Task
In chess, a queen attacks positions from where it is, in straight lines up-down and left-right as well as on both its diagonals. It attacks only pieces ''not'' of its own colour.
⇖ | ⇑ | ⇗ | ||
⇐ | ⇐ | ♛ | ⇒ | ⇒ |
⇙ | ⇓ | ⇘ | ||
⇙ | ⇓ | ⇘ | ||
⇓ |
The goal of Peaceful chess queen armies is to arrange m
black queens and m
white queens on an n-by-n
square grid, (the board), so that ''no queen attacks another of a different colour''.
;Task:
Create a routine to represent two-colour queens on a 2-D board. (Alternating black/white background colours, Unicode chess pieces and other embellishments are not necessary, but may be used at your discretion).
Create a routine to generate at least one solution to placing m
equal numbers of black and white queens on an n
square board.
Display here results for the m=4, n=5
case.
;References:
- [http://www.mathopt.org/Optima-Issues/optima62.pdf Peaceably Coexisting Armies of Queens] (Pdf) by Robert A. Bosch. Optima, the Mathematical Programming Socity newsletter, issue 62.
- [https://oeis.org/A250000 A250000] OEIS
D
{{trans|Go}}
import std.array;
import std.math;
import std.stdio;
import std.typecons;
enum Piece {
empty,
black,
white,
}
alias position = Tuple!(int, "i", int, "j");
bool place(int m, int n, ref position[] pBlackQueens, ref position[] pWhiteQueens) {
if (m == 0) {
return true;
}
bool placingBlack = true;
foreach (i; 0..n) {
inner:
foreach (j; 0..n) {
auto pos = position(i, j);
foreach (queen; pBlackQueens) {
if (queen == pos || !placingBlack && isAttacking(queen, pos)) {
continue inner;
}
}
foreach (queen; pWhiteQueens) {
if (queen == pos || placingBlack && isAttacking(queen, pos)) {
continue inner;
}
}
if (placingBlack) {
pBlackQueens ~= pos;
placingBlack = false;
} else {
pWhiteQueens ~= pos;
if (place(m - 1, n, pBlackQueens, pWhiteQueens)) {
return true;
}
pBlackQueens.length--;
pWhiteQueens.length--;
placingBlack = true;
}
}
}
if (!placingBlack) {
pBlackQueens.length--;
}
return false;
}
bool isAttacking(position queen, position pos) {
return queen.i == pos.i
|| queen.j == pos.j
|| abs(queen.i - pos.i) == abs(queen.j - pos.j);
}
void printBoard(int n, position[] blackQueens, position[] whiteQueens) {
auto board = uninitializedArray!(Piece[])(n * n);
board[] = Piece.empty;
foreach (queen; blackQueens) {
board[queen.i * n + queen.j] = Piece.black;
}
foreach (queen; whiteQueens) {
board[queen.i * n + queen.j] = Piece.white;
}
foreach (i,b; board) {
if (i != 0 && i % n == 0) {
writeln;
}
final switch (b) {
case Piece.black:
write("B ");
break;
case Piece.white:
write("W ");
break;
case Piece.empty:
int j = i / n;
int k = i - j * n;
if (j % 2 == k % 2) {
write("• "w);
} else {
write("◦ "w);
}
break;
}
}
writeln('\n');
}
void main() {
auto nms = [
[2, 1], [3, 1], [3, 2], [4, 1], [4, 2], [4, 3],
[5, 1], [5, 2], [5, 3], [5, 4], [5, 5],
[6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6],
[7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7],
];
foreach (nm; nms) {
writefln("%d black and %d white queens on a %d x %d board:", nm[1], nm[1], nm[0], nm[0]);
position[] blackQueens;
position[] whiteQueens;
if (place(nm[1], nm[0], blackQueens, whiteQueens)) {
printBoard(nm[0], blackQueens, whiteQueens);
} else {
writeln("No solution exists.\n");
}
}
}
{{out}}
1 black and 1 white queens on a 2 x 2 board:
No solution exists.
1 black and 1 white queens on a 3 x 3 board:
B ◦ •
◦ • W
• ◦ •
2 black and 2 white queens on a 3 x 3 board:
No solution exists.
1 black and 1 white queens on a 4 x 4 board:
B ◦ • ◦
◦ • W •
• ◦ • ◦
◦ • ◦ •
2 black and 2 white queens on a 4 x 4 board:
B ◦ • ◦
◦ • W •
B ◦ • ◦
◦ • W •
3 black and 3 white queens on a 4 x 4 board:
No solution exists.
1 black and 1 white queens on a 5 x 5 board:
B ◦ • ◦ •
◦ • W • ◦
• ◦ • ◦ •
◦ • ◦ • ◦
• ◦ • ◦ •
2 black and 2 white queens on a 5 x 5 board:
B ◦ • ◦ B
◦ • W • ◦
• W • ◦ •
◦ • ◦ • ◦
• ◦ • ◦ •
3 black and 3 white queens on a 5 x 5 board:
B ◦ • ◦ B
◦ • W • ◦
• W • ◦ •
◦ • ◦ B ◦
• W • ◦ •
4 black and 4 white queens on a 5 x 5 board:
• B • B •
◦ • ◦ • B
W ◦ W ◦ •
◦ • ◦ • B
W ◦ W ◦ •
5 black and 5 white queens on a 5 x 5 board:
No solution exists.
