[[File:Deathstar-tcl.gif|400px|thumb]]
Task
Display a region that consists of a large sphere with part of a smaller sphere removed from it as a result of geometric subtraction.
(This will basically produce a shape like a "death star".)
Related tasks
- [[Draw a sphere]]
AutoHotkey
#NoEnv
SetBatchLines, -1
#SingleInstance, Force
; Uncomment if Gdip.ahk is not in your standard library
#Include, Gdip.ahk
; Settings
X := 200, Y := 200, Width := 200, Height := 200 ; Location and size of sphere
rotation := 60 ; degrees
ARGB := 0xFFFF0000 ; Color=Solid Red
If !pToken := Gdip_Startup() ; Start gdi+
{
MsgBox, 48, gdiplus error!, Gdiplus failed to start. Please ensure you have gdiplus on your system
ExitApp
}
OnExit, Exit
Gui, -Caption +E0x80000 +LastFound +AlwaysOnTop +ToolWindow +OwnDialogs ; Create GUI
Gui, Show, NA ; Show GUI
hwnd1 := WinExist() ; Get a handle to this window we have created in order to update it later
hbm := CreateDIBSection(A_ScreenWidth, A_ScreenHeight) ; Create a gdi bitmap drawing area
hdc := CreateCompatibleDC() ; Get a device context compatible with the screen
obm := SelectObject(hdc, hbm) ; Select the bitmap into the device context
pGraphics := Gdip_GraphicsFromHDC(hdc) ; Get a pointer to the graphics of the bitmap, for use with drawing functions
Gdip_SetSmoothingMode(pGraphics, 4) ; Set the smoothing mode to antialias = 4 to make shapes appear smother
Gdip_TranslateWorldTransform(pGraphics, X, Y)
Gdip_RotateWorldTransform(pGraphics, rotation)
; Base ellipse
pBrush := Gdip_CreateLineBrushFromRect(0, 0, Width, Height, ARGB, 0xFF000000)
Gdip_FillEllipse(pGraphics, pBrush, 0, 0, Width, Height)
; First highlight ellipse
pBrush := Gdip_CreateLineBrushFromRect(Width*0.1, Height*0.01, Width*0.8, Height*0.6, 0x33FFFFFF, 0x00FFFFFF)
Gdip_FillEllipse(pGraphics, pBrush, Width*0.1, Height*0.01, Width*0.8, Height*0.6)
; Second highlight ellipse
pBrush := Gdip_CreateLineBrushFromRect(Width*0.3, Height*0.02, Width*0.3, Height*0.2, 0xBBFFFFFF, 0x00FFFFFF)
Gdip_FillEllipse(pGraphics, pBrush, Width*0.3, Height*0.02, Width*0.3, Height*0.2)
; Reset variables for smaller subtracted sphere
X-=150
Y-=10
Width*=0.5
Height*=0.4
rotation-=180
Gdip_TranslateWorldTransform(pGraphics, X, Y)
Gdip_RotateWorldTransform(pGraphics, rotation)
; Base ellipse
pBrush := Gdip_CreateLineBrushFromRect(0, 0, Width, Height, ARGB, 0xFF000000)
Gdip_FillEllipse(pGraphics, pBrush, 0, 0, Width, Height)
; First highlight ellipse
pBrush := Gdip_CreateLineBrushFromRect(Width*0.1, Height*0.01, Width*0.8, Height*0.6, 0x33FFFFFF, 0x00FFFFFF)
Gdip_FillEllipse(pGraphics, pBrush, Width*0.1, Height*0.01, Width*0.8, Height*0.6)
; Second highlight ellipse
pBrush := Gdip_CreateLineBrushFromRect(Width*0.3, Height*0.02, Width*0.3, Height*0.2, 0xBBFFFFFF, 0x00FFFFFF)
Gdip_FillEllipse(pGraphics, pBrush, Width*0.3, Height*0.02, Width*0.3, Height*0.2)
UpdateLayeredWindow(hwnd1, hdc, 0, 0, A_ScreenWidth, A_ScreenHeight)
SelectObject(hdc, obm) ; Select the object back into the hdc
Gdip_DeletePath(Path)
Gdip_DeleteBrush(pBrush)
DeleteObject(hbm) ; Now the bitmap may be deleted
DeleteDC(hdc) ; Also the device context related to the bitmap may be deleted
Gdip_DeleteGraphics(G) ; The graphics may now be deleted
Return
Exit:
; gdi+ may now be shutdown on exiting the program
Gdip_Shutdown(pToken)
ExitApp
Brlcad
# We need a database to hold the objects
opendb deathstar.g y
# We will be measuring in kilometers
units km
# Create a sphere of radius 60km centred at the origin
in sph1.s sph 0 0 0 60
# We will be subtracting an overlapping sphere with a radius of 40km
# The resultant hole will be smaller than this, because we only
# only catch the edge
in sph2.s sph 0 90 0 40
# Create a region named deathstar.r which consists of big minus small sphere
r deathstar.r u sph1.s - sph2.s
# We will use a plastic material texture with rgb colour 224,224,224
# with specular lighting value of 0.1 and no inheritance
mater deathstar.r "plastic sp=0.1" 224 224 224 0
# Clear the wireframe display and draw the deathstar
B deathstar.r
# We now trigger the raytracer to see our finished product
rt
C
Primitive ray tracing.
#include <stdio.h>
#include <math.h>
#include <unistd.h>
const char *shades = ".:!*oe&#%@";
double light[3] = { -50, 0, 50 };
void normalize(double * v)
{
double len = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
v[0] /= len; v[1] /= len; v[2] /= len;
}
double dot(double *x, double *y)
{
double d = x[0]*y[0] + x[1]*y[1] + x[2]*y[2];
return d < 0 ? -d : 0;
}
typedef struct { double cx, cy, cz, r; } sphere_t;
/* positive shpere and negative sphere */
sphere_t pos = { 20, 20, 0, 20 }, neg = { 1, 1, -6, 20 };
/* check if a ray (x,y, -inf)->(x, y, inf) hits a sphere; if so, return
the intersecting z values. z1 is closer to the eye */
int hit_sphere(sphere_t *sph, double x, double y, double *z1, double *z2)
{
double zsq;
x -= sph->cx;
y -= sph->cy;
zsq = sph->r * sph->r - (x * x + y * y);
if (zsq < 0) return 0;
zsq = sqrt(zsq);
*z1 = sph->cz - zsq;
*z2 = sph->cz + zsq;
return 1;
}
void draw_sphere(double k, double ambient)
{
int i, j, intensity, hit_result;
double b;
double vec[3], x, y, zb1, zb2, zs1, zs2;
for (i = floor(pos.cy - pos.r); i <= ceil(pos.cy + pos.r); i++) {
y = i + .5;
for (j = floor(pos.cx - 2 * pos.r); j <= ceil(pos.cx + 2 * pos.r); j++) {
x = (j - pos.cx) / 2. + .5 + pos.cx;
/* ray lands in blank space, draw bg */
if (!hit_sphere(&pos, x, y, &zb1, &zb2))
hit_result = 0;
/* ray hits pos sphere but not neg, draw pos sphere surface */
else if (!hit_sphere(&neg, x, y, &zs1, &zs2))
hit_result = 1;
/* ray hits both, but pos front surface is closer */
else if (zs1 > zb1) hit_result = 1;
/* pos sphere surface is inside neg sphere, show bg */
else if (zs2 > zb2) hit_result = 0;
/* back surface on neg sphere is inside pos sphere,
the only place where neg sphere surface will be shown */
else if (zs2 > zb1) hit_result = 2;
else hit_result = 1;
switch(hit_result) {
case 0:
putchar('+');
continue;
case 1:
vec[0] = x - pos.cx;
vec[1] = y - pos.cy;
vec[2] = zb1 - pos.cz;
break;
default:
vec[0] = neg.cx - x;
vec[1] = neg.cy - y;
vec[2] = neg.cz - zs2;
}
normalize(vec);
b = pow(dot(light, vec), k) + ambient;
intensity = (1 - b) * (sizeof(shades) - 1);
if (intensity < 0) intensity = 0;
if (intensity >= sizeof(shades) - 1)
intensity = sizeof(shades) - 2;
putchar(shades[intensity]);
}
putchar('\n');
}
}
int main()
{
double ang = 0;
while (1) {
printf("\033[H");
light[1] = cos(ang * 2);
light[2] = cos(ang);
light[0] = sin(ang);
normalize(light);
ang += .05;
draw_sphere(2, .3);
usleep(100000);
}
return 0;
}
D
import std.stdio, std.math, std.numeric, std.algorithm;
struct V3 {
double[3] v;
@property V3 normalize() pure nothrow const @nogc {
immutable double len = dotProduct(v, v).sqrt;
return [v[0] / len, v[1] / len, v[2] / len].V3;
}
double dot(in ref V3 y) pure nothrow const @nogc {
immutable double d = dotProduct(v, y.v);
return d < 0 ? -d : 0;
}
}
const struct Sphere { double cx, cy, cz, r; }
void drawSphere(in double k, in double ambient, in V3 light) nothrow {
/** Check if a ray (x,y, -inf).(x, y, inf) hits a sphere; if so,
return the intersecting z values. z1 is closer to the eye.*/
static bool hitSphere(in ref Sphere sph,
in double x0, in double y0,
out double z1,
out double z2) pure nothrow @nogc {
immutable double x = x0 - sph.cx;
immutable double y = y0 - sph.cy;
immutable double zsq = sph.r ^^ 2 - (x ^^ 2 + y ^^ 2);
if (zsq < 0)
return false;
immutable double szsq = zsq.sqrt;
z1 = sph.cz - szsq;
z2 = sph.cz + szsq;
return true;
}
immutable shades = ".:!*oe&#%@";
// Positive and negative spheres.
