⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

{{task}}

Suppose n_1, n_2, \ldots, n_k are positive [[integer]]s that are pairwise co-prime.

Then, for any given sequence of integers a_1, a_2, \dots, a_k, there exists an integer x solving the following system of simultaneous congruences:

::: \begin{align} x &\equiv a_1 \pmod{n_1} \ x &\equiv a_2 \pmod{n_2} \ &{}\ \ \vdots \ x &\equiv a_k \pmod{n_k} \end{align}

Furthermore, all solutions x of this system are congruent modulo the product, N=n_1n_2\ldots n_k.

;Task: Write a program to solve a system of linear congruences by applying the [[wp:Chinese Remainder Theorem|Chinese Remainder Theorem]].

If the system of equations cannot be solved, your program must somehow indicate this.

(It may throw an exception or return a special false value.)

Since there are infinitely many solutions, the program should return the unique solution s where 0 \leq s \leq n_1n_2\ldots n_k.

''Show the functionality of this program'' by printing the result such that the n's are [3,5,7] and the a's are [2,3,2].

'''Algorithm''': The following algorithm only applies if the n_i's are pairwise co-prime.

Suppose, as above, that a solution is required for the system of congruences:

::: x \equiv a_i \pmod{n_i} \quad\mathrm{for}; i = 1, \ldots, k

Again, to begin, the product N = n_1n_2 \ldots n_k is defined.

Then a solution x can be found as follows:

For each i, the integers n_i and N/n_i are co-prime.

Using the [[wp:Extended Euclidean algorithm|Extended Euclidean algorithm]], we can find integers r_i and s_i such that r_i n_i + s_i N/n_i = 1.

Then, one solution to the system of simultaneous congruences is:

::: x = \sum_{i=1}^k a_i s_i N/n_i

and the minimal solution,

::: x \pmod{N}.

11l

{{trans|Python}}

F mul_inv(=a, =b)
   V b0 = b
   V x0 = 0
   V x1 = 1
   I b == 1
      R 1
   L a > 1
      V q = a I/ b
      (a, b) = (b, a % b)
      (x0, x1) = (x1 - q * x0, x0)
   I x1 < 0
      x1 += b0
   R x1

F chinese_remainder(n, a)
   V sum = 0
   V prod = product(n)
   L(n_i, a_i) zip(n, a)
      V p = prod I/ n_i
      sum += a_i * mul_inv(p, n_i) * p
   R sum % prod

V n = [3, 5, 7]
V a = [2, 3, 2]
print(chinese_remainder(n, a))

{{out}}

23

360 Assembly

{{trans|REXX}}

*        Chinese remainder theorem 06/09/2015
CHINESE  CSECT
         USING  CHINESE,R12        base addr
         LR     R12,R15
BEGIN    LA     R9,1               m=1
         LA     R6,1               j=1
LOOPJ    C      R6,NN              do j=1 to nn
         BH     ELOOPJ
         LR     R1,R6              j
         SLA    R1,2               j*4
         M      R8,N-4(R1)         m=m*n(j)
         LA     R6,1(R6)           j=j+1
         B      LOOPJ
ELOOPJ   LA     R6,1               x=1
LOOPX    CR     R6,R9              do x=1 to m
         BH     ELOOPX
         LA     R7,1               i=1
LOOPI    C      R7,NN              do i=1 to nn
         BH     ELOOPI
         LR     R1,R7              i
         SLA    R1,2               i*4
         LR     R5,R6              x
         LA     R4,0
         D      R4,N-4(R1)         x//n(i)
         C      R4,A-4(R1)         if x//n(i)^=a(i)
         BNE    ITERX              then iterate x
         LA     R7,1(R7)           i=i+1
         B      LOOPI
ELOOPI   MVC    PG(2),=C'x='
         XDECO  R6,PG+2            edit x
         XPRNT  PG,14              print buffer
         B      RETURN
ITERX    LA     R6,1(R6)           x=x+1
         B      LOOPX
ELOOPX   XPRNT  NOSOL,17           print
RETURN   XR     R15,R15            rc=0
         BR     R14
NN       DC     F'3'
N        DC     F'3',F'5',F'7'
A        DC     F'2',F'3',F'2'
PG       DS     CL80
NOSOL    DC     CL17'no solution found'
         YREGS
         END    CHINESE

{{out}}


x=          23

Ada

Using the package Mod_Inv from [[http://rosettacode.org/wiki/Modular_inverse#Ada]].

with Ada.Text_IO, Mod_Inv;

procedure Chin_Rema is
   N: array(Positive range <>) of Positive := (3, 5, 7);
   A: array(Positive range <>) of Positive := (2, 3, 2);
   Tmp: Positive;
   Prod: Positive := 1;
   Sum: Natural := 0;

begin
   for I in N'Range loop
      Prod := Prod * N(I);
   end loop;

   for I in A'Range loop
      Tmp := Prod / N(I);
      Sum := Sum + A(I) * Mod_Inv.Inverse(Tmp, N(I)) * Tmp;
   end loop;
   Ada.Text_IO.Put_Line(Integer'Image(Sum mod Prod));
end Chin_Rema;

AWK

{{trans|C}} We are using the split-function to create both arrays, thus the indices start at 1. This is the only difference to the C version.

# Usage: GAWK -f CHINESE_REMAINDER_THEOREM.AWK
BEGIN {
    len = split("3 5 7", n)
    len = split("2 3 2", a)
    printf("%d\n", chineseremainder(n, a, len))
}
function chineseremainder(n, a, len,    p, i, prod, sum) {
    prod = 1
    sum = 0
    for (i = 1; i <= len; i++)
        prod *= n[i]
    for (i = 1; i <= len; i++) {
        p = prod / n[i]
        sum += a[i] * mulinv(p, n[i]) * p
    }
    return sum % prod
}
function mulinv(a, b,    b0, t, q, x0, x1) {
    # returns x where (a * x) % b == 1
    b0 = b
    x0 = 0
    x1 = 1
    if (b == 1)
        return 1
    while (a > 1) {
        q = int(a / b)
        t = b
        b = a % b
        a = t
        t = x0
        x0 = x1 - q * x0
        x1 = t
    }
    if (x1 < 0)
        x1 += b0
    return x1
}

{{out}}

23

Bracmat

{{trans|C}}

( ( mul-inv
  =   a b b0 q x0 x1
    .   !arg:(?a.?b:?b0)
      & ( !b:1
        |   0:?x0
          & 1:?x1
          &   whl
            ' ( !a:>1
              &   (!b.mod$(!a.!b):?q.!x1+-1*!q*!x0.!x0)
                : (?a.?b.?x0.?x1)
              )
          & ( !x1:<0&!b0+!x1
            | !x1
            )
        )
  )
& ( chinese-remainder
  =   n a as p ns ni prod sum
    .   !arg:(?n.?a)
      & 1:?prod
      & 0:?sum
      & !n:?ns
      & whl'(!ns:%?ni ?ns&!prod*!ni:?prod)
      & !n:?ns
      & !a:?as
      &   whl
        ' ( !ns:%?ni ?ns
          & !as:%?ai ?as
          & div$(!prod.!ni):?p
          & !sum+!ai*mul-inv$(!p.!ni)*!p:?sum
          )
      & mod$(!sum.!prod):?arg
      & !arg
  )
& 3 5 7:?n
& 2 3 2:?a
& put$(str$(chinese-remainder$(!n.!a) \n))
);

Output:

23

C

When n are not pairwise coprime, the program crashes due to division by zero, which is one way to convey error.

#include <stdio.h>

// returns x where (a * x) % b == 1
int mul_inv(int a, int b)
{
	int b0 = b, t, q;
	int x0 = 0, x1 = 1;
	if (b == 1) return 1;
	while (a > 1) {
		q = a / b;
		t = b, b = a % b, a = t;
		t = x0, x0 = x1 - q * x0, x1 = t;
	}
	if (x1 < 0) x1 += b0;
	return x1;
}

int chinese_remainder(int *n, int *a, int len)
{
	int p, i, prod = 1, sum = 0;

	for (i = 0; i < len; i++) prod *= n[i];

	for (i = 0; i < len; i++) {
		p = prod / n[i];
		sum += a[i] * mul_inv(p, n[i]) * p;
	}

	return sum % prod;
}

int main(void)
{
	int n[] = { 3, 5, 7 };
	int a[] = { 2, 3, 2 };

	printf("%d\n", chinese_remainder(n, a, sizeof(n)/sizeof(n[0])));
	return 0;
}

C++

#include <iostream>
#include <numeric>
#include <vector>
#include <execution>

using namespace std;

int mulInv(int a, int b) {
	int b0 = b;
	int x0 = 0;
	int x1 = 1;

	if (b == 1) {
		return 1;
	}

	while (a > 1) {
		int q = a / b;
		int amb = a % b;
		a = b;
		b = amb;

