Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:
- 2 s
- 5 s
- 10 s
Then compare it with the analytical solution.
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value. It is an explicit method for solving initial value problems (IVPs), as described in [[wp:Euler method|the wikipedia page]].
The ODE has to be provided in the following form:
with an initial value
To get a numeric solution, we replace the derivative on the LHS with a finite difference approximation:
then solve for :
which is the same as
The iterative solution rule is then:
where is the step size, the most relevant parameter for accuracy of the solution. A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand.
'''Example: Newton's Cooling Law'''
Newton's cooling law describes how an object of initial temperature cools down in an environment of temperature :
or
It says that the cooling rate of the object is proportional to the current temperature difference to the surrounding environment.
The analytical solution, which we will compare to the numerical approximation, is
Initial values:
- Initial temperature shall be 100 °C
- Room temperature shall be 20 °C
- Cooling constant shall be 0.07
- Time interval to calculate shall be from 0 s ──► 100 s
A reference solution ([[#Common Lisp|Common Lisp]]) can be seen below. We see that bigger step sizes lead to reduced approximation accuracy. [[Image:Euler_Method_Newton_Cooling.png|center|750px]]
11l
Translated from Python
F euler(f, y0, a, b, h)
V t = a
V y = y0
L t <= b
print(‘#2.3 #2.3’.format(t, y))
t += h
y += h * f(t, y)
V newtoncooling = (time, temp) -> -0.07 * (temp - 20)
euler(newtoncooling, 100.0, 0.0, 100.0, 10.0)
Output:
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
100.000 20.000
Ada
The solution is generic, usable for any floating point type. The package specification:
generic
type Number is digits <>;
package Euler is
type Waveform is array (Integer range <>) of Number;
function Solve
( F : not null access function (T, Y : Number) return Number;
Y0 : Number;
T0, T1 : Number;
N : Positive
) return Waveform;
end Euler;
The function Solve returns the solution of the differential equation for each of N+1 points, starting from the point T0. The implementation:
package body Euler is
function Solve
( F : not null access function (T, Y : Number) return Number;
Y0 : Number;
T0, T1 : Number;
N : Positive
) return Waveform is
dT : constant Number := (T1 - T0) / Number (N);
begin
return Y : Waveform (0..N) do
Y (0) := Y0;
for I in 1..Y'Last loop
Y (I) := Y (I - 1) + dT * F (T0 + dT * Number (I - 1), Y (I - 1));
end loop;
end return;
end Solve;
end Euler;
The test program:
with Ada.Text_IO; use Ada.Text_IO;
with Euler;
procedure Test_Euler_Method is
package Float_Euler is new Euler (Float);
use Float_Euler;
function Newton_Cooling_Law (T, Y : Float) return Float is
begin
return -0.07 * (Y - 20.0);
end Newton_Cooling_Law;
Y : Waveform := Solve (Newton_Cooling_Law'Access, 100.0, 0.0, 100.0, 10);
begin
for I in Y'Range loop
Put_Line (Integer'Image (10 * I) & ":" & Float'Image (Y (I)));
end loop;
end Test_Euler_Method;
Sample output:
0: 1.00000E+02
10: 4.40000E+01
20: 2.72000E+01
30: 2.21600E+01
40: 2.06480E+01
50: 2.01944E+01
60: 2.00583E+01
70: 2.00175E+01
80: 2.00052E+01
90: 2.00016E+01
100: 2.00005E+01
ALGOL 68
Translated from D}} Note: This specimen retains the original [[#D|D]] coding styl Works with ALGOL 68|Revision 1 - no extensions to language used. Works with ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]. {{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of '''format'''[ted] ''transput''.}}
#
Approximates y(t) in y'(t)=f(t,y) with y(a)=y0 and
t=a..b and the step size h.
#
PROC euler = (PROC(REAL,REAL)REAL f, REAL y0, a, b, h)REAL: (
REAL y := y0,
t := a;
WHILE t < b DO
printf(($g(-6,3)": "g(-7,3)l$, t, y));
y +:= h * f(t, y);
t +:= h
OD;
printf($"done"l$);
y
);
# Example: Newton's cooling law #
PROC newton cooling law = (REAL time, t)REAL: (
-0.07 * (t - 20)
);
main: (
euler(newton cooling law, 100, 0, 100, 10)
)
Ouput:
0.000: 100.000
10.000: 44.000
20.000: 27.200
30.000: 22.160
40.000: 20.648
50.000: 20.194
60.000: 20.058
70.000: 20.017
80.000: 20.005
90.000: 20.002
done
BASIC
=
BBC BASIC
=
PROCeuler("-0.07*(y-20)", 100, 0, 100, 2)
PROCeuler("-0.07*(y-20)", 100, 0, 100, 5)
PROCeuler("-0.07*(y-20)", 100, 0, 100, 10)
END
DEF PROCeuler(df$, y, a, b, s)
LOCAL t, @%
@% = &2030A
t = a
WHILE t <= b
PRINT t, y
y += s * EVAL(df$)
t += s
ENDWHILE
ENDPROC
'''Output:'''
0.000 100.000
2.000 88.800
4.000 79.168
6.000 70.884
8.000 63.761
10.000 57.634
...
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
100.000 20.000
=
FreeBASIC
=
'Freebasic .9
'Custom rounding
#define round(x,N) Rtrim(Rtrim(Left(Str((x)+(.5*Sgn((x)))/(10^(N))),Instr(Str((x)+(.5*Sgn((x)))/(10^(N))),".")+(N)),"0"),".")
#macro Euler(fn,_y,min,max,h,printoption)
Print "Step ";#h;":":Print
Print "time","Euler"," Analytic"
If printoption<>"print" Then Print "Data omitted ..."
Scope
Dim As Double temp=(min),y=(_y)
Do
If printoption="print" Then Print temp,round(y,3),20+80*Exp(-0.07*temp)
y=y+(h)*(fn)
temp=temp+(h)
Loop Until temp>(max)
Print"________________"
Print
End Scope
#endmacro
Euler(-.07*(y-20),100,0,100,2,"don't print")
Euler(-.07*(y-20),100,0,100,5,"print")
Euler(-.07*(y-20),100,0,100,10,"print")
Sleep
outputs (steps 5 and 10)
Step 2:
time Euler Analytic
Data omitted ...
________________
Step 5:
time Euler Analytic
0 100 100
5 72 76.37504717749707
10 53.8 59.72682430331276
15 41.97 47.99501992889243
20 34.281 39.72775711532852
25 29.282 33.90191547603561
30 26.034 29.79651426023855
35 23.922 26.90348691994964
40 22.549 24.86480501001743
45 21.657 23.42817014936322
50 21.077 22.41579067378548
55 20.7 21.70237891507017
60 20.455 21.19964614563822
65 20.296 20.84537635070821
70 20.192 20.59572664567395
75 20.125 20.41980147193451
80 20.081 20.29582909731863
85 20.053 20.20846724147268
90 20.034 20.14690438216231
95 20.022 20.10352176843727
100 20.014 20.07295055724436
________________
Step 10:
time Euler Analytic
0 100 100
10 44 59.72682430331276
20 27.2 39.72775711532852
30 22.16 29.79651426023855
40 20.648 24.86480501001743
50 20.194 22.41579067378548
60 20.058 21.19964614563822
70 20.017 20.59572664567395
80 20.005 20.29582909731863
90 20.002 20.14690438216231
100 20 20.07295055724436
________________
=
Run BASIC
=
x = euler(-0.07,-20, 100, 0, 100, 2)
x = euler-0.07,-20, 100, 0, 100, 5)
x = euler(-0.07,-20, 100, 0, 100, 10)
end
FUNCTION euler(da,db, y, a, b, s)
print "===== da:";da;" db:";db;" y:";y;" a:";a;" b:";b;" s:";s;"
### =============
"
t = a
WHILE t <= b
PRINT t;chr$(9);y
y = y + s * (da * (y + db))
t = t + s
WEND
END FUNCTION
===== da:-0.07 db:-20 y:100 a:0 b:100 s:2
### =============
0 100
2 88.8
4 79.168
6 70.88448
8 63.7606528
10 57.6341614
12 52.3653788
14 47.8342258
......
===== da:-0.07 db:-20 y:100 a:0 b:100 s:10
### =============
0 100
10 44.0
20 27.2
30 22.16
40 20.648
50 20.1944
60 20.05832
70 20.017496
80 20.0052488
C
#include <stdio.h>
#include <math.h>
typedef double (*deriv_f)(double, double);
#define FMT " %7.3f"
void ivp_euler(deriv_f f, double y, int step, int end_t)
{
int t = 0;
printf(" Step %2d: ", (int)step);
do {
if (t % 10 == 0) printf(FMT, y);
y += step * f(t, y);
} while ((t += step) <= end_t);
printf("\n");
}
void analytic()
{
double t;
printf(" Time: ");
for (t = 0; t <= 100; t += 10) printf(" %7g", t);
printf("\nAnalytic: ");
for (t = 0; t <= 100; t += 10)
printf(FMT, 20 + 80 * exp(-0.07 * t));
printf("\n");
}
double cooling(double t, double temp)
{
return -0.07 * (temp - 20);
}
int main()
{
analytic();
ivp_euler(cooling, 100, 2, 100);
ivp_euler(cooling, 100, 5, 100);
ivp_euler(cooling, 100, 10, 100);
return 0;
}
```txt
Time: 0 10 20 30 40 50 60 70 80 90 100
Analytic: 100.000 59.727 39.728 29.797 24.865 22.416 21.200 20.596 20.296 20.147 20.073
Step 2: 100.000 57.634 37.704 28.328 23.918 21.843 20.867 20.408 20.192 20.090 20.042
Step 5: 100.000 53.800 34.280 26.034 22.549 21.077 20.455 20.192 20.081 20.034 20.014
Step 10: 100.000 44.000 27.200 22.160 20.648 20.194 20.058 20.017 20.005 20.002 20.000
C++
Translated from D
#include <iomanip>
#include <iostream>
typedef double F(double,double);
/*
Approximates y(t) in y'(t)=f(t,y) with y(a)=y0 and
t=a..b and the step size h.
*/
void euler(F f, double y0, double a, double b, double h)
{
double y = y0;
for (double t = a; t < b; t += h)
{
std::cout << std::fixed << std::setprecision(3) << t << " " << y << "\n";
y += h * f(t, y);
}
std::cout << "done\n";
}
// Example: Newton's cooling law
double newtonCoolingLaw(double, double t)
{
return -0.07 * (t - 20);
}
int main()
{
euler(newtonCoolingLaw, 100, 0, 100, 2);
euler(newtonCoolingLaw, 100, 0, 100, 5);
euler(newtonCoolingLaw, 100, 0, 100, 10);
}
Last part of output:
...
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
done
C#
using System;
namespace prog
{
class MainClass
{
const float T0 = 100f;
const float TR = 20f;
const float k = 0.07f;
readonly static float[] delta_t = {2.0f,5.0f,10.0f};
const int n = 100;
public delegate float func(float t);
static float NewtonCooling(float t)
{
return -k * (t-TR);
}
public static void Main (string[] args)
{
func f = new func(NewtonCooling);
for(int i=0; i<delta_t.Length; i++)
{
Console.WriteLine("delta_t = " + delta_t[i]);
Euler(f,T0,n,delta_t[i]);
}
}
public static void Euler(func f, float y, int n, float h)
{
for(float x=0; x<=n; x+=h)
{
Console.WriteLine("\t" + x + "\t" + y);
y += h * f(y);
}
}
}
}
Clay
import printer.formatter as pf;
euler(f, y, a, b, h) {
while (a < b) {
println(pf.rightAligned(2, a), " ", y);
a += h;
y += h * f(y);
}
}
main() {
for (i in [2.0, 5.0, 10.0]) {
println("\nFor delta = ", i, ":");
euler((temp) => -0.07 * (temp - 20), 100.0, 0.0, 100.0, i);
}
}
Example output:
For delta = 10:
0 100
10 43.99999999999999
20 27.2
30 22.16
40 20.648
50 20.1944
60 20.05832
70 20.017496
80 20.0052488
90 20.00157464
COBOL
Translated from C# Works with Visual COBOL The following is in the Managed COBOL dialect:
DELEGATE-ID func.
