⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

{{task|Basic language learning}} [[Category:Radices]]

;Task: Create and display the sequence of binary digits for a given [[wp:Natural number|non-negative integer]].

```The decimal value      '''5'''   should produce an output of               '''101'''
The decimal value     '''50'''   should produce an output of            '''110010'''
The decimal value   '''9000'''   should produce an output of    '''10001100101000'''
```

The results can be achieved using built-in radix functions within the language (if these are available), or alternatively a user defined function can be used.

The output produced should consist just of the binary digits of each number followed by a ''newline''.

There should be no other whitespace, radix or sign markers in the produced output, and [[wp:Leading zero|leading zeros]] should not appear in the results.

## 0815

```}:r:|~    Read numbers in a loop.
}:b:    Treat the queue as a stack and
<:2:= accumulate the binary digits
/=>&~ of the given number.
^:b:
<:0:->  Enqueue negative 1 as a sentinel.
{       Dequeue the first binary digit.
}:p:
~%={+ Rotate each binary digit into place and print it.
^:p:
<:a:~\$  Output a newline.
^:r:
```

{{out}}

Note that 0815 reads numeric input in hexadecimal.

```echo -e "5\n32\n2329" | 0815 bin.0
101
110010
10001100101001
```

## 11l

```L(n) [0, 5, 50, 9000]
print(‘#4 = #.’.format(n, bin(n)))
```

{{out}}

```
0 = 0
5 = 101
50 = 110010
9000 = 10001100101000

```

## 360 Assembly

```*        Binary digits             27/08/2015
BINARY   CSECT
USING  BINARY,R12
LR     R12,R15            set base register
BEGIN    LA     R10,4
LA     R9,N
LOOPN    MVC    W,0(R9)
MVI    FLAG,X'00'
LA     R8,32
LA     R2,CBIN
LOOP     TM     W,B'10000000'      test fist bit
BZ     ZERO               zero
MVI    FLAG,X'01'         one written
MVI    0(R2),C'1'         write 1
B      CONT
ZERO     CLI    FLAG,X'01'         is one written ?
BNE    BLANK
MVI    0(R2),C'0'         write 0
B      CONT
BLANK    BCTR   R2,0               backspace
CONT     L      R3,W
SLL    R3,1               shilf left
ST     R3,W
LA     R2,1(R2)           next bit
BCT    R8,LOOP            loop on bits
PRINT    CLI    FLAG,X'00'         is '0'
BNE    NOTZERO
MVI    0(R2),C'0'         then write 0
NOTZERO  L      R1,0(R9)
XDECO  R1,CDEC
XPRNT  CDEC,45
LA     R9,4(R9)
BCT    R10,LOOPN          loop on numbers
RETURN   XR     R15,R15            set return code
BR     R14                return to caller
N        DC     F'0',F'5',F'50',F'9000'
W        DS     F                  work
FLAG     DS     X                  flag for trailing blanks
CDEC     DS     CL12               decimal value
DC     C' '
CBIN     DC     CL32' '            binary value
YREGS
END    BINARY
```

{{out}}

```
0 0
5 101
50 110010
9000 10001100101000

```

## 6502 Assembly

{{works with|http://vice-emu.sourceforge.net/ VICE}} This example has been written for the C64 and uses some BASIC routines to read the parameter after the SYS command and to print the result. Compile with the [http://turbo.style64.org/ Turbo Macro Pro cross assembler]:

```
tmpx -i dec2bin.s -o dec2bin.prg

```

Use the [http://vice-emu.sourceforge.net/vice_13.html c1541 utility] to create a disk image that can be loaded using VICE x64. Run with:

```
SYS828,x

```

where x is an integer ranging from 0 to 65535 (16 bit int). Floating point numbers are truncated and converted accordingly. The example can easily be modified to run on the VIC-20, just change the labels as follows:

```
chkcom      = \$cefd
frmnum      = \$cd8a
getadr      = \$d7f7
strout      = \$cb1e

```
```
; C64 - Binary digits
;       http://rosettacode.org/wiki/Binary_digits

; *** labels ***

declow      = \$fb
dechigh     = \$fc
binstrptr   = \$fd               ; \$fe is used for the high byte of the address
chkcom      = \$aefd
frmnum      = \$ad8a
getadr      = \$b7f7
strout      = \$ab1e

; *** main ***

*=\$033c             ; sys828 tbuffer (\$033c-\$03fb)

jsr chkcom          ; check for and skip comma
jsr frmnum          ; evaluate numeric expression
jsr getadr          ; convert floating point number to two-byte int
jsr dec2bin         ; convert two-byte int to binary string
lda #<binstr        ; load the address of the binary string - low
ldy #>binstr        ; high byte
jsr skiplz          ; skip leading zeros, return an address in a/y
;   that points to the first "1"
jsr strout          ; print the result
rts

; *** subroutines ****

; Converts a 16 bit integer to a binary string.
; Input: y - low byte of the integer
;        a - high byte of the integer
; Output: a 16 byte string stored at 'binstr'
dec2bin     sty declow          ; store the two-byte integer
sta dechigh
lda #<binstr        ; store the binary string address on the zero page
sta binstrptr
lda #>binstr
sta binstrptr+1
ldx #\$01            ; start conversion with the high byte
wordloop    ldy #\$00            ; bit counter
byteloop    asl declow,x        ; shift left, bit 7 is shifted into carry
bcs one             ; carry set? jump
lda #"0"            ; a="0"
bne writebit
one         lda #"1"            ; a="1"
writebit    sta (binstrptr),y   ; write the digit to the string
iny                 ; y++
cpy #\$08            ; y==8 all bits converted?
bne byteloop        ;   no -> convert next bit
clc                 ; clear carry
lda #\$08            ; a=8
adc binstrptr       ; add 8 to the string address pointer
sta binstrptr
bcc nooverflow      ; address low byte did overflow?
inc binstrptr+1     ;   yes -> increase the high byte
nooverflow  dex                 ; x--
bpl wordloop        ; x<0? no -> convert the low byte
rts                 ;   yes -> conversion finished, return

; Skip leading zeros.
; Input:  a - low byte of the byte string address
;         y - high byte -"-
; Output: a - low byte of string start address without leading zeros
;         y - high byte -"-
skiplz      sta binstrptr       ; store the binary string address on the zero page
sty binstrptr+1
ldy #\$00            ; byte counter
skiploop    lda (binstrptr),y   ; load a byte from the string
iny                 ; y++
cpy #\$11            ; y==17
beq endreached      ;   yes -> end of string reached without a "1"
cmp #"1"            ; a=="1"
bne skiploop        ;   no -> take the next byte
beq add2ptr         ;   yes -> jump
endreached  dey                 ; move the pointer to the last 0
add2ptr     clc
dey
tya                 ; a=y
adc binstrptr       ; move the pointer to the first "1" in the string
bcc loadhigh        ; overflow?
inc binstrptr+1     ;  yes -> increase high byte
loadhigh    ldy binstrptr+1
rts

; *** data ***

binstr      .repeat 16, \$00     ; reserve 16 bytes for the binary digits
.byte \$0d, \$00      ; newline + null terminator

```

{{out}}

```
SYS828,5
101

SYS828,50
110010

SYS828,9000
10001100101000

SYS828,4.7
100

```

```
2 base drop
#50 . cr

```

{{out}}

```
110010

```

## ACL2

```(include-book "arithmetic-3/top" :dir :system)

(defun bin-string-r (x)
(if (zp x)
""
(string-append
(bin-string-r (floor x 2))
(if (= 1 (mod x 2))
"1"
"0"))))

(defun bin-string (x)
(if (zp x)
"0"
(bin-string-r x)))
```

## Ada

```with ada.text_io; use ada.text_io;
procedure binary is
bit : array (0..1) of character := ('0','1');

function bin_image (n : Natural) return string is
(if n < 2 then (1 => bit (n)) else bin_image (n / 2) & bit (n mod 2));

test_values : array (1..3) of Natural := (5,50,9000);
begin
for test of test_values loop
put_line ("Output for" & test'img & " is " & bin_image (test));
end loop;
end binary;
```

{{out}}

```
Output for 5 is 101
Output for 50 is 110010
Output for 9000 is 10001100101000

```

## Aime

```o_xinteger(2, 0);
o_byte('\n');
o_xinteger(2, 5);
o_byte('\n');
o_xinteger(2, 50);
o_byte('\n');
o_form("/x2/\n", 9000);
```

{{out}}

```0
101
110010
10001100101000
```

## ALGOL 68

{{works with|ALGOL 68|Revision 1.}} {{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-2.3.3 algol68g-2.3.3].}} {{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to use of '''format'''[ted] ''transput''.}} '''File: Binary_digits.a68'''

```#!/usr/local/bin/a68g --script #

printf((
\$g" => "2r3d l\$, 5, BIN 5,
\$g" => "2r6d l\$, 50, BIN 50,
\$g" => "2r14d l\$, 9000, BIN 9000
));

# or coerce to an array of BOOL #
print((
5, " => ", []BOOL(BIN 5)[bits width-3+1:], new line,
50, " => ", []BOOL(BIN 50)[bits width-6+1:], new line,
9000, " => ", []BOOL(BIN 9000)[bits width-14+1:], new line
))
```

{{out}}

```
+5 => 101
+50 => 110010
+9000 => 10001100101000
+5 => TFT
+50 => TTFFTF
+9000 => TFFFTTFFTFTFFF

```

## ALGOL W

```begin
% prints an integer in binary - the number must be greater than zero     %
procedure printBinaryDigits( integer value n ) ;
begin
if n not = 0 then begin
printBinaryDigits( n div 2 );
writeon( if n rem 2 = 1 then "1" else "0" )
end
end binaryDigits ;

% prints an integer in binary - the number must not be negative          %
procedure printBinary( integer value n ) ;
begin
if n = 0 then writeon( "0" )
else printBinaryDigits( n )
end printBinary ;

% test the printBinaryDigits procedure                                   %
for i := 5, 50, 9000 do begin
write();
printBinary( i );
end

end.
```

## AppleScript

{{Trans|JavaScript}} (ES6 version)

(The generic showIntAtBase here, which allows us to specify the digit set used (e.g. upper or lower case in hex, or different regional or other digit sets generally), is a rough translation of Haskell's Numeric.showintAtBase)

```-- showBin :: Int -> String
on showBin(n)
script binaryChar
on |λ|(n)
text item (n + 1) of "01"
end |λ|
end script
showIntAtBase(2, binaryChar, n, "")
end showBin

-- GENERIC FUNCTIONS ----------------------------------------------------------

-- showIntAtBase :: Int -> (Int -> Char) -> Int -> String -> String
on showIntAtBase(base, toChr, n, rs)
script showIt
on |λ|(nd_, r)
set {n, d} to nd_
set r_ to toChr's |λ|(d) & r
if n > 0 then
|λ|(quotRem(n, base), r_)
else
r_
end if
end |λ|
end script

if base ≤ 1 then
"error: showIntAtBase applied to unsupported base: " & base as string
else if n < 0 then
"error: showIntAtBase applied to negative number: " & base as string
else
showIt's |λ|(quotRem(n, base), rs)
end if
end showIntAtBase

--  quotRem :: Integral a => a -> a -> (a, a)
on quotRem(m, n)
{m div n, m mod n}
end quotRem

-- TEST -----------------------------------------------------------------------
on run
script
on |λ|(n)
intercalate(" -> ", {n as string, showBin(n)})
end |λ|
end script

return unlines(map(result, {5, 50, 9000}))
end run

-- GENERIC FUNCTIONS FOR TEST -------------------------------------------------

-- intercalate :: Text -> [Text] -> Text
on intercalate(strText, lstText)
set {dlm, my text item delimiters} to {my text item delimiters, strText}
set strJoined to lstText as text
set my text item delimiters to dlm
return strJoined
end intercalate

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map

-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn

-- unlines :: [String] -> String
on unlines(xs)
intercalate(linefeed, xs)
end unlines
```

{{Out}}

```5 -> 101
50 -> 110010
9000 -> 10001100101000
```

Or，using:

```-- showBin :: Int -> String
on showBin(n)
script binaryChar
on |λ|(n)
text item (n + 1) of "〇一"
end |λ|
end script
showIntAtBase(2, binaryChar, n, "")
end showBin
```
```5 -> 一〇一
50 -> 一一〇〇一〇
9000 -> 一〇〇〇一一〇〇一〇一〇〇〇
```