immutable pos = Sphere(20, 20, 0, 20);
immutable neg = Sphere(1, 1, -6, 20);
foreach (immutable int i; cast(int)floor(pos.cy - pos.r) ..
cast(int)ceil(pos.cy + pos.r) + 1) {
immutable double y = i + 0.5;
JLOOP:
foreach (int j; cast(int)floor(pos.cx - 2 * pos.r) ..
cast(int)ceil(pos.cx + 2 * pos.r) + 1) {
immutable double x = (j - pos.cx) / 2.0 + 0.5 + pos.cx;
enum Hit { background, posSphere, negSphere }
double zb1, zs2;
immutable Hit hitResult = {
double zb2, zs1;
if (!hitSphere(pos, x, y, zb1, zb2)) {
// Ray lands in blank space, draw bg.
return Hit.background;
} else if (!hitSphere(neg, x, y, zs1, zs2)) {
// Ray hits pos sphere but not neg one,
// draw pos sphere surface.
return Hit.posSphere;
} else if (zs1 > zb1) {
// ray hits both, but pos front surface is closer.
return Hit.posSphere;
} else if (zs2 > zb2) {
// pos sphere surface is inside neg sphere,
// show bg.
return Hit.background;
} else if (zs2 > zb1) {
// Back surface on neg sphere is inside pos
// sphere, the only place where neg sphere
// surface will be shown.
return Hit.negSphere;
} else {
return Hit.posSphere;
}
}();
V3 vec_;
final switch (hitResult) {
case Hit.background:
' '.putchar;
continue JLOOP;
case Hit.posSphere:
vec_ = [x - pos.cx, y - pos.cy, zb1 - pos.cz].V3;
break;
case Hit.negSphere:
vec_ = [neg.cx - x, neg.cy - y, neg.cz - zs2].V3;
break;
}
immutable nvec = vec_.normalize;
immutable double b = light.dot(nvec) ^^ k + ambient;
immutable intensity = cast(int)((1 - b) * shades.length);
immutable normInt = min(shades.length, max(0, intensity));
shades[normInt].putchar;
}
'\n'.putchar;
}
}
void main() {
immutable light = [-50, 30, 50].V3.normalize;
drawSphere(2, 0.5, light);
}
The output is the same of the C version.
DWScript
const cShades = '.:!*oe&#%@';
type TVector = array [0..2] of Float;
var light : TVector = [-50.0, 30, 50];
procedure Normalize(var v : TVector);
begin
var len := Sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
v[0] /= len; v[1] /= len; v[2] /= len;
end;
function Dot(x, y : TVector) : Float;
begin
var d :=x[0]*y[0] + x[1]*y[1] + x[2]*y[2];
if d<0 then
Result:=-d
else Result:=0;
end;
type
TSphere = record
cx, cy, cz, r : Float;
end;
const big : TSphere = (cx: 20; cy: 20; cz: 0; r: 20);
const small : TSphere = (cx: 7; cy: 7; cz: -10; r: 15);
function HitSphere(sph : TSphere; x, y : Float; var z1, z2 : Float) : Boolean;
begin
x -= sph.cx;
y -= sph.cy;
var zsq = sph.r * sph.r - (x * x + y * y);
if (zsq < 0) then Exit False;
zsq := Sqrt(zsq);
z1 := sph.cz - zsq;
z2 := sph.cz + zsq;
Result:=True;
end;
procedure DrawSphere(k, ambient : Float);
var
i, j, intensity : Integer;
b : Float;
x, y, zb1, zb2, zs1, zs2 : Float;
vec : TVector;
begin
for i:=Trunc(big.cy-big.r) to Trunc(big.cy+big.r)+1 do begin
y := i + 0.5;
for j := Trunc(big.cx-2*big.r) to Trunc(big.cx+2*big.r) do begin
x := (j-big.cx)/2 + 0.5 + big.cx;
if not HitSphere(big, x, y, zb1, zb2) then begin
Print(' ');
continue;
end;
if not HitSphere(small, x, y, zs1, zs2) then begin
vec[0] := x - big.cx;
vec[1] := y - big.cy;
vec[2] := zb1 - big.cz;
end else begin
if zs1 < zb1 then begin
if zs2 > zb2 then begin
Print(' ');
continue;
end;
if zs2 > zb1 then begin
vec[0] := small.cx - x;
vec[1] := small.cy - y;
vec[2] := small.cz - zs2;
end else begin
vec[0] := x - big.cx;
vec[1] := y - big.cy;
vec[2] := zb1 - big.cz;
end;
end else begin
vec[0] := x - big.cx;
vec[1] := y - big.cy;
vec[2] := zb1 - big.cz;
end;
end;
Normalize(vec);
b := Power(Dot(light, vec), k) + ambient;
intensity := Round((1 - b) * Length(cShades));
Print(cShades[ClampInt(intensity+1, 1, Length(cShades))]);
end;
PrintLn('');
end;
end;
Normalize(light);
DrawSphere(2, 0.3);
Go
[[file:GoDstar.png|right|thumb|Output png]]
package main
import (
"fmt"
"image"
"image/color"
"image/png"
"math"
"os"
)
type vector [3]float64
func (v *vector) normalize() {
invLen := 1 / math.Sqrt(dot(v, v))
v[0] *= invLen
v[1] *= invLen
v[2] *= invLen
}
func dot(x, y *vector) float64 {
return x[0]*y[0] + x[1]*y[1] + x[2]*y[2]
}
type sphere struct {
cx, cy, cz int
r int
}
func (s *sphere) hit(x, y int) (z1, z2 float64, hit bool) {
x -= s.cx
y -= s.cy
if zsq := s.r*s.r - (x*x + y*y); zsq >= 0 {
zsqrt := math.Sqrt(float64(zsq))
return float64(s.cz) - zsqrt, float64(s.cz) + zsqrt, true
}
return 0, 0, false
}
func deathStar(pos, neg *sphere, k, amb float64, dir *vector) *image.Gray {
w, h := pos.r*4, pos.r*3
bounds := image.Rect(pos.cx-w/2, pos.cy-h/2, pos.cx+w/2, pos.cy+h/2)
img := image.NewGray(bounds)
vec := new(vector)
for y, yMax := pos.cy-pos.r, pos.cy+pos.r; y <= yMax; y++ {
for x, xMax := pos.cx-pos.r, pos.cx+pos.r; x <= xMax; x++ {
zb1, zb2, hit := pos.hit(x, y)
if !hit {
continue
}
zs1, zs2, hit := neg.hit(x, y)
if hit {
if zs1 > zb1 {
hit = false
} else if zs2 > zb2 {
continue
}
}
if hit {
vec[0] = float64(neg.cx - x)
vec[1] = float64(neg.cy - y)
vec[2] = float64(neg.cz) - zs2
} else {
vec[0] = float64(x - pos.cx)
vec[1] = float64(y - pos.cy)
vec[2] = zb1 - float64(pos.cz)
}
vec.normalize()
s := dot(dir, vec)
if s < 0 {
s = 0
}
lum := 255 * (math.Pow(s, k) + amb) / (1 + amb)
if lum < 0 {
lum = 0
} else if lum > 255 {
lum = 255
}
img.SetGray(x, y, color.Gray{uint8(lum)})
}
}
return img
}
func main() {
dir := &vector{20, -40, -10}
dir.normalize()
pos := &sphere{0, 0, 0, 120}
neg := &sphere{-90, -90, -30, 100}
img := deathStar(pos, neg, 1.5, .2, dir)
f, err := os.Create("dstar.png")
if err != nil {
fmt.Println(err)
return
}
if err = png.Encode(f, img); err != nil {
fmt.Println(err)
}
if err = f.Close(); err != nil {
fmt.Println(err)
}
}
J
load'graphics/viewmat'
mag =: +/&.:*:"1
norm=: %"1 0 mag
dot =: +/@:*"1
NB. (pos;posr;neg;negr) getvec (x,y)
getvec =: 4 :0 "1
pt =. y
'pos posr neg negr' =. x
if. (dot~ pt-}:pos) > *:posr do.