PROCEDURE DIVISION USING VALUE t AS FLOAT-LONG
RETURNING ret AS FLOAT-LONG.
END DELEGATE.
CLASS-ID. MainClass.
78 T0 VALUE 100.0.
78 TR VALUE 20.0.
78 k VALUE 0.07.
01 delta-t INITIALIZE ONLY STATIC
FLOAT-LONG OCCURS 3 VALUES 2.0, 5.0, 10.0.
78 n VALUE 100.
METHOD-ID NewtonCooling STATIC.
PROCEDURE DIVISION USING VALUE t AS FLOAT-LONG
RETURNING ret AS FLOAT-LONG.
COMPUTE ret = - k * (t - TR)
END METHOD.
METHOD-ID Main STATIC.
DECLARE f AS TYPE func
SET f TO METHOD self::NewtonCooling
DECLARE delta-t-len AS BINARY-LONG
MOVE delta-t::Length TO delta-t-len
PERFORM VARYING i AS BINARY-LONG FROM 1 BY 1
UNTIL i > delta-t-len
DECLARE elt AS FLOAT-LONG = delta-t (i)
INVOKE TYPE Console::WriteLine("delta-t = {0:F4}", elt)
INVOKE self::Euler(f, T0, n, elt)
END-PERFORM
END METHOD.
METHOD-ID Euler STATIC.
PROCEDURE DIVISION USING VALUE f AS TYPE func, y AS FLOAT-LONG,
n AS BINARY-LONG, h AS FLOAT-LONG.
PERFORM VARYING x AS BINARY-LONG FROM 0 BY h UNTIL x >= n
INVOKE TYPE Console::WriteLine("x = {0:F4}, y = {1:F4}", x, y)
COMPUTE y = y + h * RUN f(y)
END-PERFORM
END METHOD.
END CLASS.
Example output:
delta-t = 10.0000
x = 0.0000, y = 100.0000
x = 10.0000, y = 44.0000
x = 20.0000, y = 27.2000
x = 30.0000, y = 22.1600
x = 40.0000, y = 20.6480
x = 50.0000, y = 20.1944
x = 60.0000, y = 20.0583
x = 70.0000, y = 20.0175
x = 80.0000, y = 20.0052
x = 90.0000, y = 20.0016
Clojure
Translated from Python
(ns newton-cooling
(:gen-class))
(defn euler [f y0 a b h]
"Euler's Method.
Approximates y(time) in y'(time)=f(time,y) with y(a)=y0 and t=a..b and the step size h."
(loop [t a
y y0
result []]
(if (<= t b)
(recur (+ t h) (+ y (* (f (+ t h) y) h)) (conj result [(double t) (double y)]))
result)))
(defn newton-coolling [t temp]
"Newton's cooling law, f(t,T) = -0.07*(T-20)"
(* -0.07 (- temp 20)))
; Run for case h = 10
(println "Example output")
(doseq [q (euler newton-coolling 100 0 100 10)]
(println (apply format "%.3f %.3f" q)))
{{Output}}
Example output
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
100.000 20.000
Common Lisp
;; 't' usually means "true" in CL, but we need 't' here for time/temperature.
(defconstant true 'cl:t)
(shadow 't)
;; Approximates y(t) in y'(t)=f(t,y) with y(a)=y0 and t=a..b and the step size h.
(defun euler (f y0 a b h)
;; Set the initial values and increments of the iteration variables.
(do ((t a (+ t h))
(y y0 (+ y (* h (funcall f t y)))))
;; End the iteration when t reaches the end b of the time interval.
((>= t b) 'DONE)
;; Print t and y(t) at every step of the do loop.
(format true "~6,3F ~6,3F~%" t y)))
;; Example: Newton's cooling law, f(t,T) = -0.07*(T-20)
(defun newton-cooling (time T) (* -0.07 (- T 20)))
;; Generate the data for all three step sizes (2,5 and 10).
(euler #'newton-cooling 100 0 100 2)
(euler #'newton-cooling 100 0 100 5)
(euler #'newton-cooling 100 0 100 10)
;; slightly more idiomatic Common Lisp version
(defun newton-cooling (time temperature)
"Newton's cooling law, f(t,T) = -0.07*(T-20)"
(declare (ignore time))
(* -0.07 (- temperature 20)))
(defun euler (f y0 a b h)
"Euler's Method.
Approximates y(time) in y'(time)=f(time,y) with y(a)=y0 and t=a..b and the step size h."
(loop for time from a below b by h
for y = y0 then (+ y (* h (funcall f time y)))
do (format t "~6,3F ~6,3F~%" time y)))
Example output:
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
D
import std.stdio, std.range, std.traits;
/// Approximates y(t) in y'(t)=f(t,y) with y(a)=y0 and t=a..b and the step size h.
void euler(F)(in F f, in double y0, in double a, in double b, in double h) @safe
if (isCallable!F && __traits(compiles, { real r = f(0.0, 0.0); })) {
double y = y0;
foreach (immutable t; iota(a, b, h)) {
writefln("%.3f %.3f", t, y);
y += h * f(t, y);
}
"done".writeln;
}
void main() {
/// Example: Newton's cooling law.
enum newtonCoolingLaw = (in double time, in double t)
pure nothrow @safe @nogc => -0.07 * (t - 20);
euler(newtonCoolingLaw, 100, 0, 100, 2);
euler(newtonCoolingLaw, 100, 0, 100, 5);
euler(newtonCoolingLaw, 100, 0, 100, 10);
}
Last part of the output:
...
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
done
Delphi
[[Euler_method#Pascal | Pascal]]
Elixir
Translated from Ruby
defmodule Euler do
def method(_, _, t, b, _) when t>b, do: :ok
def method(f, y, t, b, h) do
:io.format "~7.3f ~7.3f~n", [t,y]
method(f, y + h * f.(t,y), t + h, b, h)
end
end
f = fn _time, temp -> -0.07 * (temp - 20) end
Enum.each([10, 5, 2], fn step ->
IO.puts "\nStep = #{step}"
Euler.method(f, 100.0, 0.0, 100.0, step)
end)
Output:
Step = 10
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
100.000 20.000
Step = 5
0.000 100.000
5.000 72.000
10.000 53.800
15.000 41.970
20.000 34.280
25.000 29.282
30.000 26.034
35.000 23.922
40.000 22.549
45.000 21.657
50.000 21.077
55.000 20.700
60.000 20.455
65.000 20.296
70.000 20.192
75.000 20.125
80.000 20.081
85.000 20.053
90.000 20.034
95.000 20.022
100.000 20.014
Step = 2
0.000 100.000
2.000 88.800
4.000 79.168
6.000 70.884
8.000 63.761
10.000 57.634
12.000 52.365
14.000 47.834
16.000 43.937
18.000 40.586
20.000 37.704
22.000 35.226
24.000 33.094
26.000 31.261
28.000 29.684
30.000 28.328
32.000 27.163
34.000 26.160
36.000 25.297
38.000 24.556
40.000 23.918
42.000 23.369
44.000 22.898
46.000 22.492
48.000 22.143
50.000 21.843
52.000 21.585
54.000 21.363
56.000 21.172
58.000 21.008
60.000 20.867
62.000 20.746
64.000 20.641
66.000 20.551
68.000 20.474
70.000 20.408
72.000 20.351
74.000 20.302
76.000 20.259
78.000 20.223
80.000 20.192
82.000 20.165
84.000 20.142
86.000 20.122
88.000 20.105
90.000 20.090
92.000 20.078
94.000 20.067
96.000 20.057
98.000 20.049
100.000 20.042
Erlang
-module(euler).
-export([main/0, euler/5]).
cooling(_Time, Temperature) ->
(-0.07)*(Temperature-20).
euler(_, Y, T, _, End) when End == T ->
io:fwrite("\n"),
Y;
euler(Func, Y, T, Step, End) ->
if
T rem 10 == 0 ->
io:fwrite("~.3f ",[float(Y)]);
true ->
ok
end,
euler(Func, Y + Step * Func(T, Y), T + Step, Step, End).
analytic(T, End) when T == End ->
io:fwrite("\n"),
T;
analytic(T, End) ->
Y = (20 + 80 * math:exp(-0.07 * T)),
io:fwrite("~.3f ", [Y]),
analytic(T+10, End).
main() ->
io:fwrite("Analytic:\n"),
analytic(0, 100),
io:fwrite("Step 2:\n"),
euler(fun cooling/2, 100, 0, 2, 100),
io:fwrite("Step 5:\n"),
euler(fun cooling/2, 100, 0, 5, 100),
io:fwrite("Step 10:\n"),
euler(fun cooling/2, 100, 0, 10, 100),
ok.
Output:
Analytic:
100.000 59.727 39.728 29.797 24.865 22.416 21.200 20.596 20.296 20.147
Step 2:
100.000 57.634 37.704 28.328 23.918 21.843 20.867 20.408 20.192 20.090
Step 5:
100.000 53.800 34.280 26.034 22.549 21.077 20.455 20.192 20.081 20.034
Step 10:
100.000 44.000 27.200 22.160 20.648 20.194 20.058 20.017 20.005 20.002
ok
Euler Math Toolbox
>function dgleuler (f,x,y0) ...
$ y=zeros(size(x)); y[1]=y0;
$ for i=2 to cols(y);
$ y[i]=y[i-1]+f(x[i-1],y[i-1])*(x[i]-x[i-1]);
$ end;
$ return y;
$endfunction
>function f(x,y) := -k*(y-TR)
>k=0.07; TR=20; TS=100;
>x=0:1:100; dgleuler("f",x,TS)[-1]
20.0564137335
>x=0:2:100; dgleuler("f",x,TS)[-1]
20.0424631834
>TR+(TS-TR)*exp(-k*TS)
20.0729505572
>x=0:5:100; plot2d(x,dgleuler("f",x,TS)); ...
> plot2d(x,TR+(TS-TR)*exp(-k*x),>add,color=red);
>ode("f",x,TS)[-1] // Euler default solver LSODA
20.0729505568
>adaptiverunge("f",x,TS)[-1] // Adaptive Runge Method
20.0729505572
F#
let euler f (h : float) t0 y0 =
(t0, y0)
|> Seq.unfold (fun (t, y) -> Some((t,y), ((t + h), (y + h * (f t y)))))
let newtonCoolíng _ y = -0.07 * (y - 20.0)
[<EntryPoint>]
let main argv =
let f = newtonCoolíng
let a = 0.0
let y0 = 100.0
let b = 100.0
let h = 10.0
(euler newtonCoolíng h a y0)
|> Seq.takeWhile (fun (t,_) -> t <= b)
|> Seq.iter (printfn "%A")
0
Output for the above (step size 10)
(0.0, 100.0)
(10.0, 44.0)
(20.0, 27.2)
(30.0, 22.16)
(40.0, 20.648)
(50.0, 20.1944)
(60.0, 20.05832)
(70.0, 20.017496)
(80.0, 20.0052488)
(90.0, 20.00157464)
(100.0, 20.00047239)
Factor
USING: formatting fry io kernel locals math math.ranges
sequences ;
IN: rosetta-code.euler-method
:: euler ( quot y! a b h -- )
a b h <range> [
:> t
t y "%7.3f %7.3f\n" printf
t y quot call h * y + y!
] each ; inline
: cooling ( t y -- x ) nip 20 - -0.07 * ;
: euler-method-demo ( -- )
2 5 10 [ '[ [ cooling ] 100 0 100 _ euler ] call nl ] tri@ ;
MAIN: euler-method-demo
Output:
. . .