		int xqx = x1 - q * x0;
		x1 = x0;
		x0 = xqx;
	}

	if (x1 < 0) {
		x1 += b0;
	}

	return x1;
}

int chineseRemainder(vector<int> n, vector<int> a) {
	int prod = std::reduce(std::execution::seq, n.begin(), n.end(), 1, [](int a, int b) { return a * b; });

	int sm = 0;
	for (int i = 0; i < n.size(); i++) {
		int p = prod / n[i];
		sm += a[i] * mulInv(p, n[i])*p;
	}

	return sm % prod;
}

int main() {
	vector<int> n = { 3, 5, 7 };
	vector<int> a = { 2, 3, 2 };

	cout << chineseRemainder(n,a) << endl;

	return 0;
}

{{out}}

23

C#

using System;
using System.Linq;

namespace ChineseRemainderTheorem
{
    class Program
    {
        static void Main(string[] args)
        {
            int[] n = { 3, 5, 7 };
            int[] a = { 2, 3, 2 };

            int result = ChineseRemainderTheorem.Solve(n, a);

            int counter = 0;
            int maxCount = n.Length - 1;
            while (counter <= maxCount)
            {
                Console.WriteLine($"{result}{a[counter]} (mod {n[counter]})");
                counter++;
            }
        }
    }

    public static class ChineseRemainderTheorem
    {
        public static int Solve(int[] n, int[] a)
        {
            int prod = n.Aggregate(1, (i, j) => i * j);
            int p;
            int sm = 0;
            for (int i = 0; i < n.Length; i++)
            {
                p = prod / n[i];
                sm += a[i] * ModularMultiplicativeInverse(p, n[i]) * p;
            }
            return sm % prod;
        }

        private static int ModularMultiplicativeInverse(int a, int mod)
        {
            int b = a % mod;
            for (int x = 1; x < mod; x++)
            {
                if ((b * x) % mod == 1)
                {
                    return x;
                }
            }
            return 1;
        }
    }
}

Clojure

Modeled after the Python version http://rosettacode.org/wiki/Category:Python

(ns test-p.core
  (:require [clojure.math.numeric-tower :as math]))

(defn extended-gcd
  "The extended Euclidean algorithm
  Returns a list containing the GCD and the Bézout coefficients
  corresponding to the inputs. "
  [a b]
  (cond (zero? a) [(math/abs b) 0 1]
        (zero? b) [(math/abs a) 1 0]
        :else (loop [s 0
                     s0 1
                     t 1
                     t0 0
                     r (math/abs b)
                     r0 (math/abs a)]
                (if (zero? r)
                  [r0 s0 t0]
                  (let [q (quot r0 r)]
                    (recur (- s0 (* q s)) s
                           (- t0 (* q t)) t
                           (- r0 (* q r)) r))))))

(defn chinese_remainder
  " Main routine to return the chinese remainder "
  [n a]
  (let [prod (apply * n)
        reducer (fn [sum [n_i a_i]]
                  (let [p (quot prod n_i)           ; p = prod / n_i
                        egcd (extended-gcd p n_i)   ; Extended gcd
                        inv_p (second egcd)]        ; Second item is the inverse
                    (+ sum (* a_i inv_p p))))
        sum-prod (reduce reducer 0 (map vector n a))] ; Replaces the Python for loop to sum
                                                      ; (map vector n a) is same as
        ;                                             ; Python's version Zip (n, a)
    (mod sum-prod prod)))                             ; Result line

(def n [3 5 7])
(def a [2 3 2])

(println (chinese_remainder n a))

'''Output:'''


23

Coffeescript

crt = (n,a) ->
	sum = 0
	prod = n.reduce (a,c) -> a*c
	for [ni,ai] in _.zip n,a
		p = prod // ni
		sum += ai * p * mulInv p,ni
	sum % prod

mulInv = (a,b) ->
	b0 = b
	[x0,x1] = [0,1]
	if b==1 then return 1
	while a > 1
		q = a // b
		[a,b] = [b, a % b]
		[x0,x1] = [x1-q*x0, x0]
	if x1 < 0 then x1 += b0
	x1

print crt [3,5,7], [2,3,2]

'''Output:'''


23

Common Lisp

Using function ''invmod'' from [[http://rosettacode.org/wiki/Modular_inverse#Common_Lisp]].


(defun chinese-remainder (am)
"Calculates the Chinese Remainder for the given set of integer modulo pairs.
 Note: All the ni and the N must be coprimes."
  (loop :for (a . m) :in am
        :with mtot = (reduce #'* (mapcar #'(lambda(X) (cdr X)) am))
        :with sum  = 0
        :finally (return (mod sum mtot))
        :do
   (incf sum (* a (invmod (/ mtot m) m) (/ mtot m)))))

'''Output:'''


* (chinese-remainder '((2 . 3) (3 . 5) (2 . 7)))

23
* (chinese-remainder '((10 . 11) (4 . 12) (12 . 13)))

1000
* (chinese-remainder '((19 . 100) (0 . 23)))

1219
* (chinese-remainder '((10 . 11) (4 . 22) (9 . 19)))

debugger invoked on a SIMPLE-ERROR in thread
#<THREAD "main thread" RUNNING {1002A8B1B3}>:
  invmod: Values 418 and 11 are not coprimes.

Type HELP for debugger help, or (SB-EXT:EXIT) to exit from SBCL.

restarts (invokable by number or by possibly-abbreviated name):
  0: [ABORT] Exit debugger, returning to top level.

(INVMOD 418 11)
0]

D

{{trans|Python}}

import std.stdio, std.algorithm;

T chineseRemainder(T)(in T[] n, in T[] a) pure nothrow @safe @nogc
in {
    assert(n.length == a.length);
} body {
    static T mulInv(T)(T a, T b) pure nothrow @safe @nogc {
        auto b0 = b;
        T x0 = 0, x1 = 1;
        if (b == 1)
            return T(1);
        while (a > 1) {
            immutable q = a / b;
            immutable amb = a % b;
            a = b;
            b = amb;
            immutable xqx = x1 - q * x0;
            x1 = x0;
            x0 = xqx;
        }
        if (x1 < 0)
            x1 += b0;
        return x1;
    }

    immutable prod = reduce!q{a * b}(T(1), n);

    T p = 1, sm = 0;
    foreach (immutable i, immutable ni; n) {
        p = prod / ni;
        sm += a[i] * mulInv(p, ni) * p;
    }
    return sm % prod;
}

void main() {
    immutable n = [3, 5, 7],
              a = [2, 3, 2];
    chineseRemainder(n, a).writeln;
}

{{out}}

23

EasyLang

{{trans|C}} func mul_inv a b . x1 . b0 = b x1 = 1 if b <> 1 while a > 1 q = a / b t = b b = a mod b a = t t = x0 x0 = x1 - q * x0 x1 = t . if x1 < 0 x1 += b0 . . . func remainder . n[] a[] r . prod = 1 sum = 0 for i range len n[] prod *= n[i] . for i range len n[] p = prod / n[i] call mul_inv p n[i] h sum += a[i] * h * p r = sum mod prod . . n[] = [ 3 5 7 ] a[] = [ 2 3 2 ] call remainder n[] a[] h print h


