Task
Write a program that does the following in this order:
- Input an amount of time to sleep in whatever units are most natural for your language (milliseconds, seconds, ticks, etc.). This unit should be noted in comments or in a description.
- [[Hello world/Text|Print]] "Sleeping..."
- Sleep the main [[thread]] for the given amount of time.
- Print "Awake!"
- End.
Related tasks
- [[Nautical bell]]
360 Assembly
REENTRANT means the program can be called from several callers simultaneously. The program obtains storage (memory) at each invocation. Sleep (logically swapped out task) is established through STIMER macro (SVC 47)
START
PRINT DATA,GEN
YREGS , REGISTER EQUATES (e.g. 0 = R0)
SLEEP CSECT
SLEEP AMODE 31 addressing mode 31 bit
SLEEP RMODE ANY loader determines 31 or 24
***********************************************************************
* REENTRANT. Logically swap out a task for a number of seconds
* specified in PARM. Minimum 0, maximum 60 seconds
*
* MVS rexx (the original rexx) does not have a sleep function. This
* program can be called from rexx, assuming this program is in
* LINKLIST, as follows:
*
* /* rexx */
* wait_time = '6' /* number of seconds to sleep */
* say 'Sleeping...'
* address LINKMVS "SLEEP wait_time" /* invoke SLEEP */
* say 'Awake!
***********************************************************************
PROLOG BAKR R14,0 satck caller's registers
LR R4,R1 save parm pointer
LR R12,R15 entry point addr to R12
USING SLEEP,R12 tell assembler about that
B AROUND avoid abend S0C1
DC C'SLEEP ' CSECT NAME
DC C'C=2014.05.10 ' CHANGE DATE
DC C'A=&SYSDATE ' ASSEMBLY DATE
DC C'T=&SYSTIME ' CHANGE TIME
DC C'MarcvdM. ' PROGRAMMER NAME
AROUND L R10,0(0,R4) load parm address in R10
XR R15,R15 clear R15
LH R15,0(0,R10) load parm length in R15
LR R6,R15 save length in R6
LTR R15,R15 parm length 0?
BZ NOPARM yes, exit before getmain
C R6,F2 parmlength > 2 ?
BH NOPARM yes, exit before getmain
STORAGE OBTAIN,LENGTH=WALEN,LOC=ANY get some storage
LR R9,R1 address of storage in R9
USING WAREAX,R9 base for data section (DSECT)
MVC EYECAT,=C'**MARC**' make storage easy to find in dump
MVC SECONDS,C00 set field to F0F0
C R6,F1 parmlength = 1?
BNE COPYSECS no, copy both bytes
MVC SECONDS+1(1),2(R10) yes, just copy one byte.
B TRTEST
COPYSECS MVC SECONDS,2(R10)
* test supplied parameter for valid integer values
TRTEST TRT SECONDS(1),VALINT6 first parm byte no higher as 6?
BNZ NOPARM_REL higher, release storage and return
TRT SECONDS+1(1),VALINT9 second byte valid?
BNZ NOPARM_REL no, release storage and return
CLC SECONDS(1),=C'6' first parm byte < 6?
BNE DOWAIT yes, do wait
CLC SECONDS+1(1),=C'0' first eq. 6, second > 0?
BNE NOPARM_REL yes, release storage and return
DOWAIT DS 0H
MVC WAWTO(DWTOL),DWTO copy WTO list form to obtained st.
