048
Forth
{{trans|C}} Works with gforth|0.7.3 Just like my implementation of [[15 Puzzle Game#Forth|15 Puzzle Game]], this uses Vim's h/j/k/l for movement.
\ in Forth, you do many things on your own. This word is used to define 2D arrays
: 2D-ARRAY ( height width )
CREATE DUP ,
* CELLS ALLOT
DOES> ( y x baseaddress )
ROT ( x baseaddress y )
OVER @ ( x baseaddress y width )
* ( x baseaddress y*width )
ROT ( baseaddress y*width x )
+ 1+ CELLS +
;
require random.fs
HERE SEED !
0 CONSTANT D-INVALID
1 CONSTANT D-UP
2 CONSTANT D-DOWN
3 CONSTANT D-LEFT
4 CONSTANT D-RIGHT
4 CONSTANT NROWS
4 CONSTANT NCOLS
NROWS NCOLS * CONSTANT GRIDSIZE
NROWS NCOLS 2D-ARRAY GRID
CREATE HAVE-MOVED CELL ALLOT
CREATE TOTAL-SCORE CELL ALLOT
CREATE MOVE-SCORE CELL ALLOT
: DIE-DIRECTIONCONST ." Unknown direction constant:" . BYE ;
: ESC #ESC EMIT ;
: CLS
ESC ." [2J"
ESC ." [H"
;
: GRID-VALUE 1 SWAP LSHIFT ;
: DASHES 0 ?DO [CHAR] - EMIT LOOP ;
: DRAW ( -- )
CLS ." Score: "
TOTAL-SCORE @ 0 U.R
MOVE-SCORE @ ?DUP IF
." (+" 0 U.R ." )"
THEN
CR 25 DASHES CR
NROWS 0 ?DO
." |"
NCOLS 0 ?DO
J I GRID @ ?DUP IF
GRID-VALUE 4 U.R
ELSE
4 SPACES
THEN
." |"
LOOP
CR
LOOP
25 DASHES CR
;
: COUNT-FREE-SPACES ( -- free-spaces )
0 ( count )
NROWS 0 ?DO
NCOLS 0 ?DO
J I GRID @ 0= IF 1+ THEN
LOOP
LOOP
;
: GET-FREE-SPACE ( index -- addr )
0 0 GRID SWAP ( curr-addr index )
0 0 GRID @ 0<> IF 1+ THEN
0 ?DO ( find the next free space index times )
BEGIN
CELL+ DUP @ 0=
UNTIL
LOOP
;
: NEW-BLOCK ( -- )
COUNT-FREE-SPACES
DUP 0<= IF DROP EXIT THEN
RANDOM GET-FREE-SPACE
10 RANDOM 0= IF 2 ELSE 1 THEN SWAP !
;
: 2GRID ( a-y a-x b-y b-x -- a-addr b-addr ) GRID -ROT GRID SWAP ;
: CAN-MERGE ( dest-addr other-addr -- can-merge? )
@ SWAP @ ( other-val dest-val )
DUP 0<> -ROT = AND
;
: CAN-GRAVITY ( dest-addr other-addr -- can-gravity? )
@ SWAP @ ( other-val dest-val )
0= SWAP 0<> AND
;
: TRY-MERGE ( dest-y dest-x other-y other-x -- )
2GRID ( dest-addr other-addr )
2DUP CAN-MERGE IF
TRUE HAVE-MOVED !
0 SWAP ! ( dest-addr )
DUP @ 1+ DUP ( dest-addr dest-val dest-val )
ROT ! ( dest-val )
GRID-VALUE DUP ( score-diff score-diff )
MOVE-SCORE +!
TOTAL-SCORE +!
ELSE
2DROP
THEN
;
: TRY-GRAVITY ( did-something-before operator dest-y dest-x other-y other-x -- did-something-after operator )
2GRID ( ... dest-addr other-addr )
2DUP CAN-GRAVITY IF
TRUE HAVE-MOVED !
DUP @ ( ... dest-addr other-addr other-val )
ROT ( ... other-addr other-val dest-addr ) ! ( ... other-addr )
0 SWAP !
NIP TRUE SWAP
ELSE
2DROP
THEN
;
: TRY-LOST? ( lost-before operator dy dx oy ox -- lost-after operator )
2GRID CAN-MERGE INVERT ( lost-before operator lost-now )
ROT AND SWAP ( lost-after operator )
;
: MOVEMENT-LOOP ( direction operator -- ) CASE
SWAP
D-UP OF NROWS 1- 0 ?DO
NCOLS 0 ?DO
J I J 1+ I 4 PICK EXECUTE
LOOP
LOOP ENDOF
D-DOWN OF 1 NROWS 1- ?DO
NCOLS 0 ?DO
J I J 1- I 4 PICK EXECUTE
LOOP
-1 +LOOP ENDOF
D-LEFT OF NCOLS 1- 0 ?DO
NROWS 0 ?DO
I J I J 1+ 4 PICK EXECUTE
LOOP
LOOP ENDOF
D-RIGHT OF 1 NCOLS 1- ?DO
NROWS 0 ?DO
I J I J 1- 4 PICK EXECUTE
LOOP
-1 +LOOP ENDOF
DIE-DIRECTIONCONST
ENDCASE DROP ;
: MERGE ( move -- ) ['] TRY-MERGE MOVEMENT-LOOP ;
: GRAVITY-ONCE ( move -- success? ) FALSE SWAP ['] TRY-GRAVITY MOVEMENT-LOOP ;
: GRAVITY ( move -- )
BEGIN
DUP GRAVITY-ONCE INVERT
UNTIL DROP
;
: MOVE-LOST? ( move -- lost? ) TRUE SWAP ['] TRY-LOST? MOVEMENT-LOOP ;
: END-IF-LOST ( -- lost? )
COUNT-FREE-SPACES 0= IF
TRUE
5 1 DO I MOVE-LOST? AND LOOP
IF ." You lose!" CR BYE THEN
THEN
;
: END-IF-WON ( -- )
NROWS 0 ?DO
NCOLS 0 ?DO
J I GRID @ GRID-VALUE 2048 = IF ." You win!" CR BYE THEN
LOOP
LOOP
;
: TICK ( move -- )
FALSE HAVE-MOVED !
0 MOVE-SCORE !
DUP GRAVITY DUP MERGE GRAVITY
HAVE-MOVED @ IF NEW-BLOCK DRAW THEN
END-IF-WON
END-IF-LOST
;
: GET-MOVE ( -- move )
BEGIN
KEY CASE
#EOF OF BYE ENDOF
#ESC OF BYE ENDOF
[CHAR] q OF BYE ENDOF
[CHAR] Q OF BYE ENDOF
[CHAR] k OF D-UP TRUE ENDOF
[CHAR] K OF D-UP TRUE ENDOF
[CHAR] j OF D-DOWN TRUE ENDOF
[CHAR] J OF D-DOWN TRUE ENDOF
[CHAR] h OF D-LEFT TRUE ENDOF
[CHAR] H OF D-LEFT TRUE ENDOF
[CHAR] l OF D-RIGHT TRUE ENDOF
[CHAR] L OF D-RIGHT TRUE ENDOF
FALSE SWAP
ENDCASE
UNTIL
;
: INIT ( -- )
NROWS 0 ?DO
NCOLS 0 ?DO
0 J I GRID !
LOOP
LOOP
0 TOTAL-SCORE !
0 MOVE-SCORE !
NEW-BLOCK
NEW-BLOCK
DRAW
;
: MAIN-LOOP ( -- )
BEGIN
GET-MOVE TICK
AGAIN
;
INIT
MAIN-LOOP
Output:
Score: 20136 (+2048)
-------------------------
| | | | |
| 2 | | | |
| | 8 | 2 | |
|2048 | 4 | 8 | 2 |
-------------------------
You win!
Fortran
The Plan
The primary objective was to achieve the processing ''without'' generating similar code for each of the four different move directions or alternatively for the two lots of related directions - left/right and up/down. The various directions each involve variations on a loop of the form DO L = 1,N
and this can easily be generalised as DO L = ''first'',''last'',''increment''
with a set of suitable values for each direction. Although Fortran encompasses complex arithmetic so that one could play about with vector arithmetic (notably, multiplying by (0,1) rotates by ninety degrees counterclockwise), alas, this is not provided for integer type variables, and in any case, the (x,y) orientation of Cartesian coordinates is not the same as the (row,column) orientation usual for arrays and character-style output, so to reduce mental strain complex arithmetic is not attempted and screen layout rules. However, an echo remains in that the directions are listed in the (x,y) style counter-clockwise: right, up, left, down.
Further thought shows that a move in a selected direction also involves a direction at right angles. To reduce vague generality, suppose the move direction is "right". All squares in a row are to be shoved rightwards, and this is to be repeated for each row: a series perpendicular to the move direction. Indeed, since rows do not interact in this move each row could be processed in parallel, but an ordinary sequential loop will do. It could run in any order so only two sorts of directions need be handled, but to reduce the mental strain, all four are distinct. Thus, there is a two-level process: the outer loop steps through the collection of rows, and the inner loop deals with the movement in each row. The outer loop is controlled by arrays RC1, RCn, RCi
for ''first'', ''last'', ''increment'' to step along the rows (or columns): RC. And for the inner loop perpendicular to that so CR for column (or row) there are arrays CR1, CRn, CRi
- all this is intended to be read as DO L = 1,N
but with extra verbiage because the loop might be DO L = N,1,-1
instead.
Holding firmly to the one-dimensional aspect of the row's processing, the actual processing can be seen to be simple. For instance, step along an array comparing each element to its predecessor, as in A(I) and A(I - 1), or, (avoiding index arithmetic) maintain two indices: CI and PI for current and previous index. Start CI at element one, and run the loop as DO L = 2,N
with on each iteration PI taking the value of CI, and CI being calculated afresh. Except that the loop has verbiage: DO L = ''(first'' + ''increment)'',''last'',''increment''.
But in fact, the board is represented as a two dimensional array. Fortran does not offer a special "index" type of variable so that if ''this'' was a two-element entity with the value (1,2), A(this)
would be equivalent to A(1,2)
One must write out the indices, as in A(this(1),this(2))
On the other hand, F90 introduced array arithmetic and related statements, so one can declare CIJ to be a two-element array, and introduce array arithmetic similar to complex number arithmetic to juggle indices. Further, instead of using simple variables and IF-statements or the like to select amongst the directions, this is done by using array WAY, and its associate YAW to obtain a perpendicular direction. That is, for direction W, WAY(W) selects either (0,1) or (1,0) so that RC * WAY(W) switches the value of RC between the first or second dimension, and YAW is the other way around.
Except that WAY and YAW are ''two'' dimensional arrays (rather than a one-dimensional array of complex number pairs, alas) so that the expression is in fact RC * WAY(W,1:2)
and the calculations for ''both'' indices are done together. Because Fortran uses the "column-major" ordering of elements in storage, successive elements of a multi-dimensional array have the leftmost index varying most rapidly so that the order is WAY(1,1), WAY(2,1), WAY(3,1), WAY(4,1), WAY(1,2), ''etc'' and statements such as DATA or PARAMETER whereby values can be listed employ that ordering. So that the list of values for WAY and YAW can be aligned in the source code with the similar lists for the arrays specifying the loop parameters for each direction, the ordering is WAY(4,2) rather than WAY(2,4) even though this means that the two values for a given direction are not in adjacent storage, unlike the two parts of a complex number.
Arrays WAY and YAW are reminiscent of "truth tables" in Boolean logic, and it is tempting to imagine that YAW = ¬WAY, but alas, a NOT operation applied to an integer variable will flip not just the lowest bit. Trying a .NOT. operation on LOGICAL variables instead will work as desired, except that their integer interpretations may not be as hoped for. Yet another ploy might be based on W being even/odd or odd/even, and similar trickery might be applied to the other arrays of constants, but, enough. The devious juggling of arrays is traditional in Fortran.
Source
The initial attempt at showing the board relied rather heavily on FORMAT tricks, in particular the use of the <''n''> facility whereby the value of an integer expression can be inserted into a format statement's coding on-the-fly, as in the following.
WRITE (MSG,1) !Roll forth a top/bottom boundary. No corner characters (etc.), damnit.
1 FORMAT ("|",<NC>(<W>("-"),"|")) !Heavy reliance on runtime values in NC and W. But see FORMAT 22.
2 FORMAT ("|",<NC>(<W>(" "),"|")) !No horizontal markings within a tile. See FORMAT 1.
WRITE (MSG,22) ((" ",L1 = 1,W),"|",C = 1,NC) !Compare to FORMAT 2.
22 FORMAT ("|",666A1) !A constant FORMAT, a tricky WRITE.
4 FORMAT ("|",<NC - 1>(<W>("-"),"+"),<W>("-"),"|") !With internal + rather than |.
This sort of thing is not necessarily accepted by all compilers, so instead the next stage was to convert to using complicated WRITE statements. If one regarded the various sizes (the values of NR, NC, W in the source) as truly fixed, literal constants could be used throughout. This would however mean that they would appear without explanation, and if one eventually attempted to recode with different values, mistakes would be likely. Thus below, FORMAT 3 has (
and if the <> scheme were unavailable, you'd have to use (4(A1,I6),A1)
instead, not too troublesome a change. Or, the text of the format sequence could be written to a CHARACTER variable, as demonstrated in [[Multiplication_tables#Traditional_approach]]. Yet another approach might be (666(A1,I6))
which relies on the addendum A1
happening to be the same as the start of the (A1,I6)
pair, but there is still the appearance of the literal constant six instead of
SUBROUTINE SHOW(NR,NC,BOARD) !Mess about.
INTEGER NR,NC !Number of rows and columns.
INTEGER BOARD(NR,NC) !The board. Actual storage is transposed!
INTEGER R,C !Steppers.
INTEGER L,L1 !Fingers.
INTEGER W !A width.
PARAMETER (W = 6) !Six will suffice for 2048, even 524288.
CHARACTER*(NC*(W + 1) + 1) ALINE
CHARACTER*1 TL,TR,BL,BR !Corner characters: top left, etc. Code page 850, and 437?
CHARACTER*1 LR,RL,TD,BU !Side joining: Left rightwards, right leftwards, top downwards, bottom upwards.
CHARACTER*1 VL,HL,XX !Vertical and horizontal lines, line crossing.
PARAMETER (TL=CHAR(218),TR=CHAR(191),BL=CHAR(192),BR=CHAR(217)) !Works for the "code page" 437, and 850.
PARAMETER (LR=CHAR(195),RL=CHAR(180),TD=CHAR(194),BU=CHAR(193)) !Try the DOS command CHCP to see which is in use.
PARAMETER (VL=CHAR(179),HL=CHAR(196),XX=CHAR(197)) !Attempts to change the code page no longer work...
INTEGER MSG !I/O unit number.
COMMON/IODEV/ MSG !I talk to the trees...
WRITE (MSG,1) TL,((HL,L = 1,W),TD,C = 1,NC - 1),(HL,L = 1,W),TR !Write the top edge, with downwards ticks.
1 FORMAT (666A1) !Surely long enough.
DO R = 1,NR !Chug down the rows.
WRITE (MSG,1) VL,((" ",L=1,W),VL,C = 1,NC - 1),(" ",L=1,W),VL !Space vertically to make the tile look less rectangular.
WRITE (ALINE,3) (VL,BOARD(R,C),C = 1,NC),VL !The columns of the row. Usage is BOARD(row,col) despite storage adjacency.
3 FORMAT (<NC>(A1,I<W>),A1) !Fixed sizes might suffice.
DO C = 1,NC !Now inspect each cell along the line.
L1 = 1 + (C - 1)*(W + 1) + 1 !Locate the first interior character.
IF (BOARD(R,C).LE.0) THEN !Should this one be blank?
ALINE(L1 + W - 1:L1 + W - 1) = " " !Yes. Scrub the lone zero at the end of the span.
ELSE !Non blank, but, aligned right.
L = L1 !So, look for the first digit.
DO WHILE(ALINE(L:L).EQ." ") !There is surely one digit to be found.
L = L + 1 !Not yet. Advance.
END DO !End with L fingering the first digit.
IF (L.GT.L1) ALINE(L1 + (L - L1 + 1)/2:L1 + W - 1) = !Halve (approx.) the spare space at the start.
& ALINE(L:L1 + W - 1) !The first digit to the last digit.
END IF !So much for that line segment.
END DO !On to the next column.
WRITE (MSG,"(A)") ALINE !Roll the fancy line, all in one go.
WRITE (MSG,1) VL,((" ",L=1,W),VL,C = 1,NC - 1),(" ",L=1,W),VL !More vertical space.
IF (R.LT.NR) WRITE (MSG,1) LR,((HL,L = 1,W),XX,C = 1,NC - 1), !Write an internal horizontal seam.
& (HL,L = 1,W),RL !Starting and ending with a horizontal tick.
END DO !On to the next row.
WRITE (MSG,1) BL,((HL,L = 1,W),BU,C = 1,NC - 1),(HL,L = 1,W),BR !Write the bottom edge, witrh upwards ticks.
END SUBROUTINE SHOW !That was nice.
PROGRAM PUZZLE !Some severe array juggling may indeed cause puzzlement.
INTEGER NR,NC,N !Describes the shape of the board.
PARAMETER (NR = 4, NC = 4, N = NR*NC) !Determines the shape of the board.
INTEGER BOARD(NR,NC) !Thus transpose furrytran's column-major usage. Beware!!!
INTEGER BORED(N) !This allows for consecutive comparisons.
EQUIVALENCE (BOARD,BORED) !Because the arrays are in the same place.
INTEGER BIJ,PB,CB !Juggles with the values of some squares.
INTEGER STARTVALUE,STARTTILES,TARGET !Document the starting value.
PARAMETER (TARGET = 2048,STARTVALUE = 2,STARTTILES = 2) !Why not start with one?
INTEGER SCORE !Count them all.
INTEGER I,IT,TRY !Odds and ends.
INTEGER LIST(N) !A list.
CHARACTER*1 WAYS(4),WAYC(4) !In two dimensions, there are four possible ways to move.
CHARACTER*4 WAYI !There is no equivalent of INDEX for searching arrays.
EQUIVALENCE (WAYS,WAYI) !But this enables two interpretations of the same storage.
PARAMETER (WAYC = (/"R","U","L","D"/)) !These are the names for the available directions.
INTEGER W,M,RC,CR,CIJ(2),PIJ(2),WAY(4,2),YAW(4,2) !Directions in array index terms.
INTEGER RC1(4),RCN(4),RCI(4), CR1(4),CRN(4),CRI(4) !Loop control for the directions..
PARAMETER (RC1 = (/ 1, 1,NR,NC/), CR1 = (/ 1,NR,NC, 1/)) !Start values of the first and second loops.
PARAMETER (RCN = (/NR,NC, 1, 1/), CRN = (/NC, 1, 1,NR/)) !End values.
PARAMETER (RCI = (/+1,+1,-1,-1/), CRI = (/+1,-1,-1,+1/)) !Incrementing or decrementing accordingly.
PARAMETER (WAY = (/ 1, 0, 1, 0, 0, 1, 0, 1/)) !The first loop is either the row, or the column.
PARAMETER (YAW = (/ 0, 1, 0, 1, 1, 0, 1, 0/)) !The second loop is the other way around.
REAL VALUE !Humph. Yet another interface to a "random" number generator.
CHARACTER*1 C !A monocharacter response is anticipated.
INTEGER MSG,KBD !I/O unit numbers.
COMMON/IODEV/ MSG,KBD !Pass the word.
KBD = 5 !Standard input. (Keyboard -> Display screen)
MSG = 6 !Standard output. (Display screen)
WRITE (MSG,1) TARGET,NR,NC,STARTVALUE !Announce.
1 FORMAT ("To play '",I0,"' with ",I0," rows and ",I0," columns.",/,
1"On each move, choose a direction (Up, Down, Left, Right)",/
2 "by typing the single letter U, D, L, R, or, a space to quit."/
3 "All squares will be pushed as far as possible that way.",/
4 "Those meeting with the same number will form one square",/
5 "with the sum of the numbers, and one becomes blank.",/
6 "After each move, a random blank square becomes ",I0,/)
WRITE (MSG,2) !Now for some annoyance.
2 FORMAT ("An integer to start the 'random' number generator: ",$) !Not starting a new line.
READ (KBD,*) TRY !Could use a time-of-day in microseconds, or similar.
CALL SEED(TRY) !But this enables reproducibility. And cheating.
Concoct a board layout.
10 BOARD = 0 !Clear for action.
DO I = 1,STARTTILES !Place the initial tiles, with their starting values.
11 CALL RANDOM(VALUE) !0 <= VALUE < 1.
IT = VALUE*N + 1 !1 <= IT <= N. Don't round up!
IF (BORED(IT).NE.0) GO TO 11 !Oops! Flounder towards another tile.
BORED(IT) = STARTVALUE !The beginning.
END DO !On to the next.
SCORE = STARTVALUE*STARTTILES !Save some mental arithmetic.
TRY = 0 !No moves made yet.
Consider possible moves. Think in (x,y) but convert those thimks to (row,column). Eurghf.
20 TRY = TRY + 1 !Here we go again.
CALL SHOW(NR,NC,BOARD) !The current state.
WAYS = "" !No moveable directions are known.
DO 21 W = 1,4 !One way or another, consider each possible direction.
DO RC = RC1(W),RCN(W),RCI(W) !W = 1 = +x: consider each successive row.
CIJ = RC*WAY(W,1:2) + CR1(W)*YAW(W,1:2) !Finger the first position.
DO CR = CR1(W) + CRI(W),CRN(W),CRI(W) !W = 1; along the columns of the row.
PIJ = CIJ !Retain the previous position.
CIJ = RC*WAY(W,1:2) + CR*YAW(W,1:2) !Convert (RC,CR) to either (RC,CR) or (CR,RC).
BIJ = BOARD(CIJ(1),CIJ(2)) !Grab the current position's board state.
IF ((BOARD(PIJ(1),PIJ(2)).GT.0 .AND. BIJ.EQ.0) !A non-empty tile to move to an empty one?
1 .OR.(BOARD(PIJ(1),PIJ(2)).EQ.BIJ .AND. BIJ.GT.0)) THEN !Or, there is a pair, BOARD(CIJ) = BOARD(PIJ),
WAYS(W) = WAYC(W) !Then this direction is available.
GO TO 21 !No need to seek further opportunities for its use.
END IF !So much for the current position.
END DO !Advance the scan along direction W.
END DO !Advance to the next (row or column) at right angles to W.
21 CONTINUE !Try another way.
Cast forth an invitation, and obtain a choice.
30 WRITE (MSG,31) TRY,SCORE,WAYS !Summary.
31 FORMAT ("Move",I4,", score ",I0,". Moves ",4A1,$) !The $, of course, says "don't end the line".
IF (ALL(WAYS.EQ." ")) GO TO 600 !A gridlock?
WRITE (MSG,32) !Nope. Invite a selection.
32 FORMAT (" ... Your move: ",$) !Awaits input, with a new line after pressing "enter".
IF (COUNT(WAYS.NE." ").EQ.1) THEN !Or, perhaps it is a choice you can't refuse.
W = MAXLOC(ABS(ICHAR(WAYS) - ICHAR(" ")),DIM = 1) !One element's value differes from " "...
WRITE (MSG,33) WAYS(W) !Sieze control!
33 FORMAT (A1," is the only possibility!") !Just don't ask for input.
ELSE !But often, the human can decide.
READ (KBD,"(A)") C !Just one character. The first one typed.
IF (C.LE." ") STOP "Oh well." !Bored, already?
I = INDEX("ruld",C) !A lowercase letter may be presented.
IF (I.GT.0) C = "RULD"(I:I) !So, convert to uppercase, if worthy.
W = INDEX(WAYI,C) !What is it? There is no search of elements of the array WAYS.
IF (W.LE.0) THEN !Perhaps it is blocked.
WRITE (MSG,34) C !Alas.
34 FORMAT ("Not a possible move! ",A) !Just so.
GO TO 30 !Try again.
END IF !So much for suspicion.
END IF !A move has been chosen.
Complete the selected move. Carefully avoid enabling cascades, so 1122 is pulled right to ..24, not .222 then ..42.
40 M = MOD(W + 1,4) + 1 !W is the direction of movement, its inverse, M, faces arrivals.
DO RC = RC1(M),RCN(M),RCI(M) !Loop through the (rows/columns) at right angles to the selected anti-way.
PIJ = RC*WAY(M,1:2) + CR1(M)*YAW(M,1:2) !Finger the first square, which may be empty.
PB = BOARD(PIJ(1),PIJ(2)) !Load it into my two-element buffer: PB and CB.
IF (PB.NE.0) BOARD(PIJ(1),PIJ(2)) = 0 !It may be returned to the board somewhere else.
DO CR = CR1(M) + CRI(M),CRN(M),CRI(M) !Step along the (column/row) of the selected anti-direction.
CIJ = RC*WAY(M,1:2) + CR*YAW(M,1:2) !Convert (RC,CR) to either CIJ = (RC,CR) or CIJ = (CR,RC).
CB = BOARD(CIJ(1),CIJ(2)) !Inspect this square.
IF (CB.EQ.0) CYCLE !From nothing comes nothing.
BOARD(CIJ(1),CIJ(2)) = 0 !The board's value now lives precariously in CB.
IF (PB.EQ.0) THEN !A waiting hole? (And, CB is not empty)
PB = CB !Yes. Fill it. More may follow, after spaces.
ELSE !Otherwise, two non-zero values are in hand.
IF (PB.EQ.CB) THEN !If they match,
PB = PB + CB !Combine the new with the old.
CB = 0 !The new one is gone.
END IF !So much for matches.
BOARD(PIJ(1),PIJ(2)) = PB !Roll the trailing value.
PIJ = PIJ + CRI(M)*YAW(M,1:2) !Advance the finger.
PB = CB !Shuffle along one.
END IF !So much for that square.
END DO !On to the next one along.
IF (PB.GT.0) BOARD(PIJ(1),PIJ(2)) = PB !A tail end value?
END DO !On to the next set.
Choose a random blank square.
50 IT = 0 !None have been located. (There is surely one, as a move was possible)
DO I = 1,N !Step through all the possible squares.
IF (BORED(I).LE.0) THEN !Empty?
IT = IT + 1 !Yes. Augment my list.
LIST(IT) = I !Recording available squares.
END IF !So much for that square.
END DO !On to the next.
IF (IT.GT.1) THEN !If a choice s available,
CALL RANDOM(VALUE) !Concoct another: 0 <= VALUE < 1.
IT = VALUE*IT + 1 !And thus with integer truncation, choose an empty square.
END IF !So much for choices.
BORED(LIST(IT)) = STARTVALUE !Fill the square.
SCORE = SCORE + STARTVALUE !Might as well keep count.
Check for success.
60 IF (ALL(BORED.LT.TARGET)) GO TO 20!Hi ho.
WRITE (MSG,61) !A success message.
61 FORMAT (I0," has been reached!") !No fancy colours nor flashing lights, nor even bells.
GO TO 20 !Carry on, anyway.
Curses!
600 WRITE (MSG,601) !Alas.
601 FORMAT ("None! Oh dear.") !Nothing more can be done.
END !That was fun.
Output
As usual, the aspect ratio of the display here differs from the "console"-type display on the computer monitor, so the square is rather oblong, and the vertical bars do not join. Rather to my surprise the special characters for the "corner" and crossing glyphs do display correctly. If the console display is copied to a text editor (UltraEdit in my case) they are translated to + signs for the crossing and corners! Further confusion is provided by any attempt to type in the character codes (ALT-218, ''etc.'') as some (but not all) codes are translated by UltraEdit or the keyboard interface into other character codes. All-in-all, it is simpler to employ CHAR(218)
in the source as plain text with no fiddling.
Input is a bit annoying, as Fortran doesn't offer an interface to the asynchronous keyboard routines (such as KeyPressed and ReadKey in Turbo Pascal, ''etc.'') and the arrow keys are pre-empted for editing the input being typed, notably the up-arrow key recovers the text of the previous line typed. So, one must press an ordinary key and then signify the completion of your input by pressing the "enter" key. Other keys could be allowed, such as SWAZ or KIJM and the like (or UPEJ for a Dvorak keyboard) for "right", "up", "left" and "down", but you would still have to press the enter key as well.