## ARM Assembly

{{works with|as|Raspberry Pi}}

```

/* ARM assembly Raspberry PI  */
/*  program binarydigit.s   */

/* Constantes    */
.equ STDOUT, 1
.equ WRITE,  4
.equ EXIT,   1
/* Initialized data */
.data

sMessAffBin: .ascii "The decimal value  "
sZoneDec: .space 12,' '
.ascii " should produce an output of "
sZoneBin: .space 36,' '
.asciz "\n"

/*  code section */
.text
.global main
main:                /* entry of program  */
push {fp,lr}    /* save des  2 registres */
mov r0,#5
ldr r1,iAdrsZoneDec
bl conversion10S    @ decimal conversion
bl conversion2      @ binary conversion and display résult
mov r0,#50
ldr r1,iAdrsZoneDec
bl conversion10S
bl conversion2
mov r0,#-1
ldr r1,iAdrsZoneDec
bl conversion10S
bl conversion2
mov r0,#1
ldr r1,iAdrsZoneDec
bl conversion10S
bl conversion2

100:   /* standard end of the program */
mov r0, #0                  @ return code
pop {fp,lr}                 @restaur 2 registers
mov r7, #EXIT              @ request to exit program
swi 0                       @ perform the system call
iAdrsZoneDec: .int sZoneDec
/******************************************************************/
/*     register conversion in binary                              */
/******************************************************************/
/* r0 contains the register */
conversion2:
push {r0,lr}     /* save  registers */
push {r1-r5} /* save others registers */
ldr r1,iAdrsZoneBin   @ address reception area
clz r2,r0    @ number of left zeros bits
rsb r2,#32   @ number of significant bits
mov r4,#' '  @ space
add r3,r2,#1 @ position counter in reception area
1:
strb r4,[r1,r3]   @ space in other location of reception area
add r3,#1
cmp r3,#32         @ end of area ?
ble 1b            @ no! loop
mov r3,r2    @ position counter of the written character
2:               @ loop
lsrs r0,#1    @ shift right one bit with flags
movcc r4,#48  @ carry clear  => character 0
movcs r4,#49  @ carry set   => character 1
strb r4,[r1,r3]  @ character in reception area at position counter
sub r3,r3,#1     @
subs r2,r2,#1   @  0 bits ?
bgt 2b          @ no!  loop

ldr r0,iAdrsZoneMessBin
bl affichageMess

100:
pop {r1-r5}  /* restaur others registers */
pop {r0,lr}
bx lr
iAdrsZoneBin: .int sZoneBin
iAdrsZoneMessBin: .int sMessAffBin

/******************************************************************/
/*     display text with size calculation                         */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {fp,lr}    			/* save  registres */
push {r0,r1,r2,r7}    		/* save others registres */
mov r2,#0   				/* counter length */
1:      	/* loop length calculation */
ldrb r1,[r0,r2]  			/* read octet start position + index */
cmp r1,#0       			/* if 0 its over */
addne r2,r2,#1   			/* else add 1 in the length */
bne 1b          			/* and loop */
/* so here r2 contains the length of the message */
mov r1,r0        			/* address message in r1 */
mov r0,#STDOUT      		/* code to write to the standard output Linux */
mov r7, #WRITE             /* code call system "write" */
swi #0                      /* call systeme */
pop {r0,r1,r2,r7}     		/* restaur others registres */
pop {fp,lr}    				/* restaur des  2 registres */
bx lr	        			/* return  */
/***************************************************/
/*   conversion registre en décimal   signé  */
/***************************************************/
/* r0 contient le registre   */
/* r1 contient l adresse de la zone de conversion */
conversion10S:
push {fp,lr}    /* save des  2 registres frame et retour */
push {r0-r5}   /* save autres registres  */
mov r2,r1       /* debut zone stockage */
mov r5,#'+'     /* par defaut le signe est + */
cmp r0,#0       /* nombre négatif ? */
movlt r5,#'-'     /* oui le signe est - */
mvnlt r0,r0       /* et inversion en valeur positive */
addlt r0,#1
mov r4,#10   /* longueur de la zone */
1: /* debut de boucle de conversion */
bl divisionpar10 /* division  */
add r1,#48        /* ajout de 48 au reste pour conversion ascii */
strb r1,[r2,r4]  /* stockage du byte en début de zone r5 + la position r4 */
sub r4,r4,#1      /* position précedente */
cmp r0,#0
bne 1b	       /* boucle si quotient different de zéro */
strb r5,[r2,r4]  /* stockage du signe à la position courante */
subs r4,r4,#1   /* position précedente */
blt  100f         /* si r4 < 0  fin  */
/* sinon il faut completer le debut de la zone avec des blancs */
mov r3,#' '   /* caractere espace */
2:
strb r3,[r2,r4]  /* stockage du byte  */
subs r4,r4,#1   /* position précedente */
bge 2b        /* boucle si r4 plus grand ou egal a zero */
100:  /* fin standard de la fonction  */
pop {r0-r5}   /*restaur des autres registres */
pop {fp,lr}   /* restaur des  2 registres frame et retour  */
bx lr

/***************************************************/
/*   division par 10   signé                       */
/* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/*
/* and   http://www.hackersdelight.org/            */
/***************************************************/
/* r0 contient le dividende   */
/* r0 retourne le quotient */
/* r1 retourne le reste  */
divisionpar10:
/* r0 contains the argument to be divided by 10 */
push {r2-r4}   /* save others registers  */
mov r4,r0
ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */
smull r1, r2, r3, r0   /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */
mov r2, r2, ASR #2     /* r2 <- r2 >> 2 */
mov r1, r0, LSR #31    /* r1 <- r0 >> 31 */
add r0, r2, r1         /* r0 <- r2 + r1 */
add r2,r0,r0, lsl #2   /* r2 <- r0 * 5 */
sub r1,r4,r2, lsl #1   /* r1 <- r4 - (r2 * 2)  = r4 - (r0 * 10) */
pop {r2-r4}
bx lr                  /* leave function */
.align 4
.Ls_magic_number_10: .word 0x66666667

```

## AutoHotkey

```MsgBox % NumberToBinary(5) ;101
MsgBox % NumberToBinary(50) ;110010
MsgBox % NumberToBinary(9000) ;10001100101000

NumberToBinary(InputNumber)
{
While, InputNumber
Result := (InputNumber & 1) . Result, InputNumber >>= 1
Return, Result
}
```

## AutoIt

```
ConsoleWrite(IntToBin(50) & @CRLF)

Func IntToBin(\$iInt)
\$Stack = ObjCreate("System.Collections.Stack")
Local \$b = -1, \$r = ""
While \$iInt <> 0
\$b = Mod(\$iInt, 2)
\$iInt = INT(\$iInt/2)
\$Stack.Push (\$b)
WEnd
For \$i = 1 TO \$Stack.Count
\$r &= \$Stack.Pop
Next
Return \$r
EndFunc   ;==>IntToBin

```

## AWK

```BEGIN {
print tobinary(5)
print tobinary(50)
print tobinary(9000)
}

function tobinary(num) {
outstr = ""
l = num
while ( l ) {
if ( l%2 == 0 ) {
outstr = "0" outstr
} else {
outstr = "1" outstr
}
l = int(l/2)
}
# Make sure we output a zero for a value of zero
if ( outstr == "" ) {
outstr = "0"
}
return outstr
}
```

## Axe

This example builds a string backwards to ensure the digits are displayed in the correct order. It uses bitwise logic to extract one bit at a time.

```Lbl BIN
.Axe supports 16-bit integers, so 16 digits are enough
L₁+16→P
0→{P}
While r₁
P--
{(r₁ and 1)▶Hex+3}→P
r₁/2→r₁
End
Disp P,i
Return
```

## BaCon

```' Binary digits
OPTION MEMTYPE int
INPUT n\$
IF VAL(n\$) = 0 THEN
PRINT "0"
ELSE
PRINT CHOP\$(BIN\$(VAL(n\$)), "0", 1)
ENDIF
```

## Batch File

This num2bin.bat file handles non-negative input as per the requirements with no leading zeros in the output. Batch only supports signed integers. This script also handles negative values by printing the appropriate two's complement notation.

```@echo off
:num2bin    IntVal [RtnVar]
setlocal enableDelayedExpansion
set /a n=%~1
set rtn=
for /l %%b in (0,1,31) do (
set /a "d=n&1, n>>=1"
set rtn=!d!!rtn!
)
for /f "tokens=* delims=0" %%a in ("!rtn!") do set rtn=%%a
(endlocal & rem -- return values
if "%~2" neq "" (set %~2=%rtn%) else echo %rtn%
)
exit /b
```

=

## Applesoft BASIC

=

``` 0 N = 5: GOSUB 1:N = 50: GOSUB 1:N = 9000: GOSUB 1: END
1  LET N2 =  ABS ( INT (N))
2  LET B\$ = ""
3  FOR N1 = N2 TO 0 STEP 0
4      LET N2 =  INT (N1 / 2)
5      LET B\$ =  STR\$ (N1 - N2 * 2) + B\$
6      LET N1 = N2
7  NEXT N1
8  PRINT B\$
9  RETURN
```

{{out}}

```101
110010
10001100101000

```

=

## BASIC256

=

```
# DecToBin.bas
# BASIC256 1.1.4.0

dim a(3)                                            #dimension a 3 element array (a)
a = {5, 50, 9000}

for i = 0 to 2
print a[i] + chr(9) + toRadix(a[i],2)           # radix (decimal, base2)
next i

```

{{out}}

```
5	101
50	110010
9000	10001100101000

```

=

## BBC BASIC

=

```      FOR num% = 0 TO 16
PRINT FN_tobase(num%, 2, 0)
NEXT
END

REM Convert N% to string in base B% with minimum M% digits:
DEF FN_tobase(N%,B%,M%)
LOCAL D%,A\$
REPEAT
D% = N%MODB%
N% DIV= B%
IF D%<0 D% += B%:N% -= 1
A\$ = CHR\$(48 + D% - 7*(D%>9)) + A\$
M% -= 1
UNTIL (N%=FALSE OR N%=TRUE) AND M%<=0
=A\$
```

The above is a generic "Convert to any base" program. Here is a faster "Convert to Binary" program:

```PRINT FNbinary(5)
PRINT FNbinary(50)
PRINT FNbinary(9000)
END

DEF FNbinary(N%)
LOCAL A\$
REPEAT
A\$ = STR\$(N% AND 1) + A\$
N% = N% >>> 1  : REM BBC Basic prior to V5 can use N% = N% DIV 2
UNTIL N% = 0
=A\$
```

=

## Commodore BASIC

=

```10 N = 5 : GOSUB 100
20 N = 50 : GOSUB 100
30 N = 9000 : GOSUB 100
40 END
90 REM *** SUBROUTINE: CONVERT DECIMAL TO BINARY
100 N2 =  ABS(INT(N))
110 B\$ = ""
120 FOR N1 = N2 TO 0 STEP 0
130 :  N2 =  INT(N1 / 2)
140 :  B\$ =  STR\$(N1 - N2 * 2) + B\$
150 :  N1 = N2
160 NEXT N1
170 PRINT B\$
180 RETURN
```

==={{header|IS-BASIC}}=== 10 PRINT BIN\$(50) 100 DEF BIN\$(N) 110 LET N=ABS(INT(N)):LET B\$="" 120 DO 140 LET B\$=STR\$(MOD(N,2))&B\$:LET N=INT(N/2) 150 LOOP WHILE N>0 160 LET BIN\$=B\$ 170 END DEF

```

## bc

{{trans|dc}}

```bc
obase = 2
5
50
9000
quit
```

## Befunge

Reads the number to convert from standard input.

```&>0\55+\:2%68>*#<+#8\#62#%/#2:_\$>:#,_\$@
```

{{out}}

```9000
10001100101000
```

## Bracmat

```  ( dec2bin
=   bit bits
.   :?bits
&   whl
' ( !arg:>0
& mod\$(!arg,2):?bit
& div\$(!arg,2):?arg
& !bit !bits:?bits
)
& (str\$!bits:~|0)
)
& 0 5 50 9000 423785674235000123456789:?numbers
&   whl
' ( !numbers:%?dec ?numbers
& put\$(str\$(!dec ":\n" dec2bin\$!dec \n\n))
)
;
```

{{out}}

```0:
0

5:
101

50:
110010

9000:
10001100101000

423785674235000123456789:
1011001101111010111011110101001101111000000000000110001100000100111110100010101
```

=={{header|Brainfuck}}==

This is almost an exact duplicate of [[Count in octal#Brainfuck]]. It outputs binary numbers until it is forced to terminate or the counter overflows to 0.

```+[            Start with n=1 to kick off the loop
[>>++<<       Set up {n 0 2} for divmod magic
[->+>-        Then
[>+>>]>       do
[+[-<+>]>+>>] the
<<<<<<]       magic
>>>+          Increment n % 2 so that 0s don't break things
>]            Move into n / 2 and divmod that unless it's 0
-<            Set up sentinel ‑1 then move into the first binary digit
[++++++++ ++++++++ ++++++++ Add 47 to get it to ASCII
++++++++ ++++++++ +++++++. and print it
[<]<]         Get to a 0; the cell to the left is the next binary digit
>>[<+>-]      Tape is {0 n}; make it {n 0}
>[>+]         Get to the ‑1
<[[-]<]       Zero the tape for the next iteration
++++++++++.   Print a newline
[-]<+]        Zero it then increment n and go again
```

## Burlesque

```
blsq ) {5 50 9000}{2B!}m[uN
101
110010
10001100101000

```

## C

Converts int to a string.