MVC WAWTO+18(2),SECONDS copy in nr. of seconds
WTO MF=(E,WAWTO) issue WTO, execute form
MVC HOURS,C00 zero out hours
MVC MINUTS,C00 and minutes
MVC REST,C00 and milliseconds
STIMER WAIT,DINTVL=TIMEVAL SVC 47: logical swap out (sleep)
B EXIT done
NOPARM_REL DS 0H
STORAGE RELEASE,ADDR=(R9),LENGTH=WALEN free obtained storage
LA R15,4 set return code 4
B RETURN return to caller
EXIT DS 0H
STORAGE RELEASE,ADDR=(R9),LENGTH=WALEN free obtained storage
WTO ' Awake!',ROUTCDE=11 fixed wake-up string
NOPARM EQU *
RETURN PR , return to caller
*
* --------------------------------------------------------------------
* CONSTANTS
* --------------------------------------------------------------------
DWTO WTO ' Sleeping... (XX seconds)',ROUTCDE=11,MF=L
DWTOL EQU *-DWTO length of WTO list form
F1 DC F'1'
F2 DC F'2'
C00 DC C'00'
VALINT6 DC 256XL1'01'
ORG *-16
VALOK6 DC 7XL1'00' F0-F6: OFFSETS 240-246
VALINT9 DC 256XL1'01'
ORG *-16
VALOK9 DC 10XL1'00' F0-F9: OFFSETS 240-249
DS 0D
LTORG , FORCE DISPLACEMENT LITERALS
* --------------------------------------------------------------------
* DSECT (data section)
* --------------------------------------------------------------------
WAREAX DSECT ,
WAWTO DS CL(DWTOL) reentrant WTO area
EYECAT DS CL8
TIMEVAL DS 0CL8
HOURS DS CL2 will be zeroed
MINUTS DS CL2 will be zeroed
SECONDS DS CL2 from parm
REST DS CL2 will be zeroed
WALEN EQU *-WAREAX length of DSECT
* --------------------------------------------------------------------
END SLEEP
'''output''' invoked with PARM='6' (+ sign indicates "problem state" (non system key) execution
+ Sleeping... (06 seconds)
+ Awake!
```
## 8051 Assembly
Input and output is dependent on hardware. The time units are machine cycles, which depends both on the oscillator frequency and the oscillator periods to machine cycle conversion factor. This code puts the processor into 'idle' mode, where code execution is stopped and resumed via an interrupt.
```asm
ORG RESET
jmp main
ORG TIMER0
; timer interrupt only used to wake the processor
clr tr0
reti
main:
setb ea ; enable interrupts
setb et0 ; enable timer0 interrupt
mov tl0, #0 ; start timer counter at zero
mov th0, #0 ; these two values dictate the length of sleep
mov a, pcon ; copy power control register
setb a.0 ; set idl bit
setb tr0 ; start timer
; sleeping...
mov pcon, a ; move a back into pcon (processor sleeps after this instruction finishes)
; when the timer overflows and the timer interrupt returns, execution will resume at this spot
; Awake!
jmp $
```
## 8th
```forth
f:stdin f:getline
"Sleeping..." . cr
eval sleep
"Awake!" . cr bye
```
## Ada
The Ada delay statement takes an argument of type Duration, which is a real number counting the number of seconds to delay. Thus, 2.0 will delay 2.0 seconds, while 0.001 will delay 0.001 seconds.
```ada
with Ada.Text_Io; use Ada.Text_Io;
with Ada.Float_Text_Io; use Ada.Float_Text_Io;
procedure Sleep is
In_Val : Float;
begin
Get(In_Val);
Put_Line("Sleeping...");
delay Duration(In_Val);
Put_Line("Awake!");
end Sleep;
```
## Aime
```aime
o_text("Sleeping...\n");
# Sleep X seconds
sleep(atoi(argv(1)));
# Sleep X microseconds
#usleep(atoi(argv(1)));
o_text("Awake!\n");
```
## ALGOL 68
Only works for Microsoft Windows because it uses Windows-specific ping syntax.
```algol68
# using ping to sleep #
INT milliseconds = read int; # ping uses milliseconds #
print ("Sleeping...");
VOID (system ("ping 0.0.0.1 -n 1 -w " + whole (milliseconds, 0) + " >NUL"));
# 0.0.0.1 is an invalid IP address and cannot be used, so this will never conflict with a real IP address #
# ping -n gives number of tries, -w timeout, and >NUL deletes output so the user does not see it #
print (new line);
print ("Awake!")
```
## AntLang
```AntLang
milliseconds: eval[input["How long should I sleep? "]] / eval = evil, but this is just a simple demo
echo["Sleeping..."]
sleep[milliseconds]
echo["Awake!"]
```
## Applesoft BASIC
The cycles and times calculated should only be taken as a minimum delay.