1 black and 1 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦
◦ • W • ◦ •
• ◦ • ◦ • ◦
◦ • ◦ • ◦ •
• ◦ • ◦ • ◦
◦ • ◦ • ◦ •
2 black and 2 white queens on a 6 x 6 board:
B ◦ • ◦ B ◦
◦ • W • ◦ •
• W • ◦ • ◦
◦ • ◦ • ◦ •
• ◦ • ◦ • ◦
◦ • ◦ • ◦ •
3 black and 3 white queens on a 6 x 6 board:
B ◦ • ◦ B B
◦ • W • ◦ •
• W • ◦ • ◦
◦ • ◦ • ◦ •
• ◦ W ◦ • ◦
◦ • ◦ • ◦ •
4 black and 4 white queens on a 6 x 6 board:
B ◦ • ◦ B B
◦ • W • ◦ •
• W • ◦ • ◦
◦ • ◦ • ◦ B
• ◦ W W • ◦
◦ • ◦ • ◦ •
5 black and 5 white queens on a 6 x 6 board:
• B • ◦ B ◦
◦ • ◦ B ◦ B
W ◦ • ◦ • ◦
W • W • ◦ •
• ◦ • ◦ • B
W • W • ◦ •
6 black and 6 white queens on a 6 x 6 board:
No solution exists.
1 black and 1 white queens on a 7 x 7 board:
B ◦ • ◦ • ◦ •
◦ • W • ◦ • ◦
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
2 black and 2 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
3 black and 3 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ • ◦ •
◦ • W • ◦ • ◦
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
4 black and 4 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
5 black and 5 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ • ◦ •
◦ • W • ◦ • ◦
• ◦ • ◦ • ◦ •
6 black and 6 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
• ◦ • ◦ • ◦ •
7 black and 7 white queens on a 7 x 7 board:
• B • ◦ • B •
◦ B ◦ • B • ◦
• B • ◦ • B •
◦ • ◦ • B • ◦
W ◦ W ◦ • ◦ W
◦ • ◦ W ◦ • ◦
W ◦ W W • ◦ •
Go
This is based on the C# code [https://www.reddit.com/r/coding/comments/b5eu7w/peaceful_chess_queen_armies_new_draft_rosetta/ here].
Textual rather than HTML output. Whilst the unicode symbols for the black and white queens are recognized by the Ubuntu 16.04 terminal, I found it hard to visually distinguish between them so I've used 'B' and 'W' instead.
package main
import "fmt"
const (
empty = iota
black
white
)
const (
bqueen = 'B'
wqueen = 'W'
bbullet = '•'
wbullet = '◦'
)
type position struct{ i, j int }
func iabs(i int) int {
if i < 0 {
return -i
}
return i
}
func place(m, n int, pBlackQueens, pWhiteQueens *[]position) bool {
if m == 0 {
return true
}
placingBlack := true
for i := 0; i < n; i++ {
inner:
for j := 0; j < n; j++ {
pos := position{i, j}
for _, queen := range *pBlackQueens {
if queen == pos || !placingBlack && isAttacking(queen, pos) {
continue inner
}
}
for _, queen := range *pWhiteQueens {
if queen == pos || placingBlack && isAttacking(queen, pos) {
continue inner
}
}
if placingBlack {
*pBlackQueens = append(*pBlackQueens, pos)
placingBlack = false
} else {
*pWhiteQueens = append(*pWhiteQueens, pos)
if place(m-1, n, pBlackQueens, pWhiteQueens) {
return true
}
*pBlackQueens = (*pBlackQueens)[0 : len(*pBlackQueens)-1]
*pWhiteQueens = (*pWhiteQueens)[0 : len(*pWhiteQueens)-1]
placingBlack = true
}
}
}
if !placingBlack {
*pBlackQueens = (*pBlackQueens)[0 : len(*pBlackQueens)-1]
}
return false
}
func isAttacking(queen, pos position) bool {
if queen.i == pos.i {
return true
}
if queen.j == pos.j {
return true
}
if iabs(queen.i-pos.i) == iabs(queen.j-pos.j) {
return true
}
return false
}
func printBoard(n int, blackQueens, whiteQueens []position) {
board := make([]int, n*n)
for _, queen := range blackQueens {
board[queen.i*n+queen.j] = black
}
for _, queen := range whiteQueens {
board[queen.i*n+queen.j] = white
}
for i, b := range board {
if i != 0 && i%n == 0 {
fmt.Println()
}
switch b {
case black:
fmt.Printf("%c ", bqueen)
case white:
fmt.Printf("%c ", wqueen)
case empty:
if i%2 == 0 {
fmt.Printf("%c ", bbullet)
} else {
fmt.Printf("%c ", wbullet)
}
}
}
fmt.Println("\n")
}
func main() {
nms := [][2]int{
{2, 1}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {4, 3},
{5, 1}, {5, 2}, {5, 3}, {5, 4}, {5, 5},
{6, 1}, {6, 2}, {6, 3}, {6, 4}, {6, 5}, {6, 6},
{7, 1}, {7, 2}, {7, 3}, {7, 4}, {7, 5}, {7, 6}, {7, 7},
}
for _, nm := range nms {
n, m := nm[0], nm[1]
fmt.Printf("%d black and %d white queens on a %d x %d board:\n", m, m, n, n)
var blackQueens, whiteQueens []position
if place(m, n, &blackQueens, &whiteQueens) {
printBoard(n, blackQueens, whiteQueens)
} else {
fmt.Println("No solution exists.\n")
}
}
}
{{out}}
1 black and 1 white queens on a 2 x 2 board:
No solution exists.