{{out}}

```txt
23

EchoLisp

'''egcd''' - extended gcd - and '''crt-solve''' - chinese remainder theorem solve - are included in math.lib.


(lib 'math)
math.lib v1.10 ® EchoLisp
Lib: math.lib loaded.

(crt-solve '(2 3 2) '(3 5 7))
   → 23
(crt-solve '(2 3 2) '(7 1005 15))
💥 error: mod[i] must be co-primes : assertion failed : 1005

Elixir

{{trans|Ruby}} {{works with|Elixir|1.2}} Brute-force:

defmodule Chinese do
  def remainder(mods, remainders) do
    max = Enum.reduce(mods, fn x,acc -> x*acc end)
    Enum.zip(mods, remainders)
    |> Enum.map(fn {m,r} -> Enum.take_every(r..max, m) |> MapSet.new end)
    |> Enum.reduce(fn set,acc -> MapSet.intersection(set, acc) end)
    |> MapSet.to_list
  end
end

IO.inspect Chinese.remainder([3,5,7], [2,3,2])
IO.inspect Chinese.remainder([10,4,9], [11,22,19])
IO.inspect Chinese.remainder([11,12,13], [10,4,12])

{{out}}


[23]
[]
[1000]

Erlang

{{trans|OCaml}}

-module(crt).
-import(lists, [zip/2, unzip/1, foldl/3, sum/1]).
-export([egcd/2, mod/2, mod_inv/2, chinese_remainder/1]).

egcd(_, 0) -> {1, 0};
egcd(A, B) ->
    {S, T} = egcd(B, A rem B),
    {T, S - (A div B)*T}.

mod_inv(A, B) ->
    {X, Y} = egcd(A, B),
    if
        A*X + B*Y =:= 1 -> X;
        true -> undefined
    end.

mod(A, M) ->
    X = A rem M,
    if
        X < 0 -> X + M;
        true -> X
    end.

calc_inverses([], []) -> [];
calc_inverses([N | Ns], [M | Ms]) ->
    case mod_inv(N, M) of
        undefined -> undefined;
        Inv -> [Inv | calc_inverses(Ns, Ms)]
    end.

chinese_remainder(Congruences) ->
    {Residues, Modulii} = unzip(Congruences),
    ModPI = foldl(fun(A, B) -> A*B end, 1, Modulii),
    CRT_Modulii = [ModPI div M || M <- Modulii],
    case calc_inverses(CRT_Modulii, Modulii) of
        undefined -> undefined;
        Inverses ->
            Solution = sum([A*B || {A,B} <- zip(CRT_Modulii,
                                    [A*B || {A,B} <- zip(Residues, Inverses)])]),
            mod(Solution, ModPI)
    end.

{{out}}


16> crt:chinese_remainder([{10,11}, {4,12}, {12,13}]).
1000
17> crt:chinese_remainder([{10,11}, {4,22}, {9,19}]).
undefined
18> crt:chinese_remainder([{2,3}, {3,5}, {2,7}]).
23

=={{header|F_Sharp|F#}}== ===[https://en.wikipedia.org/wiki/Chinese_remainder_theorem#Search_by_sieving sieving]===

let rec sieve cs x N =
    match cs with
    | [] -> Some(x)
    | (a,n)::rest ->
        let arrProgress = Seq.unfold (fun x -> Some(x, x+N)) x
        let firstXmodNequalA = Seq.tryFind (fun x -> a = x % n)
        match firstXmodNequalA (Seq.take n arrProgress) with
        | None -> None
        | Some(x) -> sieve rest x (N*n)

[ [(2,3);(3,5);(2,7)];
  [(10,11); (4,22); (9,19)];
  [(10,11); (4,12); (12,13)] ]
|> List.iter (fun congruences ->
    let cs =
        congruences
        |> List.map (fun (a,n) -> (a % n, n))
        |> List.sortBy (snd>>(~-))
    let an = List.head cs
    match sieve (List.tail cs) (fst an) (snd an) with
    | None    -> printfn "no solution"
    | Some(x) -> printfn "result = %i" x
)

{{out}}

result = 23
no solution
result = 1000

Or for those who prefer unsieved

This uses [[Greatest_common_divisor#F.23]] to verify valid input, can be simplified if you know input has a solution.

This uses [[Modular_inverse#F.23]]


//Chinese Division Theorem: Nigel Galloway: April 3rd., 2017
let CD n g =
  match Seq.fold(fun n g->if (gcd n g)=1 then n*g else 0) 1 g with
  |0 -> None
  |fN-> Some ((Seq.fold2(fun n i g -> n+i*(fN/g)*(MI g ((fN/g)%g))) 0 n g)%fN)

{{out}}


CD [10;4;12] [11;12;13] -> Some 1000
CD [10;4;9] [11;22;19]  -> None
CD [2;3;2] [3;5;7]      -> Some 23

Factor

USING: math.algebra prettyprint ;
{ 2 3 2 } { 3 5 7 } chinese-remainder .

{{out}}


23

Forth

Tested with GNU FORTH

: egcd ( a b -- a b )
    dup 0= IF
        2drop 1 0
    ELSE
        dup -rot /mod               \ -- b r=a%b q=a/b
        -rot recurse                \ -- q (s,t) = egcd(b, r)
        >r swap r@ * - r> swap      \ -- t (s - q*t)
    THEN ;

: egcd>gcd  ( a b x y -- n )  \ calculate gcd from egcd
    rot * -rot * + ;

: mod-inv  ( a m -- a' )     \ modular inverse with coprime check
    2dup egcd over >r egcd>gcd r> swap 1 <> -24 and throw ;

: array-product ( adr count -- n )
    1 -rot  cells bounds ?DO  i @ *  cell +LOOP ;

: crt-from-array  ( adr1 adr2 count -- n )
    2dup array-product   locals| M count m[] a[] |
    0  \ result
    count 0 DO
        m[] i cells + @
        dup M swap /
        dup rot mod-inv *
        a[] i cells + @ * +
    LOOP  M mod ;

create crt-residues[]  10 cells allot
create crt-moduli[]    10 cells allot

: crt ( .... n -- n )  \ takes pairs of "n (mod m)" from stack.
    10 min  locals| n |
    n 0 DO
        crt-moduli[] i cells + !
        crt-residues[] i cells + !
    LOOP
    crt-residues[] crt-moduli[] n crt-from-array ;

{{out}}


Gforth 0.7.2, Copyright (C) 1995-2008 Free Software Foundation, Inc.
Gforth comes with ABSOLUTELY NO WARRANTY; for details type `license'
Type `bye' to exit
10 11  4 12  12 13  3 crt . 1000  ok
10 11  4 22   9 19  3 crt .
:2: Invalid numeric argument
10 11  4 22   9 19  3 >>>crt<<< .

FunL

import integers.modinv

def crt( congruences ) =
    N = product( n | (_, n) <- congruences )
    sum( a*modinv(N/n, n)*N/n | (a, n) <- congruences ) mod N

println( crt([(2, 3), (3, 5), (2, 7)]) )

{{out}}


23

Go

Go has the Extended Euclidean algorithm in the GCD function for big integers in the standard library. GCD will return 1 only if numbers are coprime, so a result != 1 indicates the error condition.

package main

import (
    "fmt"
    "math/big"
)

var one = big.NewInt(1)

func crt(a, n []*big.Int) (*big.Int, error) {
    p := new(big.Int).Set(n[0])
    for _, n1 := range n[1:] {
        p.Mul(p, n1)
    }
    var x, q, s, z big.Int
    for i, n1 := range n {
        q.Div(p, n1)
        z.GCD(nil, &s, n1, &q)
        if z.Cmp(one) != 0 {
            return nil, fmt.Errorf("%d not coprime", n1)
        }
        x.Add(&x, s.Mul(a[i], s.Mul(&s, &q)))
    }
    return x.Mod(&x, p), nil
}

func main() {
    n := []*big.Int{
        big.NewInt(3),
        big.NewInt(5),
        big.NewInt(7),
    }
    a := []*big.Int{
        big.NewInt(2),
        big.NewInt(3),
        big.NewInt(2),
    }
    fmt.Println(crt(a, n))
}

{{out}} Two values, the solution x and an error value.


23 <nil>

Haskell

{{trans|Erlang}}

import Control.Monad (zipWithM)

egcd :: Int -> Int -> (Int, Int)
egcd _ 0 = (1, 0)
egcd a b = (t, s - q * t)
  where
    (s, t) = egcd b r
    (q, r) = a `quotRem` b

modInv :: Int -> Int -> Either String Int
modInv a b =
  case egcd a b of
    (x, y)
      | a * x + b * y == 1 -> Right x
      | otherwise ->
        Left $ "No modular inverse for " ++ show a ++ " and " ++ show b

chineseRemainder :: [Int] -> [Int] -> Either String Int
chineseRemainder residues modulii =
  zipWithM modInv crtModulii modulii >>=
  (Right . (`mod` modPI) . sum . zipWith (*) crtModulii . zipWith (*) residues)
  where
    modPI = product modulii
    crtModulii = (modPI `div`) <$> modulii

main :: IO ()
main =
  mapM_ (putStrLn . either id show) $
  uncurry chineseRemainder <$>
  [ ([10, 4, 12], [11, 12, 13])
  , ([10, 4, 9], [11, 22, 19])
  , ([2, 3, 2], [3, 5, 7])
  ]

{{Out}}

1000
No modular inverse for 418 and 11
23

=={{header|Icon}} and {{header|Unicon}}==

{{trans|Python}} with error check added. Works in both languages:

link numbers   # for gcd()

procedure main()
    write(cr([3,5,7],[2,3,2]) | "No solution!")
    write(cr([10,4,9],[11,22,19]) | "No solution!")
end

procedure cr(n,a)
    if 1 ~= gcd(n[i := !*n],a[i]) then fail  # Not pairwise coprime
    (prod := 1, sm := 0)
    every prod *:= !n
    every p := prod/(ni := n[i := !*n]) do sm +:= a[i] * mul_inv(p,ni) * p
    return sm%prod
end

procedure mul_inv(a,b)
    if b = 1 then return 1
    (b0 := b, x0 := 0, x1 := 1)
    while q := (1 < a)/b do {
        (t := a, a := b, b := t%b)
        (t := x0, x0 := x1-q*t, x1 := t)
        }
    return if x1 < 0 then x1+b0 else x1
end

Output:


->crt
23
No solution!
->

J

'''Solution''' (''brute force''):

   crt =: (1 + ] - {:@:[ -: {.@:[ | ])^:_&0@:,:

'''Example''':

   3 5 7 crt 2 3 2
23
   11 12 13 crt 10 4 12
1000

'''Notes''': This is a brute force approach and does not meet the requirement for explicit notification of an an unsolvable set of equations (it just spins forever). A much more thorough and educational approach can be found on the [[j:Essays/Chinese%20Remainder%20Theorem|J wiki's Essay on the Chinese Remainder Thereom]].