To play '2048' with 4 rows and 4 columns.
On each move, choose a direction (Up, Down, Left, Right)
by typing the single letter U, D, L, R, or, a space to quit.
All squares will be pushed as far as possible that way.
Those meeting with the same number will form one square
with the sum of the numbers, and one becomes blank.
After each move, a random blank square becomes 2
An integer to start the 'random' number generator: 12345
┌──────┬──────┬──────┬──────┐
│ │ │ │ │
│ │ 2 │ │ │
│ │ │ │ │
├──────┼──────┼──────┼──────┤
│ │ │ │ │
│ │ │ │ │
│ │ │ │ │
├──────┼──────┼──────┼──────┤
│ │ │ │ │
│ │ │ │ │
│ │ │ │ │
├──────┼──────┼──────┼──────┤
│ │ │ │ │
│ │ │ 2 │ │
│ │ │ │ │
└──────┴──────┴──────┴──────┘
Move 1, score 4. Moves RULD ... Your move: d
┌──────┬──────┬──────┬──────┐
│ │ │ │ │
│ │ │ │ │
│ │ │ │ │
├──────┼──────┼──────┼──────┤
│ │ │ │ │
│ │ │ │ │
│ │ │ │ │
├──────┼──────┼──────┼──────┤
│ │ │ │ │
│ │ │ 2 │ │
│ │ │ │ │
├──────┼──────┼──────┼──────┤
│ │ │ │ │
│ │ 2 │ 2 │ │
│ │ │ │ │
└──────┴──────┴──────┴──────┘
Move 2, score 6. Moves RULD ... Your move:
Go
package main
import (
"bufio"
"fmt"
"log"
"math/rand"
"os"
"os/exec"
"strconv"
"strings"
"text/template"
"time"
"unicode"
"golang.org/x/crypto/ssh/terminal"
)
const maxPoints = 2048
const (
fieldSizeX = 4
fieldSizeY = 4
)
const tilesAtStart = 2
const probFor2 = 0.9
type button int
const (
_ button = iota
up
down
right
left
quit
)
var labels = func() map[button]rune {
m := make(map[button]rune, 4)
m[up] = 'W'
m[down] = 'S'
m[right] = 'D'
m[left] = 'A'
return m
}()
var keybinding = func() map[rune]button {
m := make(map[rune]button, 8)
for b, r := range labels {
m[r] = b
if unicode.IsUpper(r) {
r = unicode.ToLower(r)
} else {
r = unicode.ToUpper(r)
}
m[r] = b
}
m[0x03] = quit
return m
}()
var model = struct {
Score int
Field [fieldSizeY][fieldSizeX]int
}{}
var view = func() *template.Template {
maxWidth := 1
for i := maxPoints; i >= 10; i /= 10 {
maxWidth++
}
w := maxWidth + 3
r := make([]byte, fieldSizeX*w+1)
for i := range r {
if i%w == 0 {
r[i] = '+'
} else {
r[i] = '-'
}
}
rawBorder := string(r)
v, err := template.New("").Parse(`SCORE: {{.Score}}
{{range .Field}}
` + rawBorder + `
|{{range .}} {{if .}}{{printf "%` + strconv.Itoa(maxWidth) + `d" .}}{{else}}` +
strings.Repeat(" ", maxWidth) + `{{end}} |{{end}}{{end}}
` + rawBorder + `
(` + string(labels[up]) + `)Up (` +
string(labels[down]) + `)Down (` +
string(labels[left]) + `)Left (` +
string(labels[right]) + `)Right
`)
check(err)
return v
}()
func check(err error) {
if err != nil {
log.Panicln(err)
}
}
func clear() {
c := exec.Command("clear")
c.Stdout = os.Stdout
check(c.Run())
}
func draw() {
clear()
check(view.Execute(os.Stdout, model))
}
func addRandTile() (full bool) {
free := make([]*int, 0, fieldSizeX*fieldSizeY)
for x := 0; x < fieldSizeX; x++ {
for y := 0; y < fieldSizeY; y++ {
if model.Field[y][x] == 0 {
free = append(free, &model.Field[y][x])
}
}
}
val := 4
if rand.Float64() < probFor2 {
val = 2
}
*free[rand.Intn(len(free))] = val
return len(free) == 1
}
type point struct{ x, y int }
func (p point) get() int { return model.Field[p.y][p.x] }
func (p point) set(n int) { model.Field[p.y][p.x] = n }
func (p point) inField() bool { return p.x >= 0 && p.y >= 0 && p.x < fieldSizeX && p.y < fieldSizeY }
func (p *point) next(n point) { p.x += n.x; p.y += n.y }
func controller(key rune) (gameOver bool) {
b := keybinding[key]
if b == 0 {
return false
}
if b == quit {
return true
}
var starts []point
var next point
switch b {
case up:
next = point{0, 1}
starts = make([]point, fieldSizeX)
for x := 0; x < fieldSizeX; x++ {
starts[x] = point{x, 0}
}
case down:
next = point{0, -1}
starts = make([]point, fieldSizeX)
for x := 0; x < fieldSizeX; x++ {
starts[x] = point{x, fieldSizeY - 1}
}
case right:
next = point{-1, 0}
starts = make([]point, fieldSizeY)
for y := 0; y < fieldSizeY; y++ {
starts[y] = point{fieldSizeX - 1, y}
}
case left:
next = point{1, 0}
starts = make([]point, fieldSizeY)
for y := 0; y < fieldSizeY; y++ {
starts[y] = point{0, y}
}
}
moved := false
winning := false
for _, s := range starts {
n := s
move := func(set int) {
moved = true
s.set(set)
n.set(0)
}
for n.next(next); n.inField(); n.next(next) {
if s.get() != 0 {
if n.get() == s.get() {
score := s.get() * 2
model.Score += score
winning = score >= maxPoints
move(score)
s.next(next)
} else if n.get() != 0 {
s.next(next)
if s.get() == 0 {
move(n.get())
}
}
} else if n.get() != 0 {
move(n.get())
}
}
}
if !moved {
return false
}
lost := false
if addRandTile() {
lost = true
Out:
for x := 0; x < fieldSizeX; x++ {
for y := 0; y < fieldSizeY; y++ {
if (y > 0 && model.Field[y][x] == model.Field[y-1][x]) ||
(x > 0 && model.Field[y][x] == model.Field[y][x-1]) {
lost = false
break Out
}
}
}
}
draw()
if winning {
fmt.Println("You win!")
return true
}
if lost {
fmt.Println("Game Over")
return true
}
return false
}
func main() {
oldState, err := terminal.MakeRaw(0)
check(err)
defer terminal.Restore(0, oldState)
rand.Seed(time.Now().Unix())
for i := tilesAtStart; i > 0; i-- {
addRandTile()
}
draw()
stdin := bufio.NewReader(os.Stdin)
readKey := func() rune {
r, _, err := stdin.ReadRune()
check(err)
return r
}
for !controller(readKey()) {
}
}
Haskell
import System.IO
import Data.List
import Data.Maybe
import Control.Monad
import Data.Random
import Data.Random.Distribution.Categorical
import System.Console.ANSI
import Control.Lens
-- Logic
-- probability to get a 4
prob4 :: Double
prob4 = 0.1
type Position = [[Int]]
combine, shift :: [Int]->[Int]
combine (x:y:l) | x==y = (2*x) : combine l
combine (x:l) = x : combine l
combine [] = []
shift l = take (length l) $ combine (filter (>0) l) ++ [0,0..]
reflect :: [[a]] ->[[a]]
reflect = map reverse
type Move = Position -> Position
left, right, up, down :: Move
left = map shift
right = reflect . left . reflect
up = transpose . left . transpose
down = transpose . right . transpose
progress :: Eq a => (a -> a) -> a -> Maybe a
progress f pos = if pos==next_pos then Nothing else Just next_pos where next_pos= f pos
lost, win:: Position -> Bool
lost pos = all isNothing [progress move pos| move<-[left,right,up,down] ]
win = any $ any (>=2048)
go :: Position -> Maybe Move -> Maybe Position
go pos move = move >>= flip progress pos
{-
-- Adding 2 or 4 without lens:
update l i a = l1 ++ a : l2 where (l1,_:l2)=splitAt i l
indicesOf l = [0..length l-1]
add a x y pos = update pos y $ update (pos !! y) x a
add2or4 :: Position -> RVar Position
add2or4 pos = do
(x,y) <- randomElement [(x,y) | y<-indicesOf pos, x<-indicesOf (pos!!y), pos!!y!!x ==0 ]
a <- categorical [(0.9::Double,2), (0.1,4) ]
return $ add a x y pos
-}
-- or with lens:
indicesOf :: [a] -> [ReifiedTraversal' [a] a]
indicesOf l = [ Traversal $ ix i | i <- [0..length l - 1] ]
indices2Of :: [[a]] -> [ReifiedTraversal' [[a]] a]
indices2Of ls = [ Traversal $ i.j | Traversal i <- indicesOf ls, let Just l = ls ^? i, Traversal j <- indicesOf l]
add2or4 :: Position -> RVar Position
add2or4 pos = do
xy <- randomElement [ xy | Traversal xy <- indices2Of pos, pos ^? xy == Just 0 ]
a <- categorical [(1-prob4, 2), (prob4, 4) ]
return $ pos & xy .~ a
-- Easy, is'n it'?
-- Main loop
play :: Position -> IO ()
play pos = do
c <- getChar
case go pos $ lookup c [('D',left),('C',right),('A',up),('B',down)] of
Nothing -> play pos
Just pos1 -> do
pos2 <- sample $ add2or4 pos1
draw pos2
when (win pos2 && not (win pos)) $ putStrLn $ "You win! You may keep going."
if lost pos2 then putStrLn "You lost!"
else play pos2
main :: IO ()
main = do
pos <- sample $ add2or4 $ replicate 4 (replicate 4 0)
draw pos
play pos
-- Rendering
-- See https://en.wikipedia.org/wiki/ANSI_escape_code#Colors
colors =
[(0,"\ESC[38;5;234;48;5;250m ")
,(2,"\ESC[38;5;234;48;5;255m 2 ")
,(4,"\ESC[38;5;234;48;5;230m 4 ")
,(8,"\ESC[38;5;15;48;5;208m 8 ")
,(16,"\ESC[38;5;15;48;5;209m 16 ")
,(32,"\ESC[38;5;15;48;5;203m 32 ")
,(64,"\ESC[38;5;15;48;5;9m 64 ")
,(128,"\ESC[38;5;15;48;5;228m 128 ")
,(256,"\ESC[38;5;15;48;5;227m 256 ")
,(512,"\ESC[38;5;15;48;5;226m 512 ")
,(1024,"\ESC[38;5;15;48;5;221m 1024")
,(2048,"\ESC[38;5;15;48;5;220m 2048")
,(4096,"\ESC[38;5;15;48;5;0m 4096")
,(8192,"\ESC[38;5;15;48;5;0m 8192")
,(16384,"\ESC[38;5;15;48;5;0m16384")
,(32768,"\ESC[38;5;15;48;5;0m32768")
,(65536,"\ESC[38;5;15;48;5;0m65536")
,(131072,"\ESC[38;5;15;48;5;90m131072")
]
showTile x = fromJust (lookup x colors) ++ "\ESC[B\^H\^H\^H\^H\^H \ESC[A\ESC[C"
draw :: Position -> IO ()
draw pos = do
setSGR [Reset]
clearScreen
hideCursor
hSetEcho stdin False
hSetBuffering stdin NoBuffering
setSGR [SetConsoleIntensity BoldIntensity]
putStr "\ESC[38;5;234;48;5;248m" -- set board color
setCursorPosition 0 0
replicateM_ 13 $ putStrLn $ replicate 26 ' '
setCursorPosition 1 1
putStrLn $ intercalate "\n\n\n\ESC[C" $ concatMap showTile `map` pos
J
NB. 2048.ijs script
NB.
### ===================================================
NB. 2048 game engine
require 'guid'
([ 9!:1) _2 (3!:4) , guids 1 NB. randomly set initial random seed
coclass 'g2048'
Target=: 2048
new2048=: verb define
Gridsz=: 4 4
Points=: Score=: 0
Grid=: newnum^:2 ] Gridsz $ 0
)
newnum=: verb define
num=. 2 4 {~ 0.1 > ?0 NB. 10% chance of 4
idx=. 4 $. $. 0 = y NB. indicies of 0s
if. #idx do. NB. handle full grid
idx=. ,/ ({~ 1 ? #) idx NB. choose an index
num (<idx)} y
else. return. y
end.
)
mskmerge=: [: >/\.&.|. 2 =/\ ,&_1
mergerow=: ((* >:) #~ _1 |. -.@]) mskmerge
scorerow=: +/@(+: #~ mskmerge)
compress=: -.&0
toLeft=: 1 :'4&{.@(u@compress)"1'
toRight=: 1 : '_4&{.@(u@compress&.|.)"1'
toUp=: 1 : '(4&{.@(u@compress)"1)&.|:'
toDown=: 1 : '(_4&{.@(u@compress&.|.)"1)&.|:'
move=: conjunction define
Points=: +/@, v Grid
update newnum^:(Grid -.@-: ]) u Grid
)
noMoves=: (0 -.@e. ,)@(mergerow toRight , mergerow toLeft , mergerow toUp ,: mergerow toDown)
hasWon=: Target e. ,
eval=: verb define
Score=: Score + Points
isend=. (noMoves , hasWon) y
msg=. isend # 'You lost!!';'You Won!!'
if. -. isend=. +./ isend do.
Points=: 0
msg=. 'Score is ',(": Score)
end.
isend;msg
)
showGrid=: echo
NB.
### ===================================================
NB. Console user interface
g2048Con_z_=: conew&'g2048con'
coclass 'g2048con'
coinsert 'g2048'
create=: verb define
echo Instructions
startnew y
)
destroy=: codestroy
quit=: destroy
startnew=: update@new2048
left=: 3 :'mergerow toLeft move (scorerow toLeft)'
right=: 3 :'mergerow toRight move (scorerow toRight)'
up=: 3 :'mergerow toUp move (scorerow toUp)'
down=: 3 :'mergerow toDown move (scorerow toDown)'
update=: verb define
Grid=: y NB. update global Grid
'isend msg'=. eval y
echo msg
showGrid y
if. isend do. destroy '' end.
empty''
)
Instructions=: noun define
### 2048
Object:
Create the number 2048 by merging numbers.
How to play:
When 2 numbers the same touch, they merge.
- move numbers using the commands below:
right__grd ''
left__grd ''
up__grd ''
down__grd ''
- quit a game:
quit__grd ''
- start a new game:
grd=: g2048Con ''
)
'''Usage'''
grd=: g2048Con ''
Score is 0
0 0 0 2
0 2 0 0
0 0 0 0
0 0 0 0
right__grd ''
Score is 0
0 0 0 2
0 0 0 2
0 0 0 0
0 0 0 2
down__grd ''
Score is 4
0 0 0 0
0 0 0 0
0 0 4 4
0 0 0 2
...
Java
[[File:game_2048_java2.png|300px|thumb|right]] Works with Java|8
import java.awt.*;
import java.awt.event.*;
import java.util.Random;
import javax.swing.*;
public class Game2048 extends JPanel {
enum State {
start, won, running, over
}
final Color[] colorTable = {
new Color(0x701710), new Color(0xFFE4C3), new Color(0xfff4d3),
new Color(0xffdac3), new Color(0xe7b08e), new Color(0xe7bf8e),
new Color(0xffc4c3), new Color(0xE7948e), new Color(0xbe7e56),
new Color(0xbe5e56), new Color(0x9c3931), new Color(0x701710)};
final static int target = 2048;
static int highest;
static int score;
private Color gridColor = new Color(0xBBADA0);
private Color emptyColor = new Color(0xCDC1B4);
private Color startColor = new Color(0xFFEBCD);
private Random rand = new Random();
private Tile[][] tiles;
private int side = 4;
private State gamestate = State.start;
private boolean checkingAvailableMoves;
public Game2048() {
setPreferredSize(new Dimension(900, 700));
setBackground(new Color(0xFAF8EF));
setFont(new Font("SansSerif", Font.BOLD, 48));
setFocusable(true);
addMouseListener(new MouseAdapter() {
@Override
public void mousePressed(MouseEvent e) {
startGame();
repaint();
}
});
addKeyListener(new KeyAdapter() {
@Override
public void keyPressed(KeyEvent e) {
switch (e.getKeyCode()) {
case KeyEvent.VK_UP:
moveUp();
break;
case KeyEvent.VK_DOWN:
moveDown();
break;
case KeyEvent.VK_LEFT:
moveLeft();
break;
case KeyEvent.VK_RIGHT:
moveRight();
break;
}
repaint();
}
});
}
@Override
public void paintComponent(Graphics gg) {
super.paintComponent(gg);
Graphics2D g = (Graphics2D) gg;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
drawGrid(g);
}
void startGame() {
if (gamestate != State.running) {
score = 0;
highest = 0;
gamestate = State.running;
tiles = new Tile[side][side];
addRandomTile();
addRandomTile();
}
}
void drawGrid(Graphics2D g) {
g.setColor(gridColor);
g.fillRoundRect(200, 100, 499, 499, 15, 15);
if (gamestate == State.running) {
for (int r = 0; r < side; r++) {
for (int c = 0; c < side; c++) {
if (tiles[r][c] == null) {
g.setColor(emptyColor);
g.fillRoundRect(215 + c * 121, 115 + r * 121, 106, 106, 7, 7);
} else {
drawTile(g, r, c);
}
}
}
} else {
g.setColor(startColor);
g.fillRoundRect(215, 115, 469, 469, 7, 7);
g.setColor(gridColor.darker());
g.setFont(new Font("SansSerif", Font.BOLD, 128));
g.drawString("2048", 310, 270);
g.setFont(new Font("SansSerif", Font.BOLD, 20));
if (gamestate == State.won) {
g.drawString("you made it!", 390, 350);
} else if (gamestate == State.over)
g.drawString("game over", 400, 350);
g.setColor(gridColor);
g.drawString("click to start a new game", 330, 470);
g.drawString("(use arrow keys to move tiles)", 310, 530);
}
}
void drawTile(Graphics2D g, int r, int c) {
int value = tiles[r][c].getValue();
g.setColor(colorTable[(int) (Math.log(value) / Math.log(2)) + 1]);
g.fillRoundRect(215 + c * 121, 115 + r * 121, 106, 106, 7, 7);
String s = String.valueOf(value);
g.setColor(value < 128 ? colorTable[0] : colorTable[1]);
FontMetrics fm = g.getFontMetrics();
int asc = fm.getAscent();
int dec = fm.getDescent();
int x = 215 + c * 121 + (106 - fm.stringWidth(s)) / 2;
int y = 115 + r * 121 + (asc + (106 - (asc + dec)) / 2);
g.drawString(s, x, y);
}
private void addRandomTile() {
int pos = rand.nextInt(side * side);
int row, col;
do {
pos = (pos + 1) % (side * side);
row = pos / side;
col = pos % side;
} while (tiles[row][col] != null);
int val = rand.nextInt(10) == 0 ? 4 : 2;
tiles[row][col] = new Tile(val);
}
private boolean move(int countDownFrom, int yIncr, int xIncr) {
boolean moved = false;
for (int i = 0; i < side * side; i++) {
int j = Math.abs(countDownFrom - i);
int r = j / side;
int c = j % side;
if (tiles[r][c] == null)
continue;
int nextR = r + yIncr;
int nextC = c + xIncr;
while (nextR >= 0 && nextR < side && nextC >= 0 && nextC < side) {
Tile next = tiles[nextR][nextC];
Tile curr = tiles[r][c];
if (next == null) {
if (checkingAvailableMoves)
return true;
tiles[nextR][nextC] = curr;
tiles[r][c] = null;
r = nextR;
c = nextC;
nextR += yIncr;
nextC += xIncr;
moved = true;
} else if (next.canMergeWith(curr)) {
if (checkingAvailableMoves)
return true;
int value = next.mergeWith(curr);
if (value > highest)
highest = value;
score += value;
tiles[r][c] = null;
moved = true;
break;
} else
break;
}
}
if (moved) {
if (highest < target) {
clearMerged();
addRandomTile();
if (!movesAvailable()) {
gamestate = State.over;
}
} else if (highest == target)
gamestate = State.won;
}
return moved;
}
boolean moveUp() {
return move(0, -1, 0);
}
boolean moveDown() {
return move(side * side - 1, 1, 0);
}
boolean moveLeft() {
return move(0, 0, -1);
}
boolean moveRight() {
return move(side * side - 1, 0, 1);
}
void clearMerged() {
for (Tile[] row : tiles)
for (Tile tile : row)
if (tile != null)
tile.setMerged(false);
}
boolean movesAvailable() {
checkingAvailableMoves = true;
boolean hasMoves = moveUp() || moveDown() || moveLeft() || moveRight();
checkingAvailableMoves = false;
return hasMoves;
}
public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("2048");
f.setResizable(true);
f.add(new Game2048(), BorderLayout.CENTER);
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
});
}
}
class Tile {
private boolean merged;
private int value;
Tile(int val) {
value = val;
}
int getValue() {
return value;
}
void setMerged(boolean m) {
merged = m;
}
boolean canMergeWith(Tile other) {
return !merged && other != null && !other.merged && value == other.getValue();
}
int mergeWith(Tile other) {
if (canMergeWith(other)) {
value *= 2;
merged = true;
return value;
}
return -1;
}
}
JavaScript
Uses the P5.js library.
/* Tile object: */
function Tile(pos, val, puzzle){
this.pos = pos;
this.val = val;
this.puzzle = puzzle;
this.merging = false;
this.getCol = () => Math.round(this.pos % 4);
this.getRow = () => Math.floor(this.pos / 4);
/* draw tile on a P5.js canvas: */
this.show = function(){
let padding = this.merging ? 0 : 5;
let size = 0.25*width;
noStroke();
colorMode(HSB, 255);
fill(10*(11 - Math.log2(this.val)), 50 + 15*Math.log2(this.val), 200);
rect(this.getCol()*size + padding, this.getRow()*size + padding, size - 2*padding, size - 2*padding);
fill(255);
textSize(0.1*width);
textAlign(CENTER, CENTER);
text(this.val, (this.getCol() + 0.5)*size, (this.getRow() + 0.5)*size);
}
/* move tile in a given direction: */
this.move = function(dir){
let col = this.getCol() + (1 - 2*(dir < 0))*Math.abs(dir)%4;
let row = this.getRow() + (1 - 2*(dir < 0))*Math.floor(Math.abs(dir)/4);
let target = this.puzzle.getTile(this.pos + dir);
if (col < 0 || col > 3 || row < 0 || row > 3) {
/* target position out of bounds */
return false;
} else if (target){
/* tile blocked by other tile */
if(this.merging || target.merging || target.val !== this.val)
return false;
/* merge with target tile (equal values):*/
target.val += this.val;
target.merging = true;
this.puzzle.score += target.val;
this.puzzle.removeTile(this);
return true;
}
/* move tile: */
this.pos += dir;
return true;
}
}
/* Puzzle object: */
function Puzzle(){
this.tiles = [];
this.dir = 0;
this.score = 0;
this.hasMoved = false;
this.validPositions = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15];
this.getOpenPositions = () => this.validPositions.filter(i => this.tiles.map(x => x.pos).indexOf(i) === -1);
this.getTile = pos => this.tiles.filter(x => x.pos === pos)[0];
this.removeTile = tile => this.tiles.splice(this.tiles.indexOf(tile), 1);
this.winCondition = () => this.tiles.some(x => x.val === 2048);
/* check for valid moves: */
this.validMoves = function(){
/* return true if there are empty spaces */
if(this.tiles.length < 16)
return true;
/* otherwise check for neighboring tiles with the same value */
let res = false;
this.tiles.sort((x,y) => x.pos - y.pos);
for(let i = 0; i < 16; i++)
res = res || ( (i%4 < 3) ? this.tiles[i].val === this.tiles[i+1].val : false )
|| ( (i < 12) ? this.tiles[i].val === this.tiles[i+4].val : false );
return res;
}
/* check win and lose condition: */
this.checkGameState = function(){
if(this.winCondition()){
alert('You win!');
} else if (!this.validMoves()){
alert('You Lose!');
this.restart();
}
}
this.restart = function(){
this.tiles = [];
this.dir = 0;
this.score = 0;
this.hasMoved = false;
this.generateTile();
this.generateTile();
}
/* draw the board on the p5.js canvas: */
this.show = function(){
background(200);
fill(255);
textSize(0.05*width);
textAlign(CENTER, TOP);
text("SCORE: " + this.score, 0.5*width, width);
for(let tile of this.tiles)
tile.show();
}
/* update the board: */
this.animate = function(){
if(this.dir === 0)
return;
/* move all tiles in a given direction */
let moving = false;
this.tiles.sort((x,y) => this.dir*(y.pos - x.pos));
for(let tile of this.tiles)
moving = moving || tile.move(this.dir);
/* check if the move is finished and generate a new tile */
if(this.hasMoved && !moving){
this.dir = 0;
this.generateTile();
for(let tile of this.tiles)
tile.merging = false;
}
this.hasMoved = moving;
}
this.generateTile = function(){
let positions = this.getOpenPositions();
let pos = positions[Math.floor(Math.random()*positions.length)];
let val = 2 + 2*Math.floor(Math.random()*1.11);
this.tiles.push(new Tile(pos, val, this));
}
this.generateTile();
this.generateTile();
/* process key inputs: */
this.keyHandler = function(key){
if (key === UP_ARROW) this.dir = -4
else if (key === DOWN_ARROW) this.dir = 4
else if (key === RIGHT_ARROW) this.dir = 1
else if (key === LEFT_ARROW) this.dir = -1;
}
}
let game;
function setup() {
createCanvas(400, 420);
game = new Puzzle();
}
/* game loop: */
function draw() {
game.checkGameState();
game.animate();
game.show();
}
function keyPressed(){
game.keyHandler(keyCode);
}
Julia
Uses the Gtk toolkit. Includes scoring, a choice of board size and toolbar buttons for Undo and New Game.
using Gtk.ShortNames
@enum Direction2048 Right Left Up Down
"""
shifttiles!
The adding and condensing code is for a leftward shift, so if the move is not
leftward, this will rotate matrix to make move leftward, move, then undo rotation.
"""
function shifttiles!(b, siz, direction)
if direction == Right
tmpb = rot180(b); points, winner = leftshift!(tmpb, siz); tmpb = rot180(tmpb)
elseif direction == Up
tmpb = rotl90(b); points, winner = leftshift!(tmpb, siz); tmpb = rotr90(tmpb)
elseif direction == Down
tmpb = rotr90(b); points, winner = leftshift!(tmpb, siz); tmpb = rotl90(tmpb)
else # left movement function as coded
return leftshift!(b, siz)
end
for i in 1:siz, j in 1:siz
b[i,j] = tmpb[i,j] # copy tmpb contents back to b (modifies b)
end
points, winner
end
function compactleft!(b, siz, row)
tmprow = zeros(Int, siz)
tmppos = 1
for j in 1:siz
if b[row,j] != 0
tmprow[tmppos] = b[row,j]
tmppos += 1
end
end
b[row,:] = tmprow
end
"""
leftshift!
Work row by row. First, compact tiles to the left if possible. Second, find and
replace paired tiles in the row, then re-compact. Keep score of merges and return
as pointsgained. If a 2048 value tile is created, return a winner true value.
"""
function leftshift!(b, siz)
pointsgained = 0
winner = false
for i in 1:siz
compactleft!(b, siz, i)
tmprow = zeros(Int, siz)
tmppos = 1
for j in 1:siz-1
if b[i,j] == b[i,j+1]
b[i,j] = 2 * b[i,j]
b[i,j+1] = 0
pointsgained += b[i,j]
if b[i,j] == 2048 # made a 2048 tile, which wins game
winner = true
end
end
if b[i,j] != 0
tmprow[tmppos] = b[i,j]
tmppos += 1
end
end
tmprow[siz] = b[i,siz]
b[i,:] = tmprow
compactleft!(b, siz, i)
end
pointsgained, winner
end
"""
app2048
Run game app, with boardsize (choose 4 for original game) as an argument.