```#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

char *bin(uint32_t x);

int main(void)
{
for (size_t i = 0; i < 20; i++) {
char *binstr = bin(i);
printf("%s\n", binstr);
free(binstr);
}
}

char *bin(uint32_t x)
{
size_t bits = (x == 0) ? 1 : log10((double) x)/log10(2) + 1;
char *ret = malloc((bits + 1) * sizeof (char));
for (size_t i = 0; i < bits ; i++) {
ret[bits - i - 1] = (x & 1) ? '1' : '0';
x >>= 1;
}
ret[bits] = '\0';
return ret;
}
```

{{out}}

```0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
10000
10001
10010
10011
```

## C++

```#include <bitset>
#include <iostream>
#include <limits>
#include <string>

void print_bin(unsigned int n) {
std::string str = "0";

if (n > 0) {
str = std::bitset<std::numeric_limits<unsigned int>::digits>(n).to_string();
str = str.substr(str.find('1')); // remove leading zeros
}

std::cout << str << '\n';
}

int main() {
print_bin(0);
print_bin(5);
print_bin(50);
print_bin(9000);
}

```

{{out}}

```
0
101
110010
10001100101000

```

Shorter version using bitset

```#include <iostream>
#include <bitset>
void printBits(int n) {                     // Use int like most programming languages.
int iExp = 0;                             // Bit-length
while (n >> iExp) ++iExp;                 // Could use template <log(x)*1.44269504088896340736>
for (int at = iExp - 1; at >= 0; at--)    // Reverse iter from the bit-length to 0 - msb is at end
std::cout << std::bitset<32>(n)[at];    // Show 1's, show lsb, hide leading zeros
std::cout << '\n';
}
int main(int argc, char* argv[]) {
printBits(5);
printBits(50);
printBits(9000);
} // for testing with n=0 printBits<32>(0);
```

Using >> operator. (1st example is 2.75x longer. Matter of taste.)

```#include <iostream>
int main(int argc, char* argv[]) {
unsigned int in[] = {5, 50, 9000};        // Use int like most programming languages
for (int i = 0; i < 3; i++)               // Use all inputs
for (int at = 31; at >= 0; at--)        // reverse iteration from the max bit-length to 0, because msb is at the end
if (int b = (in[i] >> at))            // skip leading zeros. Start output when significant bits are set
std::cout << ('0' + b & 1) << (!at ? "\n": "");	// '0' or '1'. Add EOL if last bit of num
}

```

To be fair comparison with languages that doesn't declare a function like C++ main(). 3.14x shorter than 1st example.

```#include <iostream>
int main(int argc, char* argv[]) {                        // Usage: program.exe 5 50 9000
for (int i = 1; i < argc; i++)                          // argv[0] is program name
for (int at = 31; at >= 0; at--)                      // reverse iteration from the max bit-length to 0, because msb is at the end
if (int b = (atoi(argv[i]) >> at))                  // skip leading zeros
std::cout << ('0' + b & 1) << (!at ? "\n": "");  // '0' or '1'. Add EOL if last bit of num
}

```

Using bitwise operations with recursion.

```
#include <iostream>

std::string binary(int n) {
return n == 0 ? "" : binary(n >> 1) + std::to_string(n & 1);
}

int main(int argc, char* argv[]) {
for (int i = 1; i < argc; ++i) {
std::cout << binary(std::stoi(argv[i])) << std::endl;
}
}

```

{{out}}

```
101
110010
10001100101000

```

## C#

```using System;

class Program
{
static void Main()
{
foreach (var number in new[] { 5, 50, 9000 })
{
Console.WriteLine(Convert.ToString(number, 2));
}
}
}
```

{{out}}

```
101
110010
10001100101000

```

## Ceylon

```    shared void run() {

void printBinary(Integer integer) =>
print(Integer.format(integer, 2));

printBinary(5);
printBinary(50);
printBinary(9k);
}
```

## Clojure

```(Integer/toBinaryString 5)
(Integer/toBinaryString 50)
(Integer/toBinaryString 9000)
```

## COBOL

```       IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 binary_number   pic X(21).
01 str             pic X(21).
01 binary_digit    pic X.
01 digit           pic 9.
01 n               pic 9(7).
01 nstr            pic X(7).

PROCEDURE DIVISION.
accept nstr
move nstr to n
perform until n equal 0
divide n by 2 giving n remainder digit
move digit to binary_digit
string binary_digit  DELIMITED BY SIZE
binary_number DELIMITED BY SPACE
into str
move str to binary_number
end-perform.
display binary_number
stop run.

```

Free-form, using a reference modifier to index into binary-number.

```IDENTIFICATION DIVISION.
PROGRAM-ID. binary-conversion.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 binary-number   pic X(21).
01 digit           pic 9.
01 n               pic 9(7).
01 nstr            pic X(7).
01 ptr			   pic 99.

PROCEDURE DIVISION.
display "Number: " with no advancing.
accept nstr.
move nstr to n.
move zeroes to binary-number.
move length binary-number to ptr.
perform until n equal 0
divide n by 2 giving n remainder digit
move digit to binary-number(ptr:1)
subtract 1 from ptr
if ptr < 1
exit perform
end-if
end-perform.
display binary-number.
stop run.
```

## CoffeeScript

```binary = (n) ->
new Number(n).toString(2)

console.log binary n for n in [5, 50, 9000]
```

## Common Lisp

Just print the number with "~b":

```(format t "~b" 5)

; or

(write 5 :base 2)
```

## Component Pascal

BlackBox Component Builder

```
MODULE BinaryDigits;
IMPORT StdLog,Strings;

PROCEDURE Do*;
VAR
str : ARRAY 33 OF CHAR;
BEGIN
Strings.IntToStringForm(5,2, 1,'0',FALSE,str);
StdLog.Int(5);StdLog.String(":> " + str);StdLog.Ln;
Strings.IntToStringForm(50,2, 1,'0',FALSE,str);
StdLog.Int(50);StdLog.String(":> " + str);StdLog.Ln;
Strings.IntToStringForm(9000,2, 1,'0',FALSE,str);
StdLog.Int(9000);StdLog.String(":> " + str);StdLog.Ln;
END Do;
END BinaryDigits.

```

Execute: ^Q BinaryDigits.Do
{{out}}

```
5:> 101
50:> 110010
9000:> 10001100101000
```

## Crystal

{{trans|Ruby}} Using an array

```[5,50,9000].each do |n|
puts "%b" % n
end
```

Using a tuple

```{5,50,9000}.each { |n| puts n.to_s(2) }
```

{{out}}

```101
110010
10001100101000
```

## D

```void main() {
import std.stdio;

foreach (immutable i; 0 .. 16)
writefln("%b", i);
}
```

{{out}}

```0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
```

## Dart

```String binary(int n) {
if(n<0)
throw new IllegalArgumentException("negative numbers require 2s complement");
if(n==0) return "0";
String res="";
while(n>0) {
res=(n%2).toString()+res;
n=(n/2).toInt();
}
return res;
}

main() {
print(binary(0));
print(binary(1));
print(binary(5));
print(binary(10));
print(binary(50));
print(binary(9000));
print(binary(65535));
print(binary(0xaa5511ff));
print(binary(0x123456789abcde));
// fails due to precision limit
print(binary(0x123456789abcdef));
}
```

```

{{out}}

```txt
101
110010
10001100101000
```

## Delphi

```
program BinaryDigit;
{\$APPTYPE CONSOLE}
uses
sysutils;

function IntToBinStr(AInt : LongWord) : string;
begin
Result := '';
repeat
Result := Chr(Ord('0')+(AInt and 1))+Result;
AInt := AInt div 2;
until (AInt = 0);
end;

Begin
writeln('   5: ',IntToBinStr(5));
writeln('  50: ',IntToBinStr(50));
writeln('9000: '+IntToBinStr(9000));
end.
```

{{out}}

```
5: 101
50: 110010
9000: 10001100101000

```

## EchoLisp

```
;; primitive : (number->string number [base]) - default base = 10

(number->string 2 2)
→ 10

(for-each (compose writeln (rcurry number->string 2)) '( 5 50 9000)) →
101
110010
10001100101000

```

## Dyalect

A default `toString` method of type `Integer` is overriden and returns a binary representation of a number:

```func Integer.toString() {
var s = ""
for x in 31..0 {
if this & (1 << x) != 0 {
s += "1"
} else if s != "" {
s += "0"
}
}
s
}

print("5 == \(5), 50 = \(50), 1000 = \(9000)")
```

{{out}}

```5 == 101, 50 = 110010, 1000 = 10001100101000
```

## EasyLang

func to2 n . r\$ . if n > 0 call to2 n / 2 r\$ if n mod 2 = 0 r\$ &= "0" else r\$ &= "1" . else r\$ = "" . . func pr2 n . . call to2 n r\$ if r\$ = "" print "0" else print r\$ . . call pr2 5 call pr2 50 call pr2 9000

```

```txt

101
110010
10001100101000

```

## Elena

ELENA 4.1 :

```import system'routines;
import extensions;

public program()
{
new int[]::(5,50,9000).forEach:(n)
{
console.printLine(n.toString(2))
}
}
```

{{out}}

```
101
110010
10001100101000

```

## Elixir

Use `Integer.to_string` with a base of 2:

```
IO.puts Integer.to_string(5,2)

```

Or, using the pipe operator:

```
5 |> Integer.to_string(2) |> IO.puts

```
```
[5,50,9000] |> Enum.each(fn n -> IO.puts Integer.to_string(n,2) end)

```

{{out}}

```
101
110010
10001100101000

```

## Erlang

```lists:map( fun(N) -> io:fwrite("~.2B~n", [N]) end, [5, 50, 9000]).
```

{{out}}

```101
110010
10001100101000
```

## Euphoria

```function toBinary(integer i)
sequence s
s = {}
while i do
s = prepend(s, '0'+and_bits(i,1))
i = floor(i/2)
end while
return s
end function

puts(1, toBinary(5) & '\n')
puts(1, toBinary(50) & '\n')
puts(1, toBinary(9000) & '\n')
```

### Functional/Recursive

```include std/math.e
include std/convert.e

function Bin(integer n, sequence s = "")
if n > 0 then
return Bin(floor(n/2),(mod(n,2) + #30) & s)
end if
if length(s) = 0 then
return to_integer("0")
end if
return to_integer(s)
end function

printf(1, "%d\n", Bin(5))
printf(1, "%d\n", Bin(50))
printf(1, "%d\n", Bin(9000))
```

=={{header|F Sharp|F#}}== By translating C#'s approach, using imperative coding style (inflexible):

```open System
for i in [5; 50; 9000] do printfn "%s" <| Convert.ToString (i, 2)
```

Alternatively, by creating a function `printBin` which prints in binary (more flexible):

```open System

// define the function
let printBin (i: int) =
Convert.ToString (i, 2)
|> printfn "%s"

// use the function
[5; 50; 9000]
|> List.iter printBin
```

Or more idiomatic so that you can use it with any printf-style function and the `%a` format specifier (most flexible):

```open System
open System.IO

// define a callback function for %a
let bin (tw: TextWriter) value =
tw.Write("{0}", Convert.ToString(int64 value, 2))

// use it with printfn with %a
[5; 50; 9000]
|> List.iter (printfn "binary: %a" bin)
```

Output (either version):

```
101
110010
10001100101000

```

## Factor

```USING: io kernel math math.parser ;

5 >bin print
50 >bin print
9000 >bin print
```

## FBSL

```#AppType Console
function Bin(byval n as integer, byval s as string = "") as string
if n > 0 then return Bin(n \ 2, (n mod 2) & s)
if s = "" then return "0"
return s
end function

print Bin(5)
print Bin(50)
print Bin(9000)

pause

```

## Forth

```\ Forth uses a system variable 'BASE' for number conversion

\ HEX is a standard word to change the value of base to 16
\ DECIMAL is a standard word to change the value of base to 10

\ we can easily compile a word into the system to set 'BASE' to 2

: binary  2 base ! ; ok

\ interactive console test with conversion and binary masking example

hex 0FF binary . 11111111  ok
decimal 679 binary . 1010100111  ok
ok
binary  11111111111  00000110000  and . 110000  ok

decimal ok

```

## Fortran

Please find compilation instructions and the example run at the start of the FORTRAN90 source that follows. Thank you.

```
!-*- mode: compilation; default-directory: "/tmp/" -*-
!Compilation started at Sun May 19 23:14:14
!
!a=./F && make \$a && \$a < unixdict.txt
!f95 -Wall -ffree-form F.F -o F
!101
!110010
!10001100101000
!
!Compilation finished at Sun May 19 23:14:14
!
!
!   tobin=: -.&' '@":@#:
!   tobin 5
!101
!   tobin 50
!110010
!   tobin 9000
!10001100101000

program bits
implicit none
integer, dimension(3) :: a
integer :: i
data a/5,50,9000/
do i = 1, 3
call s(a(i))
enddo

contains

subroutine s(a)
integer, intent(in) :: a
integer :: i
if (a .eq. 0) then
write(6,'(a)')'0'
return
endif
do i = 31, 0, -1
if (btest(a, i)) exit
enddo
do while (0 .lt. i)
if (btest(a, i)) then
write(6,'(a)',advance='no')'1'
else
write(6,'(a)',advance='no')'0'
endif
i = i-1
enddo
if (btest(a, i)) then
write(6,'(a)')'1'
else
write(6,'(a)')'0'
endif
end subroutine s

end program bits

```

## FreeBASIC

```
' FreeBASIC v1.05.0 win64
Dim As String fmt = "#### -> &"
Print Using fmt; 5; Bin(5)
Print Using fmt; 50; Bin(50)
Print Using fmt; 9000; Bin(9000)
Print
Print "Press any key to exit the program"
Sleep
End

```

{{out}}

```
5 -> 101
50 -> 110010
9000 -> 10001100101000

```

## Free Pascal

As part of the RTL (run-time library) that is shipped with every FPC (Free Pascal compiler) distribution, the system unit contains the function binStr. The system unit is automatically included by ''every'' program and is guaranteed to work on every supported platform.