Java

Translation of [[Chinese_remainder_theorem#Python|Python]] via [[Chinese_remainder_theorem#D|D]] {{works with|Java|8}}

import static java.util.Arrays.stream;

public class ChineseRemainderTheorem {

    public static int chineseRemainder(int[] n, int[] a) {

        int prod = stream(n).reduce(1, (i, j) -> i * j);

        int p, sm = 0;
        for (int i = 0; i < n.length; i++) {
            p = prod / n[i];
            sm += a[i] * mulInv(p, n[i]) * p;
        }
        return sm % prod;
    }

    private static int mulInv(int a, int b) {
        int b0 = b;
        int x0 = 0;
        int x1 = 1;

        if (b == 1)
            return 1;

        while (a > 1) {
            int q = a / b;
            int amb = a % b;
            a = b;
            b = amb;
            int xqx = x1 - q * x0;
            x1 = x0;
            x0 = xqx;
        }

        if (x1 < 0)
            x1 += b0;

        return x1;
    }

    public static void main(String[] args) {
        int[] n = {3, 5, 7};
        int[] a = {2, 3, 2};
        System.out.println(chineseRemainder(n, a));
    }
}
23

jq

This implementation is similar to the one in C, but raises an error if there is no solution, as illustrated in the last example.

# mul_inv(a;b) returns x where (a * x) % b == 1, or else null
def mul_inv(a; b):

  # state: [a, b, x0, x1]
  def iterate:
    .[0] as $a | .[1] as $b
    | if $a > 1 then
        if $b == 0 then null
        else ($a / $b | floor) as $q
           | [$b, ($a % $b), (.[3] - ($q * .[2])), .[2]] | iterate
        end
      else .
      end ;

  if (b == 1) then 1
  else [a,b,0,1] | iterate
       | if . == null then .
         else  .[3] | if . <  0 then . + b else . end
         end
  end;

def chinese_remainder(mods; remainders):
  (reduce mods[] as $i (1; . * $i)) as $prod
  | reduce range(0; mods|length) as $i
      (0;
       ($prod/mods[$i]) as $p
       | mul_inv($p; mods[$i]) as $mi
       | if $mi == null then error("nogo: p=\($p) mods[\($i)]=\(mods[$i])")
         else . + (remainders[$i] * $mi * $p)
         end )
  | . % $prod ;

'''Examples''': chinese_remainder([3,5,7]; [2,3,2])

=> 23

chinese_remainder([100,23]; [19,0])

=> 1219

chinese_remainder([10,4,9]; [11,22,19])

jq: error: nogo: p=36 mods[0]=10

Julia

{{works with|Julia|1.2}}

function chineseremainder(n::Array, a::Array)
    Π = prod(n)
    mod(sum(ai * invmod÷ ni, ni) * Π ÷ ni for (ni, ai) in zip(n, a)), Π)
end

@show chineseremainder([3, 5, 7], [2, 3, 2])

{{out}}

chineseremainder([3, 5, 7], [2, 3, 2]) = 23

Kotlin

{{trans|C}}

// version 1.1.2

/* returns x where (a * x) % b == 1 */
fun multInv(a: Int, b: Int): Int {
    if (b == 1) return 1
    var aa = a
    var bb = b
    var x0 = 0
    var x1 = 1
    while (aa > 1) {
        val q = aa / bb
        var t = bb
        bb = aa % bb
        aa = t
        t = x0
        x0 = x1 - q * x0
        x1 = t
    }
    if (x1 < 0) x1 += b
    return x1
}

fun chineseRemainder(n: IntArray, a: IntArray): Int {
    val prod = n.fold(1) { acc, i -> acc * i }
    var sum = 0
    for (i in 0 until n.size) {
        val p = prod / n[i]
        sum += a[i] * multInv(p, n[i]) * p
    }
    return sum % prod
}

fun main(args: Array<String>) {
    val n = intArrayOf(3, 5, 7)
    val a = intArrayOf(2, 3, 2)
    println(chineseRemainder(n, a))
}

{{out}}


23

Lua

-- Taken from https://www.rosettacode.org/wiki/Sum_and_product_of_an_array#Lua
function prodf(a, ...) return a and a * prodf(...) or 1 end
function prodt(t) return prodf(unpack(t)) end

function mulInv(a, b)
    local b0 = b
    local x0 = 0
    local x1 = 1

    if b == 1 then
        return 1
    end

    while a > 1 do
        local q = math.floor(a / b)
        local amb = math.fmod(a, b)
        a = b
        b = amb
        local xqx = x1 - q * x0
        x1 = x0
        x0 = xqx
    end

    if x1 < 0 then
        x1 = x1 + b0
    end

    return x1
end

function chineseRemainder(n, a)
    local prod = prodt(n)

    local p
    local sm = 0
    for i=1,#n do
        p = prod / n[i]
        sm = sm + a[i] * mulInv(p, n[i]) * p
    end

    return math.fmod(sm, prod)
end

n = {3, 5, 7}
a = {2, 3, 2}
io.write(chineseRemainder(n, a))

{{out}}

23

Maple

This is a Maple built-in procedure, so it is trivial:

 chrem( [2, 3, 2], [3, 5, 7] );
                                           23

=={{header|Mathematica}} / {{header|Wolfram Language}}== Very easy, because it is a built-in function:

ChineseRemainder[{2, 3, 2}, {3, 5, 7}]
23

=={{header|MATLAB}} / {{header|Octave}}==

function f = chineseRemainder(r, m)
  s = prod(m) ./ m;
  [~, t] = gcd(s, m);
  f = s .* t * r';

{{out}}

 chineseRemainder([2 3 2], [3 5 7])
 ans = 23

=={{header|Modula-2}}==

MODULE CRT;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;

PROCEDURE WriteInt(n : INTEGER);
VAR buf : ARRAY[0..15] OF CHAR;
BEGIN
    FormatString("%i", buf, n);
    WriteString(buf)
END WriteInt;

PROCEDURE MulInv(a,b : INTEGER) : INTEGER;
VAR
    b0,x0,x1,q,amb,xqx : INTEGER;
BEGIN
    b0 := b;
    x0 := 0;
    x1 := 1;

    IF b=1 THEN
        RETURN 1
    END;

    WHILE a>1 DO
        q := a DIV b;
        amb := a MOD b;
        a := b;
        b := amb;
        xqx := x1 - q * x0;
        x1 := x0;
        x0 := xqx
    END;

    IF x1<0 THEN
        x1 := x1 + b0
    END;

    RETURN x1
END MulInv;

PROCEDURE ChineseRemainder(n,a : ARRAY OF INTEGER) : INTEGER;
VAR
    i : CARDINAL;
    prod,p,sm : INTEGER;
BEGIN
    prod := n[0];
    FOR i:=1 TO HIGH(n) DO
        prod := prod * n[i]
    END;

    sm := 0;
    FOR i:=0 TO HIGH(n) DO
        p := prod DIV n[i];
        sm := sm + a[i] * MulInv(p, n[i]) * p
    END;

    RETURN sm MOD prod
END ChineseRemainder;

TYPE TA = ARRAY[0..2] OF INTEGER;
VAR n,a : TA;
BEGIN
    n := TA{3, 5, 7};
    a := TA{2, 3, 2};
    WriteInt(ChineseRemainder(n, a));
    WriteLn;

    ReadChar
END CRT.

{{out}}

23

Nim

{{trans|C}}

proc mulInv(a0, b0): int =
  var (a, b, x0) = (a0, b0, 0)
  result = 1
  if b == 1: return
  while a > 1:
    let q = a div b
    a = a mod b
    swap a, b
    result = result - q * x0
    swap x0, result
  if result < 0: result += b0

proc chineseRemainder[T](n, a: T): int =
  var prod = 1
  var sum = 0
  for x in n: prod *= x

  for i in 0 .. <n.len:
    let p = prod div n[i]
    sum += a[i] * mulInv(p, n[i]) * p

  sum mod prod

echo chineseRemainder([3,5,7], [2,3,2])

Output:

23

OCaml

This is using the Jane Street Ocaml Core library.

open Core.Std
open Option.Monad_infix

let rec egcd a b =
   if b = 0 then (1, 0)
   else
      let q = a/b and r = a mod b in
      let (s, t) = egcd b r in
         (t, s - q*t)


let mod_inv a b =
   let (x, y) = egcd a b in
      if a*x + b*y = 1 then Some x else None


let calc_inverses ns ms =
   let rec list_inverses ns ms l =
      match (ns, ms) with
         | ([], []) -> Some l
         | ([], _)
         | (_, []) -> assert false
         | (n::ns, m::ms) ->
            let inv = mod_inv n m in
               match inv with
                  | None -> None
                  | Some v -> list_inverses ns ms (v::l)
   in
      list_inverses ns ms [] >>= fun l -> Some (List.rev l)


let chinese_remainder congruences =
   let (residues, modulii) = List.unzip congruences in
   let mod_pi = List.reduce_exn modulii ~f:( * ) in
   let crt_modulii = List.map modulii ~f:(fun m -> mod_pi / m) in
   calc_inverses crt_modulii modulii >>=
      fun inverses ->
         Some (List.map3_exn residues inverses crt_modulii ~f:(fun a b c -> a*b*c)
               |> List.reduce_exn ~f:(+)
               |> fun n -> let n' = n mod mod_pi in if n' < 0 then n' + mod_pi else n')

{{out}}


utop # chinese_remainder [(10, 11); (4, 12); (12, 13)];;
- : int option = Some 1000

utop # chinese_remainder [(10, 11); (4, 22); (9, 19)];;
- : int option = None

PARI/GP

chivec(residues, moduli)={
  my(m=Mod(0,1));
  for(i=1,#residues,
    m=chinese(Mod(residues[i],moduli[i]),m)
  );
  lift(m)
};
chivec([2,3,2], [3,5,7])

{{out}}

23

Pari's chinese function takes a vector in the form [Mod(a1,n1), Mod(a2, n2), ...], so we can do this directly:

lift( chinese([Mod(2,3),Mod(3,5),Mod(2,7)]) )

or to take the residue/moduli array as above:

chivec(residues,moduli)={
  lift(chinese(vector(#residues,i,Mod(residues[i],moduli[i]))))
}

Perl

There are at least three CPAN modules for this: ntheory (Math::Prime::Util), Math::ModInt, and Math::Pari. All three handle bigints. {{libheader|ntheory}}