0 0 0
else.
zb =. ({:pos) (-,+) posr -&.:*: pt mag@:- }:pos
if. (dot~ pt-}:neg) > *:negr do.
(pt,{:zb) - pos
else.
zs =. ({:neg) (-,+) negr -&.:*: pt mag@:- }:neg
if. zs >&{. zb do. (pt,{:zb) - pos
elseif. zs >&{: zb do. 0 0 0
elseif. ({.zs) < ({:zb) do. neg - (pt,{.zs)
elseif. do. (pt,{.zb) - pos end.
end.
end.
)
NB. (k;ambient;light) draw_sphere (pos;posr;neg;negr)
draw_sphere =: 4 :0
'pos posr neg negr' =. y
'k ambient light' =. x
vec=. norm y getvec ,"0// (2{.pos) +/ i: 200 j.~ 0.5+posr
b=. (mag vec) * ambient + k * 0>. light dot vec
)
togray =: 256#. 255 255 255 <.@*"1 0 (%>./@,)
env=.(2; 0.5; (norm _50 30 50))
sph=. 20 20 0; 20; 1 1 _6; 20
'rgb' viewmat togray env draw_sphere sph
Java
import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.geometry.Point3D;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.input.KeyCode;
import javafx.scene.input.KeyEvent;
import javafx.scene.shape.MeshView;
import javafx.scene.shape.TriangleMesh;
import javafx.scene.transform.Rotate;
import javafx.stage.Stage;
public class DeathStar extends Application {
private static final int DIVISION = 200;// the bigger the higher resolution
float radius = 300;// radius of the sphere
@Override
public void start(Stage primaryStage) throws Exception {
Point3D otherSphere = new Point3D(-radius, 0, -radius * 1.5);
final TriangleMesh triangleMesh = createMesh(DIVISION, radius, otherSphere);
MeshView a = new MeshView(triangleMesh);
a.setTranslateY(radius);
a.setTranslateX(radius);
a.setRotationAxis(Rotate.Y_AXIS);
Scene scene = new Scene(new Group(a));
// uncomment if you want to move the other sphere
// scene.setOnKeyPressed(new EventHandler<KeyEvent>() {
// Point3D sphere = otherSphere;
//
// @Override
// public void handle(KeyEvent e) {
// KeyCode code = e.getCode();
// switch (code) {
// case UP:
// sphere = sphere.add(0, -10, 0);
// break;
// case DOWN:
// sphere = sphere.add(0, 10, 0);
// break;
// case LEFT:
// sphere = sphere.add(-10, 0, 0);
// break;
// case RIGHT:
// sphere = sphere.add(10, 0, 0);
// break;
// case W:
// sphere = sphere.add(0, 0, 10);
// break;
// case S:
// sphere = sphere.add(0, 0, -10);
// break;
// default:
// return;
// }
// a.setMesh(createMesh(DIVISION, radius, sphere));
//
// }
// });
primaryStage.setScene(scene);
primaryStage.show();
}
static TriangleMesh createMesh(final int division, final float radius, final Point3D centerOtherSphere) {
Rotate rotate = new Rotate(180, centerOtherSphere);
final int div2 = division / 2;
final int nPoints = division * (div2 - 1) + 2;
final int nTPoints = (division + 1) * (div2 - 1) + division * 2;
final int nFaces = division * (div2 - 2) * 2 + division * 2;
final float rDiv = 1.f / division;
float points[] = new float[nPoints * 3];
float tPoints[] = new float[nTPoints * 2];
int faces[] = new int[nFaces * 6];
int pPos = 0, tPos = 0;
for (int y = 0; y < div2 - 1; ++y) {
float va = rDiv * (y + 1 - div2 / 2) * 2 * (float) Math.PI;
float sin_va = (float) Math.sin(va);
float cos_va = (float) Math.cos(va);
float ty = 0.5f + sin_va * 0.5f;
for (int i = 0; i < division; ++i) {
double a = rDiv * i * 2 * (float) Math.PI;
float hSin = (float) Math.sin(a);
float hCos = (float) Math.cos(a);
points[pPos + 0] = hSin * cos_va * radius;
points[pPos + 2] = hCos * cos_va * radius;
points[pPos + 1] = sin_va * radius;
final Point3D point3D = new Point3D(points[pPos + 0], points[pPos + 1], points[pPos + 2]);
double distance = centerOtherSphere.distance(point3D);
if (distance <= radius) {
Point3D subtract = centerOtherSphere.subtract(point3D);
Point3D transform = rotate.transform(subtract);
points[pPos + 0] = (float) transform.getX();
points[pPos + 1] = (float) transform.getY();
points[pPos + 2] = (float) transform.getZ();
}
tPoints[tPos + 0] = 1 - rDiv * i;
tPoints[tPos + 1] = ty;
pPos += 3;
tPos += 2;
}
tPoints[tPos + 0] = 0;
tPoints[tPos + 1] = ty;
tPos += 2;
}
points[pPos + 0] = 0;
points[pPos + 1] = -radius;
points[pPos + 2] = 0;
points[pPos + 3] = 0;
points[pPos + 4] = radius;
points[pPos + 5] = 0;
pPos += 6;
int pS = (div2 - 1) * division;
float textureDelta = 1.f / 256;
for (int i = 0; i < division; ++i) {
tPoints[tPos + 0] = rDiv * (0.5f + i);
tPoints[tPos + 1] = textureDelta;
tPos += 2;
}
for (int i = 0; i < division; ++i) {
tPoints[tPos + 0] = rDiv * (0.5f + i);
tPoints[tPos + 1] = 1 - textureDelta;
tPos += 2;
}
int fIndex = 0;
for (int y = 0; y < div2 - 2; ++y) {
for (int x = 0; x < division; ++x) {
int p0 = y * division + x;
int p1 = p0 + 1;
int p2 = p0 + division;
int p3 = p1 + division;
int t0 = p0 + y;
int t1 = t0 + 1;
int t2 = t0 + division + 1;
int t3 = t1 + division + 1;
// add p0, p1, p2
faces[fIndex + 0] = p0;
faces[fIndex + 1] = t0;
faces[fIndex + 2] = p1 % division == 0 ? p1 - division : p1;
faces[fIndex + 3] = t1;
faces[fIndex + 4] = p2;
faces[fIndex + 5] = t2;
fIndex += 6;
// add p3, p2, p1
faces[fIndex + 0] = p3 % division == 0 ? p3 - division : p3;
faces[fIndex + 1] = t3;
faces[fIndex + 2] = p2;
faces[fIndex + 3] = t2;
faces[fIndex + 4] = p1 % division == 0 ? p1 - division : p1;
faces[fIndex + 5] = t1;
fIndex += 6;
}
}
int p0 = pS;
int tB = (div2 - 1) * (division + 1);
for (int x = 0; x < division; ++x) {
int p2 = x, p1 = x + 1, t0 = tB + x;
faces[fIndex + 0] = p0;
faces[fIndex + 1] = t0;
faces[fIndex + 2] = p1 == division ? 0 : p1;
faces[fIndex + 3] = p1;
faces[fIndex + 4] = p2;
faces[fIndex + 5] = p2;
fIndex += 6;
}
p0 = p0 + 1;
tB = tB + division;
int pB = (div2 - 2) * division;
for (int x = 0; x < division; ++x) {
int p1 = pB + x, p2 = pB + x + 1, t0 = tB + x;
int t1 = (div2 - 2) * (division + 1) + x, t2 = t1 + 1;
faces[fIndex + 0] = p0;
faces[fIndex + 1] = t0;
faces[fIndex + 2] = p1;
faces[fIndex + 3] = t1;
faces[fIndex + 4] = p2 % division == 0 ? p2 - division : p2;
faces[fIndex + 5] = t2;
fIndex += 6;
}
TriangleMesh m = new TriangleMesh();
m.getPoints().setAll(points);
m.getTexCoords().setAll(tPoints);
m.getFaces().setAll(faces);
return m;
}
public static void main(String[] args) {
launch(args);
}
}
JavaScript
Layer circles and gradients to achieve result similar to that of the Wikipedia page for the [http://en.wikipedia.org/wiki/Death_Star Death Star].