1 black and 1 white queens on a 3 x 3 board:
B ◦ •
◦ • W
• ◦ •
2 black and 2 white queens on a 3 x 3 board:
No solution exists.
1 black and 1 white queens on a 4 x 4 board:
B ◦ • ◦
• ◦ W ◦
• ◦ • ◦
• ◦ • ◦
2 black and 2 white queens on a 4 x 4 board:
B ◦ • ◦
• ◦ W ◦
B ◦ • ◦
• ◦ W ◦
3 black and 3 white queens on a 4 x 4 board:
No solution exists.
1 black and 1 white queens on a 5 x 5 board:
B ◦ • ◦ •
◦ • W • ◦
• ◦ • ◦ •
◦ • ◦ • ◦
• ◦ • ◦ •
2 black and 2 white queens on a 5 x 5 board:
B ◦ • ◦ B
◦ • W • ◦
• W • ◦ •
◦ • ◦ • ◦
• ◦ • ◦ •
3 black and 3 white queens on a 5 x 5 board:
B ◦ • ◦ B
◦ • W • ◦
• W • ◦ •
◦ • ◦ B ◦
• W • ◦ •
4 black and 4 white queens on a 5 x 5 board:
• B • B •
◦ • ◦ • B
W ◦ W ◦ •
◦ • ◦ • B
W ◦ W ◦ •
5 black and 5 white queens on a 5 x 5 board:
No solution exists.
1 black and 1 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦
• ◦ W ◦ • ◦
• ◦ • ◦ • ◦
• ◦ • ◦ • ◦
• ◦ • ◦ • ◦
• ◦ • ◦ • ◦
2 black and 2 white queens on a 6 x 6 board:
B ◦ • ◦ B ◦
• ◦ W ◦ • ◦
• W • ◦ • ◦
• ◦ • ◦ • ◦
• ◦ • ◦ • ◦
• ◦ • ◦ • ◦
3 black and 3 white queens on a 6 x 6 board:
B ◦ • ◦ B B
• ◦ W ◦ • ◦
• W • ◦ • ◦
• ◦ • ◦ • ◦
• ◦ W ◦ • ◦
• ◦ • ◦ • ◦
4 black and 4 white queens on a 6 x 6 board:
B ◦ • ◦ B B
• ◦ W ◦ • ◦
• W • ◦ • ◦
• ◦ • ◦ • B
• ◦ W W • ◦
• ◦ • ◦ • ◦
5 black and 5 white queens on a 6 x 6 board:
• B • ◦ B ◦
• ◦ • B • B
W ◦ • ◦ • ◦
W ◦ W ◦ • ◦
• ◦ • ◦ • B
W ◦ W ◦ • ◦
6 black and 6 white queens on a 6 x 6 board:
No solution exists.
1 black and 1 white queens on a 7 x 7 board:
B ◦ • ◦ • ◦ •
◦ • W • ◦ • ◦
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
2 black and 2 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
3 black and 3 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ • ◦ •
◦ • W • ◦ • ◦
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
4 black and 4 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
5 black and 5 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ • ◦ •
◦ • W • ◦ • ◦
• ◦ • ◦ • ◦ •
6 black and 6 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
• ◦ • ◦ • ◦ •
7 black and 7 white queens on a 7 x 7 board:
• B • ◦ • B •
◦ B ◦ • B • ◦
• B • ◦ • B •
◦ • ◦ • B • ◦
W ◦ W ◦ • ◦ W
◦ • ◦ W ◦ • ◦
W ◦ W W • ◦ •
Julia
GUI version, uses the Gtk library. The place! function is condensed from the C# example.