use ntheory qw/chinese/;
say chinese([2,3], [3,5], [2,7]);

{{out}}

23

The function returns undef if no common residue class exists. The combined modulus can be obtained using the lcm function applied to the moduli (e.g. lcm(3,5,7) = 105 in the example above).

use Math::ModInt qw(mod);
use Math::ModInt::ChineseRemainder qw(cr_combine);
say cr_combine(mod(2,3),mod(3,5),mod(2,7));

{{out}}

mod(23, 105)

This returns a Math::ModInt object, which if no common residue class exists will be a special undefined object. The modulus and residue methods may be used to extract the integer components.

=== Non-pairwise-coprime === All three modules will also handle cases where the moduli are not pairwise co-prime but a solution exists, e.g.:

use ntheory qw/chinese lcm/;
say chinese( [2328,16256], [410,5418] ), " mod ", lcm(16256,5418);

{{out}}

28450328 mod 44037504

Perl 6

{{trans|C}} {{works with|Rakudo|2015.12}}

# returns x where (a * x) % b == 1
sub mul-inv($a is copy, $b is copy) {
    return 1 if $b == 1;
    my ($b0, @x) = $b, 0, 1;
    ($a, $b, @x) = (
	$b,
	$a % $b,
	@x[1] - ($a div $b)*@x[0],
	@x[0]
    ) while $a > 1;
    @x[1] += $b0 if @x[1] < 0;
    return @x[1];
}

sub chinese-remainder(*@n) {
    my \N = [*] @n;
    -> *@a {
	N R% [+] map {
	    my \p = N div @n[$_];
	    @a[$_] * mul-inv(p, @n[$_]) * p
	}, ^@n
    }
}

say chinese-remainder(3, 5, 7)(2, 3, 2);

{{out}}

23

Phix

{{trans|C}} Uses the function mul_inv() from [[Modular_inverse#Phix]]

function chinese_remainder(sequence n, a)
    integer p, prod = 1, tot = 0;
    for i=1 to length(n) do prod *= n[i] end for
    for i=1 to length(n) do
        p = prod / n[i];
        object m = mul_inv(p, n[i])
        if string(m) then return "fail" end if
        tot += a[i] * m * p;
    end for
    return mod(tot,prod)
end function

?chinese_remainder({3,5,7},{2,3,2})
?chinese_remainder({11,12,13},{10,4,12})
?chinese_remainder({11,22,19},{10,4,9})
?chinese_remainder({100,23},{19,0})

{{out}}


23
1000
"fail"
1219

PicoLisp

(de modinv (A B)
   (let (B0 B  X0 0  X1 1  Q 0  T1 0)
      (while (< 1 A)
         (setq
            Q (/ A B)
            T1 B
            B (% A B)
            A T1
            T1 X0
            X0 (- X1 (* Q X0))
            X1 T1 ) )
      (if (lt0 X1) (+ X1 B0) X1) ) )

(de chinrem (N A)
   (let P (apply * N)
      (%
         (sum
            '((N A)
               (setq T1 (/ P N))
               (* A (modinv T1 N) T1) )
            N
            A )
         P ) ) )

(println
   (chinrem (3 5 7) (2 3 2))
   (chinrem (11 12 13) (10 4 12)) )

(bye)

PureBasic

EnableExplicit
DisableDebugger
DataSection
  LBL_n1:
  Data.i 3,5,7
  LBL_a1:
  Data.i 2,3,2
  LBL_n2:
  Data.i 11,12,13
  LBL_a2:
  Data.i 10,4,12
  LBL_n3:
  Data.i 10,4,9
  LBL_a3:
  Data.i 11,22,19
EndDataSection

Procedure ErrorHdl()
  Print(ErrorMessage())
  Input()
EndProcedure

Macro PrintData(n,a)
  Define Idx.i=0
  Print("[")
  While n+SizeOf(Integer)*Idx<a
    Print("( ")
    Print(Str(PeekI(a+SizeOf(Integer)*Idx)))
    Print(" . ")
    Print(Str(PeekI(n+SizeOf(Integer)*Idx)))
    Print(" )")
    Idx+1
  Wend
  Print(~"]\nx = ")
EndMacro

Procedure.i Produkt_n(n_Adr.i,a_Adr.i)
  Define p.i=1
  While n_Adr<a_Adr
    p*PeekI(n_Adr)
    n_Adr+SizeOf(Integer)
  Wend
  ProcedureReturn p
EndProcedure

Procedure.i Eval_x1(a.i,b.i)
  Define b0.i=b, x0.i=0, x1.i=1, q.i, t.i
  If b=1 : ProcedureReturn x1 : EndIf
  While a>1
    q=Int(a/b)
    t=b : b=a%b : a=t
    t=x0 : x0=x1-q*x0 : x1=t
  Wend
  If x1<0 : ProcedureReturn x1+b0 : EndIf
  ProcedureReturn x1
EndProcedure

Procedure.i ChineseRem(n_Adr.i,a_Adr.i)
  Define prod.i=Produkt_n(n_Adr,a_Adr), a.i, b.i, p.i, Idx.i=0, sum.i
  While n_Adr+SizeOf(Integer)*Idx<a_Adr
    b=PeekI(n_Adr+SizeOf(Integer)*Idx)
    p=Int(prod/b) : a=p
    sum+PeekI(a_Adr+SizeOf(Integer)*Idx)*Eval_x1(a,b)*p
    Idx+1
  Wend
  ProcedureReturn sum%prod
EndProcedure

OnErrorCall(@ErrorHdl())
OpenConsole("Chinese remainder theorem")
PrintData(?LBL_n1,?LBL_a1)
PrintN(Str(ChineseRem(?LBL_n1,?LBL_a1)))
PrintData(?LBL_n2,?LBL_a2)
PrintN(Str(ChineseRem(?LBL_n2,?LBL_a2)))
PrintData(?LBL_n3,?LBL_a3)
PrintN(Str(ChineseRem(?LBL_n3,?LBL_a3)))
Input()

{{out}}

[( 2 . 3 )( 3 . 5 )( 2 . 7 )]
x = 23
[( 10 . 11 )( 4 . 12 )( 12 . 13 )]
x = 1000
[( 11 . 10 )( 22 . 4 )( 19 . 9 )]
x = Division by zero

Python

Procedural

=Python 2.7=

# Python 2.7
def chinese_remainder(n, a):
    sum = 0
    prod = reduce(lambda a, b: a*b, n)

    for n_i, a_i in zip(n, a):
        p = prod / n_i
        sum += a_i * mul_inv(p, n_i) * p
    return sum % prod


def mul_inv(a, b):
    b0 = b
    x0, x1 = 0, 1
    if b == 1: return 1
    while a > 1:
        q = a / b
        a, b = b, a%b
        x0, x1 = x1 - q * x0, x0
    if x1 < 0: x1 += b0
    return x1

if __name__ == '__main__':
    n = [3, 5, 7]
    a = [2, 3, 2]
    print chinese_remainder(n, a)

{{out}}

23

=Python 3.6=

# Python 3.6
from functools import reduce
def chinese_remainder(n, a):
    sum = 0
    prod = reduce(lambda a, b: a*b, n)
    for n_i, a_i in zip(n, a):
        p = prod // n_i
        sum += a_i * mul_inv(p, n_i) * p
    return sum % prod



def mul_inv(a, b):
    b0 = b
    x0, x1 = 0, 1
    if b == 1: return 1
    while a > 1:
        q = a // b
        a, b = b, a%b
        x0, x1 = x1 - q * x0, x0
    if x1 < 0: x1 += b0
    return x1



if __name__ == '__main__':
    n = [3, 5, 7]
    a = [2, 3, 2]
    print(chinese_remainder(n, a))

{{out}}

23

Functional

Using an option type to represent the possibility that there may or may not be a solution for any given pair of input lists.

(Note that the procedural versions above both fail with a '''ZeroDivisionError''' on inputs for which no solution is found).

{{Trans|Haskell}} {{Works with|Python|3.7}}

'''Chinese remainder theorem'''

from operator import (add, mul)
from functools import reduce


# cnRemainder :: [Int] -> [Int] -> Either String Int
def cnRemainder(ms):
    '''Chinese remainder theorem.
       (moduli, residues) -> Either explanation or solution
    '''
    def go(ms, rs):
        mp = numericProduct(ms)
        cms = [(mp // x) for x in ms]

        def possibleSoln(invs):
            return Right(
                sum(map(
                    mul,
                    cms, map(mul, rs, invs)
                )) % mp
            )
        return bindLR(
            zipWithEither(modMultInv)(cms)(ms)
        )(possibleSoln)

    return lambda rs: go(ms, rs)


# modMultInv :: Int -> Int -> Either String Int
def modMultInv(a, b):
    '''Modular multiplicative inverse.'''
    x, y = eGcd(a, b)
    return Right(x) if 1 == (a * x + b * y) else (
        Left('no modular inverse for ' + str(a) + ' and ' + str(b))
    )


# egcd :: Int -> Int -> (Int, Int)
def eGcd(a, b):
    '''Extended greatest common divisor.'''
    def go(a, b):
        if 0 == b:
            return (1, 0)
        else:
            q, r = divmod(a, b)
            (s, t) = go(b, r)
            return (t, s - q * t)
    return go(a, b)


# TEST ----------------------------------------------------
# main :: IO ()
def main():
    '''Tests of soluble and insoluble cases.'''

    print(
        fTable(
            __doc__ + ':\n\n         (moduli, residues) -> ' + (
                'Either solution or explanation\n'
            )
        )(repr)(
            either(compose(quoted("'"))(curry(add)('No solution: ')))(
                compose(quoted(' '))(repr)
            )
        )(uncurry(cnRemainder))([
            ([10, 4, 12], [11, 12, 13]),
            ([11, 12, 13], [10, 4, 12]),
            ([10, 4, 9], [11, 22, 19]),
            ([3, 5, 7], [2, 3, 2]),
            ([2, 3, 2], [3, 5, 7])
        ])
    )


# GENERIC -------------------------------------------------

# Left :: a -> Either a b
def Left(x):
    '''Constructor for an empty Either (option type) value
       with an associated string.'''
    return {'type': 'Either', 'Right': None, 'Left': x}


# Right :: b -> Either a b
def Right(x):
    '''Constructor for a populated Either (option type) value'''
    return {'type': 'Either', 'Left': None, 'Right': x}
# any :: (a -> Bool) -> [a] -> Bool


def any_(p):
    '''True if p(x) holds for at least
       one item in xs.'''
    def go(xs):
        for x in xs:
            if p(x):
                return True
        return False
    return lambda xs: go(xs)


# bindLR (>>=) :: Either a -> (a -> Either b) -> Either b
def bindLR(m):