```ApplesoftBasic
10 POKE 768,169: POKE 770,76
20 POKE 771,168: POKE 772,252
30 INPUT "ENTER WAIT VALUE (1-256) : ";A
40 IF A < 1 OR A > 256 THEN 30
50 POKE 769,(A < 256) * A
60 LET C = (26 + 27 * A + 5 * A ^ 2) / 2
70 PRINT "WAIT FOR "C" CYCLES OR "
80 PRINT C * 14 / 14.318181" MICROSECONDS"
90 PRINT "SLEEPING": CALL 768: PRINT "AWAKE"
```
Output:
```txt
ENTER WAIT VALUE (1-256) : 256
WAIT FOR 167309 CYCLES OR
163591.032 MICROSECONDS
SLEEPING
AWAKE
```
## ARM Assembly
```ARM Assembly
/* ARM assembly Raspberry PI */
/* program sleepAsm.s */
/* Constantes */
.equ STDIN, 0 @ Linux input console
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ READ, 3 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
.equ SLEEP, 0xa2 @ Linux syscall
.equ BUFFERSIZE, 100
/* Initialized data */
.data
szMessQuest: .asciz "Enter the time to sleep in seconds : "
szMessError: .asciz "Error occured.\n"
szMessSleep: .asciz "Sleeping Zzzzzzz.\n"
szMessAwake: .asciz "Awake!!!\n"
szCarriageReturn: .asciz "\n"
/* UnInitialized data */
.bss
.align 4
ZonesAttente:
iSecondes: .skip 4
iMicroSecondes: .skip 4
ZonesTemps: .skip 8
sBuffer: .skip BUFFERSIZE
/* code section */
.text
.global main
main:
ldr r0,iAdrszMessQuest @ display invite message
bl affichageMess
mov r0,#STDIN @ input standard linux
ldr r1,iAdrsBuffer
mov r2,#BUFFERSIZE
mov r7,#READ @ read input string
svc 0
cmp r0,#0 @ read error ?
ble 99f
@
ldr r0,iAdrsBuffer @ buffer address
bl conversionAtoD @ conversion string in number in r0
ldr r1,iAdriSecondes
str r0,[r1] @ store second number in area
ldr r0,iAdrszMessSleep @ display sleeping message
bl affichageMess
ldr r0,iAdrZonesAttente @ delay area
ldr r1,iAdrZonesTemps @
mov r7,#SLEEP @ call system SLEEP
svc 0
cmp r0,#0 @ error sleep ?
blt 99f
ldr r0,iAdrszMessAwake @ display awake message
bl affichageMess
mov r0, #0 @ return code
b 100f
99: @ display error message
ldr r0,iAdrszMessError
bl affichageMess
mov r0, #1 @ return code
100: @ standard end of the program
mov r7, #EXIT @ request to exit program
svc 0 @ perform system call
iAdrszMessQuest: .int szMessQuest
iAdrszMessError: .int szMessError
iAdrszMessSleep: .int szMessSleep
iAdrszMessAwake: .int szMessAwake
iAdriSecondes: .int iSecondes
iAdrZonesAttente: .int ZonesAttente
iAdrZonesTemps: .int ZonesTemps
iAdrsBuffer: .int sBuffer
iAdrszCarriageReturn: .int szCarriageReturn
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr} @ save registers
mov r2,#0 @ counter length */
1: @ loop length calculation
ldrb r1,[r0,r2] @ read octet start position + index
cmp r1,#0 @ if 0 its over
addne r2,r2,#1 @ else add 1 in the length
bne 1b @ and loop
@ so here r2 contains the length of the message
mov r1,r0 @ address message in r1
mov r0,#STDOUT @ code to write to the standard output Linux
mov r7, #WRITE @ code call system "write"
svc #0 @ call system
pop {r0,r1,r2,r7,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* Convert a string to a number stored in a registry */
/******************************************************************/
/* r0 contains the address of the area terminated by 0 or 0A */
/* r0 returns a number */
conversionAtoD:
push {fp,lr} @ save 2 registers
push {r1-r7} @ save others registers
mov r1,#0
mov r2,#10 @ factor
mov r3,#0 @ counter
mov r4,r0 @ save address string -> r4
mov r6,#0 @ positive sign by default
mov r0,#0 @ initialization to 0
1: /* early space elimination loop */
ldrb r5,[r4,r3] @ loading in r5 of the byte located at the beginning + the position
cmp r5,#0 @ end of string -> end routine
beq 100f
cmp r5,#0x0A @ end of string -> end routine
beq 100f
cmp r5,#' ' @ space ?