using Gtk
struct Position
row::Int
col::Int
end
function place!(numeach, bsize, bqueens, wqueens)
isattack(q, pos) = (q.row == pos.row || q.col == pos.col ||
abs(q.row - pos.row) == abs(q.col - pos.col))
noattack(qs, pos) = !any(x -> isattack(x, pos), qs)
positionopen(bqs, wqs, p) = !any(x -> x == p, bqs) && !any(x -> x == p, wqs)
placingbqueens = true
if numeach < 1
return true
end
for i in 1:bsize, j in 1:bsize
bpos = Position(i, j)
if positionopen(bqueens, wqueens, bpos)
if placingbqueens && noattack(wqueens, bpos)
push!(bqueens, bpos)
placingbqueens = false
elseif !placingbqueens && noattack(bqueens, bpos)
push!(wqueens, bpos)
if place!(numeach - 1, bsize, bqueens, wqueens)
return true
end
pop!(bqueens)
pop!(wqueens)
placingbqueens = true
end
end
end
if !placingbqueens
pop!(bqueens)
end
false
end
function peacefulqueenapp()
win = GtkWindow("Peaceful Chess Queen Armies", 800, 800) |> (GtkFrame() |> (box = GtkBox(:v)))
boardsize = 5
numqueenseach = 4
hbox = GtkBox(:h)
boardscale = GtkScale(false, 2:16)
set_gtk_property!(boardscale, :hexpand, true)
blabel = GtkLabel("Choose Board Size")
nqueenscale = GtkScale(false, 1:24)
set_gtk_property!(nqueenscale, :hexpand, true)
qlabel = GtkLabel("Choose Number of Queens Per Side")
solveit = GtkButton("Solve")
set_gtk_property!(solveit, :label, " Solve ")
solvequeens(wid) = (boardsize = Int(GAccessor.value(boardscale));
numqueenseach = Int(GAccessor.value(nqueenscale)); update!())
signal_connect(solvequeens, solveit, :clicked)
map(w->push!(hbox, w),[blabel, boardscale, qlabel, nqueenscale, solveit])
scrwin = GtkScrolledWindow()
grid = GtkGrid()
push!(scrwin, grid)
map(w -> push!(box, w),[hbox, scrwin])
piece = (white = "\u2655", black = "\u265B", blank = " ")
stylist = GtkStyleProvider(Gtk.CssProviderLeaf(data="""
label {background-image: image(cornsilk); font-size: 48px;}
button {background-image: image(tan); font-size: 48px;}"""))
function update!()
bqueens, wqueens = Vector{Position}(), Vector{Position}()
place!(numqueenseach, boardsize, bqueens, wqueens)
if length(bqueens) == 0
warn_dialog("No solution for board size $boardsize and $numqueenseach queens each.", win)
return
end
empty!(grid)
labels = Array{Gtk.GtkLabelLeaf, 2}(undef, (boardsize, boardsize))
buttons = Array{GtkButtonLeaf, 2}(undef, (boardsize, boardsize))
for i in 1:boardsize, j in 1:boardsize
if isodd(i + j)
grid[i, j] = buttons[i, j] = GtkButton(piece.blank)
set_gtk_property!(buttons[i, j], :expand, true)
push!(Gtk.GAccessor.style_context(buttons[i, j]), stylist, 600)
else
grid[i, j] = labels[i, j] = GtkLabel(piece.blank)
set_gtk_property!(labels[i, j], :expand, true)
push!(Gtk.GAccessor.style_context(labels[i, j]), stylist, 600)
end
pos = Position(i, j)
if pos in bqueens
set_gtk_property!(grid[i, j], :label, piece.black)
elseif pos in wqueens
set_gtk_property!(grid[i, j], :label, piece.white)
end
end
showall(win)
end
update!()
cond = Condition()
endit(w) = notify(cond)
signal_connect(endit, win, :destroy)
showall(win)
wait(cond)
end
peacefulqueenapp()
Kotlin
{{trans|D}}
import kotlin.math.abs
enum class Piece {
Empty,
Black,
White,
}
typealias Position = Pair<Int, Int>
fun place(m: Int, n: Int, pBlackQueens: MutableList<Position>, pWhiteQueens: MutableList<Position>): Boolean {
if (m == 0) {
return true
}
var placingBlack = true
for (i in 0 until n) {
inner@
for (j in 0 until n) {
val pos = Position(i, j)
for (queen in pBlackQueens) {
if (queen == pos || !placingBlack && isAttacking(queen, pos)) {
continue@inner
}
}
for (queen in pWhiteQueens) {
if (queen == pos || placingBlack && isAttacking(queen, pos)) {
continue@inner
}
}
placingBlack = if (placingBlack) {
pBlackQueens.add(pos)
false
} else {
pWhiteQueens.add(pos)
if (place(m - 1, n, pBlackQueens, pWhiteQueens)) {
return true
}
pBlackQueens.removeAt(pBlackQueens.lastIndex)
pWhiteQueens.removeAt(pWhiteQueens.lastIndex)
true
}
}
}
if (!placingBlack) {
pBlackQueens.removeAt(pBlackQueens.lastIndex)
}
return false
}
fun isAttacking(queen: Position, pos: Position): Boolean {
return queen.first == pos.first
|| queen.second == pos.second
|| abs(queen.first - pos.first) == abs(queen.second - pos.second)
}
fun printBoard(n: Int, blackQueens: List<Position>, whiteQueens: List<Position>) {
val board = MutableList(n * n) { Piece.Empty }
for (queen in blackQueens) {
board[queen.first * n + queen.second] = Piece.Black
}
for (queen in whiteQueens) {
board[queen.first * n + queen.second] = Piece.White
}
for ((i, b) in board.withIndex()) {
if (i != 0 && i % n == 0) {
println()
}
if (b == Piece.Black) {
print("B ")
} else if (b == Piece.White) {
print("W ")
} else {
val j = i / n
val k = i - j * n
if (j % 2 == k % 2) {
print("• ")
} else {
print("◦ ")
}
}
}
println('\n')
}
fun main() {
val nms = listOf(
Pair(2, 1), Pair(3, 1), Pair(3, 2), Pair(4, 1), Pair(4, 2), Pair(4, 3),
Pair(5, 1), Pair(5, 2), Pair(5, 3), Pair(5, 4), Pair(5, 5),
Pair(6, 1), Pair(6, 2), Pair(6, 3), Pair(6, 4), Pair(6, 5), Pair(6, 6),
Pair(7, 1), Pair(7, 2), Pair(7, 3), Pair(7, 4), Pair(7, 5), Pair(7, 6), Pair(7, 7)
)
for ((n, m) in nms) {
println("$m black and $m white queens on a $n x $n board:")
val blackQueens = mutableListOf<Position>()
val whiteQueens = mutableListOf<Position>()
if (place(m, n, blackQueens, whiteQueens)) {
printBoard(n, blackQueens, whiteQueens)
} else {
println("No solution exists.\n")
}
}
}
{{out}}
1 black and 1 white queens on a 2 x 2 board:
No solution exists.