"""
function app2048(bsize)
win = Window("2048 Game", 400, 400) |> (Frame() |> (box = Box(:v)))
toolbar = Toolbar()
newgame = ToolButton("New Game")
setproperty!(newgame, :label, "New Game")
setproperty!(newgame, :is_important, true)
undomove = ToolButton("Undo Move")
setproperty!(undomove, :label, "Undo Move")
setproperty!(undomove, :is_important, true)
map(w->push!(toolbar,w),[newgame,undomove])
grid = Grid()
map(w -> push!(box, w),[toolbar, grid])
buttons = Array{Gtk.GtkButtonLeaf,2}(bsize, bsize)
for i in 1:bsize, j in 1:bsize
grid[i,j] = buttons[i,j] = Button()
setproperty!(buttons[i,j], :expand, true)
end
board = zeros(Int, (bsize,bsize))
pastboardstates = []
score = 0
gameover = false
condition = Condition()
won = ""
function update!()
for i in 1:bsize, j in 1:bsize
label = (board[i,j] > 0) ? board[i,j]: " "
setproperty!(buttons[i,j], :label, label)
end
setproperty!(win, :title, "$won 2048 Game (Score: $score)")
end
function newrandomtile!()
blanks = Array{Tuple{Int,Int},1}()
for i in 1:bsize, j in 1:bsize
if board[i,j] == 0
push!(blanks, (i,j))
end
end
if length(blanks) == 0
gameover = true
else
i,j = rand(blanks)
board[i,j] = (rand() > 0.8) ? 4 : 2
end
end
function initialize!(w)
won = ""
gameover = false
for i in 1:bsize, j in 1:bsize
board[i,j] = 0
setproperty!(buttons[i,j], :label, " ")
end
newrandomtile!()
update!()
end
function undo!(w)
if gameover == false
board = pop!(pastboardstates)
update!()
end
end
function keypress(w, event)
presses = Dict(37 => Up, # code rotated 90 degrees
38 => Left, # because of Gtk coordinates
39 => Down, # y is downward positive
40 => Right)
keycode = event.hardware_keycode
if haskey(presses, keycode) && gameover == false
push!(pastboardstates, copy(board))
newpoints, havewon = shifttiles!(board, bsize, presses[keycode])
score += newpoints
if havewon && won != "Winning"
won = "Winning"
info_dialog("You have won the game.")
end
newrandomtile!()
update!()
if gameover
info_dialog("Game over.\nScore: $score")
end
end
end
endit(w) = notify(condition)
initialize!(win)
signal_connect(initialize!, newgame, :clicked)
signal_connect(undo!,undomove, :clicked)
signal_connect(endit, win, :destroy)
signal_connect(keypress, win, "key-press-event")
showall(win)
wait(condition)
end
const boardsize = 4
app2048(boardsize)
Kotlin
Stateless with focus on clarity rather than conciseness.
import java.io.BufferedReader
import java.io.InputStreamReader
const val positiveGameOverMessage = "Congratulations! You won the game."
const val negativeGameOverMessage = "So sorry, but you lost the game."
fun main(args: Array<String>) {
val grid = arrayOf(
arrayOf(0, 0, 0, 0),
arrayOf(0, 0, 0, 0),
arrayOf(0, 0, 0, 0),
arrayOf(0, 0, 0, 0)
)
val gameOverMessage = run2048(grid)
println(gameOverMessage)
}
fun run2048(grid: Array<Array<Int>>): String {
if (isGridSolved(grid)) return positiveGameOverMessage
else if (isGridFull(grid)) return negativeGameOverMessage
val populatedGrid = spawnNumber(grid)
display(populatedGrid)
return run2048(manipulateGrid(populatedGrid, waitForValidInput()))
}
fun isGridSolved(grid: Array<Array<Int>>): Boolean = grid.any { row -> row.contains(2048) }
fun isGridFull(grid: Array<Array<Int>>): Boolean = grid.all { row -> !row.contains(0) }
fun spawnNumber(grid: Array<Array<Int>>): Array<Array<Int>> {
val coordinates = locateSpawnCoordinates(grid)
val number = generateNumber()
return updateGrid(grid, coordinates, number)
}
fun locateSpawnCoordinates(grid: Array<Array<Int>>): Pair<Int, Int> {
val emptyCells = arrayListOf<Pair<Int, Int>>()
grid.forEachIndexed { x, row ->
row.forEachIndexed { y, cell ->
if (cell == 0) emptyCells.add(Pair(x, y))
}
}
return emptyCells[(Math.random() * (emptyCells.size - 1)).toInt()]
}
fun generateNumber(): Int = if (Math.random() > 0.10) 2 else 4
fun updateGrid(grid: Array<Array<Int>>, at: Pair<Int, Int>, value: Int): Array<Array<Int>> {
val updatedGrid = grid.copyOf()
updatedGrid[at.first][at.second] = value
return updatedGrid
}
fun waitForValidInput(): String {
val input = waitForInput()
return if (isValidInput(input)) input else waitForValidInput()
}
fun isValidInput(input: String): Boolean = arrayOf("a", "s", "d", "w").contains(input)
fun waitForInput(): String {
val reader = BufferedReader(InputStreamReader(System.`in`))
println("Direction? ")
return reader.readLine()
}
fun manipulateGrid(grid: Array<Array<Int>>, input: String): Array<Array<Int>> = when (input) {
"a" -> shiftCellsLeft(grid)
"s" -> shiftCellsDown(grid)
"d" -> shiftCellsRight(grid)
"w" -> shiftCellsUp(grid)
else -> throw IllegalArgumentException("Expected one of [a, s, d, w]")
}
fun shiftCellsLeft(grid: Array<Array<Int>>): Array<Array<Int>> =
grid.map(::mergeAndOrganizeCells).toTypedArray()
fun shiftCellsRight(grid: Array<Array<Int>>): Array<Array<Int>> =
grid.map { row -> mergeAndOrganizeCells(row.reversed().toTypedArray()).reversed().toTypedArray() }.toTypedArray()
fun shiftCellsUp(grid: Array<Array<Int>>): Array<Array<Int>> {
val rows: Array<Array<Int>> = arrayOf(
arrayOf(grid[0][0], grid[1][0], grid[2][0], grid[3][0]),
arrayOf(grid[0][1], grid[1][1], grid[2][1], grid[3][1]),
arrayOf(grid[0][2], grid[1][2], grid[2][2], grid[3][2]),
arrayOf(grid[0][3], grid[1][3], grid[2][3], grid[3][3])
)
val updatedGrid = grid.copyOf()
rows.map(::mergeAndOrganizeCells).forEachIndexed { rowIdx, row ->
updatedGrid[0][rowIdx] = row[0]
updatedGrid[1][rowIdx] = row[1]
updatedGrid[2][rowIdx] = row[2]
updatedGrid[3][rowIdx] = row[3]
}
return updatedGrid
}
fun shiftCellsDown(grid: Array<Array<Int>>): Array<Array<Int>> {
val rows: Array<Array<Int>> = arrayOf(
arrayOf(grid[3][0], grid[2][0], grid[1][0], grid[0][0]),
arrayOf(grid[3][1], grid[2][1], grid[1][1], grid[0][1]),
arrayOf(grid[3][2], grid[2][2], grid[1][2], grid[0][2]),
arrayOf(grid[3][3], grid[2][3], grid[1][3], grid[0][3])
)
val updatedGrid = grid.copyOf()
rows.map(::mergeAndOrganizeCells).forEachIndexed { rowIdx, row ->
updatedGrid[3][rowIdx] = row[0]
updatedGrid[2][rowIdx] = row[1]
updatedGrid[1][rowIdx] = row[2]
updatedGrid[0][rowIdx] = row[3]
}
return updatedGrid
}
fun mergeAndOrganizeCells(row: Array<Int>): Array<Int> = organize(merge(row.copyOf()))
fun merge(row: Array<Int>, idxToMatch: Int = 0, idxToCompare: Int = 1): Array<Int> {
if (idxToMatch >= row.size) return row
if (idxToCompare >= row.size) return merge(row, idxToMatch + 1, idxToMatch + 2)
if (row[idxToMatch] == 0) return merge(row, idxToMatch + 1, idxToMatch + 2)
return if (row[idxToMatch] == row[idxToCompare]) {
row[idxToMatch] *= 2
row[idxToCompare] = 0
merge(row, idxToMatch + 1, idxToMatch + 2)
} else {
if (row[idxToCompare] != 0) merge(row, idxToMatch + 1, idxToMatch + 2)
else merge(row, idxToMatch, idxToCompare + 1)
}
}
fun organize(row: Array<Int>, idxToMatch: Int = 0, idxToCompare: Int = 1): Array<Int> {
if (idxToMatch >= row.size) return row
if (idxToCompare >= row.size) return organize(row, idxToMatch + 1, idxToMatch + 2)
if (row[idxToMatch] != 0) return organize(row, idxToMatch + 1, idxToMatch + 2)
return if (row[idxToCompare] != 0) {
row[idxToMatch] = row[idxToCompare]
row[idxToCompare] = 0
organize(row, idxToMatch + 1, idxToMatch + 2)
} else {
organize(row, idxToMatch, idxToCompare + 1)
}
}
fun display(grid: Array<Array<Int>>) {
val prettyPrintableGrid = grid.map { row ->
row.map { cell ->
if (cell == 0) " " else java.lang.String.format("%4d", cell)
}
}
println("New Grid:")
prettyPrintableGrid.forEach { row ->
println("+----+----+----+----+")
row.forEach { print("|$it") }
println("|")
}
println("+----+----+----+----+")
}
Sample output:
New Grid:
+----+----+----+----+
| 2| | | |
+----+----+----+----+
| | | | 2|
+----+----+----+----+
| 4| 16| | |
+----+----+----+----+
| 16| 4| 2| |
+----+----+----+----+
Direction?
M2000 Interpreter
Module Game2048 {
\\ 10% 4 and 90% 2
Def GetTlleNumber()=If(Random(10)<2->4, 2)
\\ tile
Def Tile$(x)=If$(x=0->"[ ]", format$("[{0::-4}]", x))
\\ empty board
BoardTileRight=lambda (x, y)->x+y*4
BoardTileLeft=lambda (x, y)->3-x+y*4
BoardTileUp=lambda (x, y)->x*4+y
BoardTileDown=lambda (x, y)->(3-x)*4+y
Dim Board(0 to 15)
Inventory EmptyTiles
\\ Score is a statement but we can use it as a variable too.
Score=0
\\ Win is also a statement but we can use it as a variable too.
Win=False
ExitNow=False
BoardDirection=BoardtileRight
Process(BoardDirection)
\\ Split Rem lines to insert start condition to check valid moves
Rem : board(0)=2
Rem : board(1)=2, 2, 2 ' place to (1), (2), (3)
While len(EmptyTiles) {
NewTile()
DrawBoard()
Action=False
do {
a$=key$
if len(a$)=2 then {
Action=true
Select case Asc(mid$(a$,2))
Case 72
BoardDirection=BoardTileUp
Case 75
BoardDirection=BoardTileRight
Case 77
BoardDirection=BoardTileLeft
Case 80
BoardDirection=BoardTileDown
Case 79 ' End key
ExitNow=True
Else
Action=false
end select
}
} until Action
If ExitNow then exit
Process(BoardDirection)
}
If Win then {
Print "You Win"
} Else {
Print "You Loose"
}
End
Sub Process(Boardtile)
Inventory EmptyTiles ' clear inventory
local where, i, j, k
For i=0 to 3
Gravity()
k=boardtile(0,i)
For j=1 to 3
where=boardtile(j,i)
if Board(where)<>0 then {
if board(k)=board(where) then {
board(k)*=2 : score+=board(where): board(where)=0
if board(k)=2048 Then Win=True : ExitNow=true
}
}
k=where
Next j
Gravity()
For j=0 to 3
where=boardtile(j,i)
if board(where)=0 then Append EmptyTiles, where
Next j
Next i
End Sub
Sub NewTile()
local m=EmptyTiles(Random(0, len(EmptyTiles)-1)!)
Board(m)=GetTlleNumber()
Delete EmptyTiles, m
End Sub
Sub DrawBoard()
Refresh 2000
Cls
Cursor 0, 10
Local Doc$, line$
Document Doc$
Doc$=Format$("Game 2048 Score {0}", score)
\\ Using Report 2 we use rendering as text, with center justify
Report 2, Doc$
Doc$={
}
Local i, j
For i=0 to 3
line$=""
For j=0 to 3
line$+=Tile$(Board(BoardTileRight(j, i)))
Next j
Print Over $(2), Line$
Print
Doc$=Line$+{
}
Next i
Report 2, "Next:Use Arrows | Exit: Press End"
Refresh
ClipBoard Doc$
End Sub
Sub Gravity()
k=-1
for j=0 to 3 {
where=boardtile(j,i)
if k=-1 then if board(where)=0 then k=j : continue
if board(where)=0 then continue
if k=-1 then continue
board(boardtile(k,i))=board(where)
board(where)=0
k++
}
End Sub
}
Game2048
Each move copied to clipboard Output:
Game 2048 Score 14
[ 2][ 4][ 8][ 8]
[ ][ 2][ 2][ 2]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
Game 2048 Score 24
[ ][ 2][ 4][ 16]
[ ][ ][ 2][ 4]
[ ][ ][ ][ ]
[ ][ ][ 2][ ]
Game 2048 Score 26
[ ][ ][ ][ ]
[ ][ ][ ][ ]
[ 2][ ][ 4][ 16]
[ ][ 2][ 4][ 4]
Game 2048 Score 30
[ ][ ][ ][ ]
[ ][ ][ ][ ]
[ ][ 2][ ][ 16]
[ 2][ 2][ 8][ 4]
Maple
This application requires a bunch of different components to properly run when being as close to the mobile game as possible. These components are: A math container for the grid, an arrow key for each direction, a restart button, a text box to display the game over/highscore/arrow key to start messages, labels for score and highscore, and textboxes for the highscore and score values. Once these are created, change the names to the ones in the main body of code, and include the proper procedures for the 4 arrows and the restart button.
Next is the main body of code:
macro(SP=DocumentTools:-SetProperty, GP=DocumentTools:-GetProperty);
G := module()
export reset,f,getname;
local a:=Matrix(4):
local buttonpress:="False";
local score:=0;
local highscoreM,highscore,hscore,hname,M,j,k,z,e,move,r,c,q,w,checklose,loss,matrixtotextarea;
getname:=proc();
hname:=GP("Name",value);
buttonpress:="True";
if score>hscore then
M:=Matrix(1, 2, [[score, hname]]):
ExportMatrix("this:///Score.csv",M);
reset();
else
reset();
end if;
end proc;
matrixtotextarea:=proc(m)
local m2,colors;
colors:=["White","Beige","LightGrey",ColorTools:-Color("RGB", [255/255, 127/255, 80/255]),ColorTools:-Color("RGB", [255/255, 99/255, 71/255]),ColorTools:-Color("RGB", [255/255, 69/255, 0/255]),ColorTools:-Color("RGB", [255/255, 0/255, 0/255]),ColorTools:-Color("RGB", [255/255, 215/255, 0/255]), ColorTools:-Color("RGB", [255/255, 255/255, 0/255]),ColorTools:-Color("RGB", [204/255, 204/255, 0/255]),ColorTools:-Color("RGB", [153/255, 153/255, 0/255]),ColorTools:-Color("RGB", [102/255, 102/255, 0/255]), ColorTools:-Color("RGB", [0/255, 0/255, 0/255])];
m2 := ArrayTools:-Reshape(m^%T, [16,1]):
SP(seq([cat("TextArea",i),value,m2[i+1,1]],i=0..15));
SP(seq(["Table1",fillcolor[(`if`(i+1<5,1,`if`(i+1<9 and i+1>4,2,`if`(i+1<13 and i+1>8,3, `if`(i+1<17 and i+1>12,4,1))))),(i mod 4)+1],`if`(m2[i+1,1]=0,colors[1],`if`(m2[i+1,1]=2,colors[2],`if`(m2[i+1,1]=4,colors[3],`if`(m2[i+1,1]=8,colors[4],`if`(m2[i+1,1]=16,colors[5],`if`(m2[i+1,1]=32,colors[6],`if`(m2[i+1,1]=64,colors[7],`if`(m2[i+1,1]=128,colors[8],`if`(m2[i+1,1]=256,colors[9],`if`(m2[i+1,1]=512,colors[10],`if`(m2[i+1,1]=1024,colors[11],`if`(m2[i+1,1]=2048,colors[12],`if`(m2[i+1,1]>2048,colors[13],"White")))))))))))))],i=0..15));
SP(seq([cat("TextArea",i),fillcolor,`if`(m2[i+1,1]=0,colors[1],`if`(m2[i+1,1]=2,colors[2],`if`(m2[i+1,1]=4,colors[3],`if`(m2[i+1,1]=8,colors[4],`if`(m2[i+1,1]=16,colors[5],`if`(m2[i+1,1]=32,colors[6],`if`(m2[i+1,1]=64,colors[7],`if`(m2[i+1,1]=128,colors[8],`if`(m2[i+1,1]=256,colors[9],`if`(m2[i+1,1]=512,colors[10],`if`(m2[i+1,1]=1024,colors[11],`if`(m2[i+1,1]=2048,colors[12],`if`(m2[i+1,1]>2048,colors[13],"White")))))))))))))],i=0..15),refresh);
SP(seq([cat("TextArea",i),fontcolor,`if`(m2[i+1,1]=0,colors[1],`if`(m2[i+1,1]=2,colors[13],`if`(m2[i+1,1]=4,colors[13],"White")))],i=0..15),refresh);
end proc:
reset:=proc();
highscoreM := Import("this:///Score.csv", output = Matrix);
hscore := highscoreM[1,1];
hname := highscoreM[1,2];
highscore:=sprintf("%s",cat(hscore,"\n",hname));
buttonpress:="False";
a:=Matrix(4, 4, [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]):
score:=0;
matrixtotextarea(a);
SP("Score/Lose",visible,true);
SP("Score/Lose",enabled,true);
SP("Score/Lose",caption,"Click an Arrow to begin.");
SP("Score",value,score);
SP("Highscore",value,highscore);
SP(seq([j, enabled, false], j in ["Name","Enter"]));
SP(seq([j, visible, false], j in ["Name","Enter"]));
SP(seq([j, enabled, true], j in ["Score","Highscore", seq(cat("Button",k),k=0..4)]));
SP(seq([j, visible, true], j in ["Score","Highscore", seq(cat("Button",k),k=0..4)]));
end proc;
checklose:=proc();
for q from 2 to 4 do
for w from 4 to 1 by -1 do
if a[q,w]=a[q-1,w] then
loss:="False";
return loss;
end if;
end do;
end do;
return loss;
end proc;
f:=proc(keypress);
SP("Score/Lose",visible,false);
SP("Score/Lose",enabled,false);
j := rand(1 .. 4);
k := rand(1 .. 4);
z := rand(1 .. 10);
e := 0;
move:=proc();
for q from 4 to 2 by -1 do
for w from 4 to 1 by -1 do
if a[q,w]=a[q-1,w] then
a[q-1,w]:=a[q-1,w]+a[q,w];
score:=score+a[q-1,w];
a[q,w]:=0;
if q-1>1 and a[q-2,w]=0 then
a[q-2,w]:=a[q-1,w];
a[q-1,w]:=0;
if q-2>1 and a[q-3,w]=0 then
a[q-3,w]:=a[q-2,w];
a[q-2,w]:=0;
end if;
end if;
elif q-1>1 and a[q,w]=a[q-2,w] and a[q-1,w]=0 then
a[q-2,w]:=a[q-2,w]+a[q,w];
score:=score+a[q-2,w];
a[q,w]:=0;
if q-2>1 and a[q-3,w]=0 then
a[q-3,w]:=a[q-2,w];
a[q-2,w]:=0;
end if;
elif q-2>1 and a[q,w]=a[q-3,w] and a[q-1,w]=0 and a[q-2,w]=0 then
a[q-3,w]:=a[q-3,w]+a[q,w];
score:=score+a[q-3,w];
a[q,w]:=0;
elif a[q-1,w]=0 then
a[q-1,w]:=a[q-1,w]+a[q,w];
a[q,w]:=0;
if q-1>1 and a[q-2,w]=0 then
a[q-2,w]:=a[q-1,w];
a[q-1,w]:=0;
if q-2>1 and a[q-3,w]=0 then
a[q-3,w]:=a[q-2,w];
a[q-2,w]:=0;
end if;
end if;
elif q-1>1 and a[q-2,w]=0 and a[q-1,w]=0 then
a[q-2,w]:=a[q-2,w]+a[q,w];
a[q,w]:=0;
if q-2>1 and a[q-3,w]=0 then
a[q-3,w]:=a[q-2,w];
a[q-2,w]:=0;
end if;
elif q-2>1 and a[q-3,w]=0 and a[q-1,w]=0 and a[q-2,w]=0 then
a[q-3,w]:=a[q-3,w]+a[q,w];
a[q,w]:=0;
end if;
end do;
end do;
end proc;
r := j();
c := k();
if keypress="Up" then
move();
elif keypress="Left" then
a:=LinearAlgebra:-Transpose(a);
move();
a:=LinearAlgebra:-Transpose(a);
elif keypress="Right" then
a := ArrayTools:-FlipDimension(LinearAlgebra:-Transpose(a),1);
move();
a := LinearAlgebra:-Transpose(ArrayTools:-FlipDimension(a,1));
elif keypress="Down" then
a := ArrayTools:-FlipDimension(a, 1);
move();
a := ArrayTools:-FlipDimension(a, 1);
end if;
if a[r, c] = 0 then
if z() > 3 then
a[r, c] := 2;
else;
a[r, c] := 4;
end if;
else
for q to 4 do
for w to 4 do
if a[q, w] <> 0 then;
e:=e+1;
end if;
end do;
end do;
if e = 16 then
loss:="True";
checklose();
a:=LinearAlgebra:-Transpose(a);
checklose();
a:=LinearAlgebra:-Transpose(a);
a := ArrayTools:-FlipDimension(LinearAlgebra:-Transpose(a),1);
checklose();
a := LinearAlgebra:-Transpose(ArrayTools:-FlipDimension(a,1));
a := ArrayTools:-FlipDimension(a, 1);
checklose();
a := ArrayTools:-FlipDimension(a, 1);
if loss="True" then
SP("Score/Lose",visible,"True");
SP("Score/Lose",enabled,"True");
SP("Score/Lose",caption,"You Lose!");
if score>hscore then
SP("Score/Lose",caption,"Highscore! Enter your name below!");
SP("Enter",caption,"Confirm");
SP(seq([j, enabled, true], j in ["Name","Enter","Score/Lose"]));
SP(seq([j, visible, true], j in ["Name","Enter","Score/Lose"]));
SP(seq([j, enabled, false], j in [seq(cat("Button",k),k=0..4)]));
SP(seq([j, visible, false], j in [seq(cat("Button",k),k=0..4)]));
if buttonpress="True" then
M:=Matrix(1, 2, [[score, hname]]):
ExportMatrix("this:///Score.csv",M);
buttonpress:="False";
reset();
end if;
else
SP("Score/Lose",caption,"Sorry, please try again.");
SP("Enter",caption,"Restart");
SP("Enter",visible,"True");
SP("Enter",enabled,"True");
SP(seq([j, enabled, false], j in [seq(cat("Button",k),k=0..4)]));
SP(seq([j, visible, false], j in [seq(cat("Button",k),k=0..4)]));
if buttonpress="True" then
buttonpress:="False";
reset();
end if;
end if;
end if;
else
e:=0;
while a[r, c] <> 0 do
r := j();
c := k();
end do;
if z() > 1 then
a[r, c] := 2;
else
a[r, c] := 4;
end if;
end if;
end if;
matrixtotextarea(a);
SP("Score",value,score,refresh);
return a;
end proc;
end module;
G:-reset();SP("Score/Lose",caption,"Click an Arrow to begin.");
MATLAB
function field = puzzle2048(field)
if nargin < 1 || isempty(field)
field = zeros(4);
field = addTile(field);
end
clc
rng('shuffle')
while true
oldField = field;
clc
score = displayField(field);
% check losing condition
if isGameLost(field)
sprintf('You lose with a score of %g.',score)
return
end
direction = input('Which direction? (w,a,s,d) (x for exit)\n','s');
switch direction
case 'w'
field = moveUp(field);
case 'a'
field = rot90( moveUp( rot90(field,-1) ) );
case 's'
field = flipud( moveUp( flipud(field) ) );
case 'd'
field = rot90( moveUp( rot90(field) ), -1);
case 'x'
return
end
if any(field>=2048,'all')
disp('You win!')
return
end
if ~all(field==oldField,'all')
field = addTile(field);
end
end
end
function gameIsLost = isGameLost(field)
if all(field,'all') && ...
all(conv2(field,[1, -1],'same'),'all') && ...
all(conv2(field,[1; -1],'same'),'all')
gameIsLost = true;
else
gameIsLost = false;
end
end
function field = addTile(field)
freeIndices = find(~field);
newIndex = freeIndices( randi(length(freeIndices)) );
newNumber = 2 + 2 * (rand < 0.1);
field(newIndex) = newNumber;
end
function score = displayField(field)
% Unicode characters for box drawings
% 9484: U+250C Box Drawings Light Down and Right
% 9472: U+2500 Box Drawings Light Horizontal
% 9474: U+2502 Box Drawings Light Vertical
% 9488: U+2510 Box Drawings Light Down and Left
% 9492: U+2515 Box Drawings Light Up and Right
% 9496: U+2518 Box Drawings Light Up and Left
% 9500: U+251C Box Drawings Light Vertical and Right
% 9508: U+2524 Box Drawings Light Vertical and Left
% 9516: U+252C Box Drawings Light Down and Horizontal
% 9524: U+2534 Box Drawings Light Up and Horizontal
% 9532: U+253C Box Drawings Light Vertical and Horizontal
score = sum(field(:));
cellField = arrayfun(@num2str, field, 'UniformOutput', false);
cellField = cellfun(@(x) [ char(9474) blanks(5-length(x)) x ' ' ], ...