addeq r3,r3,#1 @ yes we loop by moving one byte
beq 1b
cmp r5,#'-' @ first character is -
moveq r6,#1 @ 1 -> r6
beq 3f @ then move on to the next position
2: /* beginning of digit processing loop */
cmp r5,#'0' @ character is not a number
blt 3f
cmp r5,#'9' @ character is not a number
bgt 3f
/* character is a number */
sub r5,#48
ldr r1,iMaxi @ check the overflow of the register
cmp r0,r1
bgt 99f @ overflow error
mul r0,r2,r0 @ multiply par factor 10
add r0,r5 @ add to r0
3:
add r3,r3,#1 @ advance to the next position
ldrb r5,[r4,r3] @ load byte
cmp r5,#0 @ end of string -> end routine
beq 4f
cmp r5,#0x0A @ end of string -> end routine
beq 4f
b 2b @ loop
4:
cmp r6,#1 @ test r6 for sign
moveq r1,#-1
muleq r0,r1,r0 @ if negatif, multiply par -1
b 100f
99: /* overflow error */
ldr r0,=szMessErrDep
bl affichageMess
mov r0,#0 @ return zero if error
100:
pop {r1-r7} @ restaur other registers
pop {fp,lr} @ restaur 2 registers
bx lr @return procedure
/* constante program */
iMaxi: .int 1073741824
szMessErrDep: .asciz "Too large: overflow 32 bits.\n"
.align 4
```
## AutoHotkey
```AutoHotkey
TrayTip, sleeping, sleeping
sleep, 2000 ; 2 seconds
TrayTip, awake, awake
Msgbox, awake
```
## AutoIt
```AutoIt
#AutoIt Version: 3.2.10.0
$sleep_me=InputBox("Sleep", "Number of seconds to sleep", "10", "", -1, -1, 0, 0)
Dim $sleep_millisec=$sleep_me*1000
MsgBox(0,"Sleep","Sleeping for "&$sleep_me&" sec")
sleep ($sleep_millisec)
MsgBox(0,"Awake","... Awaking")
```
## AWK
```AWK
# syntax: GAWK -f SLEEP.AWK [seconds]
BEGIN {
print("Sleeping...")
loop(ARGV[1])
print("Awake!")
exit(0)
}
function loop(seconds, t) {
# awk lacks a sleep mechanism, so simulate one by looping
t = systime()
while (systime() < t + seconds) {}
}
```
commands and output:
```txt
GAWK "BEGIN{print(strftime())}"
GAWK -f SLEEP.AWK 3
GAWK "BEGIN{print(strftime())}"
Wed Jan 16 18:06:44 Eastern Standard Time 2013
Sleeping...
Awake!
Wed Jan 16 18:06:47 Eastern Standard Time 2013
```
## Axe
The time unit for the Pause command is based on clock cycles, not seconds. At 15 MHz, one second is approximately equal to a value of 4500. At 6 MHz, one second is approximately 1800.
```axe
Disp "TIME:"
input→A
0→T
length(A)→L
For(I,1,L)
If {A}<'0' or {A}>'9'
Disp "NOT A NUMBER",i
Return
End
T*10+{A}-'0'→T
A++
End
Disp "SLEEPING...",i
Pause T
Disp "AWAKE",i
```
## BASIC
```qbasic
INPUT sec 'the SLEEP command takes seconds
PRINT "Sleeping..."
SLEEP sec
PRINT "Awake!"
```
"SLEEP" with no argument will sleep until a button is pressed on the keyboard (including modifier keys such as shift or control). Also, pressing a key while SLEEP is waiting for a specific amount of time (as above) will end the SLEEP.
=
## Sinclair ZX81 BASIC
=
The PAUSE statement pauses execution for a length of time expressed in terms of the frame rate of the television you are using as a monitor. But there are one or two problems with it...
(1) Televisions in different countries have (had) different frame rates, so a one-second pause would need to be coded as PAUSE 50 in Britain and PAUSE 60 in the United States. The use of PAUSE therefore reduces compatibility.
(2) The highest acceptable value is 32767 frames: anything higher is taken to mean "pause forever".
(3) If the user presses a key, the computer will stop pausing and resume execution from the line after the PAUSE.
(4) In FAST mode the PAUSE statement needs to be followed by POKE 16437,255 to avoid corrupting the program.
(5) The duration of the pause is not terribly precise.