1 black and 1 white queens on a 3 x 3 board:
B ◦ •
◦ • W
• ◦ •
2 black and 2 white queens on a 3 x 3 board:
No solution exists.
1 black and 1 white queens on a 4 x 4 board:
B ◦ • ◦
◦ • W •
• ◦ • ◦
◦ • ◦ •
2 black and 2 white queens on a 4 x 4 board:
B ◦ • ◦
◦ • W •
B ◦ • ◦
◦ • W •
3 black and 3 white queens on a 4 x 4 board:
No solution exists.
1 black and 1 white queens on a 5 x 5 board:
B ◦ • ◦ •
◦ • W • ◦
• ◦ • ◦ •
◦ • ◦ • ◦
• ◦ • ◦ •
2 black and 2 white queens on a 5 x 5 board:
B ◦ • ◦ B
◦ • W • ◦
• W • ◦ •
◦ • ◦ • ◦
• ◦ • ◦ •
3 black and 3 white queens on a 5 x 5 board:
B ◦ • ◦ B
◦ • W • ◦
• W • ◦ •
◦ • ◦ B ◦
• W • ◦ •
4 black and 4 white queens on a 5 x 5 board:
• B • B •
◦ • ◦ • B
W ◦ W ◦ •
◦ • ◦ • B
W ◦ W ◦ •
5 black and 5 white queens on a 5 x 5 board:
No solution exists.
1 black and 1 white queens on a 6 x 6 board:
B ◦ • ◦ • ◦
◦ • W • ◦ •
• ◦ • ◦ • ◦
◦ • ◦ • ◦ •
• ◦ • ◦ • ◦
◦ • ◦ • ◦ •
2 black and 2 white queens on a 6 x 6 board:
B ◦ • ◦ B ◦
◦ • W • ◦ •
• W • ◦ • ◦
◦ • ◦ • ◦ •
• ◦ • ◦ • ◦
◦ • ◦ • ◦ •
3 black and 3 white queens on a 6 x 6 board:
B ◦ • ◦ B B
◦ • W • ◦ •
• W • ◦ • ◦
◦ • ◦ • ◦ •
• ◦ W ◦ • ◦
◦ • ◦ • ◦ •
4 black and 4 white queens on a 6 x 6 board:
B ◦ • ◦ B B
◦ • W • ◦ •
• W • ◦ • ◦
◦ • ◦ • ◦ B
• ◦ W W • ◦
◦ • ◦ • ◦ •
5 black and 5 white queens on a 6 x 6 board:
• B • ◦ B ◦
◦ • ◦ B ◦ B
W ◦ • ◦ • ◦
W • W • ◦ •
• ◦ • ◦ • B
W • W • ◦ •
6 black and 6 white queens on a 6 x 6 board:
No solution exists.
1 black and 1 white queens on a 7 x 7 board:
B ◦ • ◦ • ◦ •
◦ • W • ◦ • ◦
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
2 black and 2 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
3 black and 3 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ • ◦ •
◦ • W • ◦ • ◦
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
4 black and 4 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
• ◦ • ◦ • ◦ •
◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ •
5 black and 5 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ • ◦ •
◦ • W • ◦ • ◦
• ◦ • ◦ • ◦ •
6 black and 6 white queens on a 7 x 7 board:
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
B ◦ • ◦ B ◦ •
◦ • W • ◦ • W
• ◦ • ◦ • ◦ •
7 black and 7 white queens on a 7 x 7 board:
• B • ◦ • B •
◦ B ◦ • B • ◦
• B • ◦ • B •
◦ • ◦ • B • ◦
W ◦ W ◦ • ◦ W
◦ • ◦ W ◦ • ◦
W ◦ W W • ◦ •
Perl
#!/usr/bin/perl
use strict; # http://www.rosettacode.org/wiki/Peaceful_chess_queen_armies
use warnings;
my $m = shift // 4;
my $n = shift // 5;
my %seen;
my $gaps = join '|', qr/-*/, map qr/.{$_}(?:-.{$_})*/sx, $n-1, $n, $n+1;
my $attack = qr/(\w)(?:$gaps)(?!\1)\w/;
place( scalar +('-' x $n . "\n") x $n );
print "No solution to $m $n\n";
sub place
{
local $_ = shift;
$seen{$_}++ || /$attack/ and return; # previously or attack
(my $have = tr/WB//) < $m * 2 or exit !print "Solution to $m $n\n\n$_";
place( s/-\G/ qw(W B)[$have % 2] /er ) while /-/g; # place next queen
}
{{out}}
Solution to 4 5
W---W
--B--
-B-B-
--B--
W---W
Phix
{{trans|Go}} {{trans|Python}}
-- demo\rosetta\Queen_Armies.exw
string html = ""
constant as_html = true
constant queens = {``,
`♛`,
`<font color="green">♕</font>`,