<!DOCTYPE html>
<html>
<body style="margin:0">
<canvas id="myCanvas" width="250" height="250" style="border:1px solid #d3d3d3;">
Your browser does not support the HTML5 canvas tag.
</canvas>
<script>
var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");
//Fill the canvas with a dark gray background
ctx.fillStyle = "#222222";
ctx.fillRect(0,0,250,250);
// Create radial gradient for large base circle
var grd = ctx.createRadialGradient(225,175,190,225,150,130);
grd.addColorStop(0,"#EEEEEE");
grd.addColorStop(1,"black");
//Apply gradient and fill circle
ctx.fillStyle = grd;
ctx.beginPath();
ctx.arc(125,125,105,0,2*Math.PI);
ctx.fill();
// Create linear gradient for small inner circle
var grd = ctx.createLinearGradient(75,90,102,90);
grd.addColorStop(0,"black");
grd.addColorStop(1,"gray");
//Apply gradient and fill circle
ctx.fillStyle = grd;
ctx.beginPath();
ctx.arc(90,90,30,0,2*Math.PI);
ctx.fill();
//Add another small circle on top of the previous one to enhance the "shadow"
ctx.fillStyle = "black";
ctx.beginPath();
ctx.arc(80,90,17,0,2*Math.PI);
ctx.fill();
</script>
</body>
</html>
Julia
# run in REPL
using Makie
function deathstar()
n = 60
θ = [0; (0.5: n - 0.5) / n; 1]
φ = [(0: 2n - 2) * 2 / (2n - 1); 2]
# if x is +0.9 radius units, replace it with the coordinates of sphere surface
# at (1.2,0,0) center, radius 0.5 units
x = [(x1 = cospi(φ)*sinpi(θ)) > 0.9 ? 1.2 - x1 * 0.5 : x1 for θ in θ, φ in φ]
y = [sinpi(φ)*sinpi(θ) for θ in θ, φ in φ]
z = [cospi(θ) for θ in θ, φ in φ]
scene = Scene(backgroundcolor=:black)
surface!(scene, x, y, z, color = rand(RGBAf0, 124, 124), show_axis=false)
end
deathstar()
LSL
Rez a box on the ground, raise it up a few meters, add the following as a New Script.
default {
state_entry() {
llSetPrimitiveParams([PRIM_NAME, "RosettaCode DeathStar"]);
llSetPrimitiveParams([PRIM_DESC, llGetObjectName()]);
llSetPrimitiveParams([PRIM_TYPE, PRIM_TYPE_SPHERE, PRIM_HOLE_CIRCLE, <0.0, 1.0, 0.0>, 0.0, <0.0, 0.0, 0.0>, <0.12, 1.0, 0.0>]);
llSetPrimitiveParams([PRIM_ROTATION, <-0.586217, 0.395411, -0.586217, 0.395411>]);
llSetPrimitiveParams([PRIM_TEXTURE, ALL_SIDES, TEXTURE_BLANK, ZERO_VECTOR, ZERO_VECTOR, 0.0]);
llSetPrimitiveParams([PRIM_TEXT, llGetObjectName(), <1.0, 1.0, 1.0>, 1.0]);
llSetPrimitiveParams([PRIM_COLOR, ALL_SIDES, <0.5, 0.5, 0.5>, 1.0]);
llSetPrimitiveParams([PRIM_BUMP_SHINY, ALL_SIDES, PRIM_SHINY_HIGH, PRIM_BUMP_NONE]);
llSetPrimitiveParams([PRIM_SIZE, <10.0, 10.0, 10.0>]);
llSetPrimitiveParams([PRIM_OMEGA, <0.0, 0.0, 1.0>, 1.0, 1.0]);
}
}
Output: [[File:Death_Star_LSL.jpg|200px|Death Star]]
Maple
with(plots):
with(plottools):
plots:-display(
implicitplot3d(x^2 + y^2 + z^2 = 1, x = -1..0.85, y = -1..1, z = -1..1, style = surface, grid = [50,50,50]),
translate(rotate(implicitplot3d(x^2 + y^2 + z^2 = 1, x = 0.85..1, y = -1..1, z = -1..1, style = surface, grid = [50,50,50]), 0, Pi, 0), 1.70, 0, 0),
axes = none, scaling = constrained, color = gray)
=={{header|Mathematica}} / {{header|Wolfram Language}}==
RegionPlot3D[x^2 + y^2 + z^2 < 1 && (x + 1.7)^2 + y^2 + z^2 > 1,
{x, -1, 1}, {y, -1, 1}, {z, -1, 1},
Boxed -> False, Mesh -> False, Axes -> False, Background -> Black, PlotPoints -> 100]
Openscad
// We are performing geometric subtraction
difference() {
// Create the primary sphere of radius 60 centred at the origin
translate(v = [0,0,0]) {
sphere(60);
}
/*Subtract an overlapping sphere with a radius of 40
The resultant hole will be smaller than this, because we only
only catch the edge
*/
translate(v = [0,90,0]) {
sphere(40);
}
}
Perl
[[file:death-star-perl.png|thumb]] Writes a PGM to stdout.
use strict;
sub sq {
my $s = 0;
$s += $_ ** 2 for @_;
$s;
}
sub hit {
my ($sph, $x, $y) = @_;
$x -= $sph->[0];
$y -= $sph->[1];
my $z = sq($sph->[3]) - sq($x, $y);
return if $z < 0;
$z = sqrt $z;
return $sph->[2] - $z, $sph->[2] + $z;
}
sub normalize {
my $v = shift;
my $n = sqrt sq(@$v);
$_ /= $n for @$v;
$v;
}
sub dot {
my ($x, $y) = @_;
my $s = $x->[0] * $y->[0] + $x->[1] * $y->[1] + $x->[2] * $y->[2];
$s > 0 ? $s : 0;
}
my $pos = [ 120, 120, 0, 120 ];
my $neg = [ -77, -33, -100, 190 ];
my $light = normalize([ -12, 13, -10 ]);
sub draw {
my ($k, $amb) = @_;
binmode STDOUT, ":raw";
print "P5\n", $pos->[0] * 2 + 3, " ", $pos->[1] * 2 + 3, "\n255\n";
for my $y (($pos->[1] - $pos->[3] - 1) .. ($pos->[1] + $pos->[3] + 1)) {
my @row = ();
for my $x (($pos->[0] - $pos->[3] - 1) .. ($pos->[0] + $pos->[3] + 1)) {
my ($hit, @hs) = 0;
my @h = hit($pos, $x, $y);
if (!@h) { $hit = 0 }
elsif (!(@hs = hit($neg, $x, $y))) { $hit = 1 }
elsif ($hs[0] > $h[0]) { $hit = 1 }
elsif ($hs[1] > $h[0]) { $hit = $hs[1] > $h[1] ? 0 : 2 }
else { $hit = 1 }
my ($val, $v);
if ($hit == 0) { $val = 0 }
elsif ($hit == 1) {
$v = [ $x - $pos->[0],
$y - $pos->[1],
$h[0] - $pos->[2] ];
} else {
$v = [ $neg->[0] - $x,
$neg->[1] - $y,
$neg->[2] - $hs[1] ];
}
if ($v) {
normalize($v);
$val = int((dot($v, $light) ** $k + $amb) * 255);
$val = ($val > 255) ? 255 : ($val < 0) ? 0 : $val;
}
push @row, $val;
}
print pack("C*", @row);
}
}
draw(2, 0.2);
Perl 6
{{trans|C}}Reimplemented to output a .pgm image. [[File:Deathstar-perl6.png|thumb]]
class sphere {
has $.cx; # center x coordinate
has $.cy; # center y coordinate
has $.cz; # center z coordinate
has $.r; # radius
}
my $depth = 255; # image color depth
my $width = my $height = 255; # dimensions of generated .pgm; must be odd
my $s = ($width - 1)/2; # scaled dimension to build geometry
my @light = normalize([ 4, -1, -3 ]);
# positive sphere at origin
my $pos = sphere.new(
cx => 0,
cy => 0,
cz => 0,
r => $s.Int
);
# negative sphere offset to upper left
my $neg = sphere.new(
cx => (-$s*.90).Int,
cy => (-$s*.90).Int,
cz => (-$s*.3).Int,
r => ($s*.7).Int
);
sub MAIN ($outfile = 'deathstar-perl6.pgm') {
spurt $outfile, ("P5\n$width $height\n$depth\n"); # .pgm header
my $out = open( $outfile, :a, :bin ) orelse .die;
say 'Working...';
$out.write( Blob.new( |draw_ds(3, .15) ) );
say 'File written.';
$out.close;
}
sub draw_ds ( $k, $ambient ) {
my @pixels[$height];
(($pos.cy - $pos.r) .. ($pos.cy + $pos.r)).race.map: -> $y {
my @row[$width];
(($pos.cx - $pos.r) .. ($pos.cx + $pos.r)).map: -> $x {
# black if we don't hit positive sphere, ignore negative sphere
if not hit($pos, $x, $y, my $posz) {
@row[$x + $s] = 0;
next;
}
my @vec;