cellField, 'UniformOutput', false);
topRow = repmat('-',1,7*size(field,2)+1);
topRow(1:7:end) = char(9516);
topRow([1 end]) = [ char(9484) char(9488) ];
midRow = topRow;
midRow(1:7:end) = char(9532);
midRow([1 end]) = [ char(9500) char(9508) ];
botRow = topRow;
botRow(1:7:end) = char(9524);
botRow([1 end]) = [ char(9492) char(9496) ];
charField = topRow;
for iRow = cellField'
charField = [ charField; iRow{:} char(9474); midRow ];
end
charField(end,:) = botRow;
charField(charField == '0') = ' ';
disp(charField)
fprintf('\nYour score: %g\n', score)
end
function field = moveUp(field)
for iCol = 1:size(field,2)
col = field(:,iCol);
col = removeZeros(col);
for iRow = 1:length(col)-1
if col(iRow)==col(iRow+1)
col(iRow:iRow+1) = [ 2*col(iRow); 0 ];
end
end
col = removeZeros(col);
if length(col) < length(field)
col(end+1:length(field)) = 0;
end
field(:,iCol) = col;
end
end
function vector = removeZeros(vector)
vector(vector==0) = [];
end
You can start with an empty 4 x 4 board and save the last state of the playing field with:
field = puzzle2048();
Or you start from a saved playing field:
field = puzzle2048(savedField);
Nim
Works with Nim Compiler|0.19.4
import random, strutils, terminal
const
BoardLength = 4
BoardSize = BoardLength * BoardLength
Target = 2048
type
Operation = enum
opInvalid
opUp
opDown
opLeft
opRight
opQuit
opRestart
Board = object
len: Natural
largestNumber: Natural
score: Natural
rows: array[BoardLength, array[BoardLength, Natural]]
func handleKey(c: char): Operation =
case c
of 'w', 'W': opUp
of 'a', 'A': opLeft
of 's', 'S': opDown
of 'd', 'D': opRight
of 'q', 'Q': opQuit
of 'r', 'R': opRestart
else: opInvalid
proc getKey(): Operation =
var c = getch()
if c == '\e':
c = getch()
if c == '[':
case getch()
of 'A': opUp
of 'D': opLeft
of 'B': opDown
of 'C': opRight
else: opInvalid
else: handleKey c
else: handleKey c
proc spawnRandom(b: var Board) =
if b.len < BoardSize:
var
x = rand 0..<BoardLength
y = rand 0..<BoardLength
while b.rows[y][x] != 0:
x = rand 0..<BoardLength
y = rand 0..<BoardLength
b.rows[y][x] = if rand(1.0) < 0.9: 2 else: 4
inc b.len
b.largestNumber = max(b.rows[y][x], b.largestNumber)
proc initBoard(): Board =
spawnRandom result
func `$`(b: Board): string =
result = "┌────┬────┬────┬────┐\n"
for idx, val in b.rows:
for v in val:
result.add "│"
result.add center(if v != 0: $v else: "", 4)
result.add "│\n"
if idx < high(b.rows):
result.add "├────┼────┼────┼────┤\n"
else:
result.add "└────┴────┴────┴────┘"
func shift(b: var Board; o: Operation; merge = true): bool =
const BoardRange = 0..<BoardLength
var
x = 0
y = 0
vecX: range[-1..1] = 0
vecY: range[-1..1] = 0
case o
of opUp:
vecY = 1
of opDown:
vecY = -1
y = BoardLength - 1
of opLeft: vecX = 1
of opRight:
vecX = -1
x = BoardLength - 1
else: return
let
startX = x
startY = y
while x in BoardRange and y in BoardRange:
while b.len < BoardSize and x in BoardRange and y in BoardRange:
let
nextX = x + vecX
nextY = y + vecY
prevX = x - vecX
prevY = y - vecY
if b.rows[y][x] == 0:
if nextX in BoardRange and nextY in BoardRange and
b.rows[nextY][nextX] != 0:
result = true
swap b.rows[y][x], b.rows[nextY][nextX]
if prevX in BoardRange and prevY in BoardRange:
x = prevX
y = prevY
continue
x = nextX
y = nextY
if merge:
x = if vecX != 0: startX else: x
y = if vecY != 0: startY else: y
while x in BoardRange and y in BoardRange:
let
nextX = x + vecX
nextY = y + vecY
if b.rows[y][x] != 0:
if nextX in BoardRange and nextY in BoardRange and
b.rows[nextY][nextX] == b.rows[y][x]:
result = true
b.rows[y][x] *= 2
b.largestNumber = max(b.rows[y][x], b.largestNumber)
b.score += b.rows[y][x]
b.rows[nextY][nextX] = 0
dec b.len
x = nextX
y = nextY
if vecX == 0:
inc x
y = startY
elif vecY == 0:
inc y
x = startX
if merge and result: discard b.shift(o, false)
func shiftable(b: Board): bool =
for row in 0..<BoardLength:
for col in 0..<BoardLength:
result = result or b.rows[row][col] == 0
if result: break
if row < BoardLength - 1:
result = result or b.rows[row][col] == b.rows[row + 1][col]
if col < BoardLength - 1:
result = result or b.rows[row][col] == b.rows[row][col + 1]
when isMainModule:
randomize()
var
board = initBoard()
highscore = 0
block gameLoop:
while true:
let gameover = not board.shiftable or board.largestNumber >= Target
echo board
highscore = max(highscore, board.score)
echo "Score = ", board.score, " Highscore = ", highscore
if not gameover:
echo "Press arrow keys or WASD to move, R to Restart, Q to Quit"
elif board.largestNumber >= Target:
echo "You win! Press R to Restart, Q to Quit"
else:
echo "Game over! Press R to Restart, Q to Quit"
while true:
let op = getKey()
case op
of opRestart:
board = initBoard()
break
of opQuit: break gameLoop
of opInvalid: continue
elif gameover: continue
else:
if board.shift op:
board.spawnRandom
break
for i in 1..BoardLength + 7:
eraseLine()
cursorUp()
OCaml
let list_make x v =
let rec aux acc i =
if i <= 0 then acc else aux (v::acc) (i-1)
in
aux [] x
let pad_right n line =
let len = List.length line in
let x = n - len in
line @ (list_make x 0)
let _move_left line =
let n = List.length line in
let line = List.filter ((<>) 0) line in
let rec aux acc = function
| x::y::tl ->
if x = y
then aux (x+y::acc) tl
else aux (x::acc) (y::tl)
| x::[] ->
aux (x::acc) []
| [] ->
List.rev acc
in
pad_right n (aux [] line)
let move_left grid =
List.map _move_left grid
let move_right grid =
grid
|> List.map List.rev
|> List.map _move_left
|> List.map List.rev
let rec replace g n v =
match g with
| x::xs -> if n = 0 then v::xs else x::(replace xs (n-1) v)
| [] -> raise (Invalid_argument "replace")
(* add a new value in a random cell containing zero *)
let rec new_value grid =
let zeros = ref [] in
List.iteri (fun y line ->
List.iteri (fun x v ->
if v = 0 then zeros := (x, y) :: !zeros
) line;
) grid;
let n = List.length !zeros in
if n = 0 then raise Exit;
let x, y = List.nth !zeros (Random.int n) in
let v = if Random.int 10 = 0 then 4 else 2 in
let line = List.nth grid y in
let new_line = replace line x v in
replace grid y new_line
(* turn counterclockwise *)
let turn_ccw grid =
let y = List.length grid in
let x = List.length (List.nth grid 0) in
List.init x (fun i ->
List.init y (fun j ->
List.nth (List.nth grid j) (x-i-1)
)
)
(* turn clockwise *)
let turn_cw grid =
let y = List.length grid in
let x = List.length (List.nth grid 0) in
List.init x (fun i ->
List.init y (fun j ->
List.nth (List.nth grid (y-j-1)) (i)
)
)
let move_up grid =
grid
|> turn_ccw
|> move_left
|> turn_cw
let move_down grid =
grid
|> turn_cw
|> move_left
|> turn_ccw
let display grid =
List.iter (fun line ->
print_string " [";
line
|> List.map (Printf.sprintf "%4d")
|> String.concat "; "
|> print_string;
print_endline "]"
) grid
let () =
Random.self_init ();
let width =
try int_of_string Sys.argv.(1)
with _ -> 4
in
let line = list_make width 0 in
let grid = list_make width line in
let grid = new_value grid in
let grid = new_value grid in
print_endline {|
s -> left
f -> right
e -> up
d -> down
q -> quit
|};
let rec loop grid =
display grid;
let grid =
match read_line () with
| "s" -> move_left grid
| "f" -> move_right grid
| "e" -> move_up grid
| "d" -> move_down grid
| "q" -> exit 0
| _ -> grid
in
let grid =
try new_value grid
with Exit ->
print_endline "Game Over";
exit 0
in
loop grid
in
loop grid
Output:
$ ocaml game2048.ml 4
s -> left
f -> right
e -> up
d -> down
q -> quit
[ 0; 0; 0; 4]
[ 0; 0; 0; 0]
[ 0; 0; 0; 0]
[ 0; 2; 0; 0]
d
[ 0; 0; 0; 0]
[ 2; 0; 0; 0]
[ 0; 0; 0; 0]
[ 0; 2; 0; 4]
d
[ 0; 0; 0; 0]
[ 4; 0; 0; 0]
[ 0; 0; 0; 0]
[ 2; 2; 0; 4]
f
[ 0; 2; 0; 0]
[ 0; 0; 0; 4]
[ 0; 0; 0; 0]
[ 0; 0; 4; 4]
f
[ 0; 0; 0; 2]
[ 0; 2; 0; 4]
[ 0; 0; 0; 0]
[ 0; 0; 0; 8]
Perl 6
Uses termios to set the terminal options, so only compatible with POSIX terminals. This version does not include a specific "win" or "lose" condition. (though it would be trivial to add them.) You can continue to play this even after getting a 2048 tile; and if there is no valid move you can make, you can't do anything but quit. Works with Rakudo|2018.05
use Term::termios;
constant $saved = Term::termios.new(fd => 1).getattr;
constant $termios = Term::termios.new(fd => 1).getattr;
# raw mode interferes with carriage returns, so
# set flags needed to emulate it manually
$termios.unset_iflags(<BRKINT ICRNL ISTRIP IXON>);
$termios.unset_lflags(< ECHO ICANON IEXTEN ISIG>);
$termios.setattr(:DRAIN);
# reset terminal to original setting on exit
END { $saved.setattr(:NOW) }
constant n = 4; # board size
constant cell = 6; # cell width
constant ansi = True; # color!
my @board = ( ['' xx n] xx n );
my $save = '';
my $score = 0;
constant $top = join '─' x cell, '┌', '┬' xx n-1, '┐';
constant $mid = join '─' x cell, '├', '┼' xx n-1, '┤';
constant $bot = join '─' x cell, '└', '┴' xx n-1, '┘';
my %dir = (
"\e[A" => 'up',
"\e[B" => 'down',
"\e[C" => 'right',
"\e[D" => 'left',
);
my @ANSI = <0 1;97 1;93 1;92 1;96 1;91 1;95 1;94 1;30;47 1;43
1;42 1;46 1;41 1;45 1;44 1;33;43 1;33;42 1;33;41 1;33;44>;
sub row (@row) { '│' ~ (join '│', @row».¢er) ~ '│' }
sub center ($s){
my $c = cell - $s.chars;
my $pad = ' ' x ceiling($c/2);
my $tile = sprintf "%{cell}s", "$s$pad";
my $idx = $s ?? $s.log(2) !! 0;
ansi ?? "\e[{@ANSI[$idx]}m$tile\e[0m" !! $tile;
}
sub draw-board {
run('clear');
print qq:to/END/;
Press direction arrows to move.
Press q to quit.
$top
{ join "\n\t$mid\n\t", map { .&row }, @board }
$bot
Score: $score
END
}
sub squash (@c) {
my @t = grep { .chars }, @c;
map { combine(@t[$_], @t[$_+1]) if @t[$_] && @t[$_+1] == @t[$_] }, ^@t-1;
@t = grep { .chars }, @t;
@t.push: '' while @t < n;
@t;
}
sub combine ($v is rw, $w is rw) { $v += $w; $w = ''; $score += $v; }
proto sub move (|) {*};
multi move('up') {
map { @board[*;$_] = squash @board[*;$_] }, ^n;
}
multi move('down') {
map { @board[*;$_] = reverse squash reverse @board[*;$_] }, ^n;
}
multi move('left') {
map { @board[$_] = squash @board[$_] }, ^n;
}
multi move('right') {
map { @board[$_;*] = reverse squash reverse @board[$_] }, ^n;
}
sub another {
my @empties;
for @board.kv -> $r, @row {
@empties.push(($r, $_)) for @row.grep(:k, '');
}
my ( $x, $y ) = @empties.roll;
@board[$x; $y] = (flat 2 xx 9, 4).roll;
}
sub save () { join '|', flat @board».list }
loop {
another if $save ne save();
draw-board;
$save = save();
# Read up to 4 bytes from keyboard buffer.
# Page navigation keys are 3-4 bytes each.
# Specifically, arrow keys are 3.
my $key = $*IN.read(4).decode;
move %dir{$key} if so %dir{$key};
last if $key eq 'q'; # (q)uit
}
Sample output:
Press direction arrows to move.
Press q to quit.
┌──────┬──────┬──────┬──────┐
│ 4 │ 2 │ │ │
├──────┼──────┼──────┼──────┤
│ 16 │ 8 │ │ │
├──────┼──────┼──────┼──────┤
│ 64 │ 32 │ 16 │ │
├──────┼──────┼──────┼──────┤
│ 128 │ 512 │ 128 │ 64 │
└──────┴──────┴──────┴──────┘
Score: 6392
Phix
{{libheader|pGUI}} Faithful desktop gui reproduction of the above link (https://gabrielecirulli.github.io/2048/) Now I just got figure out how to win...
--
-- demo\rosetta\2048.exw
--
include pGUI.e
Ihandle canvas, dialog
cdCanvas cddbuffer, cdcanvas
constant tile_colours = {#CCC0B4, -- blank
#EEE4DA, -- 2
#EDE0C8, -- 4
#F2B179, -- 8
#F59563, -- 16
#F67C5F, -- 32
#F65E3B, -- 64
#EDCF72, -- 128
#EDCC61, -- 256
#EDC850, -- 512
#EDC53F, -- 1024
#EDC22E} -- 2048
-- the 4x4 board.
-- note that values are [1..12] for [blank,2,4,8,..2048].
-- (merging two eights is not 8+8->16 but 4+1->5, internally)
sequence board
integer newgame = 1
procedure add_rand(integer count)
-- (nb infinite loop if board is full)
integer x, y
while count do
x = rand(4)
y = rand(4)
if board[y][x]=1 then -- blank
board[y][x] = 2+(rand(10)=10)
count -= 1
end if
end while
end procedure
integer valid = 0
integer prev, nxt, bxy
procedure move_x(integer x, integer y, integer d)
bxy = board[x][y]
if bxy!=1 then
if bxy=prev then
board[x][y] = 1
bxy += 1
board[x][nxt] = bxy
nxt += d
prev = 13
valid = 1
else
if prev=1
or y!=nxt then
if prev!=1
and prev!=13 then
nxt += d
end if
if y!=nxt then
board[x][y] = 1
board[x][nxt] = bxy
valid = 1
end if
end if
prev = bxy
end if
end if
end procedure
procedure move_y(integer x, integer y, integer d)
bxy = board[x][y]
if bxy!=1 then
if bxy=prev then
board[x][y] = 1
bxy += 1
board[nxt][y] = bxy
nxt += d
prev = 13
valid = 1
else
if prev=1
or x!=nxt then
if prev!=1
and prev!=13 then
nxt += d
end if
if x!=nxt then
board[x][y] = 1
board[nxt][y] = bxy
valid = 1
end if
end if
prev = bxy
end if
end if
end procedure
function move(integer key)
-- a non-zero result means it changed something.
valid = 0
if key=K_LEFT then
for x=1 to 4 do
prev = 13
nxt = 1
for y=1 to 4 do
move_x(x,y,+1)
end for
end for
elsif key=K_UP then
for y=1 to 4 do
prev = 13
nxt = 4
for x=4 to 1 by -1 do
move_y(x,y,-1)
end for
end for
elsif key=K_RIGHT then
for x=1 to 4 do
prev = 13
nxt = 4
for y=4 to 1 by -1 do
move_x(x,y,-1)
end for
end for
elsif key=K_DOWN then
for y=1 to 4 do
prev = 13
nxt = 1
for x=1 to 4 do
move_y(x,y,+1)
end for
end for
end if
return valid
end function
function game_won()
for i=1 to length(board) do
if find(12,board[i]) then return 1 end if
end for
return 0
end function
constant valid_keys = {K_LEFT,K_DOWN,K_RIGHT,K_UP}
function no_valid_moves()
sequence saved_board = board
for i=1 to length(valid_keys) do
if move(valid_keys[i]) then
board = saved_board
return 0 -- OK
end if
end for
return 1 -- game over...
end function
function redraw_cb(Ihandle /*ih*/, integer /*posx*/, integer /*posy*/)
integer tx, ty, bxy,
ox,oy, -- top right coords
os,ts, -- overall and tile size
ts2 -- half tile, for number positioning
integer {dw,dh} = IupGetIntInt(canvas, "DRAWSIZE")
if dw>=dh then
ox = floor((dw-dh)/2)
oy = 0
os = dh
else
ox = 0
oy = floor((dh-dw)/2)
os = dw
end if
ts = floor((os-10)/4-7)
ts2 = floor(ts/2+5)-10
if newgame then
board = repeat(repeat(1,4),4)
add_rand(2)
newgame = 0
end if
cdCanvasActivate(cddbuffer)
cdCanvasSetBackground(cddbuffer, #FAF8EF)
cdCanvasClear(cddbuffer)
cdCanvasSetForeground(cddbuffer, #BBADA0)
cdCanvasRoundedBox(cddbuffer, ox+5, ox+os-5, oy+5, oy+os-5, 10, 10)
tx = ox+15
for y=1 to 4 do
ty = oy+15
for x=1 to 4 do
bxy = board[x][y]
cdCanvasSetForeground(cddbuffer, tile_colours[bxy])
cdCanvasRoundedBox(cddbuffer, tx, tx+ts-10, ty, ty+ts-10, 5, 5)
if bxy>1 then
cdCanvasSetForeground(cddbuffer, iff(bxy<=3?#776E65:#F9F6F2))
cdCanvasFont(cddbuffer, "Calibri", CD_BOLD, iff(bxy>10?32:40))
cdCanvasText(cddbuffer, tx+ts2, ty+ts2-25-iff(bxy<11?7:0), sprint(power(2,bxy-1)))
end if
ty += ts+5
end for
tx += ts+5
end for
cdCanvasFlush(cddbuffer)
return IUP_DEFAULT
end function
function map_cb(Ihandle ih)
cdcanvas = cdCreateCanvas(CD_IUP, ih)
cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
{} = cdCanvasTextAlignment(cddbuffer, CD_SOUTH)
return IUP_DEFAULT
end function
function key_cb(Ihandle /*ih*/, atom c)
if c=K_ESC then return IUP_CLOSE end if
if find(c,valid_keys) then
if move(c) then
IupUpdate(canvas)
string mbmsg = ""
if game_won() then
mbmsg = "!!!YOU WON!!!\n\nAnother Go?"
else
add_rand(1)
-- repaintWindow(main)
IupUpdate(canvas)
if no_valid_moves() then
mbmsg = "You Lost.\n\nAnother Go?"
end if
end if
if length(mbmsg) then
if IupAlarm("Game Over",mbmsg,"Yes","No")=1 then
newgame=1
else
return IUP_CLOSE
end if
end if
end if
IupUpdate(canvas)
end if
return IUP_CONTINUE
end function
procedure main()
IupOpen()
canvas = IupCanvas("RASTERSIZE=520x540")
IupSetCallback(canvas, "MAP_CB", Icallback("map_cb"))
IupSetCallback(canvas, "ACTION", Icallback("redraw_cb"))
dialog = IupDialog(canvas,"MINSIZE=440x450")
IupSetAttribute(dialog,"TITLE","2048");
IupSetCallback(dialog, "K_ANY", Icallback("key_cb"));
IupShow(dialog)
IupSetAttribute(canvas, "RASTERSIZE", NULL)
IupMainLoop()
IupClose()
end procedure
main()
PHP
Works from PHP5 and upwards in CLI mode.
<?php
$game = new Game();
while(true) {
$game->cycle();
}
class Game {
private $field;
private $fieldSize;
private $command;
private $error;
private $lastIndexX, $lastIndexY;
private $score;
private $finishScore;
function __construct() {
$this->field = array();
$this->fieldSize = 4;
$this->finishScore = 2048;
$this->score = 0;
$this->addNumber();
$this->render();
}
public function cycle() {
$this->command = strtolower($this->readchar('Use WASD, q exits'));
$this->cls();
if($this->processCommand()) {
$this->addNumber();
} else {
if(count($this->getFreeList()) == 0 ) {
$this->error = 'No options left!, You Lose!!';
} else {
$this->error = 'Invalid move, try again!';
}
}
$this->render();
}
private function readchar($prompt) {
readline_callback_handler_install($prompt, function() {});
$char = stream_get_contents(STDIN, 1);
readline_callback_handler_remove();
return $char;
}
/**
* Insert a number in an empty spot on the field
*/
private function addNumber() {
$freeList = $this->getFreeList();
if(count($freeList) == 0) {
return;
}
$index = mt_rand(0, count($freeList)-1);
$nr = (mt_rand(0,9) == 0)? 4 : 2;
$this->field[$freeList[$index]['x']][$freeList[$index]['y']] = $nr;
return;
}
/**
* @return array(array('x' => <x>, 'y' => <y>)) with empty positions in the field
*/
private function getFreeList() {
$freeList = array();
for($y =0; $y< $this->fieldSize;$y++) {
for($x=0; $x < $this->fieldSize; $x++) {
if(!isset($this->field[$x][$y])) {
$freeList[] = array('x' => $x, 'y' => $y);
} elseif($this->field[$x][$y] == $this->finishScore) {
$this->error = 'You Win!!';
}
}
}
return $freeList;
}
/**
* Process a command:
* @return is the command valid (Did it cause a change in the field)
*/
private function processCommand() {
if(!in_array($this->command, array('w','a','s','d','q'))) {
$this->error = 'Invalid Command';
return false;
}
if($this->command == 'q') {
echo PHP_EOL. 'Bye!'. PHP_EOL;
exit;
}
// Determine over which axis and in which direction we move:
$axis = 'x';
$sDir = 1;
switch($this->command) {
case 'w':
$axis = 'y';
$sDir = -1;
break;
case 'a':
$sDir = -1;
break;
case 's':
$axis = 'y';
break;
case 'd':
break;
}
$done = 0;
// shift all numbers in that direction
$done += $this->shift($axis, $sDir);
// merge equal numbers in opposite direction
$done += $this->merge($axis, $sDir * -1);
// shift merged numbers in that direction
$done += $this->shift($axis, $sDir);
return $done >0;
}
private function shift($axis, $dir) {
$totalDone = 0;
for($i = 0; $i <$this->fieldSize; $i++) {
$done = 0;
foreach($this->iterate($axis,$dir) as $xy) {
if($xy['vDest'] === NULL && $xy['vSrc'] !== NULL) {
$this->field[$xy['dX']][$xy['dY']] = $xy['vSrc'];
$this->field[$xy['sX']][$xy['sY']] = NULL;
$done++;
}
}
$totalDone += $done;
if($done == 0) {
// nothing to shift anymore
break;
}
}
return $totalDone;
}
private function merge($axis, $dir) {
$done = 0;
foreach($this->iterate($axis,$dir) as $xy) {
if($xy['vDest'] !== NULL && $xy['vDest'] === $xy['vSrc']) {
$this->field[$xy['sX']][$xy['sY']] += $xy['vDest'];
$this->field[$xy['dX']][$xy['dY']] = NULL;
$this->score += $this->field[$xy['sX']][$xy['sY']];
$done ++;
}
}
return $done;
}
/**
* @return array List of src, dest pairs and their values to iterate over.
*/
private function iterate($axis, $dir) {
$res = array();
for($y = 0; $y < $this->fieldSize; $y++) {
for($x=0; $x < $this->fieldSize; $x++) {
$item = array('sX'=> $x,'sY' => $y, 'dX' => $x, 'dY' => $y, 'vDest' => NULL,'vSrc' => NULL);
if($axis == 'x') {
$item['dX'] += $dir;
} else {
$item['dY'] += $dir;
}
if($item['dX'] >= $this->fieldSize || $item['dY'] >=$this->fieldSize || $item['dX'] < 0 || $item['dY'] < 0) {
continue;
}
$item['vDest'] = (isset($this->field[$item['dX']][$item['dY']]))? $this->field[$item['dX']][$item['dY']] : NULL;
$item['vSrc'] = (isset($this->field[$item['sX']][$item['sY']]))? $this->field[$item['sX']][$item['sY']] : NULL;
$res[] = $item;
}
}
if($dir < 0) {
$res = array_reverse($res);
}
return $res;
}
/// RENDER ///
/**
* Clear terminal screen
*/
private function cls() {
echo chr(27).chr(91).'H'.chr(27).chr(91).'J';
}
private function render() {
echo $this->finishScore . '! Current score: '. $this->score .PHP_EOL;
if(!empty($this->error)) {
echo $this->error . PHP_EOL;
$this->error = NULL;
}
$this->renderField();
}
private function renderField() {
$width = 5;
$this->renderVSeperator($width);
for($y =0; $y < $this->fieldSize; $y ++) {
for($x = 0;$x < $this->fieldSize; $x++) {
echo '|';
if(!isset($this->field[$x][$y])) {
echo str_repeat(' ', $width);
continue;
}
printf('%'.$width.'s', $this->field[$x][$y]);
}
echo '|'. PHP_EOL;
$this->renderVSeperator($width);
}
}
private function renderVSeperator($width) {
echo str_repeat('+'. str_repeat('-', $width), $this->fieldSize) .'+' .PHP_EOL;
}
}
PicoLisp
(load "@lib/simul.l")
(seed (in "/dev/urandom" (rd 8)))
(setq *G (grid 4 4) *D NIL)
(de cell ()
(use This
(while
(get
(setq This
(intern
(pack
(char (+ 96 (rand 1 4)))
(rand 1 4) ) ) )
'N ) )
(=: N (if (> 90 (rand 1 100)) 2 4) ) )
(setq *D (fish '((This) (: N)) *G)) )
(de redraw (G S D)
# zeroize *G
(mapc
'((I)
(mapc '((This) (=: N NIL)) I) )
*G )
# draw again
(mapc
'((X This)
(while (and This X)
(=: N (pop 'X))
(setq This (D This)) ) )
G
S ) )
(de summ (Lst)
(mapcar
'((L)
(make
(while L
(ifn (= (car L) (cadr L))
(link (car L))
(link (+ (car L) (cadr L)))
(pop 'L) )
(pop 'L) ) ) )
Lst ) )
(de vertical ()
(mapcar
'((X) (extract '((This) (: N)) X))
*G ) )
(de horizontal ()
(mapcar
'((This)
(make
(while This
(when (: N) (link @))
(setq This (east This)) ) ) )
(car *G) ) )
(de finish? ()
(nor
(fish
'((This)
(when (atom This) (= NIL (: N))) )
*G )
(find
'((L)
(find
'((This)
(when (: N)
(find
'((D)
(= (: N) (get (D This) 'N)) )
(quote north south west east) ) ) )
L ) )
*G ) ) )
(de board (D)
(space 3)
(prin '+)
(for I G
(prin (if (D (car I)) " +" "---+")) )
(prinl) )
(de display ()
(let G (mapcar reverse *G)
(board north)
(while (caar G)
(space 3)
(prin '|)
(for I G
(with (car I)
(prin
(if (: N) (align 3 (: N)) " ")
(if (east This) " " '|) ) ) )
(prinl)
(board south)
(map pop G) )
(do 2
(prinl) ) ) )
(do 2
(cell) )
(display)
(loop
(case
(pack
(make
(link (key))
(while (key 100)
(link @) ) ) )
("^[[D" #left
(redraw (summ (horizontal)) '(a1 a2 a3 a4) east) )
("^[[C" #rigth
(redraw
(summ (mapcar reverse (horizontal)))
'(d1 d2 d3 d4)
west) )
("^[[B" #down
(redraw (summ (vertical)) '(a1 b1 c1 d1) north) )
("^[[A" #up
(redraw
(summ (mapcar reverse (vertical)))
'(a4 b4 c4 d4)
south) ) )
(when (diff *D (fish '((This) (: N)) *G))
(cell) )
(display)
(T (finish?) (println 'Finish))
(T (fish '((This) (= 512 (: N))) *G)
(println 'Maximum) ) )
(bye)
Pony
Works with ponyc 0.10.0
use "term"
use "random"
use "time"
interface EdgeRow
fun val row() : Iterator[U32] ref
fun val inc() : I32
primitive TopRow is EdgeRow
fun row() : Iterator[U32] ref => let r : Array[U32] box = [0,1,2,3]
r.values()
fun inc() : I32 => 4
primitive LeftRow is EdgeRow
fun row() : Iterator[U32] ref => let r : Array[U32] box = [0,4,8,12]
r.values()
fun inc() : I32 => 1
primitive RightRow is EdgeRow
fun row() : Iterator[U32] ref => let r : Array[U32] box = [3,7,11,15]
r.values()
fun inc() : I32 => -1
primitive BottomRow is EdgeRow
fun row() : Iterator[U32] ref => let r : Array[U32] box = [12,13,14,15]
r.values()
fun inc() : I32 => -4
primitive LEFT
primitive RIGHT
primitive UP
primitive DOWN
type Move is (LEFT|RIGHT|UP|DOWN)
class KeyboardHandler is ANSINotify
let _game : Game tag
new iso create(game : Game tag) => _game = game
fun ref apply(term: ANSITerm ref, input: U8 val) =>
if input == 113 then
_game.quit()
term.dispose()
end
fun ref left(ctrl: Bool, alt: Bool, shift: Bool) => _game.move(LEFT)
fun ref down(ctrl: Bool, alt: Bool, shift: Bool) => _game.move(DOWN)
fun ref up(ctrl: Bool, alt: Bool, shift: Bool) => _game.move(UP)
fun ref right(ctrl: Bool, alt: Bool, shift: Bool) => _game.move(RIGHT)
type ROW is (U32,U32,U32,U32)
primitive Merger
fun tag apply(r : ROW) : ROW =>
match r
| (0,0,0,_) => (r._4,0,0,0)
| (0,0,_,r._3) => (r._3<<1,0,0,0)
| (0,0,_,_) => (r._3,r._4,0,0)
| (0,_,r._2,_) => (r._2<<1,r._4,0,0)
| (0,_,0,r._2) => (r._2<<1,0,0,0)
| (0,_,0,_) => (r._2,r._4,0,0)
| (0,_,_,r._3) => (r._2,r._3<<1,0,0)
| (0,_,_,_) => (r._2,r._3,r._4,0)
| (_, r._1, _, r._3) => (r._1<<1, r._3<<1, 0, 0)
| (_, r._1, 0, _) => (r._1<<1, r._4, 0, 0)
| (_, r._1, _, _) => (r._1<<1, r._3, r._4, 0)
| (_, 0,r._1, _) => (r._1<<1,r._4,0,0)
| (_, 0,0, r._1) => (r._1<<1,0,0,0)
| (_, 0,0, _) => (r._1,r._4,0,0)
| (_, 0,_, r._3) => (r._1, r._3<<1,0,0)
| (_, 0,_, _) => (r._1, r._3,r._4,0)
| (_,_,r._2,_) => (r._1, r._2<<1,r._4,0)
| (_,_,0,r._2) => (r._1, r._2<<1,0,0)
| (_,_,0,_) => (r._1, r._2,r._4,0)
| (_,_,_,r._3) => (r._1, r._2,r._3<<1,0)
else
r
end
/**
* Game actor
*/
actor Game
embed _grid : Array[U32] = Array[U32].init(0, 16)
let _rand : Random = MT(Time.millis())
let _env : Env
let _board : String ref = recover String(1024) end
new create(env: Env)=>
_env = env
_add_block()
_add_block()
_draw()
fun _merge(start : U32, inc : I32) : (ROW | None) =>
var st = start.i32()
let rval : ROW = (_get(st), _get(st + inc),
_get(st + (inc * 2)), _get(st + (inc * 3)))
let rout = Merger(rval)
if rout is rval then None else rout end
fun ref _update(start : U32, inc : I32) : Bool =>
match _merge(start, inc)
| let rout : ROW =>
var st = start.i32()
_set(st, rout._1)
_set(st + inc, rout._2)
_set(st + (inc * 2), rout._3)
_set(st + (inc * 3), rout._4)
true
else
false
end
fun ref _shift_to(edge : EdgeRow val) : Bool =>
var updated = false
for r in edge.row() do
if _update(r, edge.inc()) then
updated = true
end
end
updated
fun _fmt(i : U32) : String =>
match i
| 0 => " __ "
| 2 => "\x1B[31m 2 \x1B[0m"
| 4 => "\x1B[32m 4 \x1B[0m"
| 8 => "\x1B[33m 8 \x1B[0m"
| 16 => "\x1B[34m 16 \x1B[0m"
| 32 => "\x1B[35m 32 \x1B[0m"
| 64 => "\x1B[36m 64 \x1B[0m"
| 128 => "\x1B[37m128 \x1B[0m"
| 256 => "\x1B[41m\x1B[37m256 \x1B[0m"
| 512 => "\x1B[42m\x1B[37m512 \x1B[0m"
| 1024 => "\x1B[43m\x1B[37m1024\x1B[0m"
| 2048 => "\x1B[47m\x1B[35m\x1B[1m\x1B[5m2048\x1B[0m"
else
i.string()
end
fun ref _draw() =>
let s : String ref = _board
s.truncate(0)
var i : U32 = 0
repeat
if (i % 4) == 0 then
s.append("---------------------\n")
end
s.append(_fmt(_get(i)))
s.append(" ")
i = i + 1
if (i % 4) == 0 then
s.append("\n")
end
until i==16 end
_env.out.print(s.string())
_env.out.print("Arrow keys to move. Press (q)uit key to quit.")