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
100.000 20.000
Forth
: newton-cooling-law ( f: temp -- f: temp' )
20e f- -0.07e f* ;
: euler ( f: y0 xt step end -- )
1+ 0 do
cr i . fdup f.
fdup over execute
dup s>f f* f+
dup +loop
2drop fdrop ;
100e ' newton-cooling-law 2 100 euler cr
100e ' newton-cooling-law 5 100 euler cr
100e ' newton-cooling-law 10 100 euler cr
Fortran
Works with Fortran 2008
program euler_method
use iso_fortran_env, only: real64
implicit none
abstract interface
! a derivative dy/dt as function of y and t
function derivative(y, t)
use iso_fortran_env, only: real64
real(real64) :: derivative
real(real64), intent(in) :: t, y
end function
end interface
real(real64), parameter :: T_0 = 100, T_room = 20, k = 0.07, a = 0, b = 100, &
h(3) = [2.0, 5.0, 10.0]
integer :: i
! loop over all step sizes
do i = 1, 3
call euler(newton_cooling, T_0, a, b, h(i))
end do
contains
! Approximates y(t) in y'(t) = f(y, t) with y(a) = y0 and t = a..b and the
! step size h.
subroutine euler(f, y0, a, b, h)
procedure(derivative) :: f
real(real64), intent(in) :: y0, a, b, h
real(real64) :: t, y
if (a > b) return
if (h <= 0) stop "negative step size"
print '("# h = ", F0.3)', h
y = y0
t = a
do
print *, t, y
t = t + h
if (t > b) return
y = y + h * f(y, t)
end do
end subroutine
! Example: Newton's cooling law, f(T, _) = -k*(T - T_room)
function newton_cooling(T, unused) result(dTdt)
real(real64) :: dTdt
real(real64), intent(in) :: T, unused
dTdt = -k * (T - T_room)
end function
end program
Output for h = 10
:
# h = 10.000
0.0000000000000000 100.00000000000000
10.000000000000000 43.999999761581421
20.000000000000000 27.199999856948853
30.000000000000000 22.159999935626985
40.000000000000000 20.647999974250794
50.000000000000000 20.194399990344049
60.000000000000000 20.058319996523856
70.000000000000000 20.017495998783350
80.000000000000000 20.005248799582862
90.000000000000000 20.001574639859214
100.00000000000000 20.000472391953071
Futhark
Specialised to the cooling function. We produce an array of the temperature at each step subtracted from the analytically determined temperature (so we are computing the error).
let analytic(t0: f64) (time: f64): f64 =
20.0 + (t0 - 20.0) * f64.exp(-0.07*time)
let cooling(_time: f64) (temperature: f64): f64 =
-0.07 * (temperature-20.0)
let main(t0: f64) (a: f64) (b: f64) (h: f64): []f64 =
let steps = i32.f64 ((b-a)/h)
let temps = replicate steps 0.0
let (_,temps) = loop (t,temps)=(t0,temps) for i < steps do
let x = a + f64.i32 i * h
let temps[i] = f64.abs(t-analytic t0 x)
in (t + h * cooling x t,
temps)
in temps
Go
package main
import (
"fmt"
"math"
)
// fdy is a type for function f used in Euler's method.
type fdy func(float64, float64) float64
// eulerStep computes a single new value using Euler's method.
// Note that step size h is a parameter, so a variable step size
// could be used.
func eulerStep(f fdy, x, y, h float64) float64 {
return y + h*f(x, y)
}
// Definition of cooling rate. Note that this has general utility and
// is not specific to use in Euler's method.
// newCoolingRate returns a function that computes cooling rate
// for a given cooling rate constant k.
func newCoolingRate(k float64) func(float64) float64 {
return func(deltaTemp float64) float64 {
return -k * deltaTemp
}
}
// newTempFunc returns a function that computes the analytical solution
// of cooling rate integrated over time.
func newTempFunc(k, ambientTemp, initialTemp float64) func(float64) float64 {
return func(time float64) float64 {
return ambientTemp + (initialTemp-ambientTemp)*math.Exp(-k*time)
}
}
// newCoolingRateDy returns a function of the kind needed for Euler's method.
// That is, a function representing dy(x, y(x)).
//
// Parameters to newCoolingRateDy are cooling constant k and ambient
// temperature.
func newCoolingRateDy(k, ambientTemp float64) fdy {
crf := newCoolingRate(k)
// note that result is dependent only on the object temperature.
// there are no additional dependencies on time, so the x parameter
// provided by eulerStep is unused.
return func(_, objectTemp float64) float64 {
return crf(objectTemp - ambientTemp)
}
}
func main() {
k := .07
tempRoom := 20.
tempObject := 100.
fcr := newCoolingRateDy(k, tempRoom)
analytic := newTempFunc(k, tempRoom, tempObject)
for _, deltaTime := range []float64{2, 5, 10} {
fmt.Printf("Step size = %.1f\n", deltaTime)
fmt.Println(" Time Euler's Analytic")
temp := tempObject
for time := 0.; time <= 100; time += deltaTime {
fmt.Printf("%5.1f %7.3f %7.3f\n", time, temp, analytic(time))
temp = eulerStep(fcr, time, temp, deltaTime)
}
fmt.Println()
}
}
Output, truncated:
...
85.0 20.053 20.208
90.0 20.034 20.147
95.0 20.022 20.104
100.0 20.014 20.073
Step size = 10.0
Time Euler's Analytic
0.0 100.000 100.000
10.0 44.000 59.727
20.0 27.200 39.728
30.0 22.160 29.797
40.0 20.648 24.865
50.0 20.194 22.416
60.0 20.058 21.200
70.0 20.017 20.596
80.0 20.005 20.296
90.0 20.002 20.147
100.0 20.000 20.073
Groovy
'''Generic Euler Method Solution'''
The following is a general solution for using the Euler method to produce a finite discrete sequence of points approximating the ODE solution for ''y'' as a function of ''x''.
In the ''eulerStep'' closure argument list: ''xn'' and ''yn'' together are the previous point in the sequence. ''h'' is the step distance to the next point's ''x'' value. ''dydx'' is a closure representing the derivative of ''y'' as a function of ''x'', itself expressed (as required by the method) as a function of ''x'' and ''y(x)''.
The ''eulerMapping'' closure produces an entire approximating sequence, expressed as a Map object. Here, ''x0'' and ''y0'' together are the first point in the sequence, the ODE initial conditions. ''h'' and ''dydx'' are again the step distance and the derivative closure. ''stopCond'' is a closure representing a "stop condition" that causes the the ''eulerMapping'' closure to stop after a finite number of steps; the given default value causes ''eulerMapping'' to stop after 100 steps.
def eulerStep = { xn, yn, h, dydx ->
(yn + h * dydx(xn, yn)) as BigDecimal
}
Map eulerMapping = { x0, y0, h, dydx, stopCond = { xx, yy, hh, xx0 -> abs(xx - xx0) > (hh * 100) }.rcurry(h, x0) ->
Map yMap = [:]
yMap[x0] = y0 as BigDecimal
def x = x0
while (!stopCond(x, yMap[x])) {
yMap[x + h] = eulerStep(x, yMap[x], h, dydx)
x += h
}
yMap
}
assert eulerMapping.maximumNumberOfParameters == 5
'''Specific Euler Method Solution for the "Temperature Diffusion" Problem''' (with Newton's derivative formula and constants for environment temperature and object conductivity given)
def dtdsNewton = { s, t, tR, k -> k * (tR - t) }
assert dtdsNewton.maximumNumberOfParameters == 4
def dtds = dtdsNewton.rcurry(20, 0.07)
assert dtds.maximumNumberOfParameters == 2
def tEulerH = eulerMapping.rcurry(dtds) { s, t -> s >= 100 }
assert tEulerH.maximumNumberOfParameters == 3
'''Newton's Analytic Temperature Diffusion Solution''' (for comparison)
def tNewton = { s, s0, t0, tR, k ->
tR + (t0 - tR) * Math.exp(k * (s0 - s))
}
assert tNewton.maximumNumberOfParameters == 5
def tAnalytic = tNewton.rcurry(0, 100, 20, 0.07)
assert tAnalytic.maximumNumberOfParameters == 1
'''Specific solutions for 3 step sizes''' (and initial time and temperature)
[10, 5, 2].each { h ->
def tEuler = tEulerH.rcurry(h)
assert tEuler.maximumNumberOfParameters == 2
println """
STEP SIZE == ${h}
time analytic euler relative
(seconds) (°C) (°C) error
-------- -------- -------- ---------"""
tEuler(0, 100).each { BigDecimal s, tE ->
def tA = tAnalytic(s)
def relError = ((tE - tA)/(tA - 20)).abs()
printf('%5.0f %8.4f %8.4f %9.6f\n', s, tA, tE, relError)
}
}
'''Selected output'''
STEP SIZE == 10
time analytic euler relative
(seconds) (°C) (°C) error
-------- -------- -------- ---------
0 100.0000 100.0000 0.000000
10 59.7268 44.0000 0.395874
20 39.7278 27.2000 0.635032
30 29.7965 22.1600 0.779513
40 24.8648 20.6480 0.866798
50 22.4158 20.1944 0.919529
60 21.1996 20.0583 0.951386
70 20.5957 20.0175 0.970631
80 20.2958 20.0052 0.982257
90 20.1469 20.0016 0.989281
100 20.0730 20.0005 0.993524
STEP SIZE == 5
time analytic euler relative
(seconds) (°C) (°C) error
-------- -------- -------- ---------
0 100.0000 100.0000 0.000000
... yada, yada, yada ...
100 20.0730 20.0145 0.801240
STEP SIZE == 2
time analytic euler relative
(seconds) (°C) (°C) error
-------- -------- -------- ---------
0 100.0000 100.0000 0.000000
... yada, yada, yada ...
100 20.0730 20.0425 0.417918
Notice how the relative error in the Euler method sequences increases over time in spite of the fact that all three the Euler approximations and the analytic solution are approaching the same asymptotic limit of 20°C.
Notice also how smaller step size reduces the relative error in the approximation.
Haskell
Modular solution which separates the solver and a method. Moreover it works on a given mesh which can be irregular.
-- the solver
dsolveBy _ _ [] _ = error "empty solution interval"
dsolveBy method f mesh x0 = zip mesh results
where results = scanl (method f) x0 intervals
intervals = zip mesh (tail mesh)
It is better to use strict Data.List.scanl'
in the solver but avoiding highlighting problems we leave lazy scanl
function.
Some possible methods:
-- 1-st order Euler
euler f x (t1,t2) = x + (t2 - t1) * f t1 x
-- 2-nd order Runge-Kutta
rk2 f x (t1,t2) = x + h * f (t1 + h/2) (x + h/2*f t1 x)
where h = t2 - t1
-- 4-th order Runge-Kutta
rk4 f x (t1,t2) = x + h/6 * (k1 + 2*k2 + 2*k3 + k4)
where k1 = f t1 x
k2 = f (t1 + h/2) (x + h/2*k1)
k3 = f (t1 + h/2) (x + h/2*k2)
k4 = f (t1 + h) (x + h*k3)
h = t2 - t1
Graphical output, using EasyPlot:
import Graphics.EasyPlot
newton t temp = -0.07 * (temp - 20)
exactSolution t = 80*exp(-0.07*t)+20
test1 = plot (PNG "euler1.png")
[ Data2D [Title "Step 10", Style Lines] [] sol1
, Data2D [Title "Step 5", Style Lines] [] sol2
, Data2D [Title "Step 1", Style Lines] [] sol3
, Function2D [Title "exact solution"] [Range 0 100] exactSolution ]
where sol1 = dsolveBy euler newton [0,10..100] 100
sol2 = dsolveBy euler newton [0,5..100] 100
sol3 = dsolveBy euler newton [0,1..100] 100
test2 = plot (PNG "euler2.png")
[ Data2D [Title "Euler"] [] sol1
, Data2D [Title "RK2"] [] sol2
, Data2D [Title "RK4"] [] sol3
, Function2D [Title "exact solution"] [Range 0 100] exactSolution ]
where sol1 = dsolveBy euler newton [0,10..100] 100
sol2 = dsolveBy rk2 newton [0,10..100] 100
sol3 = dsolveBy rk4 newton [0,10..100] 100
=={{header|Icon}} and {{header|Unicon}}==
Translated from Common Lisp
This solution works in both Icon and Unicon. It takes advantage of the proc
procedure, which converts a string naming a procedure into a call to that procedure.