# is front of positive sphere inside negative sphere?
if hit($neg, $x, $y, my $negz) and $negz.min < $posz.min < $negz.max {
# make black if whole positive sphere eaten here
if $negz.min < $posz.max < $negz.max { @row[$x + $s] = 0; next; }
# render inside of negative sphere
@vec = normalize([$neg.cx - $x, $neg.cy - $y, -$negz.max - $neg.cz]);
}
else {
# render outside of positive sphere
@vec = normalize([$x - $pos.cx, $y - $pos.cy, $posz.max - $pos.cz]);
}
my $intensity = dot(@light, @vec) ** $k + $ambient;
@row[$x + $s] = ($intensity * $depth).Int min $depth;
}
@pixels[$y + $s] = @row;
}
flat |@pixels.map: *.list;
}
# normalize a vector
sub normalize (@vec) { @vec »/» ([+] @vec »*« @vec).sqrt }
# dot product of two vectors
sub dot (@x, @y) { -([+] @x »*« @y) max 0 }
# are the coordinates within the radius of the sphere?
sub hit ($sphere, $x is copy, $y is copy, $z is rw) {
$x -= $sphere.cx;
$y -= $sphere.cy;
my $z2 = $sphere.r * $sphere.r - $x * $x - $y * $y;
return 0 if $z2 < 0;
$z2 = $z2.sqrt;
$z = $sphere.cz - $z2 .. $sphere.cz + $z2;
1;
}
Phix
--
-- demo\rosetta\DeathStar.exw
--
include pGUI.e
Ihandle dlg, canvas
cdCanvas cddbuffer, cdcanvas
function dot(sequence x, sequence y)
return sum(sq_mul(x,y))
end function
function normalize(sequence v)
atom len = sqrt(dot(v, v))
if len=0 then return {0,0,0} end if
return sq_mul(v,1/len)
end function
enum X,Y,Z
function hit(sequence s, atom x, y, atom r)
x -= s[X]
y -= s[Y]
atom zsq := r*r - (x*x + y*y)
if zsq >= 0 then
atom zsqrt := sqrt(zsq)
return {s[Z] - zsqrt, s[Z] + zsqrt, true}
end if
return {0, 0, false}
end function
procedure deathStar(integer width, height, atom k, atom amb, sequence direction)
integer lum
sequence vec
integer r = floor((min(width,height)-40)/2)
integer cx = floor(width/2)
integer cy = floor(height/2)
sequence pos = {0,0,0},
neg = {r*-3/4,r*-3/4,r*-1/4}
for y = pos[Y]-r to pos[Y]+r do
for x = pos[X]-r to pos[X]+r do
atom {zb1, zb2, hit1} := hit(pos, x, y, r)
if hit1 then
atom {zs1, zs2, hit2} := hit(neg, x, y, r/2)
if not hit2 or zs2<=zb2 then
if hit2 and zs1<=zb1 then
vec = {neg[X] - x, neg[Y] - y, neg[Z] - zs2}
else
vec = {x - pos[X], y - pos[Y], zb1 - pos[Z]}
-- vec = {x, y, zb1}
end if
atom s = dot(direction, normalize(vec))
lum = and_bits(#FF,255*(iff(s<0?0:power(s,k))+amb)/(1+amb))
lum += lum*#100+lum*#10000
cdCanvasPixel(cddbuffer, cx+x, cy-y, lum)
end if
end if
end for
end for
end procedure
function redraw_cb(Ihandle /*ih*/, integer /*posx*/, integer /*posy*/)
integer {width, height} = IupGetIntInt(canvas, "DRAWSIZE")
cdCanvasActivate(cddbuffer)
cdCanvasClear(cddbuffer)
deathStar(width, height, 1.5, 0.2, normalize({20, -40, -10}))
cdCanvasFlush(cddbuffer)
return IUP_DEFAULT
end function
function map_cb(Ihandle ih)
cdcanvas = cdCreateCanvas(CD_IUP, ih)
cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
cdCanvasSetBackground(cddbuffer, CD_BLACK)
return IUP_DEFAULT
end function
function esc_close(Ihandle /*ih*/, atom c)
if c=K_ESC then return IUP_CLOSE end if
return IUP_CONTINUE
end function
procedure main()
IupOpen()
canvas = IupCanvas(NULL)
IupSetAttribute(canvas, "RASTERSIZE", "340x340") -- initial size
IupSetCallback(canvas, "MAP_CB", Icallback("map_cb"))
dlg = IupDialog(canvas)
IupSetAttribute(dlg, "TITLE", "Draw a sphere")
IupSetCallback(dlg, "K_ANY", Icallback("esc_close"))
IupSetCallback(canvas, "ACTION", Icallback("redraw_cb"))
IupMap(dlg)
IupSetAttribute(canvas, "RASTERSIZE", NULL) -- release the minimum limitation
IupShowXY(dlg,IUP_CENTER,IUP_CENTER)
IupMainLoop()
IupClose()
end procedure
main()
=={{header|POV-Ray}}==
light_source{< 3,3,-3> color rgb 1}
sky_sphere { pigment{ color rgb <0,.2,.5>}}
plane {y,-5 pigment {color rgb .54} normal {hexagon} }
difference { sphere { 0,1 } sphere { <-1,1,-1>,1 } texture { pigment{ granite } finish { phong 1 reflection {0.10 metallic 0.5} } } }
[[image:PovRay-deathstar.jpg]]
## Python
```python
import sys, math, collections
Sphere = collections.namedtuple("Sphere", "cx cy cz r")
V3 = collections.namedtuple("V3", "x y z")
def normalize((x, y, z)):
len = math.sqrt(x**2 + y**2 + z**2)
return V3(x / len, y / len, z / len)
def dot(v1, v2):
d = v1.x*v2.x + v1.y*v2.y + v1.z*v2.z
return -d if d < 0 else 0.0
def hit_sphere(sph, x0, y0):
x = x0 - sph.cx
y = y0 - sph.cy
zsq = sph.r ** 2 - (x ** 2 + y ** 2)
if zsq < 0:
return (False, 0, 0)
szsq = math.sqrt(zsq)
return (True, sph.cz - szsq, sph.cz + szsq)
def draw_sphere(k, ambient, light):
shades = ".:!*oe&#%@"
pos = Sphere(20.0, 20.0, 0.0, 20.0)
neg = Sphere(1.0, 1.0, -6.0, 20.0)
for i in xrange(int(math.floor(pos.cy - pos.r)),
int(math.ceil(pos.cy + pos.r) + 1)):
y = i + 0.5
for j in xrange(int(math.floor(pos.cx - 2 * pos.r)),
int(math.ceil(pos.cx + 2 * pos.r) + 1)):
x = (j - pos.cx) / 2.0 + 0.5 + pos.cx
(h, zb1, zb2) = hit_sphere(pos, x, y)
if not h:
hit_result = 0
else:
(h, zs1, zs2) = hit_sphere(neg, x, y)
if not h:
hit_result = 1
elif zs1 > zb1:
hit_result = 1
elif zs2 > zb2:
hit_result = 0
elif zs2 > zb1:
hit_result = 2
else:
hit_result = 1
if hit_result == 0:
sys.stdout.write(' ')
continue
elif hit_result == 1:
vec = V3(x - pos.cx, y - pos.cy, zb1 - pos.cz)
elif hit_result == 2:
vec = V3(neg.cx-x, neg.cy-y, neg.cz-zs2)
vec = normalize(vec)
b = dot(light, vec) ** k + ambient
intensity = int((1 - b) * len(shades))
intensity = min(len(shades), max(0, intensity))
sys.stdout.write(shades[intensity])
print
light = normalize(V3(-50, 30, 50))
draw_sphere(2, 0.5, light)
Q