```program binaryDigits(input, output, stdErr);
{\$mode ISO}

function binaryNumber(const value: nativeUInt): shortString;
const
one = '1';
var
representation: shortString;
begin
representation := binStr(value, bitSizeOf(value));
// strip leading zeroes, if any; NB: mod has to be ISO compliant
delete(representation, 1, (pos(one, representation)-1) mod bitSizeOf(value));
// traditional Pascal fashion:
// assign result to the (implicitely existent) variable
// that is named like the function’s name
binaryNumber := representation;
end;

begin
writeLn(binaryNumber(5));
writeLn(binaryNumber(50));
writeLn(binaryNumber(9000));
end.
```

Note, that the ISO compliant mod operation has to be used, which is ensured by the {\$mode} directive in the second line.

## Frink

The following all provide equivalent output. Input can be arbitrarily-large integers.

```
9000 -> binary
9000 -> base2
base2[9000]
base[9000, 2]

```

## FunL

```for n <- [5, 50, 9000, 9000000000]
println( n, bin(n) )
```

{{out}}

```
5, 101
50, 110010
9000, 10001100101000
9000000000, 1000011000011100010001101000000000

```

## Futhark

We produce the binary number as a 64-bit integer whose digits are all 0s and 1s - this is because Futhark does not have any way to print, nor strings for that matter.

```
fun main(x: i32): i64 =
loop (out = 0i64) = for i < 32 do
let digit = (x >> (31-i)) & 1
let out = (out * 10i64) + i64(digit)
in out
in out

```

## Gambas

'''[https://gambas-playground.proko.eu/?gist=03e84768e6ee2af9b7664efa04fa6da8 Click this link to run this code]'''

```Public Sub Main()
Dim siBin As Short[] = [5, 50, 9000]
Dim siCount As Short

For siCount = 0 To siBin.Max
Print Bin(siBin[siCount])
Next

End
```

{{out}}

```
101
110010
10001100101000

```

## Go

```package main

import (
"fmt"
)

func main() {
for i := 0; i < 16; i++ {
fmt.Printf("%b\n", i)
}
}
```

{{out}}

```
0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111

```

## Groovy

Solutions:

```print '''
n        binary
----- ---------------
'''
[5, 50, 9000].each {
printf('%5d %15s\n', it, Integer.toBinaryString(it))
}
```

{{out}}

```  n        binary
----- ---------------
5             101
50          110010
9000  10001100101000
```

## Haskell

```import Data.List
import Numeric
import Text.Printf

-- Use the built-in function showIntAtBase.
toBin n = showIntAtBase 2 ("01" !!) n ""

-- Implement our own version.
toBin1 0 = []
toBin1 x =  (toBin1 \$ x `div` 2) ++ (show \$ x `mod` 2)

-- Or even more efficient (due to fusion) and universal implementation
toBin2 = foldMap show . reverse . toBase 2

toBase base = unfoldr modDiv
where modDiv 0 = Nothing
modDiv n = let (q, r) = (n `divMod` base) in Just (r, q)

printToBin n = putStrLn \$ printf "%4d  %14s  %14s" n (toBin n) (toBin1 n)

main = do
putStrLn \$ printf "%4s  %14s  %14s" "N" "toBin" "toBin1"
mapM_ printToBin [5, 50, 9000]
```

{{out}}

```
N           toBin          toBin1
5             101             101
50          110010          110010
9000  10001100101000  10001100101000

```

=={{header|Icon}} and {{header|Unicon}}== There is no built-in way to output the bit string representation of an whole number in Icon and Unicon. There are generalized radix conversion routines in the Icon Programming Library that comes with every distribution. This procedure is a customized conversion routine that will populate and use a tunable cache as it goes.

```procedure main()
every i := 5 | 50 | 255 | 1285 | 9000 do
write(i," = ",binary(i))
end

procedure binary(n)                      #: return bitstring for integer n
static CT, cm, cb
initial {
CT := table()                         # cache table for results
cm := 2 ^ (cb := 4)                   # (tunable) cache modulus & pad bits
}

b := ""                                  # build reversed bit string
while n > 0 do {                         # use cached result ...
if not (b ||:= \CT[1(i := n % cm, n /:= cm) ]) then {
CT[j := i] := ""                   # ...or start new cache entry
while j > 0 do
CT[i] ||:=  "01"[ 1(1+j % 2, j /:= 2 )]
b ||:= CT[i] := left(CT[i],cb,"0") # finish cache with padding
}
}
return reverse(trim(b,"0"))              # nothing extraneous
end
```

{{out}}

```5 = 101
50 = 110010
255 = 11111111
1285 = 10100000101
9000 = 10001100101000
```

## Idris

```module Main

binaryDigit : Integer -> Char
binaryDigit n = if (mod n 2) == 1 then '1' else '0'

binaryString : Integer -> String
binaryString 0 = "0"
binaryString n = pack (loop n [])
where loop : Integer -> List Char -> List Char
loop 0 acc = acc
loop n acc = loop (div n 2) (binaryDigit n :: acc)

main : IO ()
main = do
putStrLn (binaryString 0)
putStrLn (binaryString 5)
putStrLn (binaryString 50)
putStrLn (binaryString 9000)

```

{{out}}

```
0
101
110010
10001100101000

```

## J

```   tobin=: -.&' '@":@#:
tobin 5
101
tobin 50
110010
tobin 9000
10001100101000
```

Algorithm: Remove spaces from the character list which results from formatting the binary list which represents the numeric argument.

I am using implicit output.

## Java

```public class Main {
public static void main(String[] args) {
System.out.println(Integer.toBinaryString(5));
System.out.println(Integer.toBinaryString(50));
System.out.println(Integer.toBinaryString(9000));
}
}
```

{{out}}

```101
110010
10001100101000
```

## JavaScript

### ES5

```function toBinary(number) {
return new Number(number)
.toString(2);
}
var demoValues = [5, 50, 9000];
for (var i = 0; i < demoValues.length; ++i) {
// alert() in a browser, wscript.echo in WSH, etc.
print(toBinary(demoValues[i]));
}
```

### ES6

The simplest showBin (or showIntAtBase), using default digit characters, would use JavaScript's standard String.toString(base):

```(() => {

// showIntAtBase_ :: // Int -> Int -> String
const showIntAtBase_ = (base, n) => (n)
.toString(base);

// showBin :: Int -> String
const showBin = n => showIntAtBase_(2, n);

// GENERIC FUNCTIONS FOR TEST ---------------------------------------------

// intercalate :: String -> [a] -> String
const intercalate = (s, xs) => xs.join(s);

// map :: (a -> b) -> [a] -> [b]
const map = (f, xs) => xs.map(f);

// unlines :: [String] -> String
const unlines = xs => xs.join('\n');

// show :: a -> String
const show = x => JSON.stringify(x);

// TEST -------------------------------------------------------------------

return unlines(map(
n => intercalate(' -> ', [show(n), showBin(n)]),
[5, 50, 9000]
));
})();
```

{{Out}}

```5 -> 101
50 -> 110010
9000 -> 10001100101000
```

Or, if we need more flexibility with the set of digits used, we can write a version of showIntAtBase which takes a more specific Int -> Char function as as an argument. This one is a rough translation of Haskell's Numeric.showIntAtBase:

```(() => {

// showBin :: Int -> String
const showBin = n => {
const binaryChar = n => n !== 0 ? '一' : '〇';

return showIntAtBase(2, binaryChar, n, '');
};

// showIntAtBase :: Int -> (Int -> Char) -> Int -> String -> String
const showIntAtBase = (base, toChr, n, rs) => {
const showIt = ([n, d], r) => {
const r_ = toChr(d) + r;
return n !== 0 ? (
showIt(quotRem(n, base), r_)
) : r_;
};
return base <= 1 ? (
'error: showIntAtBase applied to unsupported base'
) : n < 0 ? (
'error: showIntAtBase applied to negative number'
) : showIt(quotRem(n, base), rs);
};

// quotRem :: Integral a => a -> a -> (a, a)
const quotRem = (m, n) => [Math.floor(m / n), m % n];

// GENERIC FUNCTIONS FOR TEST ---------------------------------------------

// intercalate :: String -> [a] -> String
const intercalate = (s, xs) => xs.join(s);

// map :: (a -> b) -> [a] -> [b]
const map = (f, xs) => xs.map(f);

// unlines :: [String] -> String
const unlines = xs => xs.join('\n');

// show :: a -> String
const show = x => JSON.stringify(x);

// TEST -------------------------------------------------------------------

return unlines(map(
n => intercalate(' -> ', [show(n), showBin(n)]), [5, 50, 9000]
));
})();
```

{{Out}}

```5 -> 一〇一
50 -> 一一〇〇一〇
9000 -> 一〇〇〇一一〇〇一〇一〇〇〇
```

## Joy

```HIDE
_ == [null] [pop] [2 div swap] [48 + putch] linrec
IN
int2bin == [null] [48 + putch] [_] ifte '\n putch
END
```

Using int2bin:

```0 setautoput
0 int2bin
5 int2bin
50 int2bin
9000 int2bin.
```

## jq

```def binary_digits:
if . == 0 then "0"
else [recurse( if . == 0 then empty else ./2 | floor end ) % 2 | tostring]
| reverse
| .[1:]     # remove the leading 0
| join("")
end ;

# The task:
(5, 50, 9000) | binary_digits
```

{{Out}} \$ jq -n -r -f Binary_digits.jq 101 110010 10001100101000

## Julia

{{works with|Julia|1.0}}

```using Printf

for n in (0, 5, 50, 9000)
@printf("%6i → %s\n", n, string(n, base=2))
end

# with pad
println("\nwith pad")
for n in (0, 5, 50, 9000)
@printf("%6i → %s\n", n, string(n, base=2, pad=20))
end
```

{{out}}

```     0 → 0
5 → 101
50 → 110010
9000 → 10001100101000

with pad
0 → 00000000000000000000
5 → 00000000000000000101
50 → 00000000000000110010
9000 → 00000010001100101000
```

## K

```  tobin: ,/\$2_vs
tobin' 5 50 9000
("101"
"110010"
"10001100101000")
```

## Kotlin

```// version 1.0.5-2

fun main(args: Array<String>) {
val numbers = intArrayOf(5, 50, 9000)
for (number in numbers) println("%4d".format(number) + " -> " + Integer.toBinaryString(number))
}
```

{{out}}

```
5 -> 101
50 -> 110010
9000 -> 10001100101000

```

## Lang5

```'%b '__number_format set
[5 50 9000] [3 1] reshape .
```

{{out}}

```[
[ 101  ]
[ 110010  ]
[ 10001100101000  ]
]
```

## LFE

If one is simple printing the results and doesn't need to use them (e.g., assign them to any variables, etc.), this is very concise:

```
(: io format '"~.2B~n~.2B~n~.2B~n" (list 5 50 9000))

```

If, however, you do need to get the results from a function, you can use `(: erlang integer_to_list ... )`. Here's a simple example that does the same thing as the previous code:

```
(: lists foreach
(lambda (x)
(: io format
'"~s~n"
(list (: erlang integer_to_list x 2))))
(list 5 50 9000))

```

{{out|note=for both examples}}

```
101
110010
10001100101000

```

## Liberty BASIC

```for a = 0 to 16
print a;"=";dec2bin\$(a)
next
a=50:print a;"=";dec2bin\$(a)
a=254:print a;"=";dec2bin\$(a)
a=9000:print a;"=";dec2bin\$(a)
wait

function dec2bin\$(num)
if num=0 then dec2bin\$="0":exit function
while num>0
dec2bin\$=str\$(num mod 2)+dec2bin\$
num=int(num/2)
wend
end function

```

## LLVM

{{trans|C}}

```; ModuleID = 'binary.c'
; source_filename = "binary.c"
; target datalayout = "e-m:w-i64:64-f80:128-n8:16:32:64-S128"
; target triple = "x86_64-pc-windows-msvc19.21.27702"

; This is not strictly LLVM, as it uses the C library function "printf".
; LLVM does not provide a way to print values, so the alternative would be
; to just load the string into memory, and that would be boring.

; Additional comments have been inserted, as well as changes made from the output produced by clang such as putting more meaningful labels for the jumps

\$"\01??_C@_03OFAPEBGM@?\$CFs?6?\$AA@" = comdat any

;--- String constant defintions
@"\01??_C@_03OFAPEBGM@?\$CFs?6?\$AA@" = linkonce_odr unnamed_addr constant [4 x i8] c"%s\0A\00", comdat, align 1

;--- The declaration for the external C printf function.
declare i32 @printf(i8*, ...)