invocable "newton_cooling" # needed to use the 'proc' procedure
procedure euler (f, y0, a, b, h)
t := a
y := y0
until (t >= b) do {
write (right(t, 4) || " " || left(y, 7))
t +:= h
y +:= h * (proc(f) (t, y)) # 'proc' applies procedure named in f to (t, y)
}
write ("DONE")
end
procedure newton_cooling (time, T)
return -0.07 * (T - 20)
end
procedure main ()
# generate data for all three step sizes [2, 5, 10]
every (step_size := ![2,5,10]) do
euler ("newton_cooling", 100, 0, 100, step_size)
end
Sample output:
0 100
10 44.0
20 27.2
30 22.16
40 20.648
50 20.1944
60 20.0583
70 20.0174
80 20.0052
90 20.0015
DONE
J
'''Solution:'''
NB.*euler a Approximates Y(t) in Y'(t)=f(t,Y) with Y(a)=Y0 and t=a..b and step size h.
euler=: adverb define
'Y0 a b h'=. 4{. y
t=. i.@>:&.(%&h) b - a
Y=. (+ h * u)^:(<#t) Y0
t,.Y
)
ncl=: _0.07 * -&20 NB. Newton's Cooling Law
'''Example:'''
ncl euler 100 0 100 2
... NB. output redacted for brevity
ncl euler 100 0 100 5
... NB. output redacted for brevity
ncl euler 100 0 100 10
0 100
10 44
20 27.2
30 22.16
40 20.648
50 20.1944
60 20.0583
70 20.0175
80 20.0052
90 20.0016
100 20.0005
Java
public class Euler {
private static void euler (Callable f, double y0, int a, int b, int h) {
int t = a;
double y = y0;
while (t < b) {
System.out.println ("" + t + " " + y);
t += h;
y += h * f.compute (t, y);
}
System.out.println ("DONE");
}
public static void main (String[] args) {
Callable cooling = new Cooling ();
int[] steps = {2, 5, 10};
for (int stepSize : steps) {
System.out.println ("Step size: " + stepSize);
euler (cooling, 100.0, 0, 100, stepSize);
}
}
}
// interface used so we can plug in alternative functions to Euler
interface Callable {
public double compute (int time, double t);
}
// class to implement the newton cooling equation
class Cooling implements Callable {
public double compute (int time, double t) {
return -0.07 * (t - 20);
}
}
Output for step = 10;
Step size: 10
0 100.0
10 43.99999999999999
20 27.199999999999996
30 22.159999999999997
40 20.648
50 20.194399999999998
60 20.05832
70 20.017496
80 20.0052488
90 20.00157464
DONE
JavaScript
Translated from Python
// Function that takes differential-equation, initial condition,
// ending x, and step size as parameters
function eulersMethod(f, x1, y1, x2, h) {
// Header
console.log("\tX\t|\tY\t");
console.log("------------------------------------");
// Initial Variables
var x=x1, y=y1;
// While we're not done yet
// Both sides of the OR let you do Euler's Method backwards
while ((x<x2 && x1<x2) || (x>x2 && x1>x2)) {
// Print what we have
console.log("\t" + x + "\t|\t" + y);
// Calculate the next values
y += h*f(x, y)
x += h;
}
return y;
}
function cooling(x, y) {
return -0.07 * (y-20);
}
eulersMethod(cooling, 0, 100, 100, 10);
jq
Works with jq 1.4
# euler_method takes a filter (df), initial condition
# (x1,y1), ending x (x2), and step size as parameters;
# it emits the y values at each iteration.
# df must take [x,y] as its input.
def euler_method(df; x1; y1; x2; h):
h as $h
| [x1, y1]
| recurse( if ((.[0] < x2 and x1 < x2) or
(.[0] > x2 and x1 > x2)) then
[ (.[0] + $h), (.[1] + $h*df) ]
else empty
end )
| .[1] ;
# We could now solve the task by writing for each step-size, $h
# euler_method(-0.07 * (.[1]-20); 0; 100; 100; $h)
# but for clarity, we shall define a function named "cooling":
# [x,y] is input
def cooling: -0.07 * (.[1]-20);
# The following solves the task:
# (2,5,10) | [., [ euler_method(cooling; 0; 100; 100; .) ] ]
For brevity, we modify euler_method so that it only shows the final value of y:
def euler_solution(df; x1; y1; x2; h):
def recursion(exp): reduce recurse(exp) as $x (.; $x);
h as $h
| [x1, y1]
| recursion( if ((.[0] < x2 and x1 < x2) or
(.[0] > x2 and x1 > x2)) then
[ (.[0] + $h), (.[1] + $h*df) ]
else empty
end )
| .[1] ;
'''Example''':
(1,2,5,10,20) | [., [ euler_solution(cooling; 0; 100; 100; .) ] ]
Output:
$ jq -M -n -c -f Euler_method.jq
[1,[20.05641373347389]]
[2,[20.0424631833732]]
[5,[20.01449963666907]]
[10,[20.000472392]]
[20,[19.180799999999998]]
Julia
Works with Julia 0.6
euler(f::Function, T::Number, t0::Int, t1::Int, h::Int) = collect(begin T += h * f(T); T end for t in t0:h:t1)
# Prints a series of arbitrary values in a tabular form, left aligned in cells with a given width
tabular(width, cells...) = println(join(map(s -> rpad(s, width), cells)))
# prints the table according to the task description for h=5 and 10 sec
for h in (5, 10)
print("Step $h:\n\n")
tabular(15, "Time", "Euler", "Analytic")
t = 0
for T in euler(y -> -0.07 * (y - 20.0), 100.0, 0, 100, h)
tabular(15, t, round(T,6), round(20.0 + 80.0 * exp(-0.07t), 6))
t += h
end
println()
end
Output:
Step 5:
Time Euler Analytic
0 72.0 100.0
5 53.8 76.375047
10 41.97 59.726824
15 34.2805 47.99502
20 29.282325 39.727757
25 26.033511 33.901915
30 23.921782 29.796514
35 22.549159 26.903487
40 21.656953 24.864805
45 21.077019 23.42817
50 20.700063 22.415791
55 20.455041 21.702379
60 20.295776 21.199646
65 20.192255 20.845376
70 20.124966 20.595727
75 20.081228 20.419801
80 20.052798 20.295829
85 20.034319 20.208467
90 20.022307 20.146904
95 20.0145 20.103522
100 20.009425 20.072951
Step 10:
Time Euler Analytic
0 44.0 100.0
10 27.2 59.726824
20 22.16 39.727757
30 20.648 29.796514
40 20.1944 24.864805
50 20.05832 22.415791
60 20.017496 21.199646
70 20.005249 20.595727
80 20.001575 20.295829
90 20.000472 20.146904
100 20.000142 20.072951
Kotlin
Translated from C
// version 1.1.2
typealias Deriv = (Double) -> Double // only one parameter needed here
const val FMT = " %7.3f"
fun euler(f: Deriv, y: Double, step: Int, end: Int) {
var yy = y
print(" Step %2d: ".format(step))
for (t in 0..end step step) {
if (t % 10 == 0) print(FMT.format(yy))
yy += step * f(yy)
}
println()
}
fun analytic() {
print(" Time: ")
for (t in 0..100 step 10) print(" %7d".format(t))
print("\nAnalytic: ")
for (t in 0..100 step 10)
print(FMT.format(20.0 + 80.0 * Math.exp(-0.07 * t)))
println()
}
fun cooling(temp: Double) = -0.07 * (temp - 20.0)
fun main(args: Array<String>) {
analytic()
for (i in listOf(2, 5, 10))
euler(::cooling, 100.0, i, 100)
}
Output:
Time: 0 10 20 30 40 50 60 70 80 90 100
Analytic: 100.000 59.727 39.728 29.797 24.865 22.416 21.200 20.596 20.296 20.147 20.073
Step 2: 100.000 57.634 37.704 28.328 23.918 21.843 20.867 20.408 20.192 20.090 20.042
Step 5: 100.000 53.800 34.280 26.034 22.549 21.077 20.455 20.192 20.081 20.034 20.014
Step 10: 100.000 44.000 27.200 22.160 20.648 20.194 20.058 20.017 20.005 20.002 20.000
Lua
T0 = 100
TR = 20
k = 0.07
delta_t = { 2, 5, 10 }
n = 100
NewtonCooling = function( t ) return -k * ( t - TR ) end
function Euler( f, y0, n, h )
local y = y0
for x = 0, n, h do
print( "", x, y )
y = y + h * f( y )
end
end
for i = 1, #delta_t do
print( "delta_t = ", delta_t[i] )
Euler( NewtonCooling, T0, n, delta_t[i] )
end
Mathematica / Wolfram Language
Better methods for differential equation solving are built into Mathematica, so the typical user would omit the Method and StartingStepSize options in the code below. However since the task requests Eulers method, here is the bad solution...
euler[step_, val_] := NDSolve[{T'[t] == -0.07 (T[t] - 20), T[0] == 100}, T, {t, 0, 100}, Method -> "ExplicitEuler", StartingStepSize -> step][[1, 1, 2]][val]
Output:
euler[2, 100]
20.0425
euler[5, 100]
20.0145
euler[10, 100]
20.0005
Maxima
euler_method(f, y0, a, b, h):= block(
[t: a, y: y0, tg: [a], yg: [y0]],
unless t>=b do (
t: t + h,
y: y + f(t, y)*h,
tg: endcons(t, tg),
yg: endcons(y, yg)
),
[tg, yg]
);
/* initial temperature */
T0: 100;
/* environment of temperature */
Tr: 20;
/* the cooling constant */
k: 0.07;
/* end of integration */
tmax: 100;
/* analytical solution */
Tref(t):= Tr + (T0 - Tr)*exp(-k*t);
/* cooling rate */
dT(t, T):= -k*(T-Tr);
/* get numerical solution */
h: 10;
[tg, yg]: euler_method('dT, T0, 0, tmax, h);
/* plot analytical and numerical solution */
plot2d([Tref, [discrete, tg, yg]], ['t, 0, tmax],
[legend, "analytical", concat("h = ", h)],
[xlabel, "t / seconds"],
[ylabel, "Temperature / C"]);
MK-61/52
П2 С/П П3 С/П П4 ПП 19 ИП3 * ИП4
+ П4 С/П ИП2 ИП3 + П2 БП 05 ...
... ... ... ... ... ... ... ... ... В/О
Instead of dots typed calculation program equation ''f(u, t)'', where the arguments are ''t'' = Р2, ''u'' = Р4.
Input: ''Initial time'' С/П ''Time step'' С/П ''Initial value'' С/П.
The result is displayed on the indicator.
Nim
import strutils
proc euler(f: proc (x,y: float): float; y0, a, b, h: float) =
var (t,y) = (a,y0)
while t < b:
echo formatFloat(t, ffDecimal, 3), " ", formatFloat(y, ffDecimal, 3)
t += h
y += h * f(t,y)
proc newtoncooling(time, temp): float =
-0.07 * (temp - 20)
euler(newtoncooling, 100.0, 0.0, 100.0, 10.0)
Output:
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
Objeck
class EulerMethod {
T0 : static : Float;
TR : static : Float;
k : static : Float;
delta_t : static : Float[];
n : static : Float;
function : Main(args : String[]) ~ Nil {
T0 := 100;
TR := 20;
k := 0.07;
delta_t := [2.0, 5.0, 10.0];
n := 100;
f := NewtonCooling(Float) ~ Float;
for(i := 0; i < delta_t->Size(); i+=1;) {
IO.Console->Print("delta_t = ")->PrintLine(delta_t[i]);
Euler(f, T0, n->As(Int), delta_t[i]);
};
}
function : native : NewtonCooling(t : Float) ~ Float {
return -1 * k * (t-TR);
}
function : native : Euler(f : (Float) ~ Float, y : Float, n : Int, h : Float) ~ Nil {
for(x := 0; x<=n; x+=h;) {
IO.Console->Print("\t")->Print(x)->Print("\t")->PrintLine(y);
y += h * f(y);
};
}
}
Output:
delta_t = 2
0 100
2 88.8
4 79.168
6 70.88448
...
delta_t = 10
0 100
10 44
20 27.2
30 22.16
40 20.648
OCaml
(* Euler integration by recurrence relation.