fun ref _set(i:(I32|U32), v : U32) =>
try
_grid.update(i.usize(),v)
else
_env.out.print("cant update!")
end
fun _count() : U64 =>
var c : U64 = 0
for v in _grid.values() do
c = c + if v == 0 then 0 else 1 end
end
c
fun ref _add_block() =>
let c = _count()
if c == 16 then return end
var hit = _rand.int(16 - c)
var i : U32 = 0
while i < 16 do
if (_get(i) == 0) then
if hit == 0 then
_set(i, if _rand.int(10) > 0 then 2 else 4 end)
break
end
hit = hit - 1
end
i = i + 1
end
fun _get(i : (I32|U32)) : U32 => try _grid(i.usize()) else 0 end
fun _win() : Bool =>
for v in _grid.values() do
if v == 2048 then return true end
end
false
fun _no_moves(edge : EdgeRow val) : Bool =>
for r in edge.row() do
match _merge(r, edge.inc())
| let rout : ROW =>
if (rout._1 == 0) or (rout._2 == 0) or
(rout._3 == 0) or (rout._4 == 0) then
return false
end
end
end
true
fun _lose() : Bool =>
(_grid.size() >= 16) and
_no_moves(LeftRow) and
_no_moves(RightRow) and
_no_moves(TopRow) and
_no_moves(BottomRow)
be quit()=>
_env.out.print("Exiting.. some terminals may require <ctrl-c>")
_env.exitcode(0)
_env.input.dispose()
be move(m: Move) =>
let updated =
match m
| LEFT => _shift_to(LeftRow)
| RIGHT => _shift_to(RightRow)
| UP => _shift_to(TopRow)
| DOWN => _shift_to(BottomRow)
else
false
end
if _win() then
_draw()
_env.out.print("You win :)")
quit()
else
if updated then
_add_block()
_draw()
end
if _lose() then
_env.out.print("You lose :(")
quit()
end
end
actor Main
new create(env: Env) =>
// unit test
ifdef "test" then
TestMain(env)
return
end
// else game
let input : Stdin tag = env.input
env.out.print("Welcome to ponylang-2048...")
let game = Game(env)
let term = ANSITerm(KeyboardHandler(game), input)
let notify : StdinNotify iso = object iso
let term: ANSITerm = term
let _in: Stdin tag = input
fun ref apply(data: Array[U8] iso) => term(consume data)
fun ref dispose() => _in.dispose()
end
input(consume notify)
Prolog
Works with swi-prolog, any version.
/* -------------------------------------------------------------
Entry point, just create a blank grid and enter a 'game loop'
-------------------------------------------------------------*/
play_2048 :-
welcome_msg,
length(Grid, 16), maplist(=(' '), Grid), % create a blank grid
play(Grid, yes), !. % don't have to cut here but it makes the exit cleaner
/* -----------------------------------------------
Messages that will be printed at various points
-----------------------------------------------*/
welcome_msg :-
format('~nWelcome to the Prolog version of 2048~n~n'),
format('To play using w,s,a,d keys for movement, q to quit~n~n').
contrats_msg :- format('Congratulations, you reached 2048!~n~n').
loser_msg :- format('Uh Oh, you could not quite make it to 2048...~n~n').
quit_msg :- format('Bye then!~n~n').
/* -------------------
End game conditions
-------------------*/
player_not_won_yet(Grid) :- maplist(dif(2048), Grid).
player_wins(Grid) :- member(2048, Grid).
player_loses(G) :- move(up, G, G), move(down, G, G), move(left, G, G), move(right, G, G).
/* ---------
Game loop
---------*/
% First check if the player has reached the win condition, if not find how many spaces are left
play(Grid, _) :-
player_wins(Grid),
draw_grid(Grid),
contrats_msg.
play(Grid, CreateNewNum) :-
player_not_won_yet(Grid),
include(=(' '), Grid, Spaces), length(Spaces, NSpaces), % the number of spaces in the grid
play(Grid, CreateNewNum, NSpaces).
% knowing the number of spaces, determine if there is a space, and if we need a new number, and generate.
play(Grid, no, _) :- play(Grid).
play(Grid, yes, 0) :- play(Grid).
play(Grid, yes, NSpaces) :-
dif(NSpaces, 0),
random_space(NSpaces, Grid, GridWithRandom),
play(GridWithRandom).
% with the new number on the grid we can tell if the player has lost the game yet
% if not, draw the grid and get the next action by the player
play(Grid) :-
player_loses(Grid),
draw_grid(Grid),
loser_msg.
play(Grid) :-
\+ player_loses(Grid),
draw_grid(Grid),
next_move_by_player(Move),
player_made_move(Grid, Move).
% determine the result of player move
player_made_move(_, quit).
player_made_move(Grid, Move) :-
dif(Move, quit),
move(Move, Grid, Grid), % The move creating the same grid indicates that no merge was done
play(Grid, no). % don't create a new number
player_made_move(Grid, Move) :-
dif(Move, quit),
move(Move, Grid, MovedGrid),
dif(Grid, MovedGrid),
play(MovedGrid, yes).
/* ---------------------------------------
Get the next move from the player input
---------------------------------------*/
next_move_by_player(Move) :-
repeat,
get_single_char(Char),
key_move(Char, Move).
% valid keys are: up = 'w', down = 's', left = 'a' right = 'd', quit = 'q'
key_move(119, up). key_move(115, down). key_move(97, left). key_move(100, right). key_move(113, quit).
/* ------------------
Draw the Game grid
------------------*/
draw_grid([A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4]) :-
format( '+-------------------+~n'),
row([A1,A2,A3,A4]),
row([B1,B2,B3,B4]),
row([C1,C2,C3,C4]),
maplist(draw, [D1,D2,D3,D4]),
format('¦~n+-------------------+~n~n~n').
row([A,B,C,D]) :- maplist(draw, [A,B,C,D]), format('¦~n¦----+----+----+----¦~n').
draw(' ') :- format('¦ ').
draw(X) :- member(X,[2,4,8]), format('¦ ~d ', X).
draw(X) :- member(X,[16,32,64]), format('¦ ~d ', X).
draw(X) :- member(X,[128,256,512]), format('¦ ~d', X).
draw(X) :- member(X,[1024,2048]), format('¦~d', X).
/* ----------------------------------------
Populate a random space with a new value
----------------------------------------*/
random_space(0, G, G).
random_space(1, Grid, GridWithRandom) :-
four_or_two(V),
select(' ', Grid, V, GridWithRandom).
random_space(N, Grid, GridWithRandom) :-
N > 1,
four_or_two(V),
random(1, N, P),
replace_space(P, V, Grid, GridWithRandom).
replace_space(0, V, [' '|T], [V|T]).
replace_space(P, V, [' '|T], [' '|R]) :- succ(NextP, P), replace_space(NextP, V, T, R).
replace_space(P, V, [H|T], [H|R]) :- dif(' ', H), replace_space(P, V, T, R).
four_or_two(V) :- random(1, 10, IsFour), IsFour = 1 -> V = 4 ; V = 2.
/* ------------------------------------------
Process a game move based on the direction
------------------------------------------*/
move(Direction, UnMoved, Moved) :-
map_move(Direction, UnMoved, UnMovedMapped),
maplist(combine_row, UnMovedMapped, MovedMapped),
map_move(Direction, Moved, MovedMapped).
% convert the array to a set of lists that can be moved in the same
% direction. This can be reversed after the move is completed.
map_move(up, [A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4], [[D1,C1,B1,A1],[D2,C2,B2,A2],[D3,C3,B3,A3],[D4,C4,B4,A4]]).
map_move(down, [A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4], [[A1,B1,C1,D1],[A2,B2,C2,D2],[A3,B3,C3,D3],[A4,B4,C4,D4]]).
map_move(left, [A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4], [[A4,A3,A2,A1],[B4,B3,B2,B1],[C4,C3,C2,C1],[D4,D3,D2,D1]]).
map_move(right, [A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4], [[A1,A2,A3,A4],[B1,B2,B3,B4],[C1,C2,C3,C4],[D1,D2,D3,D4]]).
% remove all the spaces, then put them at the front of the list
combine_row(UnMoved, Moved) :-
partition(=(' '), UnMoved, Blank, Set),
append(Blank, Set, ReadyToMove),
combine(ReadyToMove, Moved).
% combine based on the rules of the game.
combine([A,B,C,D], [A,B,C,D]) :- dif(A,B), dif(B,C), dif(C,D).
combine([A,A,B,B], [' ',' ',Ad,Bd]) :- dbl(A,Ad), dbl(B,Bd).
combine([A,B,C,C], [' ',A,B,Cd]) :- dif(A,B), dbl(C,Cd).
combine([A,B,B,C], [' ',A,Bd,C]) :- dif(B,C), dbl(B,Bd).
combine([A,A,B,C], [' ',Ad,B,C]) :- dif(A,B), dif(B,C), dbl(A, Ad).
combine([A,B,C,C], [' ',A,B,Cd]) :- dif(A,B), dif(B,C), dbl(C,Cd).
% this could be done using maths, but it is more prology this way.
dbl(' ', ' ').
dbl(2,4). dbl(4,8). dbl(8,16). dbl(16,32). dbl(32,64). dbl(64,128). dbl(128,256). dbl(256,512). dbl(512,1028). dbl(1028,2048).
Output:
?- play_2048.
Welcome to the Prolog version of 2048
To play using w,s,a,d keys for movement, q to quit
+-------------------+
¦ ¦ ¦ ¦ ¦
¦----+----+----+----¦
¦ ¦ ¦ ¦ 2 ¦
¦----+----+----+----¦
¦ ¦ ¦ ¦ ¦
¦----+----+----+----¦
¦ ¦ ¦ ¦ ¦
+-------------------+
Python
import curses
from random import randrange, choice # generate and place new tile
from collections import defaultdict
letter_codes = [ord(ch) for ch in 'WASDRQwasdrq']
actions = ['Up', 'Left', 'Down', 'Right', 'Restart', 'Exit']
actions_dict = dict(zip(letter_codes, actions * 2))
def get_user_action(keyboard):
char = "N"
while char not in actions_dict:
char = keyboard.getch()
return actions_dict[char]
def transpose(field):
return [list(row) for row in zip(*field)]
def invert(field):
return [row[::-1] for row in field]
class GameField(object):
def __init__(self, height=4, width=4, win=2048):
self.height = height
self.width = width
self.win_value = win
self.score = 0
self.highscore = 0
self.reset()
def reset(self):
if self.score > self.highscore:
self.highscore = self.score
self.score = 0
self.field = [[0 for i in range(self.width)] for j in range(self.height)]
self.spawn()
self.spawn()
def move(self, direction):
def move_row_left(row):
def tighten(row): # squeese non-zero elements together
new_row = [i for i in row if i != 0]
new_row += [0 for i in range(len(row) - len(new_row))]
return new_row
def merge(row):
pair = False
new_row = []
for i in range(len(row)):
if pair:
new_row.append(2 * row[i])
self.score += 2 * row[i]
pair = False
else:
if i + 1 < len(row) and row[i] == row[i + 1]:
pair = True
new_row.append(0)
else:
new_row.append(row[i])
assert len(new_row) == len(row)
return new_row
return tighten(merge(tighten(row)))
moves = {}
moves['Left'] = lambda field: \
[move_row_left(row) for row in field]
moves['Right'] = lambda field: \
invert(moves['Left'](invert(field)))
moves['Up'] = lambda field: \
transpose(moves['Left'](transpose(field)))
moves['Down'] = lambda field: \
transpose(moves['Right'](transpose(field)))
if direction in moves:
if self.move_is_possible(direction):
self.field = moves[direction](self.field)
self.spawn()
return True
else:
return False
def is_win(self):
return any(any(i >= self.win_value for i in row) for row in self.field)
def is_gameover(self):
return not any(self.move_is_possible(move) for move in actions)
def draw(self, screen):
help_string1 = '(W)Up (S)Down (A)Left (D)Right'
help_string2 = ' (R)Restart (Q)Exit'
gameover_string = ' GAME OVER'
win_string = ' YOU WIN!'
def cast(string):
screen.addstr(string + '\n')
def draw_hor_separator():
top = '┌' + ('┬──────' * self.width + '┐')[1:]
mid = '├' + ('┼──────' * self.width + '┤')[1:]
bot = '└' + ('┴──────' * self.width + '┘')[1:]
separator = defaultdict(lambda: mid)
separator[0], separator[self.height] = top, bot
if not hasattr(draw_hor_separator, "counter"):
draw_hor_separator.counter = 0
cast(separator[draw_hor_separator.counter])
draw_hor_separator.counter += 1
def draw_row(row):
cast(''.join('│{: ^5} '.format(num) if num > 0 else '| ' for num in row) + '│')
screen.clear()
cast('SCORE: ' + str(self.score))
if 0 != self.highscore:
cast('HIGHSCORE: ' + str(self.highscore))
for row in self.field:
draw_hor_separator()
draw_row(row)
draw_hor_separator()
if self.is_win():
cast(win_string)
else:
if self.is_gameover():
cast(gameover_string)
else:
cast(help_string1)
cast(help_string2)
def spawn(self):
new_element = 4 if randrange(100) > 89 else 2
(i,j) = choice([(i,j) for i in range(self.width) for j in range(self.height) if self.field[i][j] == 0])
self.field[i][j] = new_element
def move_is_possible(self, direction):
def row_is_left_movable(row):
def change(i): # true if there'll be change in i-th tile
if row[i] == 0 and row[i + 1] != 0: # Move
return True
if row[i] != 0 and row[i + 1] == row[i]: # Merge
return True
return False
return any(change(i) for i in range(len(row) - 1))
check = {}
check['Left'] = lambda field: \
any(row_is_left_movable(row) for row in field)
check['Right'] = lambda field: \
check['Left'](invert(field))
check['Up'] = lambda field: \
check['Left'](transpose(field))
check['Down'] = lambda field: \
check['Right'](transpose(field))
if direction in check:
return check[direction](self.field)
else:
return False
def main(stdscr):
curses.use_default_colors()
game_field = GameField(win=32)
state_actions = {} # Init, Game, Win, Gameover, Exit
def init():
game_field.reset()
return 'Game'
state_actions['Init'] = init
def not_game(state):
game_field.draw(stdscr)
action = get_user_action(stdscr)
responses = defaultdict(lambda: state)
responses['Restart'], responses['Exit'] = 'Init', 'Exit'
return responses[action]
state_actions['Win'] = lambda: not_game('Win')
state_actions['Gameover'] = lambda: not_game('Gameover')
def game():
game_field.draw(stdscr)
action = get_user_action(stdscr)
if action == 'Restart':
return 'Init'
if action == 'Exit':
return 'Exit'
if game_field.move(action): # move successful
if game_field.is_win():
return 'Win'
if game_field.is_gameover():
return 'Gameover'
return 'Game'
state_actions['Game'] = game
state = 'Init'
while state != 'Exit':
state = state_actions[state]()
curses.wrapper(main)
QB64
_DEFINE A-Z AS _INTEGER64
DIM SHARED Grid(0 TO 5, 0 TO 5) AS INTEGER
CONST Left = 19200
CONST Right = 19712
CONST Down = 20480
CONST Up = 18432
CONST ESC = 27
CONST LCtrl = 100306
CONST RCtrl = 100305
Init
MakeNewGame
DO
_LIMIT 30
ShowGrid
CheckInput flag
IF flag THEN GetNextNumber
_DISPLAY
LOOP
SUB CheckInput (flag)
flag = 0
k = _KEYHIT
SELECT CASE k
CASE ESC: SYSTEM
CASE 83, 115 'S
IF _KEYDOWN(LCtrl) OR _KEYDOWN(RCtrl) THEN MakeNewGame
CASE Left
MoveLeft
flag = -1 'we hit a valid move key. Even if we don't move, get a new number
CASE Up
MoveUp
flag = -1
CASE Down
MoveDown
flag = -1
CASE Right
MoveRight
flag = -1
END SELECT
END SUB
SUB MoveDown
'first move everything left to cover the blank spaces
DO
moved = 0
FOR y = 4 TO 1 STEP -1
FOR x = 1 TO 4
IF Grid(x, y) = 0 THEN 'every point above this moves down
FOR j = y TO 1 STEP -1
Grid(x, j) = Grid(x, j - 1)
IF Grid(x, j) <> 0 THEN moved = -1
NEXT
END IF
NEXT
NEXT
IF moved THEN y = y + 1 'recheck the same column
LOOP UNTIL NOT moved
FOR y = 4 TO 1 STEP -1
FOR x = 1 TO 4
IF Grid(x, y) <> 0 AND Grid(x, y) = Grid(x, y - 1) THEN 'add them together and every point above this moves
Grid(x, y) = Grid(x, y) * 2
FOR j = y - 1 TO 1
Grid(x, j) = Grid(x, j - 1)
NEXT
END IF
NEXT
NEXT
END SUB
SUB MoveLeft
'first move everything to cover the blank spaces
DO
moved = 0
FOR x = 1 TO 4
FOR y = 1 TO 4
IF Grid(x, y) = 0 THEN 'every point right of this moves left
FOR j = x TO 4
Grid(j, y) = Grid(j + 1, y)
IF Grid(j, y) <> 0 THEN moved = -1
NEXT
END IF
NEXT
NEXT
IF moved THEN x = x - 1 'recheck the same row
LOOP UNTIL NOT moved
FOR x = 1 TO 4
FOR y = 1 TO 4
IF Grid(x, y) <> 0 AND Grid(x, y) = Grid(x + 1, y) THEN 'add them together and every point right of this moves left
Grid(x, y) = Grid(x, y) * 2
FOR j = x + 1 TO 4
Grid(j, y) = Grid(j + 1, y)
NEXT
END IF
NEXT
NEXT
END SUB
SUB MoveUp
'first move everything to cover the blank spaces
DO
moved = 0
FOR y = 1 TO 4
FOR x = 1 TO 4
IF Grid(x, y) = 0 THEN 'every point below of this moves up
FOR j = y TO 4
Grid(x, j) = Grid(x, j + 1)
IF Grid(x, j) <> 0 THEN moved = -1
NEXT
END IF
NEXT
NEXT
IF moved THEN y = y - 1 'recheck the same column
LOOP UNTIL NOT moved
FOR y = 1 TO 4
FOR x = 1 TO 4
IF Grid(x, y) <> 0 AND Grid(x, y) = Grid(x, y + 1) THEN 'add them together and every point below this moves
Grid(x, y) = Grid(x, y) * 2
FOR j = y + 1 TO 4
Grid(x, j) = Grid(x, j + 1)
NEXT
Grid(x, 4) = 0
END IF
NEXT
NEXT
END SUB
SUB MoveRight
'first move everything to cover the blank spaces
DO
moved = 0
FOR x = 4 TO 1 STEP -1
FOR y = 1 TO 4
IF Grid(x, y) = 0 THEN 'every point right of this moves left
FOR j = x TO 1 STEP -1
Grid(j, y) = Grid(j - 1, y)
IF Grid(j, y) <> 0 THEN moved = -1
NEXT
END IF
NEXT
NEXT
IF moved THEN x = x - 1 'recheck the same row
LOOP UNTIL NOT moved
FOR x = 4 TO 1 STEP -1
FOR y = 1 TO 4
IF Grid(x, y) <> 0 AND Grid(x, y) = Grid(x - 1, y) THEN 'add them together and every point right of this moves left
Grid(x, y) = Grid(x, y) * 2
FOR j = x - 1 TO 1 STEP -1
Grid(j, y) = Grid(j - 1, y)
NEXT
END IF
NEXT
NEXT
END SUB
SUB ShowGrid
'SUB MakeBox (Mode AS INTEGER, x1 AS INTEGER, y1 AS INTEGER, x2 AS INTEGER, y2 AS INTEGER,
'Caption AS STRING, FontColor AS _UNSIGNED LONG, FontBackground AS _UNSIGNED LONG,
'BoxColor AS _UNSIGNED LONG, BoxHighLight AS _UNSIGNED LONG, XOffset AS INTEGER, YOffset AS INTEGER)
w = 120
h = 120
FOR x = 1 TO 4
FOR y = 1 TO 4
t$ = LTRIM$(STR$(Grid(x, y)))
IF t$ = "0" THEN t$ = ""
MakeBox 4, (x - 1) * w, (y - 1) * h, w, h, t$, -1, 0, 0, -1, 0, 0
NEXT
NEXT
END SUB
SUB Init
ws = _NEWIMAGE(480, 480, 32)
SCREEN ws
_DELAY 1
_TITLE "Double Up"
_SCREENMOVE _MIDDLE
RANDOMIZE TIMER
f& = _LOADFONT("C:\Windows\Fonts\courbd.ttf", 32, "MONOSPACE")
_FONT f&
END SUB
SUB MakeNewGame
FOR x = 1 TO 4
FOR y = 1 TO 4
Grid(x, y) = 0
NEXT
NEXT
GetNextNumber
GetNextNumber
END SUB
SUB GetNextNumber
FOR x = 1 TO 4
FOR y = 1 TO 4
IF Grid(x, y) = 0 THEN valid = -1
NEXT
NEXT
IF valid THEN 'If all the grids are full, we can't add any more numbers
'This doesn't mean the game is over, as the player may be able to
DO
x = _CEIL(RND * 4)
y = _CEIL(RND * 4)
LOOP UNTIL Grid(x, y) = 0
Grid(x, y) = 2
END IF
END SUB
SUB MakeBox (Mode AS INTEGER, x1 AS INTEGER, y1 AS INTEGER, x2 AS INTEGER, y2 AS INTEGER, Caption AS STRING, FontColor AS _UNSIGNED LONG, FontBackground AS _UNSIGNED LONG, BoxColor AS _UNSIGNED LONG, BoxHighLight AS _UNSIGNED LONG, XOffset AS INTEGER, YOffset AS INTEGER)
'This is an upgrade version of my original Button routine.
'It's more versitile (but complex) than the original.
'Mode 0 (or any unsupported number) will tell the box to size itself from X1,Y1 to X2,Y2
'Mode 1 will tell the box to autosize itself according to whatever text is placed within it.
'Mode 2 will tell the box to use X2 and Y2 as relative coordinates and not absolute coordinates.
'Mode 3 will tell the box to autocenter text with X2, Y2 being absolute coordinates.
'Mode 4 will tell the box to autocenter text with X2, Y2 being relative coordinates.
'Mode otherwise is unused, but available for expanded functionality.
'X1 carries the X location of where we want to place our box on the screen.
'Y2 carries the Y location of where we want to place our box on the screen.
'X2 is the X boundry of our box on the screen, depending on our mode.
'Y2 is the Y boundry of our box on the screen, depending on our mode.
'Caption is the text that we want our box to contain.
'FontColor is our font color for our caption
'FontBackground is the font background color for our caption
'NOTE: IF FONTCOLOR OR FONTBACKGROUND IS SET TO ZERO, THEY WILL **NOT** AFFECT THE COLOR BEHIND THEM.
'This can be used to mimic the function of _KEEPBACKGROUND, _FILLBACKGROUND, or _ONLYBACKGROUND
'BoxColor is our box color
'BoxHighlight is our box highligh colors
'NOTE: SAME WITH BOXCOLOR AND BOXHIGHLIGHT. IF SET TO ZERO, THEY WILL HAVE **NO** COLOR AT ALL TO THEM, AND WILL NOT AFFECT THE BACKGROUND OF ANYTHING BEHIND THEM.
'XOffset is used to offset our text # pixels from the X1 top.
'YOffset is used to offset our text # pixels from the Y1 top.
'These can be used to place our text wherever we want on our box.
'But remember, if Mode = 3 or 4, the box will autocenter the text and ignore these parameters completely.
DIM BoxBlack AS _UNSIGNED LONG
dc& = _DEFAULTCOLOR: bg& = _BACKGROUNDCOLOR
IF Black <> 0 THEN
'We have black either as a CONST or a SHARED color
BoxBlack = Black
ELSE
'We need to define what Black is for our box.