write an image in BMP format:
/ https://en.wikipedia.org/wiki/BMP_file_format
/ BITMAPINFOHEADER / RGB24
/ generate a header
genheader:{[w;h]
0x424d, "x"$(f2i4[54+4*h*w],0,0,0,0,54,0,0,0,40,0,0,0,
f2i4[h],f2i4[w],1,0,24,0,0,0,0,0,
f2i4[h*((w*3)+((w*3)mod 4))],
19,11,0,0,19,11,0,0,0,0,0,0,0,0,0,0)};
/ generate a raster line at a vertical position
genrow:{[w;y;fcn]
row:enlist 0i;xx:0i;do[w;row,:fcn[xx;y];xx+:1i];row,:((w mod 4)#0i);1_row};
/ generate a bitmap
genbitmap:{[w;h;fcn]
ary:enlist 0i;yy:0i;do[h;ary,:genrow[w;yy;fcn];yy+:1i];"x"$1_ary};
/ deal with endianness
/ might need to reverse last line if host computer is not a PC
f2i4:{[x] r:x;
s0:r mod 256;r-:s0; r%:256;
s1:r mod 256;r-:s1; r%:256;
s2:r mod 256;r-:s2; r%:256;
s3:r mod 256;
"h"$(s0,s1,s2,s3)}
/ compose and write a file
writebmp:{[w;h;fcn;fn]
fn 1: (genheader[h;w],genbitmap[w;h;fcn])};
/ / usage example:
/ w:400;
/ h:300;
/ fcn:{x0:x-w%2;y0:y-h%2;r:175;$[(r*r)>((x0*x0)+(y0*y0));(0;0;255);(0;255;0)]};
/ fn:`:demo.bmp;
/ writebmp[w;h;fcn;fn];
Create the death star image:
w:400; h:300; r:150; l:-0.5 0.7 0.5
sqrt0:{$[x>0;sqrt x;0]};
/ get x,y,z position of point on sphere given x,y,r
z:{[x;y;r]sqrt0((r*r)-((x*x)+(y*y)))};
/ get diffused light at point on sphere
is:{[x;y;r]
z0:z[x;y;r];
s:(x;y;z0)%r;
$[z0>0;i:0.5*1+(+/)(s*l);i:0];
i};
/ get pixel value at given image position
fcn:{[xpx;ypx]
x:xpx-w%2;
y:ypx-h%2;
z1:z[x;y;r];
x2:x+190;
z2:170-z[x2;y;r];
$[(r*r)<((x*x)+(y*y));
$[y>-50;
i:3#0;
i:200 100 50];
$[z2>z1;
i:3#is[x;y;r]*140;
i:3#is[(-1*x2);(-1*y);r]*120]
];
"i"$i};
/ do it ...
\l bmp.q
fn:`:demo.bmp;
writebmp[w;h;fcn;fn];
(converted to JPG ...)
[[image:qdstar.jpg]]
Racket
#lang racket
(require plot)
(plot3d (polar3d (λ (φ θ) (real-part (- (sin θ) (sqrt (- (sqr 1/3) (sqr (cos θ)))))))
#:samples 100 #:line-style 'transparent #:color 9)
#:altitude 60 #:angle 80
#:height 500 #:width 400
#:x-min -1/2 #:x-max 1/2
#:y-min -1/2 #:y-max 1/2
#:z-min 0 #:z-max 1)
[[File:death-star.png]]
REXX
(Apologies for the comments making the lines so wide, but it was easier to read and compare to the original '''D''' source.)
/*REXX program displays a sphere with another sphere subtracted where it's superimposed.*/
call deathStar 2, .5, v3('-50 30 50')
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
dot: #=0; do j=1 for words(x); #=# + word(x,j)*word(y,j); end; return #
dot.: procedure; parse arg x,y; d=dot(x,y); if d<0 then return -d; return 0
ceil: procedure; parse arg x; _=trunc(x); return _+(x>0)*(x\=_)
floor: procedure; parse arg x; _=trunc(x); return _-(x<0)*(x\=_)
v3: procedure; parse arg a b c; #=sqrt(a**2 + b**2 + c**2); return a/# b/# c/#
/*──────────────────────────────────────────────────────────────────────────────────────*/
sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); h= d+6; numeric digits
m.=9; numeric form; parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g*.5'e'_%2
do j=0 while h>9; m.j= h; h= h % 2 + 1; end /*j*/
do k=j+5 to 0 by -1; numeric digits m.k; g= (g +x/g)* .5; end /*k*/; return g
/*──────────────────────────────────────────────────────────────────────────────────────*/
hitSphere: procedure expose !.; parse arg xx yy zz r,x0,y0; z= r*r -(x0-xx)**2-(y0-yy)**2
if z<0 then return 0; _= sqrt(z); !.z1= zz - _; !.z2= zz + _; return 1
/*──────────────────────────────────────────────────────────────────────────────────────*/
deathStar: procedure; parse arg k,ambient,sun /* [↓] display the deathstar to screen*/
parse var sun s1 s2 s3 /*identify the light source coördinates*/
if 5=="f5"x then shading= '.:!*oe&#%@' /*dithering chars for an EBCDIC machine*/
else shading= '·:!ºoe@░▒▓' /* " " " " ASCII " */
shadingL= length(shading) /*the number of dithering characters. */
shades.= ' '; do i=1 for shadingL; shades.i= substr(shading, i, 1)
end /*i*/
ship= 20 20 0 20 ; parse var ship shipX shipY shipZ shipR
hole= ' 1 1 -6 20' ; parse var hole holeX holeY holeZ .
do i=floor(shipY-shipR ) to ceil(shipY+shipR )+1; y= i +.5; @= /*@ is a single line of the deathstar to be displayed.*/
do j=floor(shipX-shipR*2) to ceil(shipX+shipR*2)+1; !.= 0
x=.5 * (j-shipX+1) + shipX; $bg= 0; $pos= 0; $neg= 0 /*$BG, $POS, and $NEG are boolean values. */
?= hitSphere(ship, x, y); b1= !.z1; b2= !.z2 /*? is boolean, "true" indicates ray hits the sphere.*/
/*$BG: if 1, its background; if zero, it's foreground.*/
if \? then $bg= 1 /*ray lands in blank space, so draw the background. */
else do; ?= hitSphere(hole, x, y); s1= !.z1; s2= !.z2
if \? then $pos= 1 /*ray hits ship but not the hole, so draw ship surface. */
else if s1>b1 then $pos=1 /*ray hits both, but ship front surface is closer. */
else if s2>b2 then $bg= 1 /*ship surface is inside hole, so show the background. */
else if s2>b1 then $neg=1 /*hole back surface is inside ship; the only place ··· */
else $pos=1 /*························ a hole surface will be shown.*/
end
select
when $bg then do; @= @' '; iterate j; end /*append a blank character to the line to be displayed. */
when $pos then vec_= v3(x-shipX y-shipY b1-shipZ)
when $neg then vec_= v3(holeX-x holeY-y holeZ-s2)
end /*select*/
b=1 +min(shadingL, max(0, trunc((1 - (dot.(sun, v3(vec_))**k + ambient)) * shadingL)))
@=@ || shades.b /*B: the ray's intensity│brightness*/
end /*j*/ /* [↑] build a line for the sphere.*/
if @\='' then say strip(@, 'T') /*strip trailing blanks from line. */
end /*i*/ /* [↑] show all lines for sphere. */
return
(Shown at '''1/2''' size.)