    '''Either monad injection operator.
       Two computations sequentially composed,
       with any value produced by the first
       passed as an argument to the second.'''
    return lambda mf: (
        mf(m.get('Right')) if None is m.get('Left') else m
    )


# compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
def compose(g):
    '''Right to left function composition.'''
    return lambda f: lambda x: g(f(x))


# curry :: ((a, b) -> c) -> a -> b -> c
def curry(f):
    '''A curried function derived
       from an uncurried function.'''
    return lambda a: lambda b: f(a, b)


# either :: (a -> c) -> (b -> c) -> Either a b -> c
def either(fl):
    '''The application of fl to e if e is a Left value,
       or the application of fr to e if e is a Right value.'''
    return lambda fr: lambda e: fl(e['Left']) if (
        None is e['Right']
    ) else fr(e['Right'])


# fTable :: String -> (a -> String) ->
#                     (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
    '''Heading -> x display function ->
                 fx display function ->
          f -> value list -> tabular string.'''
    def go(xShow, fxShow, f, xs):
        w = max(map(compose(len)(xShow), xs))
        return s + '\n' + '\n'.join([
            xShow(x).rjust(w, ' ') + (' -> ') + fxShow(f(x))
            for x in xs
        ])
    return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
        xShow, fxShow, f, xs
    )


# numericProduct :: [Num] -> Num
def numericProduct(xs):
    '''The arithmetic product of all numbers in xs.'''
    return reduce(mul, xs, 1)


# partitionEithers :: [Either a b] -> ([a],[b])
def partitionEithers(lrs):
    '''A list of Either values partitioned into a tuple
       of two lists, with all Left elements extracted
       into the first list, and Right elements
       extracted into the second list.
    '''
    def go(a, x):
        ls, rs = a
        r = x.get('Right')
        return (ls + [x.get('Left')], rs) if None is r else (
            ls, rs + [r]
        )
    return reduce(go, lrs, ([], []))


# quoted :: Char -> String -> String
def quoted(c):
    '''A string flanked on both sides
       by a specified quote character.
    '''
    return lambda s: c + s + c


# uncurry :: (a -> b -> c) -> ((a, b) -> c)
def uncurry(f):
    '''A function over a tuple,
       derived from a curried function.'''
    return lambda xy: f(xy[0])(xy[1])


# zipWithEither :: (a -> b -> Either String  c)
#            -> [a] -> [b] -> Either String [c]
def zipWithEither(f):
    '''Either a list of results if f succeeds with every pair
       in the zip of xs and ys, or an explanatory string
       if any application of f returns no result.
    '''
    def go(xs, ys):
        ls, rs = partitionEithers(map(f, xs, ys))
        return Left(ls[0]) if ls else Right(rs)
    return lambda xs: lambda ys: go(xs, ys)


# MAIN ---
if __name__ == '__main__':
    main()

{{Out}}

Chinese remainder theorem:

         (moduli, residues) -> Either solution or explanation

([10, 4, 12], [11, 12, 13]) -> 'No solution: no modular inverse for 48 and 10'
([11, 12, 13], [10, 4, 12]) ->  1000
 ([10, 4, 9], [11, 22, 19]) -> 'No solution: no modular inverse for 36 and 10'
     ([3, 5, 7], [2, 3, 2]) ->  23
     ([2, 3, 2], [3, 5, 7]) -> 'No solution: no modular inverse for 6 and 2'

R

{{trans|C}}

mul_inv <- function(a, b)
{
  b0 <- b
  x0 <- 0L
  x1 <- 1L

  if (b == 1) return(1L)
  while(a > 1){
    q <- as.integer(a/b)

    t <- b
    b <- a %% b
    a <- t

    t <- x0
    x0 <- x1 - q*x0
    x1 <- t
  }

  if (x1 < 0) x1 <- x1 + b0
  return(x1)
}

chinese_remainder <- function(n, a)
{
  len <- length(n)

  prod <- 1L
  sum <- 0L

  for (i in 1:len) prod <- prod * n[i]

  for (i in 1:len){
    p <- as.integer(prod / n[i])
    sum <- sum + a[i] * mul_inv(p, n[i]) * p
  }

  return(sum %% prod)
}

n <- c(3L, 5L, 7L)
a <- c(2L, 3L, 2L)

chinese_remainder(n, a)

{{out}}

23

Racket

This is more of a demonstration of the built-in function "solve-chinese", than anything. A bit cheeky, I know... but if you've got a dog, why bark yourself?

Take a look in the "math/number-theory" package it's full of goodies! URL removed -- I can't be doing the Dutch recaptchas I'm getting.

#lang racket
(require (only-in math/number-theory solve-chinese))
(define as '(2 3 2))
(define ns '(3 5 7))
(solve-chinese as ns)

{{out}}

23

REXX

algebraic

/*REXX program demonstrates  Sun Tzu's  (or Sunzi's)  Chinese Remainder  Theorem.       */
parse arg Ns As .                                /*get optional arguments from the C.L. */
if Ns=='' | Ns==","  then Ns = '3,5,7'           /*Ns not specified?   Then use default.*/
if As=='' | As==","  then As = '2,3,2'           /*As  "      "          "   "      "   */
       say 'Ns: ' Ns
       say 'As: ' As;                   say
Ns=space(translate(Ns, , ','));  #=words(Ns)     /*elide any superfluous blanks from N's*/
As=space(translate(As, , ','));  _=words(As)     /*  "    "       "        "      "  A's*/
if #\==_   then do;  say  "size of number sets don't match.";   exit 131;    end
if #==0    then do;  say  "size of the  N  set isn't valid.";   exit 132;    end
if _==0    then do;  say  "size of the  A  set isn't valid.";   exit 133;    end
N=1                                              /*the product─to─be  for  prod(n.j).   */
      do j=1  for #                              /*process each number for  As  and Ns. */
      n.j=word(Ns,j);  N=N*n.j                   /*get an  N.j  and calculate product.  */
      a.j=word(As,j)                             /* "   "  A.j  from the  As  list.     */
      end   /*j*/

      do    x=1  for N                           /*use a simple algebraic method.       */
         do i=1  for #                           /*process each   N.i  and  A.i  number.*/
         if x//n.i\==a.i  then iterate x         /*is modulus correct for the number X ?*/
         end   /*i*/                             /* [↑]  limit solution to the product. */
      say 'found a solution with X='   x         /*display one possible solution.       */
      exit                                       /*stick a fork in it,  we're all done. */
      end      /*x*/

say 'no solution found.'                         /*oops, announce that solution ¬ found.*/

{{out|output|text= when using the default inputs:}}


Ns:  3,5,7
As:  2,3,2

found a solution with X= 23

congruences sets

/*REXX program demonstrates  Sun Tzu's  (or Sunzi's)  Chinese Remainder  Theorem.       */
parse arg Ns As .                                /*get optional arguments from the C.L. */
if Ns=='' | Ns==","  then Ns = '3,5,7'           /*Ns not specified?   Then use default.*/
if As=='' | As==","  then As = '2,3,2'           /*As  "      "          "   "      "   */
       say 'Ns: ' Ns
       say 'As: ' As;                   say
Ns=space(translate(Ns, , ','));  #=words(Ns)     /*elide any superfluous blanks from N's*/
As=space(translate(As, , ','));  _=words(As)     /*  "    "       "        "      "  A's*/
if #\==_   then do;  say  "size of number sets don't match.";   exit 131;    end
if #==0    then do;  say  "size of the  N  set isn't valid.";   exit 132;    end
if _==0    then do;  say  "size of the  A  set isn't valid.";   exit 133;    end
N=1                                              /*the product─to─be  for  prod(n.j).   */
      do j=1  for #                              /*process each number for  As  and Ns. */
      n.j=word(Ns,j);  N=N*n.j                   /*get an  N.j  and calculate product.  */
      a.j=word(As,j)                             /* "   "  A.j  from the  As  list.     */
      end   /*j*/
@.=                                              /* [↓]  converts congruences ───► sets.*/
      do i=1  for #;  _=a.i;  @.i._=a.i;  p=a.i
        do N; p=p+n.i;  @.i.p=p;  end            /*build a (array) list of modulo values*/
      end   /*i*/
                                                 /* [↓]  find common number in the sets.*/
  do   x=1  for N;  if @.1.x==''  then iterate                       /*locate a number. */
    do v=2  to #;   if @.v.x==''  then iterate x;  end               /*Is in all sets ? */
  say 'found a solution with X='    x            /*display one possible solution.       */
  exit                                           /*stick a fork in it,  we're all done. */
  end   /*x*/

say 'no solution found.'                         /*oops, announce that solution ¬ found.*/