BoxBlack = _RGB32(0, 0, 0)
END IF
IF _FONTWIDTH <> 0 THEN cw = _FONTWIDTH * LEN(Caption) ELSE cw = _PRINTWIDTH(Caption)
ch = _FONTHEIGHT
tx1 = x1: tx2 = x2: ty1 = y1: ty2 = y2
SELECT CASE Mode
CASE 0
'We use the X2, Y2 coordinates provided as absolute coordinates
CASE 1
tx2 = tx1 + cw + 8
ty2 = ty1 + ch + 8
XOffset = 5: YOffset = 5
CASE 2
tx2 = tx1 + x2
ty2 = ty1 + y2
CASE 3
XOffset = (tx2 - tx1 - cw) \ 2
YOffset = (ty2 - ty1 - ch) \ 2
CASE 4
tx2 = tx1 + x2
ty2 = ty1 + y2
XOffset = (tx2 - tx1) \ 2 - cw \ 2
YOffset = (ty2 - ty1 - ch) \ 2
END SELECT
LINE (tx1, ty1)-(tx2, ty2), BoxBlack, BF
LINE (tx1 + 1, ty1 + 1)-(tx2 - 1, ty2 - 1), BoxHighLight, B
LINE (tx1 + 2, ty1 + 2)-(tx2 - 2, ty2 - 2), BoxHighLight, B
LINE (tx1 + 3, ty1 + 3)-(tx2 - 3, ty2 - 3), BoxBlack, B
LINE (tx1, ty1)-(tx1 + 3, ty1 + 3), BoxBlack
LINE (tx2, ty1)-(tx2 - 3, ty1 + 3), BoxBlack
LINE (tx1, ty2)-(tx1 + 3, ty2 - 3), BoxBlack
LINE (tx2, ty2)-(tx2 - 3, ty2 - 3), BoxBlack
LINE (tx1 + 3, y1 + 3)-(tx2 - 3, ty2 - 3), BoxColor, BF
COLOR FontColor, FontBackground
_PRINTSTRING (tx1 + XOffset, ty1 + YOffset), Caption$
COLOR dc&, bg&
END SUB
R
orginal R package : https://github.com/ThinkRstat/r2048
GD <- function(vec) {
c(vec[vec != 0], vec[vec == 0])
}
DG <- function(vec) {
c(vec[vec == 0], vec[vec != 0])
}
DG_ <- function(vec, v = TRUE) {
if (v)
print(vec)
rev(GD_(rev(vec), v = FALSE))
}
GD_ <- function(vec, v = TRUE) {
if (v) {
print(vec)
}
vec2 <- GD(vec)
# on cherche les 2 cote a cote
pos <- which(vec2 == c(vec2[-1], 9999))
# put pas y avoir consécutif dans pos
pos[-1][which(abs(pos - c(pos[-1], 999)) == 1)]
av <- which(c(0, c(pos[-1], 9) - pos) == 1)
if (length(av) > 0) {
pos <- pos[-av]
}
vec2[pos] <- vec2[pos] + vec2[pos + 1]
vec2[pos + 1] <- 0
GD(vec2)
}
H_ <- function(base) {
apply(base, MARGIN = 2, FUN = GD_, v = FALSE)
}
B_ <- function(base) {
apply(base, MARGIN = 2, FUN = DG_, v = FALSE)
}
G_ <- function(base) {
t(apply(base, MARGIN = 1, FUN = GD_, v = FALSE))
}
D_ <- function(base) {
t(apply(base, MARGIN = 1, FUN = DG_, v = FALSE))
}
H <- function(base) {
apply(base, MARGIN = 2, FUN = GD, v = FALSE)
}
B <- function(base) {
apply(base, MARGIN = 2, FUN = DG, v = FALSE)
}
G <- function(base) {
t(apply(base, MARGIN = 1, FUN = GD, v = FALSE))
}
D <- function(base) {
t(apply(base, MARGIN = 1, FUN = DG, v = FALSE))
}
add2or4 <- function(base, p = 0.9) {
lw <- which(base == 0)
if (length(lw) > 1) {
tirage <- sample(lw, 1)
} else {
tirage <- lw
}
base[tirage] <- sample(c(2, 4), 1, prob = c(p, 1 - p))
base
}
print.dqh <- function(base) {
cat("\n\n")
for (i in 1:nrow(base)) {
cat(paste(" ", base[i, ], " "))
cat("\n")
}
cat("\n")
}
# -*- coding: utf-8 -*-
#' @encoding UTF-8
#' @title run_2048
#' @description The 2048 game
#' @param nrow nomber of row
#' @param ncol numver of col
#' @param p probability to obtain a 2 (1-p) is the probability to obtain a 4
#' @examples
#' \dontrun{
#' run_2048()
#' }
#' @export
run_2048 <- function(nrow, ncol, p = 0.9) {
help <- function() {
cat(" *** KEY BINDING *** \n\n")
cat("press ECHAP to quit\n\n")
cat("choose moove E (up) ; D (down) ; S (left); F (right) \n")
cat("choose moove 8 (up) ; 2 (down) ; 4 (left); 6 (right) \n")
cat("choose moove I (up) ; K (down) ; J (left); L (right) \n\n\n")
}
if (missing(nrow) & missing(ncol)) {
nrow <- ncol <- 4
}
if (missing(nrow)) {
nrow <- ncol
}
if (missing(ncol)) {
ncol <- nrow
}
base <- matrix(0, nrow = nrow, ncol = ncol)
while (length(which(base == 2048)) == 0) {
base <- add2or4(base, p = p)
# print(base)
class(base) <- "dqh"
print(base)
flag <- sum((base == rbind(base[-1, ], 0)) + (base == rbind(0,
base[-nrow(base), ])) + (base == cbind(base[, -1], 0)) + (base ==
cbind(0, base[, -nrow(base)])))
if (flag == 0) {
break
}
y <- character(0)
while (length(y) == 0) {
cat("\n", "choose moove E (up) ; D (down) ; s (left); f (right) OR H for help",
"\n") # prompt
y <- scan(n = 1, what = "character")
}
baseSAVE <- base
base <- switch(EXPR = y, E = H_(base), D = B_(base), S = G_(base),
F = D_(base), e = H_(base), d = B_(base), s = G_(base), f = D_(base),
`8` = H_(base), `2` = B_(base), `4` = G_(base), `6` = D_(base),
H = help(), h = help(), i = H_(base), k = B_(base), j = G_(base),
l = D_(base), I = H_(base), K = B_(base), J = G_(base), L = D_(base))
if (is.null(base)) {
cat(" wrong KEY \n")
base <- baseSAVE
}
}
if (sum(base >= 2048) > 1) {
cat("YOU WIN ! \n")
} else {
cat("YOU LOOSE \n")
}
}
Racket
Original repo: https://github.com/danprager/2048 Play the RacketScript fork online here: http://rapture.twistedplane.com:8080/#example/2048-game
;; LICENSE: See License file LICENSE (MIT license)
;;
;; Repository: https://github.com/danprager/2048
;;
;; Copyright 2014: Daniel Prager
;; daniel.a.prager@gmail.com
;;
;; This is a largely clean-room, functional implementation in Racket
;; of the game 2048 by Gabriele Cirulli, based on 1024 by Veewo Studio,
;; and conceptually similar to Threes by Asher Vollmer.
;;
;;
;; HOW TO PLAY:
;; * Use your arrow keys to slide the tiles.
;; * When two tiles with the same number touch, they merge into one!
;; * Press <space> to rotate the board.
;;
#lang racket
(require rackunit
2htdp/image
(rename-in 2htdp/universe
[left left-arrow]
[right right-arrow]
[up up-arrow]
[down down-arrow]))
(define *side* 4) ; Side-length of the grid
(define *time-limit* #f) ; Use #f for no time limit, or number of seconds
(define *amber-alert* 60) ; Time indicator goes orange when less than this number of seconds remaining
(define *red-alert* 10) ; Time indicator goes red when less than this number of seconds remaining
(define *tile-that-wins* 2048) ; You win when you get a tile = this number
(define *magnification* 2) ; Scales the game board
(define (set-side! n)
(set! *side* n))
;;
;; Numbers can be displayed with substiture text. Just edit this table...
;;
(define *text*
'((0 "")
(2 "2")))
;; Color scheme
;;
;; From https://github.com/gabrielecirulli/2048/blob/master/style/main.css
;;
(define *grid-color* (color #xbb #xad #xa0))
(define *default-tile-bg-color* (color #x3c #x3a #x32))
(define *default-tile-fg-color* 'white)
(define *tile-bg-colors*
(map (lambda (x)
(match-define (list n r g b) x)
(list n (color r g b)))
'((0 #xcc #xc0 #xb3)
(2 #xee #xe4 #xda)
(4 #xed #xe0 #xc8)
(8 #xf2 #xb1 #x79)
(16 #xf5 #x95 #x63)
(32 #xf6 #x7c #x5f)
(64 #xf6 #x5e #x3b)
(128 #xed #xcf #x72)
(256 #xed #xcc #x61)
(512 #xed #xc8 #x50)
(1024 #xed #xc5 #x3f)
(2048 #xed #xc2 #x2e))))
(define *tile-fg-colors*
'((0 dimgray)
(2 dimgray)
(4 dimgray)
(8 white)
(16 white)
(32 white)
(64 white)
(128 white)
(256 white)
(512 white)
(1024 white)
(2048 white)))
;;--------------------------------------------------------------------
;; Rows may be represented as lists, with 0s representing empty spots.
;;
(define (nonzero? x) (not (zero? x)))
;; Append padding to lst to make it n items long
;;
(define (pad-right lst padding n)
(append lst (make-list (- n (length lst)) padding)))
;; Slide items towards the head of the list, doubling adjacent pairs
;; when no item is a 0.
;;
;; E.g. (combine '(2 2 2 4 4)) -> '(4 2 8)
;;
(define (combine lst)
(cond [(<= (length lst) 1) lst]
[(= (first lst) (second lst))
(cons (* 2 (first lst)) (combine (drop lst 2)))]
[else (cons (first lst) (combine (rest lst)))]))
;; Total of new elements introduced by combining.
;;
;; E.g. (combine-total '(2 2 2 4 4)) -> 4 + 8 = 12
;;
(define (combine-total lst)
(cond [(<= (length lst) 1) 0]
[(= (first lst) (second lst))
(+ (* 2 (first lst)) (combine-total (drop lst 2)))]
[else (combine-total (rest lst))]))
;; Slide towards the head of the list, doubling pairs, 0 are
;; allowed (and slid through), and length is preserved by
;; padding with 0s.
;;
;; E.g. (slide-left '(2 2 2 0 4 4)) -> '(4 2 8 0 0 0)
;;
(define (slide-left row)
(pad-right (combine (filter nonzero? row)) 0 (length row)))
;; Slide towards the tail of the list:
;;
;; E.g. (slide-right '(2 2 0 0 4 4)) -> '(0 0 0 0 0 4 8)
;;
(define (slide-right row) (reverse (slide-left (reverse row))))
;;--------------------------------------------------------------------
;; We use a sparse representation for transitions in a row.
;;
;; Moves take the form '(value initial-position final-position)
;;
(define (moves-row-left row [last #f] [i 0] [j -1])
(if (null? row)
null
(let ([head (first row)])
(cond [(zero? head) (moves-row-left (rest row) last (add1 i) j)]
[(equal? last head)
(cons (list head i j)
(moves-row-left (rest row) #f (add1 i) j))]
[else (cons (list head i (add1 j))
(moves-row-left (rest row) head (add1 i) (add1 j)))]))))
;; Convert a row into the sparse representaiton without any sliding.
;;
;; E.g. (moves-row-none '(0 2 0 4)) -> '((2 1 1) (4 3 3))
;;
(define (moves-row-none row)
(for/list ([value row]
[i (in-naturals)]
#:when (nonzero? value))
(list value i i)))
;; Reverse all moves so that:
;;
;; '(value initial final) -> '(value (- n initial 1) (- n final 1)
;;
(define (reverse-moves moves n)
(define (flip i) (- n i 1))
(map (λ (m)
(match-define (list a b c) m)
(list a (flip b) (flip c)))
moves))
(define (transpose-moves moves)
(for/list ([m moves])
(match-define (list v (list a b) (list c d)) m)
(list v (list b a) (list d c))))
(define (moves-row-right row [n *side*])
(reverse-moves (moves-row-left (reverse row)) n))
;;--------------------------------------------------------------------
;; Lift the sparse representation for transitions
;; up to two dimensions...
;;
;; '(value initial final) -> '(value (x initial) (x final))
;;
(define (add-row-coord i rows)
(for/list ([r rows])
(match-define (list a b c) r)
(list a (list i b) (list i c))))
(define (transpose lsts)
(apply map list lsts))
;; Slide the entire grid in the specified direction
;;
(define (left grid)
(map slide-left grid))
(define (right grid)
(map slide-right grid))
(define (up grid)
((compose transpose left transpose) grid))
(define (down grid)
((compose transpose right transpose) grid))
;; Calculate the change to score from sliding the grid left or right.
;;
(define (score-increment grid)
(apply + (map (λ (row)
(combine-total (filter nonzero? row)))
grid)))
;; Slide the grid in the specified direction and
;; determine the transitions of the tiles.
;;
;; We'll use these operations to animate the sliding of the tiles.
;;
(define (moves-grid-action grid action)
(let ([n (length (first grid))])
(apply append
(for/list ([row grid]
[i (in-range n)])
(add-row-coord i (action row))))))
(define (moves-grid-left grid)
(moves-grid-action grid moves-row-left))
(define (moves-grid-right grid)
(moves-grid-action grid moves-row-right))
(define (moves-grid-up grid)
((compose transpose-moves moves-grid-left transpose) grid))
(define (moves-grid-down grid)
((compose transpose-moves moves-grid-right transpose) grid))
;; Rotating the entire grid doesn't involve sliding.
;; It's a convenience to allow the player to view the grid from a different
;; orientation.
(define (moves-grid-rotate grid)
(let ([n (length (first grid))])
(for/list ([item (moves-grid-action grid moves-row-none)])
(match-define (list v (list i j) _) item)
(list v (list i j) (list j (- n i 1))))))
;; Chop a list into a list of sub-lists of length n. Used to move from
;; a flat representation of the grid into a list of rows.
;;
;;
(define (chop lst [n *side*])
(if (<= (length lst) n)
(list lst)
(cons (take lst n) (chop (drop lst n) n))))
;; The next few functions are used to determine where to place a new
;; number in the grid...
;;
;; How many zeros in the current state?
;;
(define (count-zeros state)
(length (filter zero? state)))
;; What is the absolute index of the nth zero in lst?
;;
;; E.g. (index-of-nth-zero '(0 2 0 4) 1 2)) 1) -> 2
;;
(define (index-of-nth-zero lst n)
(cond [(null? lst) #f]
[(zero? (first lst))
(if (zero? n)
0
(add1 (index-of-nth-zero (rest lst) (sub1 n))))]
[else (add1 (index-of-nth-zero (rest lst) n))]))
;; Place the nth zero in the lst with val.
;;
;; E.g. (replace-nth-zero '(0 2 0 4) 1 2)) -> '(0 2 2 4)
;;
(define (replace-nth-zero lst n val)
(let ([i (index-of-nth-zero lst n)])
(append (take lst i) (cons val (drop lst (add1 i))))))
;; There's a 90% chance that a new tile will be a two; 10% a four.
;;
(define (new-tile)
(if (> (random) 0.9) 4 2))
;; Create a random initial game-board with two non-zeros (2 or 4)
;; and the rest 0s.
;;
;; E.g. '(0 0 0 0
;; 0 2 0 0
;; 2 0 0 0
;; 0 0 0 0)
;;
(define (initial-state [side *side*])
(shuffle (append (list (new-tile) (new-tile))
(make-list (- (sqr side) 2) 0))))
;; The game finishes when no matter which way you slide, the board doesn't
;; change.
;;
(define (finished? state [n *side*])
(let ([grid (chop state n)])
(for/and ([op (list left right up down)])
(equal? grid (op grid)))))
;;--------------------------------------------------------------------
;; Graphics
;;
(define *text-size* 30)
(define *max-text-width* 40)
(define *tile-side* 50)
(define *grid-spacing* 5)
(define *grid-side* (+ (* *side* *tile-side*)
(* (add1 *side*) *grid-spacing*)))
;; Memoization - caching images takes the strain off the gc
;;
(define-syntax define-memoized
(syntax-rules ()
[(_ (f args ...) bodies ...)
(define f
(let ([results (make-hash)])
(lambda (args ...)
((λ vals
(when (not (hash-has-key? results vals))
(hash-set! results vals (begin bodies ...)))
(hash-ref results vals))
args ...))))]))
;; Look-up the (i,j)th element in the flat representation.
;;
(define (square/ij state i j)
(list-ref state (+ (* *side* i) j)))
;; Linear interpolation between a and b:
;;
;; (interpolate 0.0 a b) -> a
;; (interpolate 1.0 a b) -> b
;;
(define (interpolate k a b)
(+ (* (- 1 k) a)
(* k b)))
;; Key value lookup with default return - is there an out-of-the-box function
;; for this?
;;
(define (lookup key lst default)
(let ([value (assoc key lst)])
(if value (second value) default)))
;; Make a tile without a number on it in the appropriate color.
;;
(define (plain-tile n)
(square *tile-side*
'solid
(lookup n *tile-bg-colors* *default-tile-bg-color*)))
;; Make text for a tile
;;
(define (tile-text n)
(let* ([t (text (lookup n *text* (number->string n))
*text-size*
(lookup n *tile-fg-colors* *default-tile-fg-color*))]
[side (max (image-width t) (image-height t))])
(scale (if (> side *max-text-width*) (/ *max-text-width* side) 1) t)))
(define-memoized (make-tile n)
(overlay
(tile-text n)
(plain-tile n)))
;; Place a tile on an image of the grid at (i,j)
;;
(define (place-tile/ij tile i j grid-image)
(define (pos k)
(+ (* (add1 k) *grid-spacing*)
(* k *tile-side*)))
(underlay/xy grid-image (pos j) (pos i) tile))
;; Make an image of the grid from the flat representation
;;
(define *last-state* null) ; Cache the previous grid to avoid
(define *last-grid* null) ; senseless regeneration
(define (state->image state)
(unless (equal? state *last-state*)
(set! *last-grid*
(for*/fold ([im (square *grid-side* 'solid *grid-color*)])
([i (in-range *side*)]
[j (in-range *side*)])
(place-tile/ij (make-tile (square/ij state i j))
i j
im)))
(set! *last-state* state))
*last-grid*)
(define *empty-grid-image*
(state->image (make-list (sqr *side*) 0)))
;; Convert the sparse representation of moves into a single frame in an
;; animation at time k, where k is between 0.0 (start state) and 1.0
;; (final state).
;;
(define (moves->frame moves k)
(for*/fold ([grid *empty-grid-image*])
([m moves])
(match-define (list value (list i1 j1) (list i2 j2)) m)
(place-tile/ij (make-tile value)
(interpolate k i1 i2) (interpolate k j1 j2)
grid)))
;; Animation of simultaneously moving tiles.
;;
(define (animate-moving-tiles state op)
(let ([grid (chop state)])
(build-list 9 (λ (i)
(λ ()
(moves->frame (op grid)
(* 0.1 (add1 i))))))))
;; Animation of a tile appearing in a previously blank square.
;;
(define (animate-appearing-tile state value index)
(let ([start (state->image state)]
[tile (make-tile value)]
[i (quotient index *side*)]
[j (remainder index *side*)])
(build-list 4 (λ (m)
(λ ()
(place-tile/ij (overlay
(scale (* 0.2 (add1 m)) tile)
(plain-tile 0))
i j
start))))))
;;--------------------------------------------------------------
;;
;; The Game
;;
;; an image-procedure is a procedure of no arguments that produces an image
;; a world contains:
;; state is a ?
;; score is a number
;; winning-total is #f or a number, representing the final score <-- is this
;; necessary?
;; frames is a (list-of image-procedure)
;; start-time is a number, in seconds
(define-struct world (state score winning-total frames start-time) #:transparent)
;; The game is over when any animations have been finished and
;; no more moves are possible.
;;
;; note that winning the game does *not* end the game.
;;
(define (game-over? w)
(match-define (world state score wt frames start-time) w)
(and (null? frames) ; Finish animations to reach final state and show the banner
(or (finished? state)
(out-of-time? (world-start-time w)))))
;; Is the player out of time?
(define (out-of-time? start-time)
(and *time-limit* (< (+ start-time *time-limit*) (current-seconds))))
;; Given an arrow key return the operations to change the state and
;; produce the sliding animation.
;;
(define (key->ops a-key)
(cond
[(key=? a-key "left") (list left moves-grid-left)]
[(key=? a-key "right") (list right moves-grid-right)]
[(key=? a-key "up") (list up moves-grid-up)]
[(key=? a-key "down") (list down moves-grid-down)]
[else (list #f #f)]))
;; Respond to a key-press
;;
(define (change w a-key)
(match-let ([(list op moves-op) (key->ops a-key)]
[(world st score wt frames start-time) w])
(cond [(out-of-time? start-time) w] ; Stop accepting key-presses
[op
(let* ([grid (chop st)]
[slide-state (flatten (op grid))])
(if (equal? slide-state st)
w ; sliding had no effect
(let* ([replace (random (count-zeros slide-state))]
[index (index-of-nth-zero slide-state replace)]
[value (new-tile)]
[new-state (replace-nth-zero slide-state replace value)]
[horizontal? (member a-key (list "left" "right"))])
(make-world new-state
(+ score (score-increment
(if horizontal? grid (transpose grid))))
(cond [wt wt]
[(won-game? new-state)
(apply + (flatten new-state))]
[else #f])
(append frames
(animate-moving-tiles st moves-op)
(animate-appearing-tile slide-state value index))
start-time))))]
[(key=? a-key " ") ; rotate the board
(make-world ((compose flatten transpose reverse) (chop st))
score wt
(append frames
(animate-moving-tiles st moves-grid-rotate))
start-time)]
[else w]))) ; unrecognised key - no effect
;; Are we there yet?
;;
(define (won-game? state)
(= (apply max state) *tile-that-wins*))
;; Banner overlay text: e.g. You won! / Game Over, etc.
;;
(define (banner txt state [color 'black])
(let ([b-text (text txt 30 color)])
(overlay
b-text
(rectangle (* 1.2 (image-width b-text))
(* 1.4 (image-height b-text))
'solid 'white)
(state->image state))))
;; Convert number of seconds to "h:mm:ss" or "m:ss" format
;;
(define (number->time-string s)
(define hrs (quotient s 3600))
(define mins (quotient (remainder s 3600) 60))
(define secs (remainder s 60))
(define (xx n)
(cond [(<= n 0) "00"]
[(<= n 9) (format "0~a" n)]
[else (remainder n 60)]))
(if (>= s 3600)
(format "~a:~a:~a" hrs (xx mins) (xx secs))
(format "~a:~a" mins (xx secs))))
(define (time-remaining start)
(+ *time-limit* start (- (current-seconds))))
(define (time-elapsed start)
(- (current-seconds) start))
;; Display the grid with score below.
;;
;; If there are frames, show the next one. Otherwise show the steady state.
;;
(define (show-world w)
(match-define (world state score wt frames start-time) w)
(let* ([board (if (null? frames)
(cond [(finished? state) (banner "Game over" state)]
[(out-of-time? start-time) (banner "Out of Time" state 'red)]
;; Q: Why wt (i.e. winning-total) rather than won-game?
;; A: wt allows the keen player to continue playing...
[(equal? (apply + (flatten state)) wt) (banner "You won!" state)]
[else (state->image state)])
((first frames)))]
[score-text (text (format "Score: ~a" score) 16 'dimgray)]
[seconds ((if *time-limit* time-remaining time-elapsed) start-time)]
[time-text (text (format "Time: ~a"
(number->time-string seconds))
16
(cond [(or (> seconds *amber-alert*) (not *time-limit*)) 'gray]
[(> seconds *red-alert*) 'orange]
[else 'red]))])
(scale *magnification*
(above
board
(rectangle 0 5 'solid 'white)
(beside
score-text
(rectangle (- (image-width board)
(image-width score-text)
(image-width time-text)) 0 'solid 'white)
time-text)))))
;; Move to the next frame in the animation.
;;
(define (advance-frame w)
(match-define (world state score wt frames start-time) w)
(if (null? frames)
w
(make-world state score wt (rest frames) start-time)))
;; Use this state to preview the appearance of all the tiles
;;
(define (all-tiles-state)
(let ([all-tiles '(0 2 4 8 16 32 64 128 256 512 1024 2048 4096)])
(append all-tiles (make-list (- (sqr *side*) (length all-tiles)) 0))))
;; The event loop
;;
(define (start)
(big-bang (make-world (initial-state)
;(all-tiles-state)
0 #f null (current-seconds))
(to-draw show-world)
(on-key change)
(on-tick advance-frame 0.01)
(stop-when game-over? show-world)
(name "2048 - Racket edition")))
;;
;; TESTS
;;
(module+ test
(set-side! 4)
(check-equal? (slide-left '(0 0 0 0)) '(0 0 0 0))
(check-equal? (slide-left '(1 2 3 4)) '(1 2 3 4))
(check-equal? (slide-left '(2 0 4 0)) '(2 4 0 0))
(check-equal? (slide-left '(0 0 2 4)) '(2 4 0 0))
(check-equal? (slide-left '(2 0 2 0)) '(4 0 0 0))
(check-equal? (slide-left '(0 8 8 0)) '(16 0 0 0))
(check-equal? (slide-left '(4 4 8 8)) '(8 16 0 0))
(check-equal? (slide-right '(4 4 8 8)) '(0 0 8 16))
(check-equal? (slide-right '(4 4 4 0)) '(0 0 4 8))
(check-equal? (moves-row-left '(0 0 0 0)) '())
(check-equal? (moves-row-left '(1 2 3 4))
'((1 0 0)
(2 1 1)
(3 2 2)
(4 3 3)))
(check-equal? (moves-row-left '(2 0 4 0)) '((2 0 0)
(4 2 1)))
(check-equal? (moves-row-right '(2 0 4 0)) '((4 2 3)
(2 0 2)))
(check-equal? (moves-row-left '(0 0 2 4)) '((2 2 0)
(4 3 1)))
(check-equal? (moves-row-left '(2 0 2 0)) '((2 0 0)
(2 2 0)))
(check-equal? (moves-row-left '(2 2 2 0)) '((2 0 0)
(2 1 0)
(2 2 1)))
(check-equal? (moves-row-right '(2 2 2 0)) '((2 2 3)
(2 1 3)
(2 0 2)))
(check-equal? (moves-row-left '(2 2 4 4)) '((2 0 0)
(2 1 0)
(4 2 1)
(4 3 1)))
(check-equal? (moves-row-right '(2 2 4 4)) '((4 3 3)
(4 2 3)
(2 1 2)
(2 0 2)))
(check-equal? (add-row-coord 7 '((2 0 0)
(2 1 0)
(4 2 1)))
'((2 (7 0) (7 0))
(2 (7 1) (7 0))
(4 (7 2) (7 1))))
(check-equal? (left '(( 0 8 8 0)
(16 0 0 0)
( 2 2 4 4)
( 0 2 2 2)))
'((16 0 0 0)
(16 0 0 0)
( 4 8 0 0)
( 4 2 0 0)))
(check-equal? (right '(( 0 8 8 0)
(16 0 0 0)
( 2 2 4 4)
( 0 2 2 2)))
'((0 0 0 16)
(0 0 0 16)
(0 0 4 8)
(0 0 2 4)))
(check-equal? (up '((0 16 2 0)
(8 0 2 2)
(8 0 4 2)
(0 0 4 2)))
'((16 16 4 4)
(0 0 8 2)
(0 0 0 0)
(0 0 0 0)))
(check-equal? (down '((0 16 2 0)
(8 0 2 2)
(8 0 4 2)
(0 0 4 2)))
'((0 0 0 0)
(0 0 0 0)
(0 0 4 2)
(16 16 8 4)))
(check-equal? (left '(( 0 8 8 0)
(16 0 0 0)
( 2 2 4 4)
( 0 2 2 2)))
'((16 0 0 0)
(16 0 0 0)
( 4 8 0 0)
( 4 2 0 0)))
(check-equal? (moves-grid-left '(( 0 8 8 0)
(16 0 0 0)
( 2 2 4 4)
( 0 2 2 2)))
'((8 (0 1) (0 0))
(8 (0 2) (0 0))
(16 (1 0) (1 0))
(2 (2 0) (2 0))
(2 (2 1) (2 0))
(4 (2 2) (2 1))
(4 (2 3) (2 1))
(2 (3 1) (3 0))
(2 (3 2) (3 0))
(2 (3 3) (3 1))))
(check-equal? (moves-grid-right '(( 0 8 8 0)
(16 0 0 0)
( 2 2 4 4)
( 0 2 2 2)))
'((8 (0 2) (0 3))
(8 (0 1) (0 3))
(16 (1 0) (1 3))
(4 (2 3) (2 3))
(4 (2 2) (2 3))
(2 (2 1) (2 2))
(2 (2 0) (2 2))
(2 (3 3) (3 3))
(2 (3 2) (3 3))
(2 (3 1) (3 2))))
(check-equal? (moves-grid-up '(( 0 8 8 0)
(16 0 0 0)
( 2 2 4 4)
( 0 2 2 2)))
'((16 (1 0) (0 0))
(2 (2 0) (1 0))
(8 (0 1) (0 1))
(2 (2 1) (1 1))
(2 (3 1) (1 1))
(8 (0 2) (0 2))
(4 (2 2) (1 2))
(2 (3 2) (2 2))
(4 (2 3) (0 3))
(2 (3 3) (1 3))))
(check-equal? (moves-grid-down '(( 0 8 8 0)
(16 0 0 0)
( 2 2 4 4)
( 0 2 2 2)))
'((2 (2 0) (3 0))
(16 (1 0) (2 0))
(2 (3 1) (3 1))
(2 (2 1) (3 1))
(8 (0 1) (2 1))
(2 (3 2) (3 2))
(4 (2 2) (2 2))
(8 (0 2) (1 2))
(2 (3 3) (3 3))
(4 (2 3) (2 3))))
(check-equal? (chop '(1 2 3 4 5 6 7 8) 4)
'((1 2 3 4) (5 6 7 8)))
(check-equal? (length (initial-state 5)) 25)
(let* ([initial (initial-state)]
[initial-sum (apply + initial)]
[largest-3 (take (sort initial >) 3)])
(check-equal? (length initial) 16)
(check-true (or (= initial-sum 4)
(= initial-sum 6)
(= initial-sum 8)))
(check-true (or (equal? largest-3 '(2 2 0))
(equal? largest-3 '(4 2 0))
(equal? largest-3 '(4 4 0)))))
(check-equal? (count-zeros '(1 0 1 0 0 0 1)) 4)
(check-equal? (count-zeros '(1 1)) 0)
(check-equal? (replace-nth-zero '(0 0 0 1 2 0) 2 5)
'(0 0 5 1 2 0))
(check-true (finished? '(1 2 3 4) 2))
(check-false (finished? '(2 2 3 4) 2)))
(start)
REXX
This REXX version has the features: ::* allows specification of '''N''', the size of the grid (default is '''4'''). ::* allows specification of the winning number (default is '''2048''') ::* allows specification for the '''random''' BIF's seed (no default). ::* allows abbreviations for the directions (Up, Down, Left, Right). ::* allows the player to quit the game at any time. ::* does error checking/validation for entered directions (in response to the prompt). ::* keeps track of the number of legal moves made and the score. ::* displays the number of moves and the score (when a blank is entered). ::* displays an error message if a move doesn't do anything. ::* displays a message if a winning move was entered. ::* displays the game board as a grid (with boxes).