* Given a function, and stepsize, provides a function of (t,y) which
* returns the next step: (t',y'). *)
let euler f ~step (t,y) = ( t+.step, y +. step *. f t y )
(* newton_cooling doesn't use time parameter, so _ is a placeholder *)
let newton_cooling ~k ~tr _ y = -.k *. (y -. tr)
(* analytic solution for Newton cooling *)
let analytic_solution ~k ~tr ~t0 t = tr +. (t0 -. tr) *. exp (-.k *. t)
Using the above functions to produce the task results:
(* Wrapping up the parameters in a "cool" function: *)
let cool = euler (newton_cooling ~k:0.07 ~tr:20.)
(* Similarly for the analytic solution: *)
let analytic = analytic_solution ~k:0.07 ~tr:20. ~t0:100.
(* (Just a loop) Apply recurrence function on state, until some condition *)
let recur ~until f state =
let rec loop s =
if until s then ()
else loop (f s)
in loop state
(* 'results' generates the specified output starting from initial values t=0, temp=100C; ending at t=100s *)
let results fn =
Printf.printf "\t time\t euler\tanalytic\n%!";
let until (t,y) =
Printf.printf "\t%7.3f\t%7.3f\t%9.5f\n%!" t y (analytic t);
t >= 100.
in recur ~until fn (0.,100.)
results (cool ~step:10.)
results (cool ~step:5.)
results (cool ~step:2.)
Example output:
# results (cool ~step:10.);;
time euler analytic
0.000 100.000 100.00000
10.000 44.000 59.72682
20.000 27.200 39.72776
30.000 22.160 29.79651
40.000 20.648 24.86481
50.000 20.194 22.41579
60.000 20.058 21.19965
70.000 20.017 20.59573
80.000 20.005 20.29583
90.000 20.002 20.14690
100.000 20.000 20.07295
- : unit = ()
Oforth
: euler(f, y, a, b, h)
| t |
a b h step: t [
System.Out t <<wjp(6, JUSTIFY_RIGHT, 3) " : " << y << cr
t y f perform h * y + ->y
] ;
Usage :
: newtonCoolingLaw(t, y)
y 20 - -0.07 * ;
: test
euler(#newtonCoolingLaw, 100.0, 0.0, 100.0, 2)
euler(#newtonCoolingLaw, 100.0, 0.0, 100.0, 5)
euler(#newtonCoolingLaw, 100.0, 0.0, 100.0, 10) ;
Output:
....
0 : 100
10 : 44
20 : 27.2
30 : 22.16
40 : 20.648
50 : 20.1944
60 : 20.05832
70 : 20.017496
80 : 20.0052488
90 : 20.00157464
100 : 20.000472392
Pascal
Translated from C
Euler code for Free Pascal - Delphi mode. Apart from the function-pointer calling convention for the NewtonCooling method, this example is ISO-7185 standard Pascal.
{$mode delphi}
PROGRAM Euler;
TYPE TNewtonCooling = FUNCTION (t: REAL) : REAL;
CONST T0 : REAL = 100.0;
CONST TR : REAL = 20.0;
CONST k : REAL = 0.07;
CONST time : INTEGER = 100;
CONST step : INTEGER = 10;
CONST dt : ARRAY[0..3] of REAL = (1.0,2.0,5.0,10.0);
VAR i : INTEGER;
FUNCTION NewtonCooling(t: REAL) : REAL;
BEGIN
NewtonCooling := -k * (t-TR);
END;
PROCEDURE Euler(F: TNewtonCooling; y, h : REAL; n: INTEGER);
VAR i: INTEGER = 0;
BEGIN
WRITE('dt=',trunc(h):2,':');
REPEAT
IF (i mod 10 = 0) THEN WRITE(' ',y:2:3);
INC(i,trunc(h));
y := y + h * F(y);
UNTIL (i >= n);
WRITELN;
END;
PROCEDURE Sigma;
VAR t: INTEGER = 0;
BEGIN
WRITE('Sigma:');
REPEAT
WRITE(' ',(20 + 80 * exp(-0.07 * t)):2:3);
INC(t,step);
UNTIL (t>=time);
WRITELN;
END;
BEGIN
WRITELN('Newton cooling function: Analytic solution (Sigma) with 3 Euler approximations.');
WRITELN('Time: ',0:7,10:7,20:7,30:7,40:7,50:7,60:7,70:7,80:7,90:7);
Sigma;
FOR i := 1 to 3 DO
Euler(NewtonCooling,T0,dt[i],time);
END.
Output:
Newton cooling function: Analytic solution (Sigma) with 3 Euler approximations.
Time: 0 10 20 30 40 50 60 70 80 90
Sigma: 100.000 59.727 39.728 29.797 24.865 22.416 21.200 20.596 20.296 20.147
dt= 2: 100.000 57.634 37.704 28.328 23.918 21.843 20.867 20.408 20.192 20.090
dt= 5: 100.000 53.800 34.280 26.034 22.549 21.077 20.455 20.192 20.081 20.034
dt=10: 100.000 44.000 27.200 22.160 20.648 20.194 20.058 20.017 20.005 20.002
Perl
sub euler_method {
my ($t0, $t1, $k, $step_size) = @_;
my @results = ( [0, $t0] );
for (my $s = $step_size; $s <= 100; $s += $step_size) {
$t0 -= ($t0 - $t1) * $k * $step_size;
push @results, [$s, $t0];
}
return @results;
}
sub analytical {
my ($t0, $t1, $k, $time) = @_;
return ($t0 - $t1) * exp(-$time * $k) + $t1
}
my ($T0, $T1, $k) = (100, 20, .07);
my @r2 = grep { $_->[0] % 10 == 0 } euler_method($T0, $T1, $k, 2);
my @r5 = grep { $_->[0] % 10 == 0 } euler_method($T0, $T1, $k, 5);
my @r10 = grep { $_->[0] % 10 == 0 } euler_method($T0, $T1, $k, 10);
print "Time\t 2 err(%) 5 err(%) 10 err(%) Analytic\n", "-" x 76, "\n";
for (0 .. $#r2) {
my $an = analytical($T0, $T1, $k, $r2[$_][0]);
printf "%4d\t".("%9.3f" x 7)."\n",
$r2 [$_][0],
$r2 [$_][1], ($r2 [$_][1] / $an) * 100 - 100,
$r5 [$_][1], ($r5 [$_][1] / $an) * 100 - 100,
$r10[$_][1], ($r10[$_][1] / $an) * 100 - 100,
$an;
}
Output:
Time 2 err(%) 5 err(%) 10 err(%) Analytic
----------------------------------------------------------------------------
0 100.000 0.000 100.000 0.000 100.000 0.000 100.000
10 57.634 -3.504 53.800 -9.923 44.000 -26.331 59.727
20 37.704 -5.094 34.280 -13.711 27.200 -31.534 39.728
30 28.328 -4.927 26.034 -12.629 22.160 -25.629 29.797
40 23.918 -3.808 22.549 -9.313 20.648 -16.959 24.865
50 21.843 -2.555 21.077 -5.972 20.194 -9.910 22.416
60 20.867 -1.569 20.455 -3.512 20.058 -5.384 21.200
70 20.408 -0.912 20.192 -1.959 20.017 -2.808 20.596
80 20.192 -0.512 20.081 -1.057 20.005 -1.432 20.296
90 20.090 -0.281 20.034 -0.559 20.002 -0.721 20.147
100 20.042 -0.152 20.014 -0.291 20.000 -0.361 20.073
Perl 6
sub euler ( &f, $y0, $a, $b, $h ) {
my $y = $y0;
my @t_y;
for $a, * + $h ... * > $b -> $t {
@t_y[$t] = $y;
$y += $h * f( $t, $y );
}
return @t_y;
}
constant COOLING_RATE = 0.07;
constant AMBIENT_TEMP = 20;
constant INITIAL_TEMP = 100;
constant INITIAL_TIME = 0;
constant FINAL_TIME = 100;
sub f ( $time, $temp ) {
return -COOLING_RATE * ( $temp - AMBIENT_TEMP );
}
my @e;
@e[$_] = euler( &f, INITIAL_TEMP, INITIAL_TIME, FINAL_TIME, $_ ) for 2, 5, 10;
say 'Time Analytic Step2 Step5 Step10 Err2 Err5 Err10';
for INITIAL_TIME, * + 10 ... * >= FINAL_TIME -> $t {
my $exact = AMBIENT_TEMP + (INITIAL_TEMP - AMBIENT_TEMP)
* (-COOLING_RATE * $t).exp;
my $err = sub { @^a.map: { 100 * abs( $_ - $exact ) / $exact } }
my ( $a, $b, $c ) = map { @e[$_][$t] }, 2, 5, 10;
say $t.fmt('%4d '), ( $exact, $a, $b, $c )».fmt(' %7.3f'),
$err.([$a, $b, $c])».fmt(' %7.3f%%');
}
Output:
Time Analytic Step2 Step5 Step10 Err2 Err5 Err10
0 100.000 100.000 100.000 100.000 0.000% 0.000% 0.000%
10 59.727 57.634 53.800 44.000 3.504% 9.923% 26.331%
20 39.728 37.704 34.281 27.200 5.094% 13.711% 31.534%
30 29.797 28.328 26.034 22.160 4.927% 12.629% 25.629%
40 24.865 23.918 22.549 20.648 3.808% 9.313% 16.959%
50 22.416 21.843 21.077 20.194 2.555% 5.972% 9.910%
60 21.200 20.867 20.455 20.058 1.569% 3.512% 5.384%
70 20.596 20.408 20.192 20.017 0.912% 1.959% 2.808%
80 20.296 20.192 20.081 20.005 0.512% 1.057% 1.432%
90 20.147 20.090 20.034 20.002 0.281% 0.559% 0.721%
100 20.073 20.042 20.014 20.000 0.152% 0.291% 0.361%
Phix
Translated from C
constant FMT = " %7.3f"
procedure ivp_euler(integer f, atom y, integer step, integer end_t)
integer t = 0;
printf(1, " Step %2d: ", step);
while t<=end_t do
if remainder(t,10)==0 then printf(1, FMT, y) end if
y += step * call_func(f,{t, y});
t += step
end while
printf(1, "\n");
end procedure
procedure analytic()
printf(1, " Time: ");
for t = 0 to 100 by 10 do printf(1," %7g", t) end for
printf(1, "\nAnalytic: ");
for t = 0 to 100 by 10 do
printf(1, FMT, 20 + 80 * exp(-0.07 * t))
end for
printf(1,"\n");
end procedure
function cooling(atom /*t*/, atom temp)
return -0.07 * (temp - 20);
end function
constant r_cooling = routine_id("cooling")
analytic();
ivp_euler(r_cooling, 100, 2, 100);
ivp_euler(r_cooling, 100, 5, 100);
ivp_euler(r_cooling, 100, 10, 100);
Output:
Time: 0 10 20 30 40 50 60 70 80 90 100
Analytic: 100.000 59.727 39.728 29.797 24.865 22.416 21.200 20.596 20.296 20.147 20.073
Step 2: 100.000 57.634 37.704 28.328 23.918 21.843 20.867 20.408 20.192 20.090 20.042
Step 5: 100.000 53.800 34.280 26.034 22.549 21.077 20.455 20.192 20.081 20.034 20.014
Step 10: 100.000 44.000 27.200 22.160 20.648 20.194 20.058 20.017 20.005 20.002 20.000
PicoLisp
(load "@lib/math.l")
(de euler (F Y A B H)
(while (> B A)
(prinl (round A) " " (round Y))
(inc 'Y (*/ H (F A Y) 1.0))
(inc 'A H) ) )
(de newtonCoolingLaw (A B)
(*/ -0.07 (- B 20.) 1.0) )
(euler newtonCoolingLaw 100.0 0 100.0 2.0)
(euler newtonCoolingLaw 100.0 0 100.0 5.0)
(euler newtonCoolingLaw 100.0 0 100.0 10.0)
Output:
...