;--- The declaration for the external C log10 function.
declare double @log10(double) #1

;--- The declaration for the external C malloc function.
declare noalias i8* @malloc(i64) #2

;--- The declaration for the external C free function.
declare void @free(i8*) #2

;----------------------------------------------------------
;-- Function that allocates a string with a binary representation of a number
define i8* @bin(i32) #0 {
;-- uint32_t x (local copy)
%2 = alloca i32, align 4
;-- size_t bits
%3 = alloca i64, align 8
;-- intermediate value
%4 = alloca i8*, align 8
;-- size_t i
%5 = alloca i64, align 8
store i32 %0, i32* %2, align 4
;-- x == 0, start determinig what value to initially store in bits
%6 = load i32, i32* %2, align 4
%7 = icmp eq i32 %6, 0
br i1 %7, label %just_one, label %calculate_logs

just_one:
br label %assign_bits

calculate_logs:
;-- log10((double) x)/log10(2) + 1
%8 = load i32, i32* %2, align 4
%9 = uitofp i32 %8 to double
;-- log10((double) x)
%10 = call double @log10(double %9) #3
;-- log10(2)
%11 = call double @log10(double 2.000000e+00) #3
;-- remainder of calculation
%12 = fdiv double %10, %11
%13 = fadd double %12, 1.000000e+00
br label %assign_bits

assign_bits:
;-- bits = (x == 0) ? 1 : log10((double) x)/log10(2) + 1;
;-- phi basically selects what the value to assign should be based on which basic block came before
%14 = phi double [ 1.000000e+00, %just_one ], [ %13, %calculate_logs ]
%15 = fptoui double %14 to i64
store i64 %15, i64* %3, align 8
;-- char *ret = malloc((bits + 1) * sizeof (char));
%16 = load i64, i64* %3, align 8
%17 = add i64 %16, 1
%18 = mul i64 %17, 1
%19 = call noalias i8* @malloc(i64 %18)
store i8* %19, i8** %4, align 8
store i64 0, i64* %5, align 8
br label %loop

loop:
;-- i < bits;
%20 = load i64, i64* %5, align 8
%21 = load i64, i64* %3, align 8
%22 = icmp ult i64 %20, %21
br i1 %22, label %loop_body, label %exit

loop_body:
;-- ret[bits - i - 1] = (x & 1) ? '1' : '0';
%23 = load i32, i32* %2, align 4
%24 = and i32 %23, 1
%25 = icmp ne i32 %24, 0
%26 = zext i1 %25 to i64
%27 = select i1 %25, i32 49, i32 48
%28 = trunc i32 %27 to i8
%29 = load i8*, i8** %4, align 8
%30 = load i64, i64* %3, align 8
%31 = load i64, i64* %5, align 8
%32 = sub i64 %30, %31
%33 = sub i64 %32, 1
%34 = getelementptr inbounds i8, i8* %29, i64 %33
store i8 %28, i8* %34, align 1
;-- x >>= 1;
%35 = load i32, i32* %2, align 4
%36 = lshr i32 %35, 1
store i32 %36, i32* %2, align 4
br label %loop_increment

loop_increment:
;-- i++;
%37 = load i64, i64* %5, align 8
%38 = add i64 %37, 1
store i64 %38, i64* %5, align 8
br label %loop

exit:
;-- ret[bits] = '\0';
%39 = load i8*, i8** %4, align 8
%40 = load i64, i64* %3, align 8
%41 = getelementptr inbounds i8, i8* %39, i64 %40
store i8 0, i8* %41, align 1
;-- return ret;
%42 = load i8*, i8** %4, align 8
ret i8* %42
}

;----------------------------------------------------------
;-- Entry point into the program
define i32 @main() #0 {
;-- 32-bit zero for the return
%1 = alloca i32, align 4
;-- size_t i, for tracking the loop index
%2 = alloca i64, align 8
;-- char* for the result of the bin call
%3 = alloca i8*, align 8
;-- initialize
store i32 0, i32* %1, align 4
store i64 0, i64* %2, align 8
br label %loop

loop:
;-- while (i < 20)
%4 = load i64, i64* %2, align 8
%5 = icmp ult i64 %4, 20
br i1 %5, label %loop_body, label %exit

loop_body:
;-- char *binstr = bin(i);
%6 = load i64, i64* %2, align 8
%7 = trunc i64 %6 to i32
%8 = call i8* @bin(i32 %7)
store i8* %8, i8** %3, align 8
;-- printf("%s\n", binstr);
%9 = load i8*, i8** %3, align 8
%10 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4 x i8], [4 x i8]* @"\01??_C@_03OFAPEBGM@?\$CFs?6?\$AA@", i32 0, i32 0), i8* %9)
;-- free(binstr);
%11 = load i8*, i8** %3, align 8
call void @free(i8* %11)
br label %loop_increment

loop_increment:
;-- i++
%12 = load i64, i64* %2, align 8
%13 = add i64 %12, 1
store i64 %13, i64* %2, align 8
br label %loop

exit:
;-- return 0 (implicit)
%14 = load i32, i32* %1, align 4
ret i32 %14
}

attributes #0 = { noinline nounwind optnone uwtable "correctly-rounded-divide-sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-jump-tables"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="x86-64" "target-features"="+fxsr,+mmx,+sse,+sse2,+x87" "unsafe-fp-math"="false" "use-soft-float"="false" }
attributes #1 = { nounwind "correctly-rounded-divide-sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="x86-64" "target-features"="+fxsr,+mmx,+sse,+sse2,+x87" "unsafe-fp-math"="false" "use-soft-float"="false" }
attributes #2 = { "correctly-rounded-divide-sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="x86-64" "target-features"="+fxsr,+mmx,+sse,+sse2,+x87" "unsafe-fp-math"="false" "use-soft-float"="false" }
attributes #3 = { nounwind }

!llvm.module.flags = !{!0, !1}
!llvm.ident = !{!2}

!0 = !{i32 1, !"wchar_size", i32 2}
!1 = !{i32 7, !"PIC Level", i32 2}
!2 = !{!"clang version 6.0.1 (tags/RELEASE_601/final)"}
```

{{out}}

```0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
10000
10001
10010
10011
```

## Locomotive Basic

```10 PRINT BIN\$(5)
20 PRINT BIN\$(50)
30 PRINT BIN\$(9000)
```

{{out}}

```101
110010
10001100101000
```

## LOLCODE

```HAI 1.3
HOW IZ I DECIMULBINUR YR DECIMUL
I HAS A BINUR ITZ ""
IM IN YR DUUH
BOTH SAEM DECIMUL AN SMALLR OF DECIMUL AN 0, O RLY?
YA RLY, GTFO
OIC
BINUR R SMOOSH MOD OF DECIMUL AN 2 BINUR MKAY
DECIMUL R MAEK QUOSHUNT OF DECIMUL AN 2 A NUMBR
IM OUTTA YR DUUH
FOUND YR BINUR
IF U SAY SO
VISIBLE I IZ DECIMULBINUR YR 5 MKAY
VISIBLE I IZ DECIMULBINUR YR 50 MKAY
VISIBLE I IZ DECIMULBINUR YR 9000 MKAY
KTHXBYE
```

{{out}}

```101
110010
10001100101000
```

## Lua

```function dec2bin (n)
local bin = ""
while n > 0 do
bin = n % 2 .. bin
n = math.floor(n / 2)
end
return bin
end

print(dec2bin(5))
print(dec2bin(50))
print(dec2bin(9000))
```

{{out}}

```101
110010
10001100101000
```

## M2000 Interpreter

```
Module Checkit {
Form 90, 40
Function BinFunc\${
Dim  Base 0, One\$(16)
One\$( 0 ) = "0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"
=lambda\$ One\$() (x, oct as long=4, bypass as boolean=True) ->{
if oct>0 and oct<5 then {
oct=2*(int(4-oct) mod 4+1)-1
} Else oct=1
hx\$ = Hex\$(x, 4 )
Def Ret\$
If Bypass then {
For i= oct to len(hx\$)
if bypass Then if Mid\$(hx\$, i, 1 )="0" Else bypass=false
If bypass and i<>Len(hx\$) Then Continue
Ret\$ += One\$( EVal( "0x" + Mid\$(hx\$, i, 1 ) ) )
Next i
oct=instr(Ret\$, "1")
if oct=0 then {
Ret\$="0"
} Else Ret\$=mid\$(Ret\$, oct)
} Else {
For i= oct to len(hx\$)
Ret\$ += One\$( EVal( "0x" + Mid\$(hx\$, i, 1 ) ) )
Next i
}
=Ret\$
}
}
Bin\$=BinFunc\$()
Stack New {
Data 9, 50, 9000
While not empty {
Read x
Print Format\$("The decimal value {0::-10} should produce an output of {1:-32}",x, Bin\$(x) )
}
}
Stack New {
Data 9, 50, 9000
While not empty {
Read x
Print Format\$("The decimal value {0::-10} should produce an output of {1:-32}",x, Bin\$(x,,false) )
}
}
Stack New {
Data 9, 50, 9000
While not empty {
Read x
Print Bin\$(x)
}
}
}
Checkit

```

{{out}}