{{out|output|text= is identical to the 1st REXX version.}}

Ruby

Brute-force.


def chinese_remainder(mods, remainders)
  max = mods.inject( :* )
  series = remainders.zip( mods ).map{|r,m| r.step( max, m ).to_a }
  series.inject( :& ).first #returns nil when empty
end

p chinese_remainder([3,5,7], [2,3,2])     #=> 23
p chinese_remainder([10,4,9], [11,22,19]) #=> nil

Similar to above, but working with large(r) numbers.


def extended_gcd(a, b)
  last_remainder, remainder = a.abs, b.abs
  x, last_x, y, last_y = 0, 1, 1, 0
  while remainder != 0
    last_remainder, (quotient, remainder) = remainder, last_remainder.divmod(remainder)
    x, last_x = last_x - quotient*x, x
    y, last_y = last_y - quotient*y, y
  end
  return last_remainder, last_x * (a < 0 ? -1 : 1)
end

def invmod(e, et)
  g, x = extended_gcd(e, et)
  if g != 1
    raise 'Multiplicative inverse modulo does not exist!'
  end
  x % et
end

def chinese_remainder(mods, remainders)
  max = mods.inject( :* )  # product of all moduli
  series = remainders.zip(mods).map{ |r,m| (r * max * invmod(max/m, m) / m) }
  series.inject( :+ ) % max
end

p chinese_remainder([3,5,7], [2,3,2])     #=> 23
p chinese_remainder([17353461355013928499, 3882485124428619605195281, 13563122655762143587], [7631415079307304117, 1248561880341424820456626, 2756437267211517231]) #=> 937307771161836294247413550632295202816
p chinese_remainder([10,4,9], [11,22,19]) #=> nil

Rust

fn egcd(a: i64, b: i64) -> (i64, i64, i64) {
    if a == 0 {
        (b, 0, 1)
    } else {
        let (g, x, y) = egcd(b % a, a);
        (g, y - (b / a) * x, x)
    }
}

fn mod_inv(x: i64, n: i64) -> Option<i64> {
    let (g, x, _) = egcd(x, n);
    if g == 1 {
        Some((x % n + n) % n)
    } else {
        None
    }
}

fn chinese_remainder(residues: &[i64], modulii: &[i64]) -> Option<i64> {
    let prod = modulii.iter().product::<i64>();

    let mut sum = 0;

    for (&residue, &modulus) in residues.iter().zip(modulii) {
        let p = prod / modulus;
        sum += residue * mod_inv(p, modulus)? * p
    }

    Some(sum % prod)
}

fn main() {
    let modulii = [3,5,7];
    let residues = [2,3,2];

    match chinese_remainder(&residues, &modulii) {
        Some(sol) => println!("{}", sol),
        None      => println!("modulii not pairwise coprime")
    }

}

Scala

{{Out}}Best seen running in your browser either by [https://scalafiddle.io/sf/9QZvFht/0 ScalaFiddle (ES aka JavaScript, non JVM)] or [https://scastie.scala-lang.org/njcaS3BFT6GtaWT2cHiwXg Scastie (remote JVM)].

import scala.util.{Success, Try}

object ChineseRemainderTheorem extends App {

  def chineseRemainder(n: List[Int], a: List[Int]): Option[Int] = {
    require(n.size == a.size)
    val prod = n.product

    def iter(n: List[Int], a: List[Int], sm: Int): Int = {
      def mulInv(a: Int, b: Int): Int = {
        def loop(a: Int, b: Int, x0: Int, x1: Int): Int = {
          if (a > 1) loop(b, a % b, x1 - (a / b) * x0, x0) else x1
        }

        if (b == 1) 1
        else {
          val x1 = loop(a, b, 0, 1)
          if (x1 < 0) x1 + b else x1
        }
      }

      if (n.nonEmpty) {
        val p = prod / n.head

        iter(n.tail, a.tail, sm + a.head * mulInv(p, n.head) * p)
      } else sm
    }

    Try {
      iter(n, a, 0) % prod
    } match {
      case Success(v) => Some(v)
      case _          => None
    }
  }

  println(chineseRemainder(List(3, 5, 7), List(2, 3, 2)))
  println(chineseRemainder(List(11, 12, 13), List(10, 4, 12)))
  println(chineseRemainder(List(11, 22, 19), List(10, 4, 9)))

}

Seed7

$ include "seed7_05.s7i";
  include "bigint.s7i";

const func integer: modInverse (in integer: a, in integer: b) is
  return ord(modInverse(bigInteger conv a, bigInteger conv b));

const proc: main is func
  local
    const array integer: n is [] (3, 5, 7);
    const array integer: a is [] (2, 3, 2);
    var integer: num is 0;
    var integer: prod is 1;
    var integer: sum is 0;
    var integer: index is 0;
  begin
    for num range n do
      prod *:= num;
    end for;
    for key index range a do
      num := prod div n[index];
      sum +:= a[index] * modInverse(num, n[index]) * num;
    end for;
    writeln(sum mod prod);
  end func;

{{out}}


23

Sidef

{{trans|Perl 6}}

func chinese_remainder(*n) {
    var N = n.prod
    func (*a) {
        n.range.sum { |i|
            var p = (N / n[i])
            a[i] * p.invmod(n[i]) * p
        } % N
    }
}

say chinese_remainder(3, 5, 7)(2, 3, 2)

{{out}}


23

Swift

import Darwin

/*
 * Function: euclid
 * Usage: (r,s) = euclid(m,n)
 * --------------------------
 * The extended Euclidean algorithm subsequently performs
 * Euclidean divisions till the remainder is zero and then
 * returns the Bézout coefficients r and s.
 */

func euclid(_ m:Int, _ n:Int) -> (Int,Int) {
    if m % n == 0 {
        return (0,1)
    } else {
        let rs = euclid(n % m, m)
        let r = rs.1 - rs.0 * (n / m)
        let s = rs.0

        return (r,s)
    }
}

/*
 * Function: gcd
 * Usage: x = gcd(m,n)
 * -------------------
 * The greatest common divisor of two numbers a and b
 * is expressed by ax + by = gcd(a,b) where x and y are
 * the Bézout coefficients as determined by the extended
 * euclidean algorithm.
 */

func gcd(_ m:Int, _ n:Int) -> Int {
    let rs = euclid(m, n)
    return m * rs.0 + n * rs.1
}

/*
 * Function: coprime
 * Usage: truth = coprime(m,n)
 * ---------------------------
 * If two values are coprime, their greatest common
 * divisor is 1.
 */

func coprime(_ m:Int, _ n:Int) -> Bool {
    return gcd(m,n) == 1 ? true : false
}

coprime(14,26)
//coprime(2,4)

/*
 * Function: crt
 * Usage: x = crt(a,n)
 * -------------------
 * The Chinese Remainder Theorem supposes that given the
 * integers n_1...n_k that are pairwise co-prime, then for
 * any sequence of integers a_1...a_k there exists an integer
 * x that solves the system of linear congruences:
 *
 *   x === a_1 (mod n_1)
 *   ...
 *   x === a_k (mod n_k)
 */

func crt(_ a_i:[Int], _ n_i:[Int]) -> Int {
    // There is no identity operator for elements of [Int].
    // The offset of the elements of an enumerated sequence
    // can be used instead, to determine if two elements of the same
    // array are the same.
    let divs = n_i.enumerated()

    // Check if elements of n_i are pairwise coprime divs.filter{ $0.0 < n.0 }
    divs.forEach{
        n in divs.filter{ $0.0 < n.0 }.forEach{
            assert(coprime(n.1, $0.1))
        }
    }

    // Calculate factor N
    let N = n_i.map{$0}.reduce(1, *)

    // Euclidean algorithm determines s_i (and r_i)
    var s:[Int] = []

    // Using euclidean algorithm to calculate r_i, s_i
    n_i.forEach{ s += [euclid($0, N / $0).1] }

    // Solve for x
    var x = 0
    a_i.enumerated().forEach{
        x += $0.1 * s[$0.0] * N / n_i[$0.0]
    }

    // Return minimal solution
    return x % N
}

let a = [2,3,2]
let n = [3,5,7]

let x = crt(a,n)

print(x)

{{out}}

23

Tcl

{{trans|C}}

proc ::tcl::mathfunc::mulinv {a b} {
    if {$b == 1} {return 1}
    set b0 $b; set x0 0; set x1 1
    while {$a > 1} {
	set x0 [expr {$x1 - ($a / $b) * [set x1 $x0]}]
	set b [expr {$a % [set a $b]}]
    }
    incr x1 [expr {($x1 < 0) * $b0}]
}
proc chineseRemainder {nList aList} {
    set sum 0; set prod [::tcl::mathop::* {*}$nList]
    foreach n $nList a $aList {
	set p [expr {$prod / $n}]
	incr sum [expr {$a * mulinv($p, $n) * $p}]
    }
    expr {$sum % $prod}
}
puts [chineseRemainder {3 5 7} {2 3 2}]

{{out}}

23

uBasic/4tH

{{trans|C}} @(000) = 3 : @(001) = 5 : @(002) = 7 @(100) = 2 : @(101) = 3 : @(102) = 2

Print Func (_Chinese_Remainder (3))

' -------------------------------------

@(000) = 11 : @(001) = 12 : @(002) = 13 @(100) = 10 : @(101) = 04 : @(102) = 12

Print Func (_Chinese_Remainder (3))

' -------------------------------------

End

                                   ' returns x where (a * x) % b == 1

_Mul_Inv Param (2) ' ( a b -- n) Local (4)

c@ = b@ d@ = 0 e@ = 1

If b@ = 1 Then Return (1)

Do While a@ > 1 f@ = a@ / b@ Push b@ : b@ = a@ % b@ : a@ = Pop() Push d@ : d@ = e@ - f@ * d@ : e@ = Pop() Loop

If e@ < 0 Then e@ = e@ + c@

Return (e@)

_Chinese_Remainder Param (1) ' ( len -- n) Local (5)

b@ = 1 c@ = 0

For d@ = 0 Step 1 While d@ < a@ b@ = b@ * @(d@) Next

For d@ = 0 Step 1 While d@ < a@ e@ = b@ / @(d@) c@ = c@ + (@(100 + d@) * Func (_Mul_Inv (e@, @(d@))) * e@) Next

Return (c@ % b@)


{{out}}