/*REXX program lets a user play the 2048 game on an NxN grid (default is 4x4 grid).*/
parse arg N win seed . /*obtain optional arguments from the CL*/
if N=='' | N=="," then N= 4 /*Not specified? Then use the default.*/
if win=='' | win=="," then win=2**11 /* " " " " " " */
if datatype(seed, 'W') then call random ,,seed /*Specified? Then use seed for RANDOM.*/
L=length(win) + 2 /*L: used for displaying the grid #'s.*/
eye=copies("─", 8); pad=left('', length(eye)+2) /*eye-catchers; and perusable perusing.*/
b= ' ' /*comfortable readable name for a blank*/
prompt= eye "Please enter a direction (Up, Down, Right, Left) ───or─── Quit:"
move=1; moves=0; score=0; ok=1 /*simulation that a move was performed.*/
@.=b /*define all grid elements to a blank. */
do until any(win); if ok then call put; ok=1; say; call showGrid
say; say prompt; parse pull a x . 1 d 2 1 way xx; upper d a x
if a=='' then do; ok=0 /*the user entered blank(s) or nothing.*/
say copies(eye,5) 'moves:' moves eye "score:" score
iterate /* [↑] display # of moves & the score.*/
end
if x\=='' then call err "too many arguments entered: " xx
if abbrev('QUIT',a,1) then do; say; say eye "quitting the game".; exit 1; end
good=abbrev('UP',a,1) | abbrev('DOWN',a,1) | abbrev('RIGHT',a,1) | abbrev('LEFT',a,1)
if \good then call err "invalid direction: " way
if \ok then iterate; moves=moves + 1; call mov
end /*until*/
say
say translate(eye "Congrats!! You've won the" win 'game!' eye,"═",'─') "score:" score
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
showGrid: do r=0 for N+2; _= '║'; __= '╠'
do c=1 for N; _=_ || row()'║'; __=__ || copies("═", L)'╬'
end /*c*/
if r==0 then _= '╔'translate(substr(_, 2, length(_)-2), "╦", '║')"╗"
if r >N then _= '╚'translate(substr(_, 2, length(_)-2), "╩", '║')"╝"
say pad _
if r<N & r>0 then say pad substr(__, 1, length(__) -1)"╣"
end /*r*/; return
/*──────────────────────────────────────────────────────────────────────────────────────*/
@: procedure expose @.; parse arg row,col; return @.row.col
any: arg ?; do r=1 for N; do c=1 for N; if @.r.c==? then return 1; end; end; return 0
err: say; say eye '***error*** ' arg(1); say; ok=0; return
o_c: $=; do k=1 for N; $=$ word(@.k.c .,1); end; !=space(translate($,,.))==''; return $
o_r: $=; do k=1 for N; $=$ word(@.r.k .,1); end; !=space(translate($,,.))==''; return $
put: if \any(b) then call err ,"game over, no more moves."; if move then call two; return
row: if r==0 | r>N then return copies('═', L); return center(@.r.c, L)
ten: if random(9)==4 then return 4; return 2 /*10% of the time, put 4 instead of 2.*/
two: do until @.p.q==b; p=random(1,N); q=random(1,N); end; @.p.q=ten(); return
/*──────────────────────────────────────────────────────────────────────────────────────*/
mov: move=0; if d=='R' then call moveLR N, 1, -1 /*move (slide) numbers right. */
if d=='L' then call moveLR 1, N, +1 /* " " " left. */
if d=='U' then call moveUD 1, N, +1 /* " " " up. */
if d=='D' then call moveUD N, 1, -1 /* " " " down. */
if \move then call err 'moving ' way " doesn't change anything."; return
/*──────────────────────────────────────────────────────────────────────────────────────*/
moveLR: parse arg start, sTo, #
do r=1 for N; old=o_r(); if ! then iterate /*is this row blank? */
do N-1; call packLR /*pack left or right.*/
end /*N-1*/ /* [↓] get new tiles.*/
new=o_r(); move= move | (old\==new) /*indicate tiles moved*/
do c=start for N-1 by # while @.r.c\==b /*slide left or right.*/
if @.r.c\==@(r,c+#) then iterate /*not a duplicate ? */
@.r.c=@.r.c * 2; score=score + @.r.c /*double; bump score */
c=c + # ; @.r.c=b; move=1 /*bump C; blank dup 2.*/
end /*c*/ /* [↑] indicate move.*/
call packLR /*pack left or right.*/
end /*r*/; return
/*──────────────────────────────────────────────────────────────────────────────────────*/
moveUD: parse arg start, Sto, #
do c=1 for N; old=o_c(); if ! then iterate /*is this col blank? */
do N-1; call packUD /*pack up or down. */
end /*N-1*/ /* [↓] get new tiles.*/
new=o_c(); move= move | (old\==new) /*indicate tiles moved*/
do r=start for N-1 by # while @.r.c\==b /*slide up or down. */
if @.r.c\==@(r+#,c) then iterate /*not a duplicate ? */
@.r.c=@.r.c * 2; score=score + @.r.c /*double; bump score */
r=r + # ; @.r.c=b; move=1 /*bump R; blank dup 2.*/
end /*r*/ /* [↑] indicate move.*/
call packUD /*pack up or down. */
end /*c*/; return
/*──────────────────────────────────────────────────────────────────────────────────────*/
packLR: do c=start for N-1 by # /*slide left or right.*/
if @.r.c\==b then iterate /*Not a blank? Skip. */
do s=c to sTo by #; @.r.s=@(r, s+#) /*slide left or right.*/
end /*s*/; @.r.sTo=b /*handle the last one.*/
end /*c*/; return
/*──────────────────────────────────────────────────────────────────────────────────────*/
packUD: do r=start for N-1 by # /*slide up or down. */
if @.r.c\==b then iterate /*Not a blank? Skip. */
do s=r to sTo by #; @.s.c=@(s+#, c) /*slide up or down. */
end /*s*/; @.sTo.c=b /*handle the last one.*/
end /*r*/; return
Output:
╔══════╦══════╦══════╦══════╗
║ ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 2 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ ║
╚══════╩══════╩══════╩══════╝
──────── Please enter a direction (Up, Down, Right, Left) ───or─── Quit:
right ◄■■■■■■■■■■■■■ user input
╔══════╦══════╦══════╦══════╗
║ ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ 2 ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ 2 ║
╚══════╩══════╩══════╩══════╝
──────── Please enter a direction (Up, Down, Right, Left) ───or─── Quit:
up ◄■■■■■■■■■■■■■ user input
╔══════╦══════╦══════╦══════╗
║ ║ ║ ║ 4 ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ 2 ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ ║
╚══════╩══════╩══════╩══════╝
──────── Please enter a direction (Up, Down, Right, Left) ───or─── Quit:
◄■■■■■■■■■■■■■ user input (a blank)
──────────────────────────────────────── moves: 2 ──────── score: 4
╔══════╦══════╦══════╦══════╗
║ ║ ║ ║ 4 ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ 2 ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ ║
╚══════╩══════╩══════╩══════╝
──────── Please enter a direction (Up, Down, Right, Left) ───or─── Quit:
left ◄■■■■■■■■■■■■■ user input
╔══════╦══════╦══════╦══════╗
║ 4 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 2 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ 2 ║
╚══════╩══════╩══════╩══════╝
──────── Please enter a direction (Up, Down, Right, Left) ───or─── Quit:
l ◄■■■■■■■■■■■■■ user input
╔══════╦══════╦══════╦══════╗
║ 4 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 2 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 2 ║ 4 ║ ║ ║
╚══════╩══════╩══════╩══════╝
──────── Please enter a direction (Up, Down, Right, Left) ───or─── Quit:
dow ◄■■■■■■■■■■■■■ user input
╔══════╦══════╦══════╦══════╗
║ ║ ║ ║ 2 ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 4 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 4 ║ 4 ║ ║ ║
╚══════╩══════╩══════╩══════╝
──────── Please enter a direction (Up, Down, Right, Left) ───or─── Quit:
left ◄■■■■■■■■■■■■■ user input
╔══════╦══════╦══════╦══════╗
║ 2 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ ║ ║ ║ 2 ║
╠══════╬══════╬══════╬══════╣
║ 4 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 8 ║ ║ ║ ║
╚══════╩══════╩══════╩══════╝
──────── Please enter a direction (Up, Down, Right, Left) ───or─── Quit:
lef ◄■■■■■■■■■■■■■ user input
╔══════╦══════╦══════╦══════╗
║ 2 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 2 ║ ║ ║ 2 ║
╠══════╬══════╬══════╬══════╣
║ 4 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 8 ║ ║ ║ ║
╚══════╩══════╩══════╩══════╝
──────── Please enter a direction (Up, Down, Right, Left) ───or─── Quit:
d ◄■■■■■■■■■■■■■ user input
╔══════╦══════╦══════╦══════╗
║ ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 4 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 4 ║ ║ ║ 2 ║
╠══════╬══════╬══════╬══════╣
║ 8 ║ ║ ║ 2 ║
╚══════╩══════╩══════╩══════╝
──────── Please enter a direction (Up, Down, Right, Left) ───or─── Quit:
d ◄■■■■■■■■■■■■■ user input
╔══════╦══════╦══════╦══════╗
║ ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ ║ 2 ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 8 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 8 ║ ║ ║ 4 ║
╚══════╩══════╩══════╩══════╝
──────── Please enter a direction (Up, Down, Right, Left) ───or─── Quit:
◄■■■■■■■■■■■■■ user input (a blank)
──────────────────────────────────────── moves: 9 ──────── score: 32
╔══════╦══════╦══════╦══════╗
║ ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ ║ 2 ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 8 ║ ║ ║ ║
╠══════╬══════╬══════╬══════╣
║ 8 ║ ║ ║ 4 ║
╚══════╩══════╩══════╩══════╝
──────── Please enter a direction (Up, Down, Right, Left) ───or─── Quit:
q ◄■■■■■■■■■■■■■ user input
──────── quitting the game
Ring
# Project : 2048 Game
load "stdlib.ring"
load "guilib.ring"
C_GAMETITLE = '2048 Game'
C_WINDOWBACKGROUND = "background-color: gray;"
if isMobile()
C_LABELFONTSIZE = "font-size:120px;"
C_BUTTONFONTSIZE = "font-size:160px;"
else
C_LABELFONTSIZE = "font-size:50px;"
C_BUTTONFONTSIZE = "font-size:80px;"
ok
C_PLAYERSCORESTYLE = "color:white;background-color:rgb(50,50,50);border-radius:17px;" + C_LABELFONTSIZE
C_NEWGAMESTYLE = 'color:white;background-color:rgb(50,50,50);border-radius:17px;' + C_LABELFONTSIZE
C_EMPTYBUTTONSTYLE = 'border-radius:17px;background-color:silver;' + C_BUTTONFONTSIZE
C_BUTTON2STYLE = 'border-radius:17px;color:black; background-color: yellow ;' + C_BUTTONFONTSIZE
C_BUTTON4STYLE = 'border-radius:17px;color:black; background-color: violet ;' + C_BUTTONFONTSIZE
C_BUTTON8STYLE = 'border-radius:17px;color:white; background-color: purple ;' + C_BUTTONFONTSIZE
C_BUTTON16STYLE = 'border-radius:17px;color:white; background-color: blue ;' + C_BUTTONFONTSIZE
C_BUTTON32STYLE = 'border-radius:17px;color:white; background-color: red ;' + C_BUTTONFONTSIZE
C_BUTTON64STYLE = 'border-radius:17px;color:black; background-color: lightgray ;' + C_BUTTONFONTSIZE
C_BUTTON128STYLE = 'border-radius:17px;color:black; background-color: white ;' + C_BUTTONFONTSIZE
C_BUTTON256STYLE = 'border-radius:17px;color:white; background-color: black ;' + C_BUTTONFONTSIZE
C_BUTTON512STYLE = 'border-radius:17px;color:white; background-color: Purple ;' + C_BUTTONFONTSIZE
C_BUTTON1024STYLE = 'border-radius:17px;color:black; background-color: Yellow ;' + C_BUTTONFONTSIZE
C_BUTTON2048STYLE = 'border-radius:17px;color:white; background-color: Green ;' + C_BUTTONFONTSIZE
C_LAYOUTSPACING = 10
C_PLAYERSCORE = 'Player Score : '
size = 4
limit = 2
num = 0
flag = 0
x1 = 0
x2 = 0
y1 = 0
y2 = 0
nScore = 0
button = newlist(size,size)
buttonsave = newlist(size,size)
LayoutButtonRow = list(size+2)
moveleft = []
moveright = []
moveup = []
movedown = []
myfilter2 = null
myfilter3 = null
winheight = 0
winwidth = 0
app = new qApp {
StyleFusion()
processevents()
win = new qWidget() {
setWindowTitle(C_GAMETITLE)
setgeometry(100,100,600,700)
setminimumwidth(300)
setminimumheight(300)
if not isMobile()
grabkeyboard()
ok
setstylesheet(C_WINDOWBACKGROUND)
move(490,100)
for n = 1 to size
for m = 1 to size
button[n][m] = new MyButton(win)
next
next
newgame = new qLabel(win)
playerscore = new qLabel(win)
myfilter3 = new qAllEvents(win) {
setMouseButtonPressEvent("pPress()")
setMouseButtonReleaseEvent("pRelease()")}
installeventfilter(myfilter3)
myfilter2 = new qAllEvents(win) {
setkeypressevent("keypress()") }
installeventfilter(myfilter2)
winwidth = win.width()
winheight = win.height()
for n = 1 to size + 2
LayoutButtonRow[n] = new QHBoxLayout() {
setSpacing(C_LAYOUTSPACING)
}
next
for n = 1 to size
for m = 1 to size
button[n][m] { temp = text() }
buttonsave[n][m] = temp
button[n][m] = new MyButton(win) {
setalignment(Qt_AlignHCenter | Qt_AlignVCenter)
setstylesheet(C_EMPTYBUTTONSTYLE)
show()
}
next
next
for n = 1 to size
for m = 1 to size
LayoutButtonRow[n].AddWidget(button[m][n])
win.show()
temp = buttonsave[n][m]
button[n][m].settext(temp)
next
LayoutButtonRow[n].setSpacing(C_LAYOUTSPACING)
next
playerscore {
setGeometry(0,4*floor(winheight/6),winwidth,floor(winheight/6))
setalignment(Qt_AlignHCenter | Qt_AlignVCenter)
settext(C_PLAYERSCORE + nScore)
setStylesheet(C_PLAYERSCORESTYLE)
show()
}
newgame {
setGeometry(0,5*floor(winheight/6),winwidth,floor(winheight/6))
setalignment(Qt_AlignHCenter | Qt_AlignVCenter)
setstylesheet(C_NEWGAMESTYLE)
settext('New Game')
myfilter4 = new qallevents(newgame)
myfilter4.setMouseButtonPressEvent("pbegin()")
installeventfilter(myfilter4)
show()
}
LayoutButtonRow[size+1].AddWidget(playerscore)
LayoutButtonRow[size+2].AddWidget(newgame)
LayoutButtonMain = new QVBoxLayout() {
setSpacing(C_LAYOUTSPACING)
for n = 1 to size+2
AddLayout(LayoutButtonRow[n])
win.show()
next
}
win.setLayout(LayoutButtonMain)
win.show()
pbegin()
show()
}
exec()
}
func pPress()
x1 = myfilter3.getglobalx()
y1 = myfilter3.getglobaly()
func pRelease()
x2 = myfilter3.getglobalx()
y2 = myfilter3.getglobaly()
difx = x2 - x1
dify = y2 - y1
if fabs(difx) > fabs(dify)
if difx < 0
pleft()
else
pRight()
ok
else
if dify < 0
pUp()
else
pDown()
ok
ok
func keypress()
nKey = myfilter2.getkeycode()
switch nKey
on 16777234 pleft()
on 16777236 pright()
on 16777235 pup()
on 16777237 pdown()
off
func pbegin()
numbers = [['2','2'],['2','4']]
randnew = newlist(2,2)
for n = 1 to size
for m = 1 to size
button[n][m].setStylesheet(C_EMPTYBUTTONSTYLE)
button[n][m].settext('')
next
next
while true
rn1 = random(size - 1) + 1
rm1 = random(size - 1) + 1
rn2 = random(size - 1) + 1
rm2 = random(size - 1) + 1
bool = (rn1 = rn2) and (rm1 = rm2)
if not bool
exit
ok
end
rand = random(limit - 1) + 1
button[rn1][rm1].settext(numbers[rand][1])
button[rn2][rm2].settext(numbers[rand][2])
nScore = 0
playerscore.settext(C_PLAYERSCORE)
func pMoveInDirection cFunc
num = gameover()
if num = size*size
flag = 1
msgBox('You lost!')
pbegin()
ok
if flag = 0
call cFunc()
sleep(0.5)
newnum()
ok
func pdown()
pMoveInDirection(:pMoveDown)
func pup()
pMoveInDirection(:pMoveUp)
func pleft()
pMoveInDirection(:pMoveLeft)
func pright()
pMoveInDirection(:pMoveRight)
func pmoveleft()
for n = 1 to size
moveleft = []
for m = 1 to size
button[m][n] {temp = text()}
if temp != ''
add(moveleft,temp)
ok
next
movetilesleft(n,moveleft)
next
func pmoveright()
for n = 1 to size
moveright = []
for m = size to 1 step -1
button[m][n] {temp = text()}
if temp != ''
add(moveright,temp)
ok
next
movetilesright(n,moveright)
next
return
func pmoveup()
for n = 1 to size
moveup = []
for m = 1 to size
button[n][m] {temp = text()}
if temp != ''
add(moveup,temp)
ok
next
movetilesup(n,moveup)
next
return
func pmovedown()
for n = 1 to size
movedown = []
for m = size to 1 step -1
button[n][m] {temp = text()}
if temp != ''
add(movedown,temp)
ok
next
movetilesdown(n,movedown)
next
return
func movetilesleft(nr,moveleft)
for p = 1 to len(moveleft) - 1
temp1 = moveleft[p]
temp2 = moveleft[p+1]
temp = string(number(temp1) + number(temp2))
if (temp1 = temp2) and (temp1 != '0') and (temp2 != '0') and (temp1 != '') and (temp2 != '')
if temp != '0' and temp != ''
nScore = nScore + temp
playerscore.settext(C_PLAYERSCORE + nScore)
flag = 1
moveleft[p] = temp
del(moveleft,p+1)
ok
ok
next
for n = 1 to len(moveleft)
button[n][nr].settext(moveleft[n])
next
for n = len(moveleft) + 1 to size
if n <= size
button[n][nr].setStylesheet(C_EMPTYBUTTONSTYLE)
button[n][nr].settext('')
ok
next
return
func movetilesright(nr,moveright)
flag = 0
for p = 2 to len(moveright)
temp1 = moveright[p]
temp2 = moveright[p-1]
if (temp1 = temp2) and (temp1 != '0') and (temp2 != '0') and (temp1 != '') and (temp2 != '')
temp = string(number(temp1) + number(temp2))
if temp != '0' and temp != ''
nScore = nScore + temp
playerscore.settext(C_PLAYERSCORE + nScore)
flag = 1
moveright[p] = temp
del(moveright,p-1)
ok
ok
next
for n = 1 to len(moveright)
button[size-n+1][nr].settext(moveright[n])
next
for n = 1 to size - len(moveright)
if n <= size
button[n][nr].setStylesheet(C_EMPTYBUTTONSTYLE)
button[n][nr].settext('')
ok
next
func movetilesup(nr,moveup)
flag = 0
for p = 1 to len(moveup) - 1
temp1 = moveup[p]
temp2 = moveup[p+1]
if (temp1 = temp2) and (temp1 != '0') and (temp2 != '0') and (temp1 != '') and (temp2 != '')
temp = string(number(temp1) + number(temp2))
if temp != '0' and temp != ''
nScore = nScore + temp
playerscore.settext(C_PLAYERSCORE + nScore)
flag = 1
moveup[p] = temp
del(moveup,p+1)
ok
ok
next
for n = 1 to len(moveup)
button[nr][n].settext(moveup[n])
next
for n = len(moveup) + 1 to size
if n <= size
button[nr][n].setStylesheet(C_EMPTYBUTTONSTYLE)
button[nr][n].settext('')
ok
next
func movetilesdown(nr,movedown)
flag = 0
for p = 1 to len(movedown) - 1
temp1 = movedown[p]
temp2 = movedown[p+1]
if (temp1 = temp2) and (temp1 != '0') and (temp2 != '0') and (temp1 != '') and (temp2 != '')
temp = string(number(temp1) + number(temp2))
if temp != '0' and temp != ''
nScore = nScore + temp
playerscore.settext(C_PLAYERSCORE + nScore)
flag = 1
movedown[p] = temp
del(movedown,p+1)
ok
ok
next
for n = 1 to len(movedown)
button[nr][size-n+1].settext(movedown[n])
next
for n = size - len(movedown) to 1 step -1
if n <= size
button[nr][n].setStylesheet(C_EMPTYBUTTONSTYLE)
app.processevents()
button[nr][n].settext('')
ok
next
func newnum()
while true
rn = random(size - 1) + 1
rm = random(size - 1) + 1
if button[rn][rm].text() = ''
button[rn][rm].settext('2')
exit
ok
end
return
func gameover()
num = 0
flag = 0
for n = 1 to size
for m = 1 to size
if button[n][m].text() != ''
num = num + 1
ok
next
next
return num
func msgBox(text) {
m = new qMessageBox(win) {
setWindowTitle('2048 Game')
setText(text)
show()
}
}
func showarray(vect)
see "["
svect = ""
for n = 1 to len(vect)
svect = svect + vect[n] + " "
next
svect = left(svect, len(svect) - 1)
see svect
see "]" + nl
class MyButton from qLabel
func setText(cValue)
Super.setText(cValue)
switch cValue
on '2' setStyleSheet(C_BUTTON2STYLE)
on '4' setStylesheet(C_BUTTON4STYLE)
on '8' setStylesheet(C_BUTTON8STYLE)
on '16' setStylesheet(C_BUTTON16STYLE)
on '32' setStylesheet(C_BUTTON32STYLE)
on '64' setStylesheet(C_BUTTON64STYLE)
on '128' setStylesheet(C_BUTTON128STYLE)
on '256' setStylesheet(C_BUTTON256STYLE)
on '512' setStylesheet(C_BUTTON512STYLE)
on '1024' setStylesheet(C_BUTTON1024STYLE)
on '2048' setStylesheet(C_BUTTON2048STYLE)
off
Ruby
inspired by the Perl6 version
#!/usr/bin/ruby
require 'io/console'
class Board
def initialize size=4, win_limit=2048, cell_width = 6
@size = size; @cw = cell_width; @win_limit = win_limit
@board = Array.new(size) {Array.new(size, 0)}
@moved = true; @score = 0; @no_more_moves = false
spawn
end
def draw
print "\n\n" if @r_vert
print ' ' if @r_hori
print '┌' + (['─' * @cw] * @size).join('┬') + '┐'
@board.each do |row|
print "\n"
formated = row.map {|num| num == 0 ? ' ' * @cw : format(num)}
print ' ' if @r_hori
puts '│' + formated.join('│') + '│'
print ' ' if @r_hori
print '├' + ([' ' * @cw] * @size).join('┼') + '┤'
end
print "\r"
print ' ' if @r_hori
puts '└' + (['─' * @cw] * @size).join('┴') + '┘'
end
def move direction
case direction
when :up
@board = column_map {|c| logic(c)}
@r_vert = false if $rumble
when :down
@board = column_map {|c| logic(c.reverse).reverse}
@r_vert = true if $rumble
when :left
@board = row_map {|r| logic(r)}
@r_hori = false if $rumble
when :right
@board = row_map {|r| logic(r.reverse).reverse}
@r_hori = true if $rumble
end
spawn
@moved = false
end
def print_score
puts "Your Score is #@score."
puts "Congratulations, you have won!" if to_enum.any? {|e| e >= @win_limit}
end
def no_more_moves?; @no_more_moves; end
def won?; to_enum.any? {|e| e >= @win_limit}; end
def reset!; initialize @size, @win_limit, @cw; end
private
def set x, y, val
@board[y][x] = val
end
def spawn
free_pos = to_enum.select{|elem,x,y| elem == 0}.map{|_,x,y| [x,y]}
unless free_pos.empty?
set *free_pos.sample, rand > 0.1 ? 2 : 4 if @moved
else
snap = @board
unless @stop
@stop = true
%i{up down left right}.each{|s| move(s)}
@no_more_moves = true if snap.flatten == @board.flatten
@board = snap
@stop = false
end
end
end
def logic list
jump = false
result =
list.reduce([]) do |res, val|
if res.last == val && !jump
res[-1] += val
@score += val
jump = true
elsif val != 0
res.push val
jump = false
end
res
end
result += [0] * (@size - result.length)
@moved ||= list != result
result
end
def column_map
xboard = @board.transpose
xboard.map!{|c| yield c }
xboard.transpose
end
def row_map
@board.map {|r| yield r }
end
def to_enum
@enum ||= Enumerator.new(@size * @size) do |yielder|
(@size*@size).times do |i|
yielder.yield (@board[i / @size][i % @size]), (i % @size), (i / @size )
end
end
@enum.rewind
end
def format(num)
if $color
cstart = "\e[" + $colors[Math.log(num, 2)] + "m"
cend = "\e[0m"
else
cstart = cend = ""
end
cstart + num.to_s.center(@cw) + cend
end
end
$color = true
$colors = %W{0 1;97 1;93 1;92 1;96 1;91 1;95 1;94 1;30;47 1;43 1;42
1;46 1;41 1;45 1;44 1;33;43 1;33;42 1;33;41 1;33;44}
$rumble = false
$check_score = true
unless ARGV.empty?
puts "Usage: #$0 [gridsize] [score-threshold] [padwidth] [--no-color] [--rumble]"; exit if %W[-h --help].include?(ARGV[0])
args = ARGV.map(&:to_i).reject{|n| n == 0}
b = Board.new(*args) unless args.empty?