(6) The screen flickers irritatingly when the pause ends, even if you are in SLOW mode.
Bearing all these factors in mind, it will often be found easier to use an empty FOR loop instead.
(Oh, and the ZX81 character set doesn't include lower-case letters or an exclamation mark: so the message Awake! has to be replaced by AWAKE.)
```basic
10 PRINT "HOW LONG SHOULD I SLEEP FOR?"
20 PRINT "(IN TELEVISION FRAMES)"
30 INPUT SLEEPTIME
40 PRINT "SLEEPING... ";
50 PAUSE SLEEPTIME
60 PRINT "AWAKE."
```
=== {{header|ZX Spectrum Basic}} ===
Pressing a key will cut the pause short on the ZX Spectrum.
```zxbasic
10 REM s is the number of seconds
20 LET s = 5
30 PRINT "Sleeping"
40 PAUSE s * 50
50 PRINT "Awake"
```
## Batch File
The usual way to do this is to use the ping utility which waits a second between multiple tries. To wait ''n'' seconds one tells ping to make ''n'' + 1 tries and redirects the output:
```dos
@echo off
set /p Seconds=Enter the number of seconds to sleep:
set /a Seconds+=1
echo Sleeping ...
ping -n %Seconds% localhost >nul 2>&1
echo Awake!
```
A similar trick can be used to wait a certain number of milliseconds. The ping utility includes a /w option which specifies the timeout to wait for a reply. This coupled with an unreachable address (where the full timeout will be needed) leads to the following:
```dos
@echo off
set /p MilliSeconds=Enter the number of milliseconds to sleep:
echo Sleeping ...
ping -n 1 -w %MilliSeconds% 1.2.3.4 >nul 2>&1
echo Awake!
```
Starting with Windows Vista there is a command-line utility to wait a number of seconds:
```dos
@echo off
set /p Seconds=Enter the number of seconds to sleep:
echo Sleeping ...
timeout /t %Seconds% /nobreak >nul
echo Awake!
```
## BBC BASIC
```bbcbasic
INPUT "Enter the time to sleep in centiseconds: " sleep%
PRINT "Sleeping..."
WAIT sleep%
PRINT "Awake!"
```
Whilst sleeping BBC BASIC for Windows periodically tests for the ESCape key being pressed.
## C
The function sleep needs seconds, which are read from the standard input.
```c
#include
#include
int main()
{
unsigned int seconds;
scanf("%u", &seconds);
printf("Sleeping...\n");
sleep(seconds);
printf("Awake!\n");
return 0;
}
```
## C#
```c#
using System;
using System.Threading;
class Program
{
static void Main(string[] args)
{
int sleep = Convert.ToInt32(Console.ReadLine());
Console.WriteLine("Sleeping...");
Thread.Sleep(sleep); //milliseconds
Console.WriteLine("Awake!");
}
}
```
## C++
```cpp
#include
#include
#include
int main()
{
unsigned long microseconds;
std::cin >> microseconds;
std::cout << "Sleeping..." << std::endl;
std::this_thread::sleep_for(std::chrono::microseconds(microseconds));
std::cout << "Awake!\n";
}
```
```cpp
#include
#include
using namespace std;
int main(int argc, char* argv[])
{
useconds_t microseconds;
cin >> microseconds;
cout << "Sleeping..." << endl;
usleep(microseconds);
cout << "Awake!" << endl;
return 0;
}
```
=={{header|Caché ObjectScript}}==
SLEEP
; the HANG command can use fractional seconds; the Awake line will be slightly off due to processing time
read "How long to sleep in seconds?: ",sleep
write !,"Sleeping... time is "_$ztime($piece($ztimestamp,",",2,2),1,2)
hang +sleep ; use + to cast numeric, if non-numeric will hang 0
write !,"Awake! Time is "_$ztime($piece($ztimestamp,",",2,2),1,2)
quit
```
```txt
SAMPLES>do ^SLEEP
How long to sleep in seconds?: 7.25
Sleeping... time is 14:48:29.27
Awake! Time is 14:48:36.55
```
## Clojure
```clojure
(defn sleep [ms] ; time in milliseconds
(println "Sleeping...")
(Thread/sleep ms)
(println "Awake!"))
; call it
(sleep 1000)
```
## COBOL
There are two methods for putting the program to sleep, both requiring unofficial extensions.