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.018
80.000 20.005
90.000 20.002
PL/I
test: procedure options (main); /* 3 December 2012 */
declare (x, y, z) float;
declare (T0 initial (100), Tr initial (20)) float;
declare k float initial (0.07);
declare t fixed binary;
declare h fixed binary;
x, y, z = T0;
/* Step size is 2 seconds */
h = 2;
put skip data (h);
put skip list (' t By formula', 'By Euler');
do t = 0 to 100 by 2;
put skip edit (t, Tr + (T0 - Tr)/exp(k*t), x) (f(3), 2 f(17,10));
x = x + h*f(t, x);
end;
/* Step size is 5 seconds */
h = 5;
put skip data (h);
put skip list (' t By formula', 'By Euler');
do t = 0 to 100 by 5;
put skip edit ( t, Tr + (T0 - Tr)/exp(k*t), y) (f(3), 2 f(17,10));
y = y + h*f(t, y);
end;
/* Step size is 10 seconds */
h = 10;
put skip data (h);
put skip list (' t By formula', 'By Euler');
do t = 0 to 100 by 10;
put skip edit (t, Tr + (T0 - Tr)/exp(k*t), z) (f(3), 2 f(17,10));
z = z + h*f(t, z);
end;
f: procedure (dummy, T) returns (float);
declare dummy fixed binary;
declare T float;
return ( -k*(T - Tr) );
end f;
end test;
Only the final two outputs are shown, for brevity.
H= 5;
t By formula By Euler
0 100.0000000000 100.0000000000
5 76.3750457764 72.0000000000
10 59.7268257141 53.7999992371
15 47.9950218201 41.9700012207
20 39.7277565002 34.2805023193
25 33.9019165039 29.2823257446
30 29.7965145111 26.0335121155
35 26.9034862518 23.9217834473
40 24.8648052216 22.5491600037
45 23.4281692505 21.6569538116
50 22.4157905579 21.0770206451
55 21.7023792267 20.7000637054
60 21.1996459961 20.4550418854
65 20.8453769684 20.2957763672
70 20.5957260132 20.1922550201
75 20.4198017120 20.1249656677
80 20.2958297729 20.0812282562
85 20.2084674835 20.0527992249
90 20.1469039917 20.0343189240
95 20.1035213470 20.0223064423
100 20.0729503632 20.0144996643
H= 10;
t By formula By Euler
0 100.0000000000 100.0000000000
10 59.7268257141 44.0000000000
20 39.7277565002 27.2000007629
30 29.7965145111 22.1599998474
40 24.8648052216 20.6480007172
50 22.4157905579 20.1944007874
60 21.1996459961 20.0583209991
70 20.5957260132 20.0174961090
80 20.2958297729 20.0052490234
90 20.1469039917 20.0015754700
100 20.0729503632 20.0004730225
PowerShell
Works with PowerShell 4.0
function euler (${f}, ${y}, $y0, $t0, $tEnd) {
function f-euler ($tn, $yn, $h) {
$yn + $h*(f $tn $yn)
}
function time ($t0, $h, $tEnd) {
$end = [MATH]::Floor(($tEnd - $t0)/$h)
foreach ($_ in 0..$end) { $_*$h + $t0 }
}
$time = time $t0 10 $tEnd
$time5 = time $t0 5 $tEnd
$time2 = time $t0 2 $tEnd
$yn10 = $yn5 = $yn2 = $y0
$i2 = $i5 = 0
foreach ($tn10 in $time) {
while($time2[$i2] -ne $tn10) {
$i2++
$yn2 = (f-euler $time2[$i2] $yn2 2)
}
while($time5[$i5] -ne $tn10) {
$i5++
$yn5 = (f-euler $time5[$i5] $yn5 5)
}
[pscustomobject]@{
t = "$tn10"
Analytical = "$("{0:N5}" -f (y $tn10))"
"Euler h = 2" = "$("{0:N5}" -f $yn2)"
"Euler h = 5" = "$("{0:N5}" -f $yn5)"
"Euler h = 10" = "$("{0:N5}" -f $yn10)"
"Error h = 2" = "$("{0:N5}" -f [MATH]::abs($yn2 - (y $tn10)))"
"Error h = 5" = "$("{0:N5}" -f [MATH]::abs($yn5 - (y $tn10)))"
"Error h = 10" = "$("{0:N5}" -f [MATH]::abs($yn10 - (y $tn10)))"
}
$yn10 = (f-euler $tn10 $yn10 10)
}
}
$k, $yr, $y0, $t0, $tEnd = 0.07, 20, 100, 0, 100
function f ($t, $y) {
-$k *($y - $yr)
}
function y ($t) {
$yr + ($y0 - $yr)*[MATH]::Exp(-$k*$t)
}
euler f y $y0 $t0 $tEnd | Format-Table -AutoSize
Output:
t Analytical Euler h = 2 Euler h = 5 Euler h = 10 Error h = 2 Error h = 5 Error h = 10
- ---------- ----------- ----------- ------------ ----------- ----------- ------------
0 100.00000 100.00000 100.00000 100.00000 0.00000 0.00000 0.00000
10 59.72682 57.63416 53.80000 44.00000 2.09266 5.92682 15.72682
20 39.72776 37.70413 34.28050 27.20000 2.02363 5.44726 12.52776
30 29.79651 28.32850 26.03351 22.16000 1.46801 3.76300 7.63651
40 24.86481 23.91795 22.54916 20.64800 0.94685 2.31565 4.21681
50 22.41579 21.84311 21.07702 20.19440 0.57268 1.33877 2.22139
60 21.19965 20.86705 20.45504 20.05832 0.33260 0.74461 1.14133
70 20.59573 20.40788 20.19225 20.01750 0.18784 0.40347 0.57823
80 20.29583 20.19188 20.08123 20.00525 0.10395 0.21460 0.29058
90 20.14690 20.09027 20.03432 20.00157 0.05664 0.11259 0.14533
100 20.07295 20.04246 20.01450 20.00047 0.03049 0.05845 0.07248
PureBasic
Define.d
Prototype.d Func(Time, t)
Procedure.d Euler(*F.Func, y0, a, b, h)
Protected y=y0, t=a
While t<=b
PrintN(RSet(StrF(t,3),7)+" "+RSet(StrF(y,3),7))
y + h * *F(t,y)
t + h
Wend
EndProcedure
Procedure.d newtonCoolingLaw(Time, t)
ProcedureReturn -0.07*(t-20)
EndProcedure
If OpenConsole()
Euler(@newtonCoolingLaw(), 100, 0, 100, 2)
Euler(@newtonCoolingLaw(), 100, 0, 100, 5)
Euler(@newtonCoolingLaw(), 100, 0, 100,10)
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()
EndIf
...
85.000 20.053
90.000 20.034
95.000 20.022
100.000 20.014
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
100.000 20.000
Python
Translated from Common Lisp
def euler(f,y0,a,b,h):
t,y = a,y0
while t <= b:
print "%6.3f %6.3f" % (t,y)
t += h
y += h * f(t,y)
def newtoncooling(time, temp):
return -0.07 * (temp - 20)
euler(newtoncooling,100,0,100,10)
Output:
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
100.000 20.000
R
Translated from Python
euler <- function(f, y0, a, b, h)
{
t <- a
y <- y0
while (t < b)
{
cat(sprintf("%6.3f %6.3f\n", t, y))
t <- t + h
y <- y + h*f(t, y)
}
}
newtoncooling <- function(time, temp)
return(-0.07*(temp-20))
euler(newtoncooling, 100, 0, 100, 10)
Output:
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
Racket
The ODE solver:
(define (ODE-solve f init
#:x-max x-max
#:step h
#:method (method euler))
(reverse
(iterate-while (λ (x . y) (<= x x-max)) (method f h) init)))
It uses the default integration method euler, defined separately.
(define (euler F h)
(λ (x y) (list (+ x h) (+ y (* h (F x y))))))
A general-purpose procedure which evalutes a given function ''f'' repeatedly starting with argument ''x'', while all results satisfy a predicate ''test''. Returns a list of iterations.
(define (iterate-while test f x)
(let next ([result x]
[list-of-results '()])
(if (apply test result)
(next (apply f result) (cons result list-of-results))
list-of-results)))
Textual output:
> (define (newton-cooling t T)
(* -0.07 (- T 20)))
> (ODE-solve newton-cooling '(0 100) #:x-max 100 #:step 10)
'((0 100)
(10 44.)
(20 27.2)
(30 22.16)
(40 20.648)
(50 20.1944)
(60 20.05832)
(70 20.017496)
(80 20.0052488)
(90 20.00157464)
(100 20.000472392))
Plotting results:
> (require plot)
> (plot
(map (λ (h c)
(lines
(ODE-solve newton-cooling '(0 100) #:x-max 100 #:step h)
#:color c #:label (format "h=~a" h)))
'(10 5 1)
'(red blue black))
#:legend-anchor 'top-right)
[[File:euler1.jpg]]
High modularity of the program allows to implement very different solution metods. For example [http://en.wikipedia.org/wiki/Midpoint_method 2-nd order Runge-Kutta method]:
(define (RK2 F h)
(λ (x y)
(list (+ x h) (+ y (* h (F (+ x (* 1/2 h))
(+ y (* 1/2 h (F x y)))))))))
[http://en.wikipedia.org/wiki/Adams_method#Two-step_Adams.E2.80.93Bashforth Two-step Adams–Bashforth method]
(define (adams F h)
(case-lambda
; first step using Runge-Kutta method
[(x y) (append ((RK2 F h) x y) (list (F x y)))]
[(x y f′)
(let ([f (F x y)])
(list (+ x h) (+ y (* 3/2 h f) (* -1/2 h f′)) f))]))
[http://en.wikipedia.org/wiki/Adaptive_stepsize Adaptive one-step method] modifier using absolute accuracy ''ε''
(define ((adaptive method ε) F h0)
(case-lambda
[(x y) (((adaptive method ε) F h0) x y h0)]
[(x y h)
(match-let* ([(list x0 y0) ((method F h) x y)]
[(list x1 y1) ((method F (/ h 2)) x y)]
[(list x1 y1) ((method F (/ h 2)) x1 y1)]
[τ (abs (- y1 y0))]
[h′ (if (< τ ε) (min h h0) (* 0.9 h (/ ε τ)))])
(list x1 (+ y1 τ) (* 2 h′)))]))
Comparison of different integration methods
> (define (solve-newton-cooling-by m)
(ODE-solve newton-cooling '(0 100)
#:x-max 100 #:step 10 #:method m))
> (plot
(list
(function (λ (t) (+ 20 (* 80 (exp (* -0.07 t))))) 0 100
#:color 'black #:label "analytical")
(lines (solve-newton-cooling-by euler)
#:color 'red #:label "Euler")
(lines (solve-newton-cooling-by RK2)
#:color 'blue #:label "Runge-Kutta")
(lines (solve-newton-cooling-by adams)
#:color 'purple #:label "Adams")
(points (solve-newton-cooling-by (adaptive euler 0.5))
#:color 'red #:label "Adaptive Euler")
(points (solve-newton-cooling-by (adaptive RK2 0.5))
#:color 'blue #:label "Adaptive Runge-Kutta"))
#:legend-anchor 'top-right)
[[File:euler2.jpg]]
See also [[Runge-Kutta method#Racket]]
REXX
version 1
Translated from PLI
/* REXX ***************************************************************
* 24.05.2013 Walter Pachl translated from PL/I
**********************************************************************/
Numeric Digits 100
T0=100
Tr=20
k=0.07
h=2
x=t0
Call head
do t=0 to 100 by 2
Select
When t<=4 | t>=96 Then
call o x
When t=8 Then
Say '...'