eeeee::::::: eeeeeeeee·············· ooeeeeeeeeee·················· ooooeeeeeeeee······················ oooooooeeeeeeee·························· ooooooooooeeeee······························ ººooooooooooeeee································· ººººooooooooooee····································· !ºººººooooooooooe······································· !!!ºººººooooooooo:·········································· :!!!!ºººººooooooo:::··········································· :::!!!!ºººººooooo!:::::··········································· ::::!!!!!ºººººooo!!!!::::············································ ·::::!!!!ºººººooº!!!!!::::············································ ···::::!!!!ººººººººº!!!!:::::············································ ···::::!!!!ººººoººººº!!!!!::::············································ ····::::!!!!ºººoooºººººº!!!!!::::············································ ····::::!!!!ºoooooooººººº!!!!!:::::··········································· ···::::!!!!!ooooooooooººººº!!!!!:::::·········································· :::::!!!!eeoooooooooooºººººº!!!!!:::::········································· !!!!!eeeeeeeoooooooooooºººººº!!!!!:::::········································ eeeeeeeeeeeeooooooooooooºººººº!!!!!:::::······································· eeeeeeeeeeeeeooooooooooooºººººº!!!!!!:::::····································· eeeeeeeeeeeeeeooooooooooooºººººº!!!!!!:::::···································· eeeeeeeeeeeeeeooooooooooooººººººº!!!!!!:::::································· eeeeeeeeeeeeeeeoooooooooooooºººººº!!!!!!::::::······························: eeeeeeeeeeeeeeeoooooooooooooººººººº!!!!!!:::::::··························: eeeeeeeeeeeeeeeeooooooooooooooººººººº!!!!!!!:::::::·····················::! eeeeeeeeeeeeeeeeeoooooooooooooºººººººº!!!!!!!:::::::::··············::::! eeeeeeeeeeeeeeeeeooooooooooooooºººººººº!!!!!!!!::::::::::::::::::::::!º eeeeeeeeeeeeeeeeeeoooooooooooooooºººººººº!!!!!!!!!!:::::::::::::!!!!º eeeeeeeeeeeeeeeeeooooooooooooooooºººººººººº!!!!!!!!!!!!!!!!!!!!!º eeeeeeeeeeeeeeeeeeoooooooooooooooooºººººººººººº!!!!!!!!!!!!ºººº eeeeeeeeeeeeeeeeeeooooooooooooooooooººººººººººººººººººººººo eeeeeeeeeeeeeeeeeeeoooooooooooooooooooooººººººººººººooo eeeeeeeeeeeeeeeeeeeeooooooooooooooooooooooooooooooo eeeeeeeeeeeeeeeeeeeeooooooooooooooooooooooooo eeeeeeeeeeeeeeeeeeeeeoooooooooooooooooo eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeeee ``` ## Set langset ! 32 set ! 32 set ! 46 set ! 45 set ! 126 set ! 34 set ! 34 set ! 126 set ! 45 set ! 46 set ! 10 set ! 46 set ! 39 set ! 40 set ! 95 set ! 41 set ! 32 set ! 32 set ! 32 set ! 32 set ! 32 set ! 39 set ! 46 set ! 10 set ! 124 set ! 61 set ! 61 set ! 61 set ! 61 set ! 61 set ! 61 set ! 61 set ! 61 set ! 61 set ! 61 set ! 124 set ! 10 set ! 39 set ! 46 set ! 32 set ! 32 set ! 32 set ! 32 set ! 32 set ! 32 set ! 32 set ! 32 set ! 46 set ! 39 set ! 10 set ! 32 set ! 32 set ! 126 set ! 45 set ! 46 set ! 95 set ! 95 set ! 46 set ! 45 set ! 126 ``` Outputs: ```txt .-~""~-. .'(_) '. | ### ==== | '. .' ~-.__.-~ ``` (it's the best I could do!) ## Sidef Writes a PGM to stdout. ```ruby func hitf(sph, x, y) { x -= sph[0] y -= sph[1] var z = (sph[3]**2 - (x**2 + y**2)) z < 0 && return nil z.sqrt! [sph[2] - z, sph[2] + z] } func normalize(v) { v / v.abs } func dot(x, y) { max(0, x*y) } var pos = [120, 120, 0, 120] var neg = [-77, -33, -100, 190] var light = normalize(Vector(-12, 13, -10)) func draw(k, amb) { STDOUT.binmode(':raw') print ("P5\n", pos[0]*2 + 3, " ", pos[1]*2 + 3, "\n255\n") for y in ((pos[1] - pos[3] - 1) .. (pos[1] + pos[3] + 1)) { var row = [] for x in ((pos[0] - pos[3] - 1) .. (pos[0] + pos[3] + 1)) { var hit = 0 var hs = [] var h = hitf(pos, x, y) if (!h) { hit = 0; h = [0, 0] } elsif (!(hs = hitf(neg, x, y))) { hit = 1; hs = [0, 0] } elsif (hs[0] > h[0]) { hit = 1 } elsif (hs[1] > h[0]) { hit = (hs[1] > h[1] ? 0 : 2) } else { hit = 1 } var (val, v) given(hit) { when (0) { val = 0} when (1) { v = Vector(x-pos[0], y-pos[1], h[0]-pos[2]) } default { v = Vector(neg[0]-x, neg[1]-y, neg[2]-hs[1]) } } if (defined(v)) { v = normalize(v) val = int((dot(v, light)**k + amb) * 255) val = (val > 255 ? 255 : (val < 0 ? 0 : val)) } row.append(val) } print 'C*'.pack(row...) } } draw(2, 0.2) ``` Output image: [https://github.com/trizen/rc/blob/master/img/death_star_sidef.png here]. ## Tcl Note that this code has a significant amount of refactoring relative to the C version, including the addition of specular reflections and the separation of the scene code from the raytracing from the rendering. ```tcl package require Tcl 8.5 proc normalize vec { upvar 1 $vec v lassign $v x y z set len [expr {sqrt($x**2 + $y**2 + $z**2)}] set v [list [expr {$x/$len}] [expr {$y/$len}] [expr {$z/$len}]] return } proc dot {a b} { lassign $a ax ay az lassign $b bx by bz return [expr {-($ax*$bx + $ay*$by + $az*$bz)}] } # Intersection code; assumes that the vector is parallel to the Z-axis proc hitSphere {sphere x y z1 z2} { dict with sphere { set x [expr {$x - $cx}] set y [expr {$y - $cy}] set zsq [expr {$r**2 - $x**2 - $y**2}] if {$zsq < 0} {return 0} upvar 1 $z1 _1 $z2 _2 set zsq [expr {sqrt($zsq)}] set _1 [expr {$cz - $zsq}] set _2 [expr {$cz + $zsq}] return 1 } } # How to do the intersection with our scene proc intersectDeathStar {x y vecName} { global big small if {![hitSphere $big $x $y zb1 zb2]} { # ray lands in blank space return 0 } upvar 1 $vecName vec # ray hits big sphere; check if it hit the small one first set vec [if { ![hitSphere $small $x $y zs1 zs2] || $zs1 > $zb1 || $zs2 <= $zb1 } then { dict with big { list [expr {$x - $cx}] [expr {$y - $cy}] [expr {$zb1 - $cz}] } } else { dict with small { list [expr {$cx - $x}] [expr {$cy - $y}] [expr {$cz - $zs2}] } }] normalize vec return 1 } # Intensity calculators for different lighting components proc diffuse {k intensity L N} { expr {[dot $L $N] ** $k * $intensity} } proc specular {k intensity L N S} { # Calculate reflection vector set r [expr {2 * [dot $L $N]}] foreach l $L n $N {lappend R [expr {$l-$r*$n}]} normalize R # Calculate the specular reflection term return [expr {[dot $R $S] ** $k * $intensity}] } # Simple raytracing engine that uses parallel rays proc raytraceEngine {diffparms specparms ambient intersector shades renderer fx tx sx fy ty sy} { global light for {set y $fy} {$y <= $ty} {set y [expr {$y + $sy}]} { set line {} for {set x $fx} {$x <= $tx} {set x [expr {$x + $sx}]} { if {![$intersector $x $y vec]} { # ray lands in blank space set intensity end } else { # ray hits something; we've got the normalized vector set b [expr { [diffuse {*}$diffparms $light $vec] + [specular {*}$specparms $light $vec {0 0 -1}] + $ambient }] set intensity [expr {int((1-$b) * ([llength $shades]-1))}] if {$intensity < 0} { set intensity 0 } elseif {$intensity >= [llength $shades]-1} { set intensity end-1 } } lappend line [lindex $shades $intensity] } {*}$renderer $line } } # The general scene settings set light {-50 30 50} set big {cx 20 cy 20 cz 0 r 20} set small {cx 7 cy 7 cz -10 r 15} normalize light # Render as text proc textDeathStar {diff spec lightBrightness ambient} { global big dict with big { raytraceEngine [list $diff $lightBrightness] \ [list $spec $lightBrightness] $ambient intersectDeathStar \ [split ".:!