`<span style="color:red">?</span>`}
procedure showboard(integer n, sequence blackqueens, whitequeens)
sequence board = repeat(repeat('-',n),n)
for i=1 to length(blackqueens) do
integer {qi,qj} = blackqueens[i]
board[qi,qj] = 'B'
{qi,qj} = whitequeens[i]
board[qi,qj] = 'W'
end for
if as_html then
string out = sprintf("
<b>## %d black and %d white queens on a %d-by-%d board</b>
\n",
{length(blackqueens),length(whitequeens),n,n}),
tbl = ""
out &= "<table style=\"font-weight:bold\">\n "
for x=1 to n do
for y=1 to n do
if y=1 then tbl &= " </tr>\n <tr valign=\"middle\" align=\"center\">\n" end if
integer xw = find({x,y},blackqueens)!=0,
xb = find({x,y},whitequeens)!=0,
dx = xw+xb*2+1
string ch = queens[dx],
bg = iff(mod(x+y,2)?"":` bgcolor="silver"`)
tbl &= sprintf(" <td style=\"width:14pt; height:14pt;\"%s>%s</td>\n",{bg,ch})
end for
end for
out &= tbl[11..$]
out &= " </tr>\n</table>\n
\n"
html &= out
else
integer b = length(blackqueens),
w = length(whitequeens)
printf(1,"%d black and %d white queens on a %d x %d board:\n", {b, w, n, n})
puts(1,join(board,"\n")&"\n")
-- ?{n,blackqueens, whitequeens}
end if
end procedure
function isAttacking(sequence queen, pos)
integer {qi,qj} = queen, {pi,pj} = pos
return qi=pi or qj=pj or abs(qi-pi)=abs(qj-pj)
end function
function place(integer m, n, sequence blackqueens = {}, whitequeens = {})
if m == 0 then showboard(n,blackqueens,whitequeens) return true end if
bool placingBlack := true
for i=1 to n do
for j=1 to n do
sequence pos := {i, j}
for q=1 to length(blackqueens) do
sequence queen := blackqueens[q]
if queen == pos or ((not placingBlack) and isAttacking(queen, pos)) then
pos = {}
exit
end if
end for
if pos!={} then
for q=1 to length(whitequeens) do
sequence queen := whitequeens[q]
if queen == pos or (placingBlack and isAttacking(queen, pos)) then
pos = {}
exit
end if
end for
if pos!={} then
if placingBlack then
blackqueens = append(blackqueens, pos)
placingBlack = false
else
whitequeens = append(whitequeens, pos)
if place(m-1, n, blackqueens, whitequeens) then return true end if
blackqueens = blackqueens[1..$-1]
whitequeens = whitequeens[1..$-1]
placingBlack = true
end if
end if
end if
end for
end for
return false
end function
for n=2 to 7 do
for m=1 to n-(n<5) do
if not place(m,n) then
string no = sprintf("Cannot place %d+ queen armies on a %d-by-%d board",{m,n,n})
if as_html then
html &= sprintf("<b># %s</b>
\n\n",{no})
else
printf(1,"%s.\n", {no})
end if
end if
end for
end for
constant html_header = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Rosettacode Rank Languages by popularity</title>
</head>
<body>
<h2>queen armies</h2>
""", -- or <div style="overflow:scroll; height:250px;">
html_footer = """
</body>
</html>
""" -- or </div>
if as_html then
integer fn = open("queen_armies.html","w")
puts(fn,html_header)
puts(fn,html)
puts(fn,html_footer)
close(fn)
printf(1,"See queen_armies.html\n")
end if
?"done"
{} = wait_key()
{{out}} with as_html = false
Cannot place 1+ queen armies on a 2-by-2 board.
1 black and 1 white queens on a 3 x 3 board:
B--
--W
---
Cannot place 2+ queen armies on a 3-by-3 board.