Otherwise
Nop
End
x=x+h*f(x)
end
h=5
y=t0
Call head
do t=0 to 100 by 5
call o y
y=y+h*f(y)
end
h=10
z=t0
Call head
do t=0 to 100 by 10
call o z
z=z+h*f(z)
end
Exit
f: procedure Expose k Tr
Parse Arg t
return -k*(T-Tr)
head:
Say 'h='h
Say ' t By formula By Euler'
Return
o:
Parse Arg v
Say right(t,3) format(Tr+(T0-Tr)/exp(k*t),5,10) format(v,5,10)
Return
exp: Procedure
Parse Arg x,prec
If prec<9 Then prec=9
Numeric Digits (2*prec)
Numeric Fuzz 3
o=1
u=1
r=1
Do i=1 By 1
ra=r
o=o*x
u=u*i
r=r+(o/u)
If r=ra Then Leave
End
Numeric Digits (prec)
r=r+0
Return r
Output:
h=2
t By formula By Euler
0 100.0000000000 100.0000000000
2 89.5486587628 88.8000000000
4 80.4626994233 79.1680000000
...
96 20.0965230572 20.0574137147
98 20.0839131147 20.0493757946
100 20.0729505571 20.0424631834
h=5
t By formula By Euler
0 100.0000000000 100.0000000000
5 76.3750471216 72.0000000000
10 59.7268242534 53.8000000000
15 47.9950199099 41.9700000000
20 39.7277571000 34.2805000000
25 33.9019154664 29.2823250000
30 29.7965142633 26.0335112500
35 26.9034869314 23.9217823125
40 24.8648050015 22.5491585031
45 23.4281701466 21.6569530270
50 22.4157906708 21.0770194676
55 21.7023789162 20.7000626539
60 21.1996461464 20.4550407250
65 20.8453763508 20.2957764713
70 20.5957266443 20.1922547063
75 20.4198014729 20.1249655591
80 20.2958290978 20.0812276134
85 20.2084672415 20.0527979487
90 20.1469043822 20.0343186667
95 20.1035217684 20.0223071333
100 20.0729505571 20.0144996367
h=10
t By formula By Euler
0 100.0000000000 100.0000000000
10 59.7268242534 44.0000000000
20 39.7277571000 27.2000000000
30 29.7965142633 22.1600000000
40 24.8648050015 20.6480000000
50 22.4157906708 20.1944000000
60 21.1996461464 20.0583200000
70 20.5957266443 20.0174960000
80 20.2958290978 20.0052488000
90 20.1469043822 20.0015746400
100 20.0729505571 20.0004723920
version 2
This REXX version allows values to be specified via the command line (CL).
It also shows the percentage difference (analytic vs. Euler's method) for each calculation.
/*REXX pgm solves example of Newton's cooling law via Euler's method (diff. step sizes).*/
e=2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138
numeric digits length(e) - length(.) /*use the number of decimal digits in E*/
parse arg Ti Tr cc tt ss /*obtain optional arguments from the CL*/
if Ti='' | Ti="," then Ti= 100 /*given? Default: initial temp in ºC.*/
if Tr='' | Tr="," then Tr= 20 /* " " room " " " */
if cc='' | cc="," then cc= 0.07 /* " " cooling constant. */
if tt='' | tt="," then tt= 100 /* " " total time seconds. */
if ss='' | ss="," then ss= 2 5 10 /* " " the step sizes. */
@= '═' /*the character used in title separator*/
do sSize=1 for words(ss); say; say; say center('time in' , 11)
say center('seconds' , 11, @) center('Euler method', 16, @) ,
center('analytic', 18, @) center('difference' , 14, @)
$=Ti; inc= word(ss, sSize) /*the 1st value; obtain the increment.*/
do t=0 to Ti by inc /*step through calculations by the inc.*/
a= format(Tr + (Ti-Tr)/exp(cc*t),6,10) /*calculate the analytic (exact) value.*/
say center(t,11) format($,6,3) 'ºC ' a "ºC" format(abs(a-$)/a*100,6,2) '%'
$= $ + inc * cc * (Tr-$) /*calc. next value via Euler's method. */
end /*t*/
end /*sSize*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
exp: procedure expose e; arg x; ix= x%1; if abs(x-ix)>.5 then ix=ix+sign(x); x= x-ix; z=1
_=1; w=1; do j=1; _= _*x/j; z= (z+_)/1; if z==w then leave; w=z
end /*j*/; if z\==0 then z= e**ix * z; return z
Output:
time in
══seconds══ ══Euler method══ ═════analytic═════ ══difference══
0 100.000 ºC 100.0000000000 ºC 0.00 %
2 88.800 ºC 89.5486588319 ºC 0.84 %
4 79.168 ºC 80.4626993165 ºC 1.61 %
6 70.884 ºC 72.5637455852 ºC 2.31 %
8 63.761 ºC 65.6967251079 ºC 2.95 %
10 57.634 ºC 59.7268243033 ºC 3.50 %
12 52.365 ºC 54.5368418743 ºC 3.98 %
14 47.834 ºC 50.0248879081 ºC 4.38 %
16 43.937 ºC 46.1023835698 ºC 4.70 %
18 40.586 ºC 42.6923221200 ºC 4.93 %
20 37.704 ºC 39.7277571153 ºC 5.09 %
22 35.226 ºC 37.1504881142 ºC 5.18 %
24 33.094 ºC 34.9099180832 ºC 5.20 %
26 31.261 ºC 32.9620600747 ºC 5.16 %
28 29.684 ºC 31.2686736737 ºC 5.07 %
30 28.328 ºC 29.7965142602 ºC 4.93 %
32 27.163 ºC 28.5166803503 ºC 4.75 %
34 26.160 ºC 27.4040462008 ºC 4.54 %
36 25.297 ºC 26.4367685400 ºC 4.31 %
38 24.556 ºC 25.5958577396 ºC 4.06 %
40 23.918 ºC 24.8648050100 ºC 3.81 %
42 23.369 ºC 24.2292582991 ºC 3.55 %
44 22.898 ºC 23.6767405319 ºC 3.29 %
46 22.492 ºC 23.1964046609 ºC 3.04 %
48 22.143 ºC 22.7788207156 ºC 2.79 %
50 21.843 ºC 22.4157906738 ºC 2.55 %
52 21.585 ºC 22.1001875173 ºC 2.33 %
54 21.363 ºC 21.8258153140 ºC 2.12 %
56 21.172 ºC 21.5872875795 ºC 1.92 %
58 21.008 ºC 21.3799215292 ºC 1.74 %
60 20.867 ºC 21.1996461456 ºC 1.57 %
62 20.746 ºC 21.0429222563 ºC 1.41 %
64 20.641 ºC 20.9066730524 ºC 1.27 %
66 20.551 ºC 20.7882236849 ºC 1.14 %
68 20.474 ºC 20.6852487518 ºC 1.02 %
70 20.408 ºC 20.5957266457 ºC 0.91 %
72 20.351 ºC 20.5178998655 ºC 0.81 %
74 20.302 ºC 20.4502405132 ºC 0.73 %
76 20.259 ºC 20.3914202980 ºC 0.65 %
78 20.223 ºC 20.3402844596 ºC 0.58 %
80 20.192 ºC 20.2958290973 ºC 0.51 %
82 20.165 ºC 20.2571814620 ºC 0.45 %
84 20.142 ºC 20.2235828220 ºC 0.40 %
86 20.122 ºC 20.1943735676 ºC 0.36 %
88 20.105 ºC 20.1689802617 ºC 0.32 %
90 20.090 ºC 20.1469043822 ºC 0.28 %
92 20.078 ºC 20.1277125344 ºC 0.25 %
94 20.067 ºC 20.1110279436 ºC 0.22 %
96 20.057 ºC 20.0965230571 ºC 0.19 %
98 20.049 ºC 20.0839131146 ºC 0.17 %
100 20.042 ºC 20.0729505572 ºC 0.15 %
time in
══seconds══ ══Euler method══ ═════analytic═════ ══difference══
0 100.000 ºC 100.0000000000 ºC 0.00 %
5 72.000 ºC 76.3750471775 ºC 5.73 %
10 53.800 ºC 59.7268243033 ºC 9.92 %
15 41.970 ºC 47.9950199289 ºC 12.55 %
20 34.281 ºC 39.7277571153 ºC 13.71 %
25 29.282 ºC 33.9019154760 ºC 13.63 %
30 26.034 ºC 29.7965142602 ºC 12.63 %
35 23.922 ºC 26.9034869199 ºC 11.08 %
40 22.549 ºC 24.8648050100 ºC 9.31 %
45 21.657 ºC 23.4281701494 ºC 7.56 %
50 21.077 ºC 22.4157906738 ºC 5.97 %
55 20.700 ºC 21.7023789151 ºC 4.62 %
60 20.455 ºC 21.1996461456 ºC 3.51 %
65 20.296 ºC 20.8453763507 ºC 2.64 %
70 20.192 ºC 20.5957266457 ºC 1.96 %
75 20.125 ºC 20.4198014719 ºC 1.44 %
80 20.081 ºC 20.2958290973 ºC 1.06 %
85 20.053 ºC 20.2084672415 ºC 0.77 %
90 20.034 ºC 20.1469043822 ºC 0.56 %
95 20.022 ºC 20.1035217684 ºC 0.40 %
100 20.014 ºC 20.0729505572 ºC 0.29 %
time in
══seconds══ ══Euler method══ ═════analytic═════ ══difference══
0 100.000 ºC 100.0000000000 ºC 0.00 %
10 44.000 ºC 59.7268243033 ºC 26.33 %
20 27.200 ºC 39.7277571153 ºC 31.53 %
30 22.160 ºC 29.7965142602 ºC 25.63 %
40 20.648 ºC 24.8648050100 ºC 16.96 %
50 20.194 ºC 22.4157906738 ºC 9.91 %
60 20.058 ºC 21.1996461456 ºC 5.38 %
70 20.017 ºC 20.5957266457 ºC 2.81 %
80 20.005 ºC 20.2958290973 ºC 1.43 %
90 20.002 ºC 20.1469043822 ºC 0.72 %
100 20.000 ºC 20.0729505572 ºC 0.36 %
Ring
decimals(3)
see euler("return -0.07*(y-20)", 100, 0, 100, 2) + nl
see euler("return -0.07*(y-20)", 100, 0, 100, 5) + nl
see euler("return -0.07*(y-20)", 100, 0, 100, 10) + nl
func euler df, y, a, b, s
t = a
while t <= b
see "" + t + " " + y + nl
y += s * eval(df)
t += s
end
return y
Output:
0 100
2 88.800
4 79.168
6 70.884
8 63.761
10 57.634
Ruby
Translated from Python
def euler(y, a, b, h)
a.step(b,h) do |t|
puts "%7.3f %7.3f" % [t,y]
y += h * yield(t,y)
end
end
[10, 5, 2].each do |step|
puts "Step = #{step}"
euler(100,0,100,step) {|time, temp| -0.07 * (temp - 20) }
puts
end
Output:
Step = 10
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
100.000 20.000
Step = 5
0.000 100.000
5.000 72.000
10.000 53.800
15.000 41.970
20.000 34.280
25.000 29.282
30.000 26.034
35.000 23.922
40.000 22.549
45.000 21.657
50.000 21.077
55.000 20.700
60.000 20.455
65.000 20.296
70.000 20.192
75.000 20.125
80.000 20.081
85.000 20.053
90.000 20.034
95.000 20.022
100.000 20.014
Step = 2
0.000 100.000
2.000 88.800
4.000 79.168
6.000 70.884
8.000 63.761
10.000 57.634
12.000 52.365
14.000 47.834
16.000 43.937
18.000 40.586
20.000 37.704
22.000 35.226
24.000 33.094
26.000 31.261
28.000 29.684
30.000 28.328
32.000 27.163
34.000 26.160
36.000 25.297
38.000 24.556
40.000 23.918
42.000 23.369
44.000 22.898
46.000 22.492
48.000 22.143
50.000 21.843
52.000 21.585
54.000 21.363
56.000 21.172
58.000 21.008
60.000 20.867
62.000 20.746
64.000 20.641
66.000 20.551
68.000 20.474
70.000 20.408
72.000 20.351
74.000 20.302
76.000 20.259
78.000 20.223
80.000 20.192
82.000 20.165
84.000 20.142
86.000 20.122
88.000 20.105
90.000 20.090
92.000 20.078
94.000 20.067
96.000 20.057
98.000 20.049
100.000 20.042
Rust
Translated from Kotlin
fn header() {
print!(" Time: ");
for t in (0..100).step_by(10) {
print!(" {:7}", t);
}
println!();
}
fn analytic() {
print!("Analytic: ");
for t in (0..=100).step_by(10) {
print!(" {:7.3}", 20.0 + 80.0 * (-0.07 * f64::from(t)).exp());
}
println!();
}
fn euler<F: Fn(f64) -> f64>(f: F, mut y: f64, step: usize, end: usize) {
print!(" Step {:2}: ", step);
for t in (0..=end).step_by(step) {
if t % 10 == 0 {
print!(" {:7.3}", y);
}
y += step as f64 * f(y);
}
println!();
}
fn main() {
header();
analytic();
for &i in &[2, 5, 10] {
euler(|temp| -0.07 * (temp - 20.0), 100.0, i, 100);
}
}
Output:
Time: 0 10 20 30 40 50 60 70 80 90
Analytic: 100.000 59.727 39.728 29.797 24.865 22.416 21.200 20.596 20.296 20.147 20.073
Step 2: 100.000 57.634 37.704 28.328 23.918 21.843 20.867 20.408 20.192 20.090 20.042
Step 5: 100.000 53.800 34.280 26.034 22.549 21.077 20.455 20.192 20.081 20.034 20.014
Step 10: 100.000 44.000 27.200 22.160 20.648 20.194 20.058 20.017 20.005 20.002 20.000
Scala
object App{
def main(args : Array[String]) = {
def cooling( step : Int ) = {
eulerStep( (step , y) => {-0.07 * (y - 20)} ,
100.0,0,100,step)
}
cooling(10)
cooling(5)
cooling(2)
}
def eulerStep( func : (Int,Double) => Double,y0 : Double,
begin : Int, end : Int , step : Int) = {
println("Step size: %s".format(step))
var current : Int = begin
var y : Double = y0
while( current <= end){
println( "%d %.5f".format(current,y))
current += step
y += step * func(current,y)
}
println("DONE")
}
}
Output for step = 10;
Step size: 10
0 100.00000
10 44.00000
20 27.20000
30 22.16000
40 20.64800
50 20.19440
60 20.05832
70 20.01750
80 20.00525
90 20.00157
DONE
SequenceL
import <Utilities/Conversion.sl;
import <Utilities/Sequence.sl>;
T0 := 100.0;
TR := 20.0;
k := 0.07;
main(args(2)) :=
let
results[i] := euler(newtonCooling, T0, 100, stringToInt(args[i]), 0, "delta_t = " ++ args[i]);
in
delimit(results, '\n');
newtonCooling(t) := -k * (t - TR);
euler: (float -> float) * float * int * int * int * char(1) -> char(1);
euler(f, y, n, h, x, output(1)) :=
let
newOutput := output ++ "\n\t" ++ intToString(x) ++ "\t" ++ floatToString(y, 3);
newY := y + h * f(y);
newX := x + h;
in
output when x > n
else
euler(f, newY, n, h, newX, newOutput);
Based on C# version [http://rosettacode.org/wiki/Euler_method#C.23] but using tail recursion instead of looping.