```The decimal value          9 should produce an output of                             1001
The decimal value         50 should produce an output of                           110010
The decimal value       9000 should produce an output of                   10001100101000
The decimal value          9 should produce an output of 00000000000000000000000000001001
The decimal value         50 should produce an output of 00000000000000000000000000110010
The decimal value       9000 should produce an output of 00000000000000000010001100101000
1001
110010
10001100101000

```
## Maple ```Maple > convert( 50, 'binary' ); 110010 > convert( 9000, 'binary' ); 10001100101000 ``` =={{header|Mathematica}} / {{header|Wolfram Language}}== ```Mathematica StringJoin @@ ToString /@ IntegerDigits[50, 2] ``` =={{header|MATLAB}} / {{header|Octave}}== ```Matlab dec2bin(5) dec2bin(50) dec2bin(9000) ``` The output is a string containing ascii(48) (i.e. '0') and ascii(49) (i.e. '1'). ## MAXScript ```maxscript -- MAXScript: Output decimal numbers from 0 to 16 as Binary : N.H. 2019 for k = 0 to 16 do ( temp = "" binString = "" b = k -- While loop wont execute for zero so force string to zero if b == 0 then temp = "0" while b > 0 do ( rem = b b = b / 2 If ((mod rem 2) as Integer) == 0 then temp = temp + "0" else temp = temp + "1" ) -- Reverse the binary string for r = temp.count to 1 by -1 do ( binString = binString + temp[r] ) print binString ) ``` {{out}} Output to MAXScript Listener: ```txt "0" "1" "10" "11" "100" "101" "110" "111" "1000" "1001" "1010" "1011" "1100" "1101" "1110" "1111" "10000" ``` ## Maxima ```maxima digits([arg]) := block( [n: first(arg), b: if length(arg) > 1 then second(arg) else 10, v: [ ], q], do ( [n, q]: divide(n, b), v: cons(q, v), if n=0 then return(v)))\$ binary(n) := simplode(digits(n, 2))\$ binary(9000); /* 10001100101000 */ ``` ## Mercury ```mercury :- module binary_digits. :- interface. :- import_module io. :- pred main(io::di, io::uo) is det. :- implementation. :- import_module int, list, string. main(!IO) :- list.foldl(print_binary_digits, [5, 50, 9000], !IO). :- pred print_binary_digits(int::in, io::di, io::uo) is det. print_binary_digits(N, !IO) :- io.write_string(int_to_base_string(N, 2), !IO), io.nl(!IO). ``` ## min {{works with|min|0.19.3}} ```min (2 over over mod 'div dip) :divmod2 ( :n () =list (n 0 >) (n divmod2 list append #list @n) while list reverse 'string map "" join "^0+" "" replace ;remove leading zeroes ) :bin (5 50 9000) (bin puts) foreach ``` {{out}} ```txt 101 110010 10001100101000 ``` ## MiniScript ### Iterative ```MiniScript binary = function(n) result = "" while n result = result + str(n%2) n = floor(n/2) end while if not result then return "0" return result end function print binary(5) print binary(50) print binary(9000) print binary(0) ``` ### Recursive ```MiniScript binary = function(n,result="") if n == 0 then if result == "" then return "0" else return result end if result = str(n%2) + result return binary(floor(n/2),result) end function print binary(5) print binary(50) print binary(9000) print binary(0) ``` {{out}} ```txt 101 110010 10001100101000 0 ``` ## mLite ```sml fun binary (0, b) = implode ` map (fn x = if int x then chr (x + 48) else x) b | (n, b) = binary (n div 2, n mod 2 :: b) | n = binary (n, []) ; ``` ### = from the REPL = ```txt mLite > binary 5; "101" > binary 50; "110010" > binary 9000; "10001100101000" ``` =={{header|Modula-2}}== ```modula2 MODULE Binary; FROM FormatString IMPORT FormatString; FROM Terminal IMPORT Write,WriteLn,ReadChar; PROCEDURE PrintByte(b : INTEGER); VAR v : INTEGER; BEGIN v := 080H; WHILE v#0 DO IF (b BAND v) # 0 THEN Write('1') ELSE Write('0') END; v := v SHR 1 END END PrintByte; VAR buf : ARRAY[0..15] OF CHAR; i : INTEGER; BEGIN FOR i:=0 TO 15 DO PrintByte(i); WriteLn END; ReadChar END Binary. ``` =={{header|Modula-3}}== ```modula3 MODULE Binary EXPORTS Main; IMPORT IO, Fmt; VAR num := 10; BEGIN IO.Put(Fmt.Int(num, 2) & "\n"); num := 150; IO.Put(Fmt.Int(num, 2) & "\n"); END Binary. ``` {{out}} ```txt 1010 10010110 ``` ## NetRexx ```NetRexx /* NetRexx */ options replace format comments java crossref symbols nobinary runSample(arg) return method getBinaryDigits(nr) public static bd = nr.d2x.x2b.strip('L', 0) if bd.length = 0 then bd = 0 return bd method runSample(arg) public static parse arg list if list = '' then list = '0 5 50 9000' loop n_ = 1 to list.words w_ = list.word(n_) say w_.right(20)':' getBinaryDigits(w_) end n_ ``` {{out}} ```txt 0: 0 5: 101 50: 110010 9000: 10001100101000 ``` ## Nickle Using the Nickle output radix operator: ```txt prompt\$ nickle > 0 # 2 0 > 5 # 2 101 > 50 # 2 110010 > 9000 # 2 10001100101000 ``` ## Nim ```nim proc binDigits(x: BiggestInt, r: int): int = ## Calculates how many digits `x` has when each digit covers `r` bits. result = 1 var y = x shr r while y > 0: y = y shr r inc(result) proc toBin*(x: BiggestInt, len: Natural = 0): string = ## converts `x` into its binary representation. The resulting string is ## always `len` characters long. By default the length is determined ## automatically. No leading ``0b`` prefix is generated. var mask: BiggestInt = 1 shift: BiggestInt = 0 len = if len == 0: binDigits(x, 1) else: len result = newString(len) for j in countdown(len-1, 0): result[j] = chr(int((x and mask) shr shift) + ord('0')) shift = shift + 1 mask = mask shl 1 for i in 0..15: echo toBin(i) ``` {{out}} ```txt 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 ``` =={{header|Oberon-2}}== ```oberon2 MODULE BinaryDigits; IMPORT Out; PROCEDURE OutBin(x: INTEGER); BEGIN IF x > 1 THEN OutBin(x DIV 2) END; Out.Int(x MOD 2, 1); END OutBin; BEGIN OutBin(0); Out.Ln; OutBin(1); Out.Ln; OutBin(2); Out.Ln; OutBin(3); Out.Ln; OutBin(42); Out.Ln; END BinaryDigits. ``` {{out}} ```txt 0 1 10 11 101010 ``` ## Objeck ```objeck class Binary { function : Main(args : String[]) ~ Nil { 5->ToBinaryString()->PrintLine(); 50->ToBinaryString()->PrintLine(); 9000->ToBinaryString()->PrintLine(); } } ``` {{out}} ```txt 101 110010 10001100101000 ``` ## OCaml ```ocaml let bin_of_int d = if d < 0 then invalid_arg "bin_of_int" else if d = 0 then "0" else let rec aux acc d = if d = 0 then acc else aux (string_of_int (d land 1) :: acc) (d lsr 1) in String.concat "" (aux [] d) let () = let d = read_int () in Printf.printf "%8s\n" (bin_of_int d) ``` ## Oforth {{out}} ```txt >5 asStringOfBase(2) println 101 ok >50 asStringOfBase(2) println 110010 ok >9000 asStringOfBase(2) println 10001100101000 ok >423785674235000123456789 asStringOfBase(2) println 1011001101111010111011110101001101111000000000000110001100000100111110100010101 ok ``` ## OxygenBasic The Assembly code uses block structures to minimise the use of labels. ```oxygenbasic function BinaryBits(sys n) as string string buf=nuls 32 sys p=strptr buf sys le mov eax,n mov edi,p mov ecx,32 ' 'STRIP LEADING ZEROS ( dec ecx jl fwd done shl eax,1 jnc repeat ) 'PLACE DIGITS ' mov byte [edi],49 '1' inc edi ( cmp ecx,0 jle exit mov dl,48 '0' shl eax,1 ( jnc exit mov dl,49 '1' ) mov [edi],dl inc edi dec ecx repeat ) done: ' sub edi,p mov le,edi if le then return left buf,le return "0" end function print BinaryBits 0xaa 'result 10101010 ``` ## PARI/GP ```parigp bin(n:int)=concat(apply(s->Str(s),binary(n))) ``` ## Panda ```panda>0..15.radix:2 nl index of highest set bit but 0 -> 255 ==-1 ) IF n <> 0 then Begin {\$ifdef CPU64} digits:= BSRQWord(NativeInt(n))+1; {\$ELSE} digits:= BSRDWord(NativeInt(n))+1; {\$ENDIF} WholeIntToBin := IntToBin(NativeInt(n),digits); end else WholeIntToBin:='0'; end; procedure IntBinTest(n: NativeUint); Begin writeln(n:12,' ',WholeIntToBin(n)); end; BEGIN IntBinTest(5);IntBinTest(50);IntBinTest(5000); IntBinTest(0);IntBinTest(NativeUint(-1)); end. ``` {{out}} ```txt 5 101 50 110010 5000 1001110001000 0 0 18446744073709551615 1111111111111111111111111111111111111111111111111111111111111111 ``` ### alternative 4 chars at a time using pchar like C insert one nibble at a time. Beware of the endianess of the constant. I check performance with random Data. ```pascal program IntToPcharTest; uses sysutils;//for timing const {\$ifdef CPU64} cBitcnt = 64; {\$ELSE} cBitcnt = 32; {\$ENDIF} procedure IntToBinPchar(AInt : NativeUInt;s:pChar); //create the Bin-String //!Beware of endianess ! this is for little endian const IO : array[0..1] of char = ('0','1');//('_','X'); as you like IO4 : array[0..15] of LongWord = // '0000','1000' as LongWord (\$30303030,\$31303030,\$30313030,\$31313030, \$30303130,\$31303130,\$30313130,\$31313130, \$30303031,\$31303031,\$30313031,\$31313031, \$30303131,\$31303131,\$30313131,\$31313131); var i : NativeInt; begin IF AInt > 0 then Begin // Get the index of highest set bit {\$ifdef CPU64} i := BSRQWord(NativeInt(Aint))+1; {\$ELSE} i := BSRDWord(NativeInt(Aint))+1; {\$ENDIF} s[i] := #0; //get 4 characters at once dec(i); while i >= 3 do Begin pLongInt(@s[i-3])^ := IO4[Aint AND 15]; Aint := Aint SHR 4; dec(i,4) end; //the rest one by one while i >= 0 do Begin s[i] := IO[Aint AND 1]; AInt := Aint shr 1; dec(i); end; end else Begin s[0] := IO[0]; s[1] := #0; end; end; procedure Binary_Digits; var s: pCHar; begin GetMem(s,cBitcnt+4); fillchar(s[0],cBitcnt+4,#0); IntToBinPchar( 5,s);writeln(' 5: ',s); IntToBinPchar( 50,s);writeln(' 50: ',s); IntToBinPchar(9000,s);writeln('9000: ',s); IntToBinPchar(NativeUInt(-1),s);writeln(' -1: ',s); FreeMem(s); end; const rounds = 10*1000*1000; var s: pChar; t :TDateTime; i,l,cnt: NativeInt; Testfield : array[0..rounds-1] of NativeUint; Begin randomize; cnt := 0; For i := rounds downto 1 do Begin l := random(High(NativeInt)); Testfield[i] := l; {\$ifdef CPU64} inc(cnt,BSRQWord(l)); {\$ELSE} inc(cnt,BSRQWord(l)); {\$ENDIF} end; Binary_Digits; GetMem(s,cBitcnt+4); fillchar(s[0],cBitcnt+4,#0); //warm up For i := 0 to rounds-1 do IntToBinPchar(Testfield[i],s); //speed test t := time; For i := 1 to rounds do IntToBinPchar(Testfield[i],s); t := time-t; Write(' Time ',t*86400.0:6:3,' secs, average stringlength '); Writeln(cnt/rounds+1:6:3); FreeMem(s); end. ``` {{out}} ```txt //32-Bit fpc 3.1.1 -O3 -XX -Xs Cpu i4330 @3.5 Ghz 5: 101 50: 110010 9000: 10001100101000 -1: 11111111111111111111111111111111 Time 0.133 secs, average stringlength 30.000 //64-Bit fpc 3.1.1 -O3 -XX -Xs ... -1: 1111111111111111111111111111111111111111111111111111111111111111 Time 0.175 secs, average stringlength 62.000 ..the obvious version takes about 1.1 secs generating the string takes most of the time.. ``` ## Peloton ```sgml><@ defbaslit>20 <@ saybaslit>5 <@ saybaslit>50 <@ saybaslit>9000 ``` ## Perl ```perl for (5, 50, 9000) { printf "%b\n", \$_; } ``` ```txt 101 110010 10001100101000 ``` ## Perl 6 {{works with|Rakudo|2015.12}} ```perl6 say .fmt("%b") for 5, 50, 9000; ``` ```txt 101 110010 10001100101000 ``` ## Phix ```Phix printf(1,"%b\n",5) printf(1,"%b\n",50) printf(1,"%b\n",9000) ``` {{out}} ```txt 101 110010 10001100101000 ``` ## PHP ```php "101" : (bin 50) -> "110010" : (bin 9000) -> "10001100101000" ``` ## Piet Rendered as wikitable, because image upload is not possible: {| style="border-collapse: collapse; border-spacing: 0; font-family: courier-new,courier,monospace; font-size: 18px; line-height: 1.2em; padding: 0px" | style="background-color:#ffc0c0; color:#ffc0c0;" | ww | style="background-color:#ffc0c0; color:#ffc0c0;" | ww | style="background-color:#ff0000; color:#ff0000;" | ww | style="background-color:#c0c0ff; color:#c0c0ff;" | ww | style="background-color:#c0ffc0; color:#c0ffc0;" | ww | style="background-color:#c0ffc0; color:#c0ffc0;" | ww | style="background-color:#00ff00; color:#00ff00;" | ww | style="background-color:#0000ff; color:#0000ff;" | ww | style="background-color:#00ff00; color:#00ff00;" | ww | style="background-color:#00c000; color:#00c000;" | ww | style="background-color:#0000ff; color:#0000ff;" | ww | style="background-color:#ffff00; color:#ffff00;" | ww | style="background-color:#0000c0; color:#0000c0;" | ww | style="background-color:#0000ff; color:#0000ff;" | ww | style="background-color:#0000ff; color:#0000ff;" | ww | style="background-color:#00c0c0; color:#00c0c0;" | ww | style="background-color:#c0c000; color:#c0c000;" | ww | style="background-color:#ffffc0; color:#ffffc0;" | ww |- | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#0000c0; color:#0000c0;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#c0c0ff; color:#c0c0ff;" | ww |- | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#00ff00; color:#00ff00;" | ww | style="background-color:#c0c0ff; color:#c0c0ff;" | ww | style="background-color:#0000c0; color:#0000c0;" | ww | style="background-color:#0000ff; color:#0000ff;" | ww | style="background-color:#0000ff; color:#0000ff;" | ww | style="background-color:#c0ffc0; color:#c0ffc0;" | ww | style="background-color:#00c000; color:#00c000;" | ww | style="background-color:#00c000; color:#00c000;" | ww | style="background-color:#0000ff; color:#0000ff;" | ww | style="background-color:#c0c0ff; color:#c0c0ff;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#c0c0ff; color:#c0c0ff;" | ww |- | style="background-color:#c000c0; color:#c000c0;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#c0c0ff; color:#c0c0ff;" | ww |- | style="background-color:#ffc0ff; color:#ffc0ff;" | ww | style="background-color:#ff0000; color:#ff0000;" | ww | style="background-color:#ff00ff; color:#ff00ff;" | ww | style="background-color:#ffff00; color:#ffff00;" | ww | style="background-color:#ffffc0; color:#ffffc0;" | ww | style="background-color:#ffffc0; color:#ffffc0;" | ww | style="background-color:#ffffc0; color:#ffffc0;" | ww | style="background-color:#ffffc0; color:#ffffc0;" | ww | style="background-color:#ffffc0; color:#ffffc0;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#ffff00; color:#ffff00;" | ww |- | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww |- | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#000000; color:#000000;" | ww | style="background-color:#ffffc0; color:#ffffc0;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#ffffff; color:#ffffff;" | ww | style="background-color:#ffffc0; color:#ffffc0;" | ww |- |} Examples: ? 