```txt

23
1000

0 OK, 0:1034

VBA

Uses the function mul_inv() from [[Modular_inverse#VBA]] {{trans|Phix}}

Private Function chinese_remainder(n As Variant, a As Variant) As Variant
    Dim p As Long, prod As Long, tot As Long
    prod = 1: tot = 0
    For i = 1 To UBound(n)
        prod = prod * n(i)
    Next i
    Dim m As Variant
    For i = 1 To UBound(n)
        p = prod / n(i)
        m = mul_inv(p, n(i))
        If WorksheetFunction.IsText(m) Then
            chinese_remainder = "fail"
            Exit Function
        End If
        tot = tot + a(i) * m * p
    Next i
    chinese_remainder = tot Mod prod
End Function
Public Sub re()
    Debug.Print chinese_remainder([{3,5,7}], [{2,3,2}])
    Debug.Print chinese_remainder([{11,12,13}], [{10,4,12}])
    Debug.Print chinese_remainder([{11,22,19}], [{10,4,9}])
    Debug.Print chinese_remainder([{100,23}], [{19,0}])
End Sub

{{out}}

 23
 1000
fail
 1219

Visual Basic .NET

{{trans|C#}}

Module Module1

    Function ModularMultiplicativeInverse(a As Integer, m As Integer) As Integer
        Dim b = a Mod m
        For x = 1 To m - 1
            If (b * x) Mod m = 1 Then
                Return x
            End If
        Next
        Return 1
    End Function

    Function Solve(n As Integer(), a As Integer()) As Integer
        Dim prod = n.Aggregate(1, Function(i, j) i * j)
        Dim sm = 0
        Dim p As Integer
        For i = 0 To n.Length - 1
            p = prod / n(i)
            sm = sm + a(i) * ModularMultiplicativeInverse(p, n(i)) * p
        Next
        Return sm Mod prod
    End Function

    Sub Main()
        Dim n = {3, 5, 7}
        Dim a = {2, 3, 2}

        Dim result = Solve(n, a)

        Dim counter = 0
        Dim maxCount = n.Length - 1
        While counter <= maxCount
            Console.WriteLine($"{result} = {a(counter)} (mod {n(counter)})")
            counter = counter + 1
        End While
    End Sub

End Module

{{out}}

23 = 2 (mod 3)
23 = 3 (mod 5)
23 = 2 (mod 7)

zkl

{{trans|Go}} Using the GMP library, gcdExt is the Extended Euclidean algorithm.

var BN=Import("zklBigNum"), one=BN(1);

fcn crt(xs,ys){
   p:=xs.reduce('*,BN(1));
   X:=BN(0);
   foreach x,y in (xs.zip(ys)){
      q:=p/x;
      z,s,_:=q.gcdExt(x);
      if(z!=one) throw(Exception.ValueError("%d not coprime".fmt(x)));
      X+=y*s*q;
   }
   return(X % p);
}
println(crt(T(3,5,7),  T(2,3,2)));    //-->23
println(crt(T(11,12,13),T(10,4,12))); //-->1000
println(crt(T(11,22,19), T(10,4,9))); //-->ValueError: 11 not coprime

ZX Spectrum Basic

{{trans|C}}

10 DIM n(3): DIM a(3)
20 FOR i=1 TO 3
30 READ n(i),a(i)
40 NEXT i
50 DATA 3,2,5,3,7,2
100 LET prod=1: LET sum=0
110 FOR i=1 TO 3: LET prod=prod*n(i): NEXT i
120 FOR i=1 TO 3
130 LET p=INT (prod/n(i)): LET a=p: LET b=n(i)
140 GO SUB 1000
150 LET sum=sum+a(i)*x1*p
160 NEXT i
170 PRINT FN m(sum,prod)
180 STOP
200 DEF FN m(a,b)=a-INT (a/b)*b: REM Modulus function
1000 LET b0=b: LET x0=0: LET x1=1
1010 IF b=1 THEN RETURN
1020 IF a<=1 THEN GO TO 1100
1030 LET q=INT (a/b)
1040 LET t=b: LET b=FN m(a,b): LET a=t
1050 LET t=x0: LET x0=x1-q*x0: LET x1=t
1060 GO TO 1020
1100 IF x1<0 THEN LET x1=x1+