The first expects the amount of time to be in seconds.
```cobol
IDENTIFICATION DIVISION.
PROGRAM-ID. Sleep-In-Seconds.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Seconds-To-Sleep USAGE COMP-2.
PROCEDURE DIVISION.
ACCEPT Seconds-To-Sleep
DISPLAY "Sleeping..."
CALL "C$SLEEP" USING BY CONTENT Seconds-To-Sleep
DISPLAY "Awake!"
GOBACK
.
```
While the second expects the time to be in nanoseconds. Note: Windows systems can only sleep to the nearest millisecond.
```cobol
IDENTIFICATION DIVISION.
PROGRAM-ID. Sleep-In-Nanoseconds.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Seconds-To-Sleep USAGE COMP-2.
01 Nanoseconds-To-Sleep USAGE COMP-2.
01 Nanoseconds-Per-Second CONSTANT 1000000000.
PROCEDURE DIVISION.
ACCEPT Seconds-To-Sleep
MULTIPLY Seconds-To-Sleep BY Nanoseconds-Per-Second
GIVING Nanoseconds-To-Sleep
DISPLAY "Sleeping..."
CALL "CBL_OC_NANOSLEEP"
USING BY CONTENT Nanoseconds-To-Sleep
DISPLAY "Awake!"
GOBACK
.
```
## Common Lisp
```lisp
(defun test-sleep ()
(let ((seconds (read)))
(format t "Sleeping...~%")
(sleep seconds)
(format t "Awake!~%")))
(test-sleep)
```
## D
```d
import std.stdio, core.thread;
void main() {
write("Enter a time to sleep (in seconds): ");
long secs;
readf(" %d", &secs);
writeln("Sleeping...");
Thread.sleep(dur!"seconds"(secs));
writeln("Awake!");
}
```
```txt
Enter a time to sleep (in seconds): 5
Sleeping...
Awake!
```
## DCL
```DCL
$ amount_of_time = p1 ! hour[:[minute][:[second][.[hundredth]]]]
$ write sys$output "Sleeping..."
$ wait 'amount_of_time
$ write sys$output "Awake!"
```
```txt
$ @sleep 1 ! sleeps for 1 hour
Sleeping...
Awake!
$ @sleep 0:10 ! sleeps for 10 minutes
Sleeping...
Awake!
$ @sleep 0::10 ! sleeps for 10 seconds
Sleeping...
Awake!
$ @sleep 0:1:12 ! sleeps for 1 minute and 12 seconds
Sleeping...
Awake!
$ @sleep 23:59:59.99 ! sleeps for maximum amount of time
Sleeping...
Awake!
```
## Delphi
```Delphi
program SleepOneSecond;
{$APPTYPE CONSOLE}
uses SysUtils;
var
lTimeToSleep: Integer;
begin
if ParamCount = 0 then
lTimeToSleep := 1000
else
lTimeToSleep := StrToInt(ParamStr(1));
WriteLn('Sleeping...');
Sleep(lTimeToSleep); // milliseconds
WriteLn('Awake!');
end.
```
## E
You can't do that.
No, really. E's approach to timing, concurrency, and IO is non-blocking; if you want to wait for something, you say what you want to do when it happens — i.e. callbacks. There are no threads of control which can be stopped — except automatically when they just have nothing to do.
So, the closest thing possible to the task description is to wait for the specified time to pass, then do whatever the next thing is.
```e
def sleep(milliseconds :int, nextThing) {
stdout.println("Sleeping...")
timer.whenPast(timer.now() + milliseconds, fn {
stdout.println("Awake!")
nextThing()
})
}
```
## EGL
```EGL
program Sleep type BasicProgram{}
// Syntax: sysLib.wait(time BIN(9,2) in)
function main()
SysLib.writeStdout("Sleeping!");
sysLib.wait(15); // waits for 15 seconds
SysLib.writeStdout("Awake!");
end
end
```
## Eiffel
The feature sleep is defined in the library class EXECUTION_ENVIRONMENT. So the demonstration class APPLICATION inherits from EXECUTION_ENVIRONMENT in order to make sleep available.
sleep takes an argument which declares the number of nanoseconds to suspend the thread's execution.