5 101 ? 50 110010 ? 9000 10001100101000 Explanation of program flow and image download link on my user page: [http://rosettacode.org/wiki/User:Albedo#Binary_Digits] ## PL/I Displays binary output trivially, but with leading zeros: ```pli put edit (25) (B); ``` {{out}} ```txt Output: 0011001 ``` With leading zero suppression: ```pli declare text character (50) initial (' '); put string(text) edit (25) (b); put skip list (trim(text, '0')); put string(text) edit (2147483647) (b); put skip list (trim(text, '0')); ``` {{out}} ```txt 11001 1111111111111111111111111111111 ``` ## PowerBASIC Pretty simple task in PowerBASIC since it has a built-in BIN\$-Function. Omitting the second parameter ("Digits") means no leading zeros in the result. ```powerbasic #COMPILE EXE #DIM ALL #COMPILER PBCC 6 FUNCTION PBMAIN () AS LONG LOCAL i, d() AS DWORD REDIM d(2) ARRAY ASSIGN d() = 5, 50, 9000 FOR i = 0 TO 2 PRINT STR\$(d(i)) & ": " & BIN\$(d(i)) & " (" & BIN\$(d(i), 32) & ")" NEXT i END FUNCTION ``` {{out}} ```txt 5: 101 (00000000000000000000000000000101) 50: 110010 (00000000000000000000000000110010) 9000: 10001100101000 (00000000000000000010001100101000) ``` ## PowerShell {{libheader|Microsoft .NET Framework}} ```PowerShell @(5,50,900) | foreach-object { [Convert]::ToString(\$_,2) } ``` {{out}} ```txt 101 110010 1110000100 ``` ## Processing ```processing println(Integer.toBinaryString(5)); // 101 println(Integer.toBinaryString(50)); // 110010 println(Integer.toBinaryString(9000)); // 10001100101000 ``` Processing also has a binary() function, but this returns zero-padded results ```processing println(binary(5)); // 00000000000101 println(binary(50)); // 00000000110010 println(binary(9000)); // 10001100101000 ``` ## Prolog {{works with|SWI Prolog}} {{works with|GNU Prolog}} ```prolog binary(X) :- format('~2r~n', [X]). main :- maplist(binary, [5,50,9000]), halt. ``` {{out}} ```txt 101 110010 10001100101000 ``` ## PureBasic ```PureBasic If OpenConsole() PrintN(Bin(5)) ;101 PrintN(Bin(50)) ;110010 PrintN(Bin(9000)) ;10001100101000 Print(#CRLF\$ + #CRLF\$ + "Press ENTER to exit"): Input() CloseConsole() EndIf ``` {{out}} ```txt 101 110010 10001100101000 ``` ## Python ===String.format() method=== {{works with|Python|3.X and 2.6+}} ```python>>> for i in range(16): print('{0:b}'.format(i)) 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 ``` ===Built-in bin() function=== {{works with|Python|3.X and 2.6+}} ```python>>> for i in range(16): print(bin(i)[2:]) 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 ``` Pre-Python 2.6: ```python>>> oct2bin = {'0': '000', '1': '001', '2': '010', '3': '011', '4': '100', '5': '101', '6': '110', '7': '111'} >>> bin = lambda n: ''.join(oct2bin[octdigit] for octdigit in '%o' % n).lstrip('0') or '0' >>> for i in range(16): print(bin(i)) 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 ``` ### Custom functions Defined in terms of a more general '''showIntAtBase''' function: ```python '''Binary strings for integers''' # showBinary :: Int -> String def showBinary(n): '''Binary string representation of an integer.''' def binaryChar(n): return '1' if n != 0 else '0' return showIntAtBase(2)(binaryChar)(n)('') # TEST ---------------------------------------------------- # main :: IO() def main(): '''Test''' print('Mapping showBinary over integer list:') print(unlines(map( showBinary, [5, 50, 9000] ))) print(tabulated( '\nUsing showBinary as a display function:' )(str)(showBinary)( lambda x: x )([5, 50, 9000])) # GENERIC ------------------------------------------------- # compose (<<<) :: (b -> c) -> (a -> b) -> a -> c def compose(g): '''Right to left function composition.''' return lambda f: lambda x: g(f(x)) # enumFromTo :: (Int, Int) -> [Int] def enumFromTo(m): '''Integer enumeration from m to n.''' return lambda n: list(range(m, 1 + n)) # showIntAtBase :: Int -> (Int -> String) -> Int -> String -> String def showIntAtBase(base): '''String representing a non-negative integer using the base specified by the first argument, and the character representation specified by the second. The final argument is a (possibly empty) string to which the numeric string will be prepended.''' def wrap(toChr, n, rs): def go(nd, r): n, d = nd r_ = toChr(d) + r return go(divmod(n, base), r_) if 0 != n else r_ return 'unsupported base' if 1 >= base else ( 'negative number' if 0 > n else ( go(divmod(n, base), rs)) ) return lambda toChr: lambda n: lambda rs: ( wrap(toChr, n, rs) ) # tabulated :: String -> (a -> String) -> # (b -> String) -> # (a -> b) -> [a] -> String def tabulated(s): '''Heading -> x display function -> fx display function -> f -> value list -> tabular string.''' def go(xShow, fxShow, f, xs): w = max(map(compose(len)(xShow), xs)) return s + '\n' + '\n'.join( xShow(x).rjust(w, ' ') + ' -> ' + fxShow(f(x)) for x in xs ) return lambda xShow: lambda fxShow: lambda f: lambda xs: go( xShow, fxShow, f, xs ) # unlines :: [String] -> String def unlines(xs): '''A single string derived by the intercalation of a list of strings with the newline character.''' return '\n'.join(xs) if __name__ == '__main__': main() ``` {{Out}} ```txt Mapping showBinary over integer list: 101 110010 10001100101000 Using showBinary as a display function: 5 -> 101 50 -> 110010 9000 -> 10001100101000 ``` Or, using a more specialised function to decompose an integer to a list of boolean values: ```python '''Decomposition of an integer to a string of booleans.''' # boolsFromInt :: Int -> [Bool] def boolsFromInt(n): '''List of booleans derived by binary decomposition of an integer.''' def go(x): (q, r) = divmod(x, 2) return Just((q, bool(r))) if x else Nothing() return unfoldl(go)(n) # stringFromBools :: [Bool] -> String def stringFromBools(xs): '''Binary string representation of a list of boolean values.''' def oneOrZero(x): return '1' if x else '0' return ''.join(map(oneOrZero, xs)) # TEST ---------------------------------------------------- # main :: IO() def main(): '''Test''' binary = compose(stringFromBools)(boolsFromInt) print('Mapping a composed function:') print(unlines(map( binary, [5, 50, 9000] ))) print( tabulated( '\n\nTabulating a string display from binary data:' )(str)(stringFromBools)( boolsFromInt )([5, 50, 9000]) ) # GENERIC ------------------------------------------------- # Just :: a -> Maybe a def Just(x): '''Constructor for an inhabited Maybe (option type) value.''' return {'type': 'Maybe', 'Nothing': False, 'Just': x} # Nothing :: Maybe a def Nothing(): '''Constructor for an empty Maybe (option type) value.''' return {'type': 'Maybe', 'Nothing': True} # compose (<<<) :: (b -> c) -> (a -> b) -> a -> c def compose(g): '''Right to left function composition.''' return lambda f: lambda x: g(f(x)) # enumFromTo :: (Int, Int) -> [Int] def enumFromTo(m): '''Integer enumeration from m to n.''' return lambda n: list(range(m, 1 + n)) # tabulated :: String -> (a -> String) -> # (b -> String) -> # (a -> b) -> [a] -> String def tabulated(s): '''Heading -> x display function -> fx display function -> f -> value list -> tabular string.''' def go(xShow, fxShow, f, xs): w = max(map(compose(len)(xShow), xs)) return s + '\n' + '\n'.join( xShow(x).rjust(w, ' ') + ' -> ' + fxShow(f(x)) for x in xs ) return lambda xShow: lambda fxShow: lambda f: lambda xs: go( xShow, fxShow, f, xs ) # unfoldl(lambda x: Just(((x - 1), x)) if 0 != x else Nothing())(10) # -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # unfoldl :: (b -> Maybe (b, a)) -> b -> [a] def unfoldl(f): '''Dual to reduce or foldl. Where these reduce a list to a summary value, unfoldl builds a list from a seed value. Where f returns Just(a, b), a is appended to the list, and the residual b is used as the argument for the next application of f. When f returns Nothing, the completed list is returned.''' def go(v): xr = v, v xs = [] while True: mb = f(xr[0]) if mb.get('Nothing'): return xs else: xr = mb.get('Just') xs.insert(0, xr[1]) return xs return lambda x: go(x) # unlines :: [String] -> String def unlines(xs): '''A single string derived by the intercalation of a list of strings with the newline character.''' return '\n'.join(xs) # MAIN ------------------------------------------------- if __name__ == '__main__': main() ``` {{Out}} ```txt Mapping a composed function: 101 110010 10001100101000 Tabulating a string display from binary data: 5 -> 101 50 -> 110010 9000 -> 10001100101000 ``` ## R ```rsplus dec2bin <- function(num) { ifelse(num == 0, 0, sub("^0+","",paste(rev(as.integer(intToBits(num))), collapse = "")) ) } for (anumber in c(0, 5, 50, 9000)) { cat(dec2bin(anumber),"\n") } ``` '''output''' ```txt 0 101 110010 10001100101000 ``` ## Racket ```racket #lang racket ;; Option 1: binary formatter (for ([i 16]) (printf "~b\n" i)) ;; Option 2: explicit conversion (for ([i 16]) (displayln (number->string i 2))) ``` ## RapidQ ```vb 'Convert Integer to binary string Print "bin 5 = ", bin\$(5) Print "bin 50 = ",bin\$(50) Print "bin 9000 = ",bin\$(9000) sleep 10 ``` ## Red ```Red Red [] foreach number [5 50 9000] [ ;; any returns first not false value, used to cut leading zeroes binstr: form any [find enbase/base to-binary number 2 "1" "0"] print reduce [ pad/left number 5 binstr ] ] ``` '''output''' ```txt 5 101 50 110010 9000 10001100101000 ``` ## Retro ```Retro 9000 50 5 3 [ binary putn cr decimal ] times ``` ## REXX This version handles the special case of zero simply. ### simple version Note: some REXX interpreters have a '''D2B''' [Decimal to Binary] BIF ('''b'''uilt-'''i'''n '''f'''unction). Programming note: this REXX version depends on '''numeric digits''' being large enough to handle leading zeroes in this manner (by adding a zero (to the binary version) to force superfluous leading zero suppression). ```REXX /*REXX program to convert several decimal numbers to binary (or base 2). */ numeric digits 1000 /*ensure we can handle larger numbers. */ @.=; @.1= 0 @.2= 5 @.3= 50 @.4= 9000 do j=1 while @.j\=='' /*compute until a NULL value is found.*/ y=x2b( d2x(@.j) ) + 0 /*force removal of extra leading zeroes*/ say right(@.j,20) 'decimal, and in binary:' y /*display the number to the terminal. */ end /*j*/ /*stick a fork in it, we're all done. */ ``` {{out|output}} ```txt 0 decimal, and in binary: 0 5 decimal, and in binary: 101 50 decimal, and in binary: 110010 9000 decimal, and in binary: 10001100101000 ``` ### elegant version This version handles the case of zero as a special case more elegantly. The following versions depend on the setting of '''numeric digits''' such that the number in decimal can be expressed as a whole number. ```REXX /*REXX program to convert several decimal numbers to binary (or base 2). */ @.=; @.1= 0 @.2= 5 @.3= 50 @.4= 9000 do j=1 while @.j\=='' /*compute until a NULL value is found.*/ y=strip( x2b( d2x( @.j )), 'L', 0) /*force removal of all leading zeroes.*/ if y=='' then y=0 /*handle the special case of 0 (zero).*/ say right(@.j,20) 'decimal, and in binary:' y /*display the number to the terminal. */ end /*j*/ /*stick a fork in it, we're all done. */ ``` {{out|output|text= is identical to the 1st REXX version.}} ### concise version This version handles the case of zero a bit more obtusely, but concisely. ```REXX /*REXX program to convert several decimal numbers to binary (or base 2). */ @.=; @.1= 0 @.2= 5 @.3= 50 @.4= 9000 do j=1 while @.j\=='' /*compute until a NULL value is found.*/ y=word( strip( x2b( d2x( @.j )), 'L', 0) 0, 1) /*elides all leading 0s, if null, use 0*/ say right(@.j,20) 'decimal, and in binary:' y /*display the number to the terminal. */ end /*j*/ /*stick a fork in it, we're all done. */ ``` {{out|output|text= is identical to the 1st REXX version.}} ### conforming version This REXX version conforms to the strict output requirements of this task (just show the binary output without any blanks). ```REXX /*REXX program to convert several decimal numbers to binary (or base 2). */ numeric digits 200 /*ensure we can handle larger numbers. */ @.