$rumble = true if ARGV.any?{|a| a =~ /rumble/i }
$color = false if ARGV.any?{|a| a =~ /no.?color/i}
end
b ||= Board.new
puts "\e[H\e[2J"
b.draw
puts "Press h for help, q to quit"
loop do
input = STDIN.getch
if input == "\e"
2.times {input << STDIN.getch}
end
case input
when "\e[A", "w" then b.move(:up)
when "\e[B", "s" then b.move(:down)
when "\e[C", "d" then b.move(:right)
when "\e[D", "a" then b.move(:left)
when "q","\u0003","\u0004" then b.print_score; exit
when "h"
puts <<-EOM.gsub(/^\s*/, '')
┌─ ─┐
│Use the arrow-keys or WASD on your keyboard to push board in the given direction.
│Tiles with the same number merge into one.
│Get a tile with a value of #{ARGV[1] || 2048} to win.
│In case you cannot move or merge any tiles anymore, you loose.
│You can start this game with different settings by providing commandline argument:
│For instance:
│ %> #$0 6 8192 --rumble
└─ ─┘
PRESS q TO QUIT (or Ctrl-C or Ctrl-D)
EOM
input = STDIN.getch
end
puts "\e[H\e[2J"
b.draw
if b.no_more_moves? or $check_score && b.won?
b.print_score
if b.no_more_moves?
puts "No more moves possible"
puts "Again? (y/n)"
exit if STDIN.gets.chomp.downcase == "n"
$check_score = true
b.reset!
puts "\e[H\e[2J"
b.draw
else
puts "Continue? (y/n)"
exit if STDIN.gets.chomp.downcase == "n"
$check_score = false
puts "\e[H\e[2J"
b.draw
end
end
end
Rust
Text mode
A simple implementation in rust. The user has to input an endline since i did not find a way to read a key press {{libheader|rand}}
use std::io::{self,BufRead};
extern crate rand;
enum Usermove {
Up,
Down,
Left,
Right,
}
fn print_game(field :& [[u32;4];4] ){
println!("{:?}",&field[0] );
println!("{:?}",&field[1] );
println!("{:?}",&field[2] );
println!("{:?}",&field[3] );
}
fn get_usermove()-> Usermove {
let umove: Usermove ;
loop{
let mut input = String::new();
io::stdin().read_line(&mut input).unwrap();
match input.chars().nth(0){
Some('a') =>{umove = Usermove::Left ;break },
Some('w') =>{umove = Usermove::Up ;break },
Some('s') =>{umove = Usermove::Down ;break },
Some('d') =>{umove = Usermove::Right;break },
_ => {println!("input was {}: invalid character should be a,s,w or d ",input.chars().nth(0).unwrap());} ,
}
}
umove
}
//this function inplements the user moves.
//for every element it looks if the element is zero
// if the element is zero it looks against the direction of the movement if any
//element is not zero then it will move it to the element its place then it will look for
//a matching element
// if the element is not zero then it will look for a match if no match is found
// then it will look for the next element
fn do_game_step(step : &Usermove, field:&mut [[u32;4];4]){
match *step {
Usermove::Left =>{
for array in field{
for col in 0..4 {
for testcol in (col+1)..4 {
if array[testcol] != 0 {
if array[col] == 0 {
array[col] += array[testcol];
array[testcol] = 0;
}
else if array[col] == array[testcol] {
array[col] += array[testcol];
array[testcol] = 0;
break;
} else {
break
}
}
}
}
}
} ,
Usermove::Right=>{
for array in field{
for col in (0..4).rev() {
for testcol in (0..col).rev() {
if array[testcol] != 0 {
if array[col] == 0 {
array[col] += array[testcol];
array[testcol] = 0;
}
else if array[col] == array[testcol] {
array[col] += array[testcol];
array[testcol] = 0;
break;
}else {
break;
}
}
}
}
}
} ,
Usermove::Down =>{
for col in 0..4 {
for row in (0..4).rev() {
for testrow in (0..row).rev() {
if field[testrow][col] != 0 {
if field[row][col] == 0 {
field[row][col] += field[testrow][col];
field[testrow][col] = 0;
} else if field[row][col] == field[testrow][col] {
field[row][col] += field[testrow][col];
field[testrow][col] = 0;
break;
}else {
break;
}
}
}
}
}
} ,
Usermove::Up =>{
for col in 0..4 {
for row in 0..4{
for testrow in (row+1)..4 {
if field[testrow][col] != 0 {
if field[row][col] == 0 {
field[row][col] += field[testrow][col];
field[testrow][col] = 0;
} else if field[row][col] == field[testrow][col] {
field[row][col] += field[testrow][col];
field[testrow][col] = 0;
break;
}else {
break;
}
}
}
}
}
},
}
}
fn spawn( field: &mut [[u32;4];4]){
loop{
let x = rand::random::<usize>();
if field[x % 4][(x/4)%4] == 0 {
if x % 10 == 0 {
field[x % 4][(x/4)%4]= 4;
}else{
field[x % 4][(x/4)%4]= 2;
}
break;
}
}
}
fn main() {
let mut field : [[u32; 4];4] = [[0;4];4];
let mut test : [[u32; 4];4] ;
'gameloop:loop {
//check if there is still an open space
test=field.clone();
spawn(&mut field);
//if all possible moves do not yield a change then there is no valid move left
//and it will be game over
for i in [Usermove::Up,Usermove::Down,Usermove::Left,Usermove::Right].into_iter(){
do_game_step(i, &mut test);
if test != field{
break;//found a valid move
}
match *i{
Usermove::Right=> {
println!("No more valid move, you lose");
break 'gameloop;
},
_=>{},
}
}
print_game(&field);
println!("move the blocks");
test=field.clone();
while test==field {
do_game_step(&get_usermove(), &mut field);
}
for row in field.iter(){
if row.iter().any(|x| *x == 2048){
print_game(&field );
println!("You Won!!");
break;
}
}
}
}
Scala
import java.awt.event.{KeyAdapter, KeyEvent, MouseAdapter, MouseEvent}
import java.awt.{BorderLayout, Color, Dimension, Font, Graphics2D, Graphics, RenderingHints}
import java.util.Random
import javax.swing.{JFrame, JPanel, SwingUtilities}
object Game2048 {
val target = 2048
var highest = 0
def main(args: Array[String]): Unit = {
SwingUtilities.invokeLater(() => {
val f = new JFrame
f.setDefaultCloseOperation(3)
f.setTitle("2048")
f.add(new Game, BorderLayout.CENTER)
f.pack()
f.setLocationRelativeTo(null)
f.setVisible(true)
})
}
class Game extends JPanel {
private val (rand , side)= (new Random, 4)
private var (tiles, gamestate)= (Array.ofDim[Tile](side, side), Game2048.State.start)
final private val colorTable =
Seq(new Color(0x701710), new Color(0xFFE4C3), new Color(0xfff4d3), new Color(0xffdac3), new Color(0xe7b08e), new Color(0xe7bf8e),
new Color(0xffc4c3), new Color(0xE7948e), new Color(0xbe7e56), new Color(0xbe5e56), new Color(0x9c3931), new Color(0x701710))
setPreferredSize(new Dimension(900, 700))
setBackground(new Color(0xFAF8EF))
setFont(new Font("SansSerif", Font.BOLD, 48))
setFocusable(true)
addMouseListener(new MouseAdapter() {
override def mousePressed(e: MouseEvent): Unit = {
startGame()
repaint()
}
})
addKeyListener(new KeyAdapter() {
override def keyPressed(e: KeyEvent): Unit = {
e.getKeyCode match {
case KeyEvent.VK_UP => moveUp()
case KeyEvent.VK_DOWN => moveDown()
case KeyEvent.VK_LEFT => moveLeft()
case KeyEvent.VK_RIGHT => moveRight()
case _ =>
}
repaint()
}
})
override def paintComponent(gg: Graphics): Unit = {
super.paintComponent(gg)
val g = gg.asInstanceOf[Graphics2D]
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON)
drawGrid(g)
}
private def drawGrid(g: Graphics2D): Unit = {
val (gridColor, emptyColor, startColor) = (new Color(0xBBADA0), new Color(0xCDC1B4), new Color(0xFFEBCD))
if (gamestate == State.running) {
g.setColor(gridColor)
g.fillRoundRect(200, 100, 499, 499, 15, 15)
for (
r <- 0 until side;
c <- 0 until side
) if (Option(tiles(r)(c)).isEmpty) {
g.setColor(emptyColor)
g.fillRoundRect(215 + c * 121, 115 + r * 121, 106, 106, 7, 7)
}
else drawTile(g, r, c)
} else {
g.setColor(startColor)
g.fillRoundRect(215, 115, 469, 469, 7, 7)
g.setColor(gridColor.darker)
g.setFont(new Font("SansSerif", Font.BOLD, 128))
g.drawString("2048", 310, 270)
g.setFont(new Font("SansSerif", Font.BOLD, 20))
if (gamestate == Game2048.State.won) g.drawString("you made it!", 390, 350)
else if (gamestate == Game2048.State.over) g.drawString("game over", 400, 350)
g.setColor(gridColor)
g.drawString("click to start a new game", 330, 470)
g.drawString("(use arrow keys to move tiles)", 310, 530)
}
}
private def drawTile(g: Graphics2D, r: Int, c: Int): Unit = {
val value = tiles(r)(c).value
g.setColor(colorTable((math.log(value) / math.log(2)).toInt + 1))
g.fillRoundRect(215 + c * 121, 115 + r * 121, 106, 106, 7, 7)
g.setColor(if (value < 128) colorTable.head else colorTable(1))
val (s , fm)= (value.toString, g.getFontMetrics)
val asc = fm.getAscent
val (x, y) = (215 + c * 121 + (106 - fm.stringWidth(s)) / 2,115 + r * 121 + (asc + (106 - (asc + fm.getDescent)) / 2))
g.drawString(s, x, y)
}
private def moveUp(checkingAvailableMoves: Boolean = false) = move(0, -1, 0, checkingAvailableMoves)
private def moveDown(checkingAvailableMoves: Boolean = false) = move(side * side - 1, 1, 0, checkingAvailableMoves)
private def moveLeft(checkingAvailableMoves: Boolean = false) = move(0, 0, -1, checkingAvailableMoves)
private def moveRight(checkingAvailableMoves: Boolean = false) = move(side * side - 1, 0, 1, checkingAvailableMoves)
private def clearMerged(): Unit = for (row <- tiles; tile <- row) if (Option(tile).isDefined) tile.setMerged()
private def movesAvailable() = moveUp(true) || moveDown(true) || moveLeft(true) || moveRight(true)
def move(countDownFrom: Int, yIncr: Int, xIncr: Int, checkingAvailableMoves: Boolean): Boolean = {
var moved = false
for (i <- 0 until side * side) {
val j = math.abs(countDownFrom - i)
var( r,c) = (j / side, j % side)
if (Option(tiles(r)(c)).isDefined) {
var (nextR, nextC, breek) = (r + yIncr, c + xIncr, false)
while ((nextR >= 0 && nextR < side && nextC >= 0 && nextC < side) && !breek) {
val (next, curr) = (tiles(nextR)(nextC),tiles(r)(c))
if (Option(next).isEmpty)
if (checkingAvailableMoves) return true
else {
tiles(nextR)(nextC) = curr
tiles(r)(c) = null
r = nextR
c = nextC
nextR += yIncr
nextC += xIncr
moved = true
}
else if (next.canMergeWith(curr)) {
if (checkingAvailableMoves) return true
Game2048.highest = math.max(next.mergeWith(curr), Game2048.highest)
tiles(r)(c) = null
breek = true
moved = true
} else breek = true
}
}
}
if (moved) if (Game2048.highest < Game2048.target) {
clearMerged()
addRandomTile()
if (!movesAvailable) gamestate = State.over
}
else if (Game2048.highest == Game2048.target) gamestate = State.won
moved
}
private def startGame(): Unit = {
if (gamestate ne Game2048.State.running) {
Game2048.highest = 0
gamestate = Game2048.State.running
tiles = Array.ofDim[Tile](side, side)
addRandomTile()
addRandomTile()
}
}
private def addRandomTile(): Unit = {
var pos = rand.nextInt(side * side)
var (row, col) = (0, 0)
do {
pos = (pos + 1) % (side * side)
row = pos / side
col = pos % side
} while (Option(tiles(row)(col)).isDefined)
tiles(row)(col) = new Tile(if (rand.nextInt(10) == 0) 4 else 2)
}
class Tile(var value: Int) {
private var merged = false
def setMerged(): Unit = merged = false
def mergeWith(other: Tile): Int = if (canMergeWith(other)) {
merged = true
value *= 2
value
} else -1
def canMergeWith(other: Tile): Boolean = !merged && Option(other).isDefined && !other.merged && value == other.value
}
}
object State extends Enumeration {
type State = Value
val start, won, running, over = Value
}
}
Seed7
The Seed7 program below works in a text console. Commands are [http://seed7.sourceforge.net/libraries/keybd.htm#getc(in_console_keybd_file) read] from the file [http://seed7.sourceforge.net/libraries/keybd.htm#KEYBOARD KEYBOARD], which delivers cursor keys and function keys as single characters (e.g. KEY_LEFT or KEY_F1). Additionally KEYBOARD delivers single key-presses without echo. All this is done independent from the operating system or terminal/console. The output of the program is written to [http://seed7.sourceforge.net/libraries/console.htm#STD_CONSOLE STD_CONSOLE], which allows [http://seed7.sourceforge.net/libraries/console.htm#setPos(in_console_file,in_integer,in_integer) cursor positioning], after it has been [http://seed7.sourceforge.net/libraries/console.htm#open(CONSOLE) opened]. STD_CONSOLE works also always the same, independent from the operating system or terminal/console.
$ include "seed7_05.s7i";
include "console.s7i";
include "keybd.s7i";
const integer: boardLength is 4;
const integer: boardSize is boardLength * boardLength;
const integer: target is 2048;
const type: stateType is new struct
var integer: fieldsOccupied is 0;
var integer: largestNumber is 0;
var integer: score is 0;
var array array integer: board is boardLength times boardLength times 0;
end struct;
const proc: addTile (inout stateType: state) is func
local
var integer: row is 0;
var integer: col is 0;
var integer: field is 2;
begin
if state.fieldsOccupied < boardSize then
repeat
col := rand(1, boardLength);
row := rand(1, boardLength);
until state.board[row][col] = 0;
if rand(1, 10) = 10 then
field := 4;
end if;
state.board[row][col] := field;
incr(state.fieldsOccupied);
state.largestNumber := max(field, state.largestNumber);
end if;
end func;
const proc: showBoard (in stateType: state) is func
local
var integer: row is 0;
var integer: field is 0;
begin
writeln("┌────┬────┬────┬────┐");
for key row range state.board do
for field range state.board[row] do
if field = 0 then
write("│ ");
else
write("│" <& field lpad (5 + length(str(field))) div 2 rpad 4);
end if;
end for;
writeln("│");
if row < maxIdx(state.board) then
writeln("├────┼────┼────┼────┤");
end if;
end for;
writeln("└────┴────┴────┴────┘");
end func;
const func boolean: doMove (inout stateType: state, in integer: startRow,
in integer: startCol, in integer: deltaRow, in integer: deltaCol, in boolean: doMerge) is func
result
var boolean: boardChanged is FALSE;
local
const set of integer: boardRange is {1 .. boardLength};
var integer: row is 1;
var integer: col is 1;
var integer: nextRow is 0;
var integer: nextCol is 0;
begin
row := startRow;
col := startCol;
while row in boardRange and col in boardRange do
while row in boardRange and col in boardRange do
nextRow := row + deltaRow;
nextCol := col + deltaCol;
if state.board[row][col] = 0 and
nextRow in boardRange and nextCol in boardRange and
state.board[nextRow][nextCol] <> 0 then
boardChanged := TRUE;
state.board[row][col] := state.board[nextRow][nextCol];
state.board[nextRow][nextCol] := 0;
if row - deltaRow in boardRange and col - deltaCol in boardRange then
nextRow := row - deltaRow;
nextCol := col - deltaCol;
end if;
end if;
row := nextRow;
col := nextCol;
end while;
if doMerge then
if deltaRow <> 0 then
row := startRow;
elsif deltaCol <> 0 then
col := startCol;
end if;
while row in boardRange and col in boardRange do
nextRow := row + deltaRow;
nextCol := col + deltaCol;
if state.board[row][col] <> 0 and
nextRow in boardRange and nextCol in boardRange and
state.board[nextRow][nextCol] = state.board[row][col] then
boardChanged := TRUE;
state.board[row][col] *:= 2;
state.largestNumber := max(state.board[row][col], state.largestNumber);
state.score +:= state.board[row][col];
state.board[nextRow][nextCol] := 0;
decr(state.fieldsOccupied);
end if;
row := nextRow;
col := nextCol;
end while;
end if;
if deltaRow = 0 then
incr(row);
col := startCol;
elsif deltaCol = 0 then
incr(col);
row := startRow;
end if;
end while;
if doMerge and boardChanged then
ignore(doMove(state, startRow, startCol, deltaRow, deltaCol, FALSE));
end if;
end func;
const func boolean: canMove (in stateType: state) is func
result
var boolean: canMove is FALSE;
local
var integer: row is 0;
var integer: col is 0;
begin
for row range 1 to boardLength until canMove do
for col range 1 to boardLength until canMove do
canMove := state.board[row][col] = 0 or
(row < boardLength and state.board[row][col] = state.board[succ(row)][col]) or
(col < boardLength and state.board[row][col] = state.board[row][succ(col)]);
end for;
end for;
end func;
const proc: main is func
local
var stateType: state is stateType.value;
var integer: highscore is 0;
var char: command is ' ';
var boolean: quit is FALSE;
var boolean: moveOkay is FALSE;
begin
OUT := open(CONSOLE);
addTile(state);
repeat
setPos(STD_CONSOLE, 1, 1);
showBoard(state);
highscore := max(highscore, state.score);
writeln("Score = " <& state.score <& " Highscore = " <& highscore);
if canMove(state) and state.largestNumber < target then
writeln("Press arrow keys to move, R to Restart, Q to Quit");
elsif state.largestNumber >= target then
writeln("You win! Press R to Restart, Q to Quit ");
else
writeln("Game over! Press R to Restart, Q to Quit ");
end if;
repeat
moveOkay := FALSE;
command := getc(KEYBOARD);
case command of
when {'r', 'R'}:
state := stateType.value;
clear(STD_CONSOLE);
moveOkay := TRUE;
when {'q', 'Q'}:
moveOkay := TRUE;
quit := TRUE;
when {KEY_LEFT}:
moveOkay := doMove(state, 1, 1, 0, 1, TRUE);
when {KEY_RIGHT}:
moveOkay := doMove(state, 1, boardLength, 0, -1, TRUE);
when {KEY_UP}:
moveOkay := doMove(state, 1, 1, 1, 0, TRUE);
when {KEY_DOWN}:
moveOkay := doMove(state, boardLength, 1, -1, 0, TRUE);
end case;
if moveOkay and not quit then
addTile(state);
end if;
until moveOkay;
until quit;
end func;
Tcl
Text mode
# A minimal implementation of the game 2048 in Tcl.
# For a maintained version with expanded functionality see
# https://tcl.wiki/40557.
package require Tcl 8.5
package require struct::matrix
package require struct::list
# Board size.
set size 4
# Iterate over all cells of the game board and run script for each.
#
# The game board is a 2D matrix of a fixed size that consists of elements
# called "cells" that each can contain a game tile (corresponds to numerical
# values of 2, 4, 8, ..., 2048) or nothing (zero).
#
# - cellList is a list of cell indexes (coordinates), which are
# themselves lists of two numbers each. They each represent the location
# of a given cell on the board.
# - varName1 are varName2 are names of the variables the will be assigned
# the index values.
# - cellVarName is the name of the variable that at each step of iteration
# will contain the numerical value of the present cell. Assigning to it will
# change the cell's value.
# - script is the script to run.
proc forcells {cellList varName1 varName2 cellVarName script} {
upvar $varName1 i
upvar $varName2 j
upvar $cellVarName c
foreach cell $cellList {
set i [lindex $cell 0]
set j [lindex $cell 1]
set c [cell-get $cell]
uplevel $script
cell-set "$i $j" $c
}
}
# Generate a list of cell indexes for all cells on the board, i.e.,
# {{0 0} {0 1} ... {0 size-1} {1 0} {1 1} ... {size-1 size-1}}.
proc cell-indexes {} {
global size
set list {}
foreach i [::struct::list iota $size] {
foreach j [::struct::list iota $size] {
lappend list [list $i $j]
}
}
return $list
}
# Check if a number is a valid cell index (is 0 to size-1).
proc valid-index {i} {
global size
expr {0 <= $i && $i < $size}
}
# Return 1 if the predicate pred is true when applied to all items on the list
# or 0 otherwise.
proc map-and {list pred} {
set res 1
foreach item $list {
set res [expr {$res && [$pred $item]}]
if {! $res} break
}
return $res
}
# Check if list represents valid cell coordinates.
proc valid-cell? cell {
map-and $cell valid-index
}
# Get the value of a game board cell.
proc cell-get cell {
board get cell {*}$cell
}
# Set the value of a game board cell.
proc cell-set {cell value} {
board set cell {*}$cell $value
}
# Filter a list of board cell indexes cellList to only have those indexes
# that correspond to empty board cells.
proc empty {cellList} {
::struct::list filterfor x $cellList {[cell-get $x] == 0}
}
# Pick a random item from the given list.
proc pick list {
lindex $list [expr {int(rand() * [llength $list])}]
}
# Put a "2" into an empty cell on the board.
proc spawn-new {} {
set emptyCell [pick [empty [cell-indexes]]]
if {[llength $emptyCell] > 0} {
forcells [list $emptyCell] i j cell {
set cell 2
}
}
return $emptyCell
}
# Return vector sum of lists v1 and v2.
proc vector-add {v1 v2} {
set result {}
foreach a $v1 b $v2 {
lappend result [expr {$a + $b}]
}
return $result
}
# If checkOnly is false try to shift all cells one step in the direction of
# directionVect. If checkOnly is true just say if that move is possible.
proc move-all {directionVect {checkOnly 0}} {
set changedCells 0
forcells [cell-indexes] i j cell {
set newIndex [vector-add "$i $j" $directionVect]
set removedStar 0
# For every nonempty source cell and valid destination cell...
if {$cell != 0 && [valid-cell? $newIndex]} {
if {[cell-get $newIndex] == 0} {
# Destination is empty.
if {$checkOnly} {
# -level 2 is to return from both forcells and move-all.
return -level 2 true
} else {
# Move tile to empty cell.
cell-set $newIndex $cell
set cell 0
incr changedCells
}
} elseif {([cell-get $newIndex] eq $cell) &&
[string first + $cell] == -1} {
# Destination is the same number as source.
if {$checkOnly} {
return -level 2 true
} else {
# When merging two tiles into one mark the new tile with
# the marker of "+" to ensure it doesn't get combined
# again this turn.
cell-set $newIndex [expr {2 * $cell}]+
set cell 0
incr changedCells
}
}
}
}
if {$checkOnly} {
return false
}
# Remove "changed this turn" markers at the end of the turn.
if {$changedCells == 0} {
forcells [cell-indexes] i j cell {
set cell [string trim $cell +]
}
}
return $changedCells
}
# Is it possible to move any tiles in the direction of directionVect?
proc can-move? {directionVect} {
move-all $directionVect 1
}
# Check win condition. The player wins when there's a 2048 tile.
proc check-win {} {
forcells [cell-indexes] i j cell {
if {$cell == 2048} {
puts "You win!"
exit 0
}
}
}
# Check lose condition. The player loses when the win condition isn't met and
# there are no possible moves.
proc check-lose {possibleMoves} {
set values [dict values $possibleMoves]
if {!(true in $values || 1 in $values)} {
puts "You lose."
exit 0
}
}
# Pretty-print the board. Specify an index in highlight to highlight a cell.
proc print-board {{highlight {-1 -1}}} {
forcells [cell-indexes] i j cell {
if {$j == 0} {
puts ""
}
puts -nonewline [
if {$cell != 0} {
if {[::struct::list equal "$i $j" $highlight]} {
format "\[%4s\]" $cell*
} else {
format "\[%4s\]" $cell
}
} else {
lindex "......"
}
]
}
puts "\n"
}
proc main {} {
global size
struct::matrix board
# Generate an empty board of a given size.
board add columns $size
board add rows $size
forcells [cell-indexes] i j cell {
set cell 0
}
set controls {
h {0 -1}
j {1 0}
k {-1 0}
l {0 1}
}
# Game loop.
while true {
set playerMove 0
set possibleMoves {}
# Add new tile to the board and print the board highlighting this tile.
print-board [spawn-new]
check-win
# Find possible moves.
foreach {button vector} $controls {
dict set possibleMoves $button [can-move? $vector]
}
check-lose $possibleMoves
# Get valid input from the player.
while {$playerMove == 0} {
# Print prompt.
puts -nonewline "Move ("
foreach {button vector} $controls {
if {[dict get $possibleMoves $button]} {
puts -nonewline $button
}
}
puts ")?"
set playerInput [gets stdin]
# Validate input.
if {[dict exists $possibleMoves $playerInput] &&
[dict get $possibleMoves $playerInput]} {
set playerMove [dict get $controls $playerInput]
}
}
# Apply current move until no changes occur on the board.
while true {
if {[move-all $playerMove] == 0} break
}
}
}
main
Tk
See https://tcl.wiki/39566.
XPL0
include c:\cxpl\codes; \intrinsic 'code' declarations
int Box(16), Moved;
proc ShiftTiles(I0, DI); \Shift tiles, add adjacents, shift again
int I0, DI;
int Done, M, N, I;
[Done:= false;
loop [for M:= 1 to 3 do \shift all tiles in a single row or column
[I:= I0;
for N:= 1 to 3 do
[if Box(I)=0 & Box(I+DI)#0 then
[Box(I):= Box(I+DI); Box(I+DI):= 0; Moved:= true];
I:= I+DI;
];
];
if Done then return;
Done:= true;
I:= I0; \add identical adjacent tiles into a new tile
for N:= 1 to 3 do
[if Box(I)=Box(I+DI) & Box(I)#0 then
[Box(I):= Box(I)+1; Box(I+DI):= 0; Moved:= true];
I:= I+DI;
];
]; \loop back to close any gaps that were opened
]; \ShiftTiles
int I, J, X, Y, C;
[Clear;
for I:= 0 to 15 do Box(I):= 0; \empty the box of tiles
loop [repeat I:= Ran(16) until Box(I)=0; \in a random empty location
Box(I):= if Ran(10) then 1 else 2; \insert a 2^1=2 or 2^2=4
for I:= 0 to 15 do \show board with its tiles
[X:= ((I&3)+5)*6; \get coordinates of tile
Y:= I>>2*3+6;
Attrib(((Box(I)+1)&7)<<4 + $F);\set color based on tile value
for J:= 0 to 2 do \draw a square (6*8x3*16)
[Cursor(X, Y+J);
Text(6, " ");
];
if Box(I)#0 then \box contains a tile
[J:= 1; \center numbers somewhat
if Box(I) <= 9 then J:= 2;
if Box(I) <= 3 then J:= 3;
Cursor(X+J, Y+1);
IntOut(6, 1<<Box(I));
];
];
Moved:= false; \a tile must move to continue
repeat repeat C:= ChIn(1) until C#0; \get key scan code, or ASCII
for I:= 3 downto 0 do \for all rows or columns
[case C of
$4B: ShiftTiles(I*4, 1); \left arrow
$4D: ShiftTiles(I*4+3, -1); \right arrow
$50: ShiftTiles(I+12, -4); \down arrow
$48: ShiftTiles(I, 4); \up arrow
$1B: [Clear; exit] \Esc
other []; \ignore all other keys
];
until Moved;
];
]