```eiffel
class
APPLICATION
inherit
EXECUTION_ENVIRONMENT
create
make
feature -- Initialization
make
-- Sleep for a given number of nanoseconds.
do
print ("Enter a number of nanoseconds: ")
io.read_integer_64
print ("Sleeping...%N")
sleep (io.last_integer_64)
print ("Awake!%N")
end
end
```
Output (sleeping 10 seconds):
```txt
Enter a number of nanoseconds: 10000000000
Sleeping...
Awake!
```
## Elena
ELENA 4.x :
```elena
import extensions;
public program()
{
int sleep := console.readLine().toInt();
console.printLine("Sleeping...");
system'threading'threadControl.sleep(sleep);
console.printLine("Awake!")
}
```
## Elixir
```elixir
sleep = fn seconds ->
IO.puts "Sleeping..."
:timer.sleep(1000 * seconds) # in milliseconds
IO.puts "Awake!"
end
sec = if System.argv==[], do: 1, else: hd(System.argv) |> String.to_integer
sleep.(sec)
```
## Emacs Lisp
```lisp
(let ((seconds (read-number "Time in seconds: ")))
(message "Sleeping ...")
(sleep-for seconds)
(message "Awake!"))
```
The time can be a decimal like 1.5 though the actual resolution of sleep-for depends on the operating system. The similar sit-for stops sleeping if there's pending keyboard input.
read-number is new in Emacs 22 and XEmacs 21. In earlier versions similar can be had with
```lisp
(string-to-number (read-string "Time in seconds: "))
```
This returns 0 on a non-number whereas read-number re-prompts (except in Emacs 24.3 where a bug caused read-number to return 0 :-( ).
## Erlang
Erlang doesn't really have such a thing as a main thread. However, sleeping any process can be done with the timer:sleep/1 function:
```erlang
main() ->
io:format("Sleeping...~n"),
timer:sleep(1000), %% in milliseconds
io:format("Awake!~n").
```
It is to be noted that Erlang's sleep function is implemented in Erlang with a timeout on a receive, so you may sometimes encounter the following way of sleeping a process:
```erlang
main() ->
io:format("Sleeping...~n"),
receive
after 1000 -> ok %% in milliseconds
end,
io:format("Awake!~n").
```
which is the way it is implemented in the timer module.
## ERRE
```ERRE
..............
INPUT("Enter the time to sleep in seconds: ";sleep)
PRINT("Sleeping...")
PAUSE(sleep)
PRINT("Awake!")
..............
```
=={{header|F_Sharp|F#}}==
```fsharp
open System
open System.Threading
[]
let main args =
let sleep = Convert.ToInt32(Console.ReadLine())
Console.WriteLine("Sleeping...")
Thread.Sleep(sleep); //milliseconds
Console.WriteLine("Awake!")
0
```
## Factor
```factor
USING: calendar io math.parser threads ;
: read-sleep ( -- )
readln string>number seconds
"Sleeping..." print
sleep
"Awake!" print ;
```
## Fantom
Fantom has a 'Duration' class, which uses time definitions with units: e.g., 5sec, 100ns, 5hr. These are used for input in the following program.
```fantom
using concurrent
class Main
{
public static Void main ()
{
echo ("Enter a time to sleep: ")
input := Env.cur.in.readLine
try
{
time := Duration.fromStr (input)
echo ("sleeping ...")
Actor.sleep (time)
echo ("awake!")
}
catch
{
echo ("Invalid time entered")
}
}
}
```
Output:
```txt
Enter a time to sleep:
5sec
sleeping ...
awake!
```
## FBSL
```qbasic
#APPTYPE CONSOLE
DIM %msec
PRINT "Milliseconds to sleep: ";
%msec = FILEGETS(stdin, 10)
PRINT "Sleeping..."
SLEEP(%msec)
PRINT "Awake!"
PAUSE
```
Output
```txt
Milliseconds to sleep: 1000
Sleeping...
Awake!
Press any key to continue...
```
## Forth
```forth
: sleep ( ms -- )
." Sleeping..."
ms
." awake." cr ;
```
### =Explanation note on MS=
MS ( n -- ) A.10.6.2.1905
MS is a Standard Forth word that waits for at least n milliseconds. It is part of the optional Facility Wordset. It is more than just a simple delay in that in a multi-tasking environment when MS is executed the current task is asleep until the time expires.