<snip>
7 black and 7 white queens on a 7 x 7 board:
-B---B-
-B--B--
-B---B-
----B--
W-W---W
---W---
W-WW---
{{out}} with as_html = true
## 1 black and 1 white queens on a 3-by-3 board
♛ | ||
♕ | ||
# Cannot place 2+ queen armies on a 3-by-3 board
<snip>
## 7 black and 7 white queens on a 7-by-7 board
♛ | ♛ | |||||
♛ | ♛ | |||||
♛ | ♛ | |||||
♛ | ||||||
♕ | ♕ | ♕ | ||||
♕ | ||||||
♕ | ♕ | ♕ |
Python
Python: Textual output
from itertools import combinations, product, count
from functools import lru_cache, reduce
_bbullet, _wbullet = '\u2022\u25E6'
_or = set.__or__
def place(m, n):
"Place m black and white queens, peacefully, on an n-by-n board"
board = set(product(range(n), repeat=2)) # (x, y) tuples
placements = {frozenset(c) for c in combinations(board, m)}
for blacks in placements:
black_attacks = reduce(_or,
(queen_attacks_from(pos, n) for pos in blacks),
set())
for whites in {frozenset(c) # Never on blsck attacking squares
for c in combinations(board - black_attacks, m)}:
if not black_attacks & whites:
return blacks, whites
return set(), set()
@lru_cache(maxsize=None)
def queen_attacks_from(pos, n):
x0, y0 = pos
a = set([pos]) # Its position
a.update((x, y0) for x in range(n)) # Its row
a.update((x0, y) for y in range(n)) # Its column
# Diagonals
for x1 in range(n):
# l-to-r diag
y1 = y0 -x0 +x1
if 0 <= y1 < n:
a.add((x1, y1))
# r-to-l diag
y1 = y0 +x0 -x1
if 0 <= y1 < n:
a.add((x1, y1))
return a
def pboard(black_white, n):
"Print board"
if black_white is None:
blk, wht = set(), set()
else:
blk, wht = black_white
print(f"## {len(blk)} black and {len(wht)} white queens "
f"on a {n}-by-{n} board:", end='')
for x, y in product(range(n), repeat=2):
if y == 0:
print()
xy = (x, y)
ch = ('?' if xy in blk and xy in wht
else 'B' if xy in blk
else 'W' if xy in wht
else _bbullet if (x + y)%2 else _wbullet)
print('%s' % ch, end='')
print()
if __name__ == '__main__':
n=2
for n in range(2, 7):
print()
for m in count(1):
ans = place(m, n)
if ans[0]:
pboard(ans, n)
else:
print (f"# Can't place {m}+ queens on a {n}-by-{n} board")
break
#
print('\n')
m, n = 5, 7
ans = place(m, n)
pboard(ans, n)
{{out}}
# Can't place 1+ queens on a 2-by-2 board
## 1 black and 1 white queens on a 3-by-3 board:
◦•◦
B◦•
◦•W
# Can't place 2+ queens on a 3-by-3 board
## 1 black and 1 white queens on a 4-by-4 board:
◦•W•
B◦•◦
◦•◦•
•◦•◦
## 2 black and 2 white queens on a 4-by-4 board:
◦B◦•
•B•◦
◦•◦•
W◦W◦
# Can't place 3+ queens on a 4-by-4 board
## 1 black and 1 white queens on a 5-by-5 board:
◦•◦•◦
W◦•◦•
◦•◦•◦
•◦•◦B
◦•◦•◦
## 2 black and 2 white queens on a 5-by-5 board:
◦•◦•W
•◦B◦•
◦•◦•◦
•◦•B•
◦W◦•◦
## 3 black and 3 white queens on a 5-by-5 board:
◦W◦•◦
•◦•◦W
B•B•◦
B◦•◦•
◦•◦W◦
## 4 black and 4 white queens on a 5-by-5 board:
◦•B•B
W◦•◦•
◦W◦W◦
W◦•◦•
◦•B•B
# Can't place 5+ queens on a 5-by-5 board
## 1 black and 1 white queens on a 6-by-6 board:
◦•◦•◦•
W◦•◦•◦
◦•◦•◦•
•◦•◦B◦
◦•◦•◦•
•◦•◦•◦
## 2 black and 2 white queens on a 6-by-6 board:
◦•◦•◦•
•◦B◦•◦
◦•◦•◦•
•◦•B•◦
◦•◦•◦•
W◦•◦W◦
## 3 black and 3 white queens on a 6-by-6 board:
◦•B•◦•
•B•◦•◦
◦•◦W◦W
•◦•◦•◦
W•◦•◦•
•◦•◦B◦
## 4 black and 4 white queens on a 6-by-6 board:
WW◦•W•
•W•◦•◦
◦•◦•◦B
•◦B◦•◦
◦•◦B◦•
•◦•B•◦
## 5 black and 5 white queens on a 6-by-6 board:
◦•W•W•
B◦•◦•◦
◦•W•◦W
B◦•◦•◦
◦•◦•◦W
BB•B•◦
# Can't place 6+ queens on a 6-by-6 board
## 5 black and 5 white queens on a 7-by-7 board:
◦•◦•B•◦
•W•◦•◦W
◦•◦•B•◦
B◦•◦•◦•
◦•B•◦•◦
•◦•B•◦•
◦W◦•◦WW
Python: HTML output
Uses the solver function place
from the above textual output case.