*oe%@ " {}] {apply {l {puts [join $l ""]}}} \ [expr {$cx+floor(-$r)}] [expr {$cx+ceil($r)+0.5}] 0.5 \ [expr {$cy+floor(-$r)+0.5}] [expr {$cy+ceil($r)+0.5}] 1 } } textDeathStar 3 10 0.7 0.3 ``` Output: ```txt #######&eeeeeeeee ee&&&&&#######%eeoooooooooooe **oooee&&&&&#######%ooooo**********oo !!!***oooee&&&&&#######%********!!!!!!!!*** !!!!!!!****ooee&&&&&######%*****!!!!!!!!!!!!!!!** ::::!!!!!!***oooee&&&&&#####***!!!!!!!::::::::::::!!* :::::::!!!!!!***ooeee&&&&&####**!!!!!!:::::::::::::::::!* ::::::::::!!!!!***oooee&&&&&###*!!!!!!::::::::.........::::!* ::::::::::!!!!!!***oooeee&&&&&##!!!!!!:::::::..............:::! ..:::::::::!!!!!!****oooeee&&&&&#!!!!!!::::::..................::!* ...::::::::!!!!!!****ooooeee&&&&&&!!!!!!:::::::....................::!* ....::::::!!!!!!*****ooooeeee&&&&&!!!!!!:::::::......................::!* ....::::::!!!!!*****oooooeeeee&&&&!!!!!!::::::::.......................::!* ...::::::!!!!!*****oooooeeeee&&&!!!!!!:::::::::.........................::! ...:::::!!!!!*****oooooeeeeee&&!!!!!!!:::::::::..........................::!* ..:::::!!!!!****oooooeeeeee&&&!!!!!!!::::::::::..........................::!! .::::::!!!!*****ooooeeeeee&&*!!!!!!!::::::::::::.........................:::!!* :::::!!!!!****oooooeeeee&&**!!!!!!!::::::::::::::.......................::::!!* !!!!!!!!****oooooeeeee&****!!!!!!!::::::::::::::::::..................::::::!!* #!!!******oooooeeeeeoo*****!!!!!!!:::::::::::::::::::::::::::::::::::::::::!!!* ##oooooooooooeeeeeeoooo****!!!!!!!:::::::::::::::::::::::::::::::::::::::!!!!** %#####eeee&&&&&&&eeeooo****!!!!!!!!:::::::::::::::::::::::::::::::::::!!!!!!**o %#########&&&&&&&&eeeooo****!!!!!!!!!::::::::::::::::::!!!!!!!!!!!!!!!!!!!****o %##########&&&&&&&&eeeooo****!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!****ooe %##########&&&&&&&&eeeooo*****!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!**********ooo %%##########&&&&&&&&eeeoooo*****!!!!!!!!!!!!!!!!!!!*********************ooooe %%##########&&&&&&&&eeeoooo***************************************oooooooee @%###########&&&&&&&&&eeeooooo*************************ooooooooooooooooeee& @%###########&&&&&&&&&eeeeoooooo*************ooooooooooooooooooooooeeeee& @%%##########&&&&&&&&&&eeeeoooooooooooooooooooooooooooooooeeeeeeeeeee&& @%%###########&&&&&&&&&&eeeeeoooooooooooooooooooeeeeeeeeeeeeeeeeee&&& %%############&&&&&&&&&&eeeeeeeeeeooeeeeeeeeeeeeeeeeeeeeeeee&&&&& @%%###########&&&&&&&&&&&&eeeeeeeeeeeeeeeeeeeeeeeeee&&&&&&&&&&& %%############&&&&&&&&&&&&&&eeeeeeeeeeeeeee&&&&&&&&&&&&&&&& %%############&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& %%#############&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& %%#############&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& %##############&&&&&&&&&&&&&&&&&&&&&&&& %##############&&&&&&&&&&&&&&&& ################# ``` To render it as an image, we just supply different code to map the intensities to displayable values: [[File:Deathstar-tcl.gif|200px|thumb|Rendering of the Death Star by the Tcl solution.]] ```tcl # Render as a picture (with many hard-coded settings) package require Tk proc guiDeathStar {photo diff spec lightBrightness ambient} { set row 0 for {set i 255} {$i>=0} {incr i -1} { lappend shades [format "#%02x%02x%02x" $i $i $i] } raytraceEngine [list $diff $lightBrightness] \ [list $spec $lightBrightness] $ambient intersectDeathStar \ $shades {apply {l { upvar 2 photo photo row row $photo put [list $l] -to 0 $row incr row update }}} 0 40 0.0625 0 40 0.0625 } pack [label .l -image [image create photo ds]] guiDeathStar ds 3 10 0.7 0.3 ``` ## Yabasic ```Yabasic open window 100,100 window origin "cc" backcolor 0,0,0 clear window tonos = 100 interv = int(255 / tonos) dim shades(tonos) shades(1) = 255 for i = 2 to tonos shades(i) = shades(i-1) - interv next i dim light(3) light(0) = 30 light(1) = 30 light(2) = -50 sub normalize(v()) local long long = sqrt(v(0)*v(0) + v(1)*v(1) + v(2)*v(2)) v(0) = v(0) / long v(1) = v(1) / long v(2) = v(2) / long end sub sub punto(x(), y()) local d d = x(0)*y(0) + x(1)*y(1) + x(2)*y(2) if d < 0 then return -d else return 0 end if end sub //* positive shpere and negative sphere */ dim pos(3) dim neg(3) // x, y, z, r pos(0) = 10 pos(1) = 10 pos(2) = 0 pos(3) = 20 neg(0) = 0 neg(1) = 0 neg(2) = -5 neg(3) = 15 sub hit_sphere(sph(), x, y) local zsq x = x - sph(0) y = y - sph(1) zsq = sph(3) * sph(3) - (x * x + y * y) if (zsq < 0) then return 0 else return sqrt(zsq) end if end sub sub draw_sphere(k, ambient) local i, j, intensity, hit_result, result, b, vec(3), x, y, zb1, zb2, zs1, zs2, ini1, fin1, ini2, fin2 ini1 = int(pos(1) - pos(3)) fin1 = int(pos(1) + pos(3) + .5) for i = ini1 to fin1 y = i + .5 ini2 = int(pos(0) - 2 * pos(3)) fin2 = int(pos(0) + 2 * pos(3) + .5) for j = ini2 to fin2 x = (j - pos(0)) / 2 + .5 + pos(0) // ray lands in blank space, draw bg result = hit_sphere(pos(), x, y) if not result then hit_result = 0 //* ray hits pos sphere but not neg, draw pos sphere surface */ else zb1 = pos(2) - result zb2 = pos(2) + result result = hit_sphere(neg(), x, y) if not result then hit_result = 1 else zs1 = neg(2) - result zs2 = neg(2) + result if (zs1 > zb1) then hit_result = 1 elseif (zs2 > zb2) then hit_result = 0 elseif (zs2 > zb1) then hit_result = 2 else hit_result = 1 end if end if end if if not hit_result then color 0,0,0 dot x, y else switch(hit_result) case 1: vec(0) = x - pos(0) vec(1) = y - pos(1) vec(2) = zb1 - pos(2) break default: vec(0) = neg(0) - x vec(1) = neg(1) - y vec(2) = neg(2) - zs2 end switch normalize(vec()) b = (punto(light(), vec())^k) + ambient intensity = (1 - b) * tonos if (intensity < 1) intensity = 1 if (intensity > tonos) intensity = tonos color shades(intensity),shades(intensity),shades(intensity) dot x,y end if next j next i end sub ang = 0 while(true) //clear window light(1) = cos(ang * 2) light(2) = cos(ang) light(0) = sin(ang) normalize(light()) ang = ang + .05 draw_sphere(2, .3) wend ```