## Fortran
```fortran
program test_sleep
implicit none
integer :: iostat
integer :: seconds
character (32) :: argument
if (iargc () == 1) then
call getarg (1, argument)
read (argument, *, iostat = iostat) seconds
if (iostat == 0) then
write (*, '(a)') 'Sleeping...'
call sleep (seconds)
write (*, '(a)') 'Awake!'
end if
end if
end program test_sleep
```
## FreeBASIC
```freebasic
' FB 1.05.0 Win64
Dim ms As UInteger
Input "Enter number of milliseconds to sleep" ; ms
Print "Sleeping..."
Sleep ms, 1 '' the "1" means Sleep can't be interrupted with a keystroke
Print "Awake!"
End
```
Sample input/output
```txt
Enter number of milliseconds to sleep? 3000
Sleeping...
Awake!
```
## Frink
In Frink, all values have units of measure, and sleep functions take units of time, which can be seconds, nanoseconds, minutes, hours, etc. The user may enter values like "3 hours" or "1 ms". The units of measure are captured as first-class values in the language, and not hidden in comments nor implied in APIs.
```frink
do
t = eval[input["Enter amount of time to sleep: ", "1 second"]]
while ! (t conforms time)
println["Sleeping..."]
sleep[t]
println["Awake!"]
```
## Go
Technically, this varies from the task by sleeping the main ''goroutine'' rather than the main ''thread''. The Go runtime multiplexes goroutines to operating system threads and the language does not provide direct access to threads.
```go
package main
import "time"
import "fmt"
func main() {
fmt.Print("Enter number of seconds to sleep: ")
var sec float64
fmt.Scanf("%f", &sec)
fmt.Print("Sleeping…")
time.Sleep(time.Duration(sec * float64(time.Second)))
fmt.Println("\nAwake!")
}
```
## Groovy
Solution:
```groovy
def sleepTest = {
println("Sleeping...")
sleep(it)
println("Awake!")
}
```
Test:
```groovy
sleepTest(1000)
print '''
Hmmm. That was... less than satisfying.
How about this instead?
'''
Thread.start {
(0..5).each {
println it
sleep(1000)
}
}
sleepTest(5000)
```
Output:
```txt
Sleeping...
Awake!
Hmmm. That was... less than satisfying
How about this instead?
Sleeping...
0
1
2
3
4
Awake!
5
```
## Haskell
```haskell
import Control.Concurrent
main = do seconds <- readLn
putStrLn "Sleeping..."
threadDelay $ round $ seconds * 1000000
putStrLn "Awake!"
```
## HicEst
```hicest
DLG(NameEdit = milliseconds, Button = "Go to sleep")
WRITE(StatusBar) "Sleeping ... "
SYSTEM(WAIT = milliseconds)
WRITE(Messagebox) "Awake!"
```
=={{header|Icon}} and {{header|Unicon}}==
```Icon
procedure main()
repeat {
writes("Enter number of seconds to sleep :")
s := reads()
if s = ( 0 < integer(s)) then break
}
write("\nSleeping for ",s," seconds.")
delay(1000 * s)
write("Awake!")
end
```
## IDL
```IDL
read,i,prompt='Input sleep time in seconds: '
print,'Sleeping...'
wait,i ; in seconds, but accepts floats(/fractional) as input
print,'Awake!'
```
## J
'''Solution''':
```j
sleep =: 6!:3
sleeping=: monad define
smoutput 'Sleeping...'
sleep y
smoutput 'Awake!'
)
```
'''Example''':
```j
sleeping 0.500 NB. Sleep 500 milliseconds
Sleeping...
Awake!
```
## Java
```java5
import java.util.InputMismatchException;
import java.util.Scanner;
public class Sleep {
public static void main(final String[] args) throws InterruptedException {
try {
int ms = new Scanner(System.in).nextInt(); //Java's sleep method accepts milliseconds
System.out.println("Sleeping...");
Thread.sleep(ms);
System.out.println("Awake!");
} catch (InputMismatchException inputMismatchException) {
System.err.println("Exception: " + inputMismatchException);
}
}
}
```
=={{header|JavaScript}} (in a web browser)==
Generally, JavaScript in a web browser is event-loop based and (except for alert()) non-blocking. So, the closest thing possible to the task description is to do something once the specified time has passed.
```html>