from peaceful_queen_armies_simpler import place
from itertools import product, count
_bqueenh, _wqueenh = '♛', '<font color="green">♕</font>'
def hboard(black_white, n):
"HTML board generator"
if black_white is None:
blk, wht = set(), set()
else:
blk, wht = black_white
out = (f"
<b>## {len(blk)} black and {len(wht)} white queens "
f"on a {n}-by-{n} board</b>
\n")
out += '<table style="font-weight:bold">\n '
tbl = ''
for x, y in product(range(n), repeat=2):
if y == 0:
tbl += ' </tr>\n <tr valign="middle" align="center">\n'
xy = (x, y)
ch = ('<span style="color:red">?</span>' if xy in blk and xy in wht
else _bqueenh if xy in blk
else _wqueenh if xy in wht
else "")
bg = "" if (x + y)%2 else ' bgcolor="silver"'
tbl += f' <td style="width:14pt; height:14pt;"{bg}>{ch}</td>\n'
out += tbl[7:]
out += ' </tr>\n</table>\n
\n'
return out
if __name__ == '__main__':
n=2
html = ''
for n in range(2, 7):
print()
for m in count(1):
ans = place(m, n)
if ans[0]:
html += hboard(ans, n)
else:
html += (f"<b># Can't place {m}+ queen armies on a "
f"{n}-by-{n} board</b>
\n\n" )
break
#
html += '
\n'
m, n = 6, 7
ans = place(m, n)
html += hboard(ans, n)
with open('peaceful_queen_armies.htm', 'w') as f:
f.write(html)
{{out}}
# Can't place 1+ queen armies on a 2-by-2 board
## 1 black and 1 white queens on a 3-by-3 board
♛ | ||
♕ |
# Can't place 2+ queen armies on a 3-by-3 board
## 1 black and 1 white queens on a 4-by-4 board
♕ | |||
♛ | |||
## 2 black and 2 white queens on a 4-by-4 board
♛ | |||
♛ | |||
♕ | ♕ |
# Can't place 3+ queen armies on a 4-by-4 board
## 1 black and 1 white queens on a 5-by-5 board
♕ | ||||
♛ | ||||
## 2 black and 2 white queens on a 5-by-5 board
♕ | ||||
♛ | ||||
♛ | ||||
♕ |
## 3 black and 3 white queens on a 5-by-5 board
♕ | ||||
♕ | ||||
♛ | ♛ | |||
♛ | ||||
♕ |
## 4 black and 4 white queens on a 5-by-5 board
♛ | ♛ | |||
♕ | ||||
♕ | ♕ | |||
♕ | ||||
♛ | ♛ |
# Can't place 5+ queen armies on a 5-by-5 board
## 1 black and 1 white queens on a 6-by-6 board
♕ | |||||
♛ | |||||
## 2 black and 2 white queens on a 6-by-6 board
♛ | |||||
♛ | |||||
♕ | ♕ |
## 3 black and 3 white queens on a 6-by-6 board
♛ | |||||
♛ | |||||
♕ | ♕ | ||||
♕ | |||||
♛ |
## 4 black and 4 white queens on a 6-by-6 board
♕ | ♕ | ♕ | |||
♕ | |||||
♛ | |||||
♛ | |||||
♛ | |||||
♛ |
## 5 black and 5 white queens on a 6-by-6 board
♕ | ♕ | ||||
♛ | |||||
♕ | ♕ | ||||
♛ | |||||
♕ | |||||
♛ | ♛ | ♛ |
# Can't place 6+ queen armies on a 6-by-6 board
## 6 black and 6 white queens on a 7-by-7 board
♛ | ♛ | |||||
♕ | ||||||
♕ | ♕ | ♕ | ||||
♕ | ||||||
♛ | ♛ | |||||
♕ | ||||||
♛ | ♛ |
zkl
fcn isAttacked(q, x,y) // ( (r,c), x,y ) : is queen at r,c attacked by q@(x,y)?
{ r,c:=q; (r==x or c==y or r+c==x+y or r-c==x-y) }
fcn isSafe(r,c,qs) // queen safe at (r,c)?, qs=( (r,c),(r,c)..)
{ ( not qs.filter1(isAttacked,r,c) ) }
fcn isEmpty(r,c,qs){ (not (qs and qs.filter1('wrap([(x,y)]){ r==x and c==y })) ) }
fcn _peacefulQueens(N,M,qa,qb){ //--> False | (True,((r,c)..),((r,c)..) )
// qa,qb --> // ( (r,c),(r,c).. ), solution so far to last good spot
if(qa.len()==M==qb.len()) return(True,qa,qb);
n, x,y := N, 0,0;
if(qa) x,y = qa[-1]; else n=(N+1)/2; // first queen, first quadrant only
foreach r in ([x..n-1]){
foreach c in ([y..n-1]){
if(isEmpty(r,c,qa) and isSafe(r,c,qb)){
qc,qd := qa.append(T(r,c)), self.fcn(N,M, qb,qc);
if(qd) return( if(qd[0]==True) qd else T(qc,qd) );
}
}
y=0
}
False
}
fcn peacefulQueens(N=5,M=4){ # NxN board, M white and black queens
qs:=_peacefulQueens(N,M, T,T);
println("Solution for %dx%d board with %d black and %d white queens:".fmt(N,N,M,M));
if(not qs)println("None");
else{
z:=Data(Void,"-"*N*N);
foreach r,c in (qs[1]){ z[r*N + c]="W" }
foreach r,c in (qs[2]){ z[r*N + c]="B" }
z.text.pump(Void,T(Void.Read,N-1),"println");
}
}
peacefulQueens();
foreach n in ([4..10]){ peacefulQueens(n,n) }
{{out}}
Solution for 5x5 board with 4 black and 4 white queens:
W---W
--B--
-B-B-
--B--
W---W
Solution for 4x4 board with 4 black and 4 white queens:
None
Solution for 5x5 board with 5 black and 5 white queens:
None
Solution for 6x6 board with 6 black and 6 white queens:
None
Solution for 7x7 board with 7 black and 7 white queens:
W---W-W
--B----
-B-B-B-
--B----
W-----W
--BB---
W-----W
Solution for 8x8 board with 8 black and 8 white queens:
W---W---
--B---BB
W---W---
--B---B-
---B---B
-W---W--
W---W---
--B-----
Solution for 9x9 board with 9 black and 9 white queens:
W---W---W
--B---B--
-B---B---
---W---W-
-B---B---
---W---W-
-B---B---
---W---W-
-B-------
Solution for 10x10 board with 10 black and 10 white queens:
W---W---WW
--B---B---
-B-B------
-----W-W-W
-BBB------
-----W-W-W
-B--------
------B---
---B------
----------