=; @.1= 0 @.2= 5 @.3= 50 @.4= 9000 @.5=423785674235000123456789 @.6= 1e138 /*one quinquaquadragintillion ugh.*/ do j=1 while @.j\=='' /*compute until a NULL value is found.*/ y=strip( x2b( d2x( @.j )), 'L', 0) /*force removal of all leading zeroes.*/ if y=='' then y=0 /*handle the special case of 0 (zero).*/ say y /*display binary number to the terminal*/ end /*j*/ /*stick a fork in it, we're all done. */ ``` {{out|output}} ```txt 0 101 110010 10001100101000 1011001101111010111011110101001101111000000000000110001100000100111110100010101 101010111111101001000101110110100000111011011011110111100110100100000100100001111101101110011101000101110110001101101000100100100110000111001010101011110010001111100011110100010101011011111111000110101110111100001011100111110000000010101100110101001010001001001011000000110000010010010100010010000001110100101000011111001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ``` ## Ring ```ring see "Number to convert : " give a n = 0 while pow(2,n+1) < a n = n + 1 end for i = n to 0 step -1 x = pow(2,i) if a >= x see 1 a = a - x else see 0 ok next ``` ## Ruby ```ruby [5,50,9000].each do |n| puts "%b" % n end ``` or ```ruby for n in [5,50,9000] puts n.to_s(2) end ``` {{out}} ```txt 101 110010 10001100101000 ``` ## Run BASIC ```runbasic input "Number to convert:";a while 2^(n+1) < a n = n + 1 wend for i = n to 0 step -1 x = 2^i if a >= x then print 1; a = a - x else print 0; end if next ``` {{out}} ```txt Number to convert:?9000 10001100101000 ``` ## Rust ```rust fn main() { for i in 0..8 { println!("{:b}", i) } } ``` Outputs: ```txt 0 1 10 11 100 101 110 111 ``` =={{header|S-lang}}== define int_to_bin(d) { variable m = 0x40000000, prn = 0, bs = ""; do { if (d & m) { bs += "1"; prn = 1; } else if (prn) bs += "0"; m = m shr 1; } while (m); if (bs == "") bs = "0"; return bs; } () = printf("%s\n", int_to_bin(5)); () = printf("%s\n", int_to_bin(50)); () = printf("%s\n", int_to_bin(9000)); ``` {{out}} ```txt 101 110010 10001100101000 ``` ## Scala Scala has an implicit conversion from `Int` to `RichInt` which has a method `toBinaryString`. ```scala>scala (5 toBinaryString) res0: String = 101 scala> (50 toBinaryString) res1: String = 110010 scala> (9000 toBinaryString) res2: String = 10001100101000 ``` ## Scheme ```scheme (display (number->string 5 2)) (newline) (display (number->string 50 2)) (newline) (display (number->string 9000 2)) (newline) ``` ## Seed7 This example uses the [http://seed7.sourceforge.net/libraries/integer.htm#%28in_integer%29radix%28in_integer%29 radix] operator to write a number in binary. ```seed7 \$ include "seed7_05.s7i"; const proc: main is func local var integer: number is 0; begin for number range 0 to 16 do writeln(number radix 2); end for; end func; ``` {{out}} ```txt 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 ``` ## Sidef ```ruby [5, 50, 9000].each { |n| say n.as_bin; } ``` {{out}} ```txt 101 110010 10001100101000 ``` ## Simula ```simula BEGIN PROCEDURE OUTINTBIN(N); INTEGER N; BEGIN IF N > 1 THEN OUTINTBIN(N//2); OUTINT(MOD(N,2),1); END OUTINTBIN; INTEGER SAMPLE; FOR SAMPLE := 5, 50, 9000 DO BEGIN OUTINTBIN(SAMPLE); OUTIMAGE; END; END ``` {{out}} ```txt 101 110010 10001100101000 ``` ## SequenceL ```sequencel main := toBinaryString([5, 50, 9000]); toBinaryString(number(0)) := let val := "1" when number mod 2 = 1 else "0"; in toBinaryString(floor(number/2)) ++ val when floor(number/2) > 0 else val; ``` {{out}} ```txt ["101","110010","10001100101000"] ``` ## SkookumScript ```javascript println(5.binary) println(50.binary) println(9000.binary) ``` Or looping over a list of numbers: ```javascript {5 50 9000}.do[println(item.binary)] ``` {{out}} ```txt 101 110010 10001100101000 ``` ## Smalltalk ```smalltalk 5 printOn: Stdout radix:2 50 printOn: Stdout radix:2 9000 printOn: Stdout radix:2 ``` or: ```smalltalk #(5 50 9000) do:[:each | each printOn: Stdout radix:2. Stdout cr] ``` ## SNUSP ```SNUSP /recurse\ \$,binary!\@\>?!\@/<@\.# ! \=/ \=itoa=@@@+@+++++# /<+>- \ div2 \?!#-?/+# mod2 ``` ## Standard ML ```sml print (Int.fmt StringCvt.BIN 5 ^ "\n"); print (Int.fmt StringCvt.BIN 50 ^ "\n"); print (Int.fmt StringCvt.BIN 9000 ^ "\n"); ``` ## Swift ```Swift for num in [5, 50, 9000] { println(String(num, radix: 2)) } ``` {{out}} ```txt 101 110010 10001100101000 ``` ## Tcl ```tcl proc num2bin num { # Convert to _fixed width_ big-endian 32-bit binary binary scan [binary format "I" \$num] "B*" binval # Strip useless leading zeros by reinterpreting as a big decimal integer scan \$binval "%lld" } ``` Demonstrating: ```tcl for {set x 0} {\$x < 16} {incr x} { puts [num2bin \$x] } puts "--------------" puts [num2bin 5] puts [num2bin 50] puts [num2bin 9000] ``` {{out}} ```txt 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 -------------- 101 110010 10001100101000 ``` =={{header|TI-83 BASIC}}== Using Standard TI-83 BASIC ```ti83b PROGRAM:BINARY :Disp "NUMBER TO" :Disp "CONVERT:" :Input A :0→N :0→B :While 2^(N+1)≤A :N+1→N :End :While N≥0 :iPart(A/2^N)→C :10^(N)*C+B→B :If C=1 :Then :A-2^N→A :End :N-1→N :End :Disp B ``` Alternate using a string to display larger numbers. ```ti83b PROGRAM:BINARY :Input X :" "→Str1 :Repeat X=0 :X/2→X :sub("01",2fPart(X)+1,1)+Str1→Str1 :iPart(X)→X :End :Str1 ``` Using the baseInput() "real(25," function from [http://www.detachedsolutions.com/omnicalc/ Omnicalc] ```ti83b PROGRAM:BINARY :Disp "NUMBER TO" :Disp "CONVERT" :Input "Str1" :Disp real(25,Str1,10,2) ``` More compact version: ```ti83b :Input "DEC: ",D :" →Str1 :If not(D:"0→Str1 :While D>0 :If not(fPart(D/2:Then :"0"+Str1→Str1 :Else :"1"+Str1→Str1 :End :iPart(D/2→D :End :Disp Str1 ``` ## uBasic/4tH This will convert any decimal number to any base between 2 and 16. Do Input "Enter base (1 16) Loop Input "Enter number: "; n s = (n < 0) ' save the sign n = Abs(n) ' make number unsigned For x = 0 Step 1 Until n = 0 ' calculate all the digits @(x) = n % b n = n / b Next x If s Then Print "-"; ' reapply the sign For y = x - 1 To 0 Step -1 ' print all the digits If @(y) > 9 Then ' take care of hexadecimal digits Gosub @(y) * 10 Else Print @(y); ' print "decimal" digits Endif Next y Print ' finish the string End 100 Print "A"; : Return ' print hexadecimal digit 110 Print "B"; : Return 120 Print "C"; : Return 130 Print "D"; : Return 140 Print "E"; : Return 150 Print "F"; : Return ``` {{out}} ```txt Enter base (1= -512 And <= 511'' [Optional] Places (Long) : ''the number of characters to use.'' Note : If places is omitted, DecToBin2 uses the minimum number of characters necessary. Places is useful for padding the return value with leading 0s (zeros). ```vb Option Explicit Sub Main_Dec2bin() Dim Nb As Long Nb = 5 Debug.Print "The decimal value " & Nb & " should produce an output of : " & DecToBin(Nb) Debug.Print "The decimal value " & Nb & " should produce an output of : " & DecToBin2(Nb) Nb = 50 Debug.Print "The decimal value " & Nb & " should produce an output of : " & DecToBin(Nb) Debug.Print "The decimal value " & Nb & " should produce an output of : " & DecToBin2(Nb) Nb = 9000 Debug.Print "The decimal value " & Nb & " should produce an output of : " & DecToBin(Nb) Debug.Print "The decimal value " & Nb & " should produce an output of : " & DecToBin2(Nb) End Sub Function DecToBin(ByVal Number As Long) As String Dim strTemp As String Do While Number > 1 strTemp = Number - 2 * (Number \ 2) & strTemp Number = Number \ 2 Loop DecToBin = Number & strTemp End Function Function DecToBin2(ByVal Number As Long, Optional Places As Long) As String If Number > 511 Then DecToBin2 = "Error : Number is too large ! (Number must be < 511)" ElseIf Number < -512 Then DecToBin2 = "Error : Number is too small ! (Number must be > -512)" Else If Places = 0 Then DecToBin2 = WorksheetFunction.Dec2Bin(Number) Else DecToBin2 = WorksheetFunction.Dec2Bin(Number, Places) End If End If End Function ``` {{out}} ```txt The decimal value 5 should produce an output of : 101 The decimal value 5 should produce an output of : 101 The decimal value 50 should produce an output of : 110010 The decimal value 50 should produce an output of : 110010 The decimal value 9000 should produce an output of : 10001100101000 The decimal value 9000 should produce an output of : Error : Number is too large ! (Number must be < 511) ``` ## Vedit macro language This implementation reads the numeric values from user input and writes the converted binary values in the edit buffer. ```vedit repeat (ALL) { #10 = Get_Num("Give a numeric value, -1 to end: ", STATLINE) if (#10 < 0) { break } Call("BINARY") Update() } return :BINARY: do { Num_Ins(#10 & 1, LEFT+NOCR) #10 = #10 >> 1 Char(-1) } while (#10 > 0) EOL Ins_Newline Return ``` Example output when values 0, 1, 5, 50 and 9000 were entered: ```txt 0 1 101 110010 10001100101000 ``` ## Vim Script ```vim function Num2Bin(n) let n = a:n let s = "" if n == 0 let s = "0" else while n if n % 2 == 0 let s = "0" . s else let s = "1" . s endif let n = n / 2 endwhile endif return s endfunction echo Num2Bin(5) echo Num2Bin(50) echo Num2Bin(9000) ``` {{Out}} ```txt 101 110010 10001100101000 ``` ## Visual Basic {{works with|Visual Basic|VB6 Standard}} ```vb Public Function Bin(ByVal l As Long) As String Dim i As Long If l Then If l And &H80000000 Then 'negative number Bin = "1" & String\$(31, "0") l = l And (Not &H80000000) For i = 0 To 30 If l And (2& ^ i) Then Mid\$(Bin, Len(Bin) - i) = "1" End If Next i Else 'positive number Do While l If l Mod 2 Then Bin = "1" & Bin Else Bin = "0" & Bin End If l = l \ 2 Loop End If Else Bin = "0" 'zero End If End Function 'testing: Public Sub Main() Debug.Print Bin(5) Debug.Print Bin(50) Debug.Print Bin(9000) End Sub ``` {{out}} ```txt 101 110010 10001100101000 ``` ## Visual Basic .NET ```vbnet Module Program Sub Main For Each number In {5, 50, 9000} Console.WriteLine(Convert.ToString(number, 2)) Next End Sub End Module ``` {{out}} ```txt 101 110010 10001100101000 ``` ## Visual FoxPro ```vfp *!* Binary Digits CLEAR k = CAST(5 As I) ? NToBin(k) k = CAST(50 As I) ? NToBin(k) k = CAST(9000 As I) ? NToBin(k) FUNCTION NTOBin(n As Integer) As String LOCAL i As Integer, b As String, v As Integer b = "" v = HiBit(n) FOR i = 0 TO v b = IIF(BITTEST(n, i), "1", "0") + b ENDFOR RETURN b ENDFUNC FUNCTION HiBit(n As Double) As Integer *!* Find the highest power of 2 in n LOCAL v As Double v = LOG(n)/LOG(2) RETURN FLOOR(v) ENDFUNC ``` {{out}} ```txt 101 110010 10001100101000 ``` ## Whitespace This program prints binary numbers until the internal representation of the current integer overflows to -1; it will never do so on some interpreters. It is almost an exact duplicate of [[Count in octal#Whitespace]]. ```Whitespace ``` It was generated from the following pseudo-Assembly. ```asm push 0 ; Increment indefinitely. 0: push -1 ; Sentinel value so the printer knows when to stop. copy 1 call 1 push 10 ochr push 1 add jump 0 ; Get the binary digits on the stack in reverse order. 1: dup push 2 mod swap push 2 div push 0 copy 1 sub jn 1 pop ; Print them. 2: dup jn 3 ; Stop at the sentinel. onum jump 2 3: pop ret ``` ## Wortel Using JavaScripts buildin toString method on the Number object, the following function takes a number and returns a string with the binary representation: ```wortel \.toString 2 ; the following function also casts the string to a number ^(@+ \.toString 2) ``` To output to the console: ```wortel @each ^(console.log \.toString 2) [5 50 900] ``` Outputs: ```txt 101 110010 1110000100 ``` ## X86 Assembly Translation of XPL0. Assemble with tasm, tlink /t ```asm .model tiny .code .486 org 100h start: mov ax, 5 call binout call crlf mov ax, 50 call binout call crlf mov ax, 9000 call binout crlf: mov al, 0Dh ;new line int 29h mov al, 0Ah int 29h ret binout: push ax shr ax, 1 je bo10 call binout bo10: pop ax and al, 01h or al, '0' int 29h ;display character ret end start ``` {{out}} ```txt 101 110010 10001100101000 ``` ## XPL0 ```XPL0 include c:\cxpl\codes; \intrinsic code declarations proc BinOut(N); \Output N in binary int N; int R; [R:= N&1; N:= N>>1; if N then BinOut(N); ChOut(0, R+^0); ]; int I; [I:= 0; repeat BinOut(I); CrLf(0); I:= I+1; until KeyHit or I=0; ] ``` {{out}} ```txt 0 1 10 11 100 101 110 111 1000 ... 100000010011110 100000010011111 100000010100000 100000010100001 ``` ## zkl ```zkl (9000).toString(2) ``` ```zkl T(5,50,9000).apply("toString",2) //--> L("101","110010","10001100101000") ``` ```zkl "%.2B".fmt(9000) ``` ## ZX Spectrum Basic ```zxbasic 10 LET n=5: GO SUB 1000: PRINT s\$ 20 LET n=50: GO SUB 1000: PRINT s\$ 30 LET n=9000: GO SUB 1000: PRINT s\$ 999 STOP 1000 REM convert to binary 1010 LET t=n: REM temporary variable 1020 LET s\$="": REM this will contain our binary digits 1030 LET sf=0: REM output has not started yet 1040 FOR l=126 TO 0 STEP -1 1050 LET d\$="0": REM assume next digit is zero 1060 IF t>=(2^l) THEN LET d\$="1": LET t=t-(2^l): LET sf=1 1070 IF (sf <> 0) THEN LET s\$=s\$+d\$ 1080 NEXT l 1090 RETURN ```