Output:
For step size 10:
main.exe 10
"delta_t = 10
0 100.000
10 44.000
20 27.200
30 22.160
40 20.648
50 20.194
60 20.058
70 20.017
80 20.005
90 20.002
100 20.000"
Sidef
Translated from Perl
func euler_method(t0, t1, k, step_size) {
var results = [[0, t0]]
for s in (step_size..100 -> by(step_size)) {
t0 -= ((t0 - t1) * k * step_size)
results << [s, t0]
}
return results;
}
func analytical(t0, t1, k, time) {
(t0 - t1) * exp(-time * k) + t1
}
var (T0, T1, k) = (100, 20, .07)
var r2 = euler_method(T0, T1, k, 2).grep { _[0] %% 10 }
var r5 = euler_method(T0, T1, k, 5).grep { _[0] %% 10 }
var r10 = euler_method(T0, T1, k, 10).grep { _[0] %% 10 }
say "Time\t 2 err(%) 5 err(%) 10 err(%) Analytic"
say "-"*76
r2.range.each { |i|
var an = analytical(T0, T1, k, r2[i][0])
printf("%4d\t#{'%9.3f' * 7}\n",
r2[i][0],
r2[i][1], ( r2[i][1] / an) * 100 - 100,
r5[i][1], ( r5[i][1] / an) * 100 - 100,
r10[i][1], (r10[i][1] / an) * 100 - 100,
an)
}
Output:
Time 2 err(%) 5 err(%) 10 err(%) Analytic
----------------------------------------------------------------------------
0 100.000 0.000 100.000 0.000 100.000 0.000 100.000
10 57.634 -3.504 53.800 -9.923 44.000 -26.331 59.727
20 37.704 -5.094 34.281 -13.711 27.200 -31.534 39.728
30 28.328 -4.927 26.034 -12.629 22.160 -25.629 29.797
40 23.918 -3.808 22.549 -9.313 20.648 -16.959 24.865
50 21.843 -2.555 21.077 -5.972 20.194 -9.910 22.416
60 20.867 -1.569 20.455 -3.512 20.058 -5.384 21.200
70 20.408 -0.912 20.192 -1.959 20.017 -2.808 20.596
80 20.192 -0.512 20.081 -1.057 20.005 -1.432 20.296
90 20.090 -0.281 20.034 -0.559 20.002 -0.721 20.147
100 20.042 -0.152 20.014 -0.291 20.000 -0.361 20.073
Smalltalk
eulerOf: f init: y0 from: a to: b step: h
| t y |
t := a.
y := y0.
[ t < b ]
whileTrue: [
Transcript
show: t asString, ' ' , (y printShowingDecimalPlaces: 3);
cr.
t := t + h.
y := y + (h * (f value: t value: y)) ]
ODESolver new eulerOf: [:time :temp| -0.07 * (temp - 20)] init: 100 from: 0 to: 100 step: 10
Transcript:
0 100.000
10 44.000
20 27.200
30 22.160
40 20.648
50 20.194
60 20.058
70 20.017
80 20.005
90 20.002
Tcl
Translated from C++
proc euler {f y0 a b h} {
puts "computing $f over \[$a..$b\], step $h"
set y [expr {double($y0)}]
for {set t [expr {double($a)}]} {$t < $b} {set t [expr {$t + $h}]} {
puts [format "%.3f\t%.3f" $t $y]
set y [expr {$y + $h * double([$f $t $y])}]
}
puts "done"
}
Demonstration with the Newton Cooling Law:
proc newtonCoolingLaw {time temp} {
expr {-0.07 * ($temp - 20)}
}
euler newtonCoolingLaw 100 0 100 2
euler newtonCoolingLaw 100 0 100 5
euler newtonCoolingLaw 100 0 100 10
End of output:
...
computing newtonCoolingLaw over [0..100], step 10
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.017
80.000 20.005
90.000 20.002
done
VBA
Translated from Phix
Private Sub ivp_euler(f As String, y As Double, step As Integer, end_t As Integer)
Dim t As Integer
Debug.Print " Step "; step; ": ",
Do While t <= end_t
If t Mod 10 = 0 Then Debug.Print Format(y, "0.000"),
y = y + step * Application.Run(f, y)
t = t + step
Loop
Debug.Print
End Sub
Sub analytic()
Debug.Print " Time: ",
For t = 0 To 100 Step 10
Debug.Print " "; t,
Next t
Debug.Print
Debug.Print "Analytic: ",
For t = 0 To 100 Step 10
Debug.Print Format(20 + 80 * Exp(-0.07 * t), "0.000"),
Next t
Debug.Print
End Sub
Private Function cooling(temp As Double) As Double
cooling = -0.07 * (temp - 20)
End Function
Public Sub euler_method()
Dim r_cooling As String
r_cooling = "cooling"
analytic
ivp_euler r_cooling, 100, 2, 100
ivp_euler r_cooling, 100, 5, 100
ivp_euler r_cooling, 100, 10, 100
End Sub
Output:
Time: 0 10 20 30 40 50 60 70 80 90 100
Analytic: 100,000 59,727 39,728 29,797 24,865 22,416 21,200 20,596 20,296 20,147 20,073
Step 2 : 100,000 57,634 37,704 28,328 23,918 21,843 20,867 20,408 20,192 20,090 20,042
Step 5 : 100,000 53,800 34,281 26,034 22,549 21,077 20,455 20,192 20,081 20,034 20,014
Step 10 : 100,000 44,000 27,200 22,160 20,648 20,194 20,058 20,017 20,005 20,002 20,000
XPL0
include c:\cxpl\codes; \intrinsic 'code' declarations
proc Euler(Step); \Display cooling temperatures using Euler's method
int Step;
int Time; real Temp;
[Text(0, "Step "); IntOut(0, Step); Text(0, " ");
Time:= 0; Temp:= 100.0;
repeat if rem(Time/10) = 0 then RlOut(0, Temp);
Temp:= Temp + float(Step) * (-0.07*(Temp-20.0));
Time:= Time + Step;
until Time > 100;
CrLf(0);
];
real Time, Temp;
[Format(6,0); \display time heading
Text(0, "Time ");
Time:= 0.0;
while Time <= 100.1 do \(.1 avoids possible rounding error)
[RlOut(0, Time);
Time:= Time + 10.0;
];
CrLf(0);
Format(3,2); \display cooling temps using differential eqn.
Text(0, "Dif eq "); \ dTemp(time)/dtime = -k*Temp
Time:= 0.0;
while Time <= 100.1 do
[Temp:= 20.0 + (100.0-20.0) * Exp(-0.07*Time);
RlOut(0, Temp);
Time:= Time + 10.0;
];
CrLf(0);
Euler(2); \display cooling temps for various time steps
Euler(5);
Euler(10);
]
Output:
Time 0 10 20 30 40 50 60 70 80 90 100
Dif eq 100.00 59.73 39.73 29.80 24.86 22.42 21.20 20.60 20.30 20.15 20.07
Step 2 100.00 57.63 37.70 28.33 23.92 21.84 20.87 20.41 20.19 20.09 20.04
Step 5 100.00 53.80 34.28 26.03 22.55 21.08 20.46 20.19 20.08 20.03 20.01
Step 10 100.00 44.00 27.20 22.16 20.65 20.19 20.06 20.02 20.01 20.00 20.00
zkl
Translated from C
const FMT=" %7.3f";
fcn ivp_euler(f,y,step,end_t){
print(" Step %2d: ".fmt(step));
foreach t in ([0..end_t,step]){
if (t % 10 == 0) print(FMT.fmt(y));
y += f(t,y) * step;
}
println();
}
fcn analytic{
print(" Time: ");
foreach t in ([0..100,10]){ print(" %7g".fmt(t)) }
print("\nAnalytic: ");
foreach t in ([0..100,10]){ print(FMT.fmt(20.0 + 80.0 * (-0.07 * t).exp())) }
println();
}
fcn cooling(_,temp){ return(-0.07 * (temp - 20)) }
analytic();
ivp_euler(cooling, 100.0, 2, 100);
ivp_euler(cooling, 100.0, 5, 100);
ivp_euler(cooling, 100.0, 10, 100);
Output:
Time: 0 10 20 30 40 50 60 70 80 90 100
Analytic: 100.000 59.727 39.728 29.797 24.865 22.416 21.200 20.596 20.296 20.147 20.073
Step 2: 100.000 57.634 37.704 28.328 23.918 21.843 20.867 20.408 20.192 20.090 20.042
Step 5: 100.000 53.800 34.280 26.034 22.549 21.077 20.455 20.192 20.081 20.034 20.014
Step 10: 100.000 44.000 27.200 22.160 20.648 20.194 20.058 20.017 20.005 20.002 20.000
ZX Spectrum Basic
Translated from BBC_BASIC
10 LET d$="-0.07*(y-20)": LET y=100: LET a=0: LET b=100: LET s=10
20 LET t=a
30 IF t<=b THEN PRINT t;TAB 10;y: LET y=y+s*VAL d$: LET t=t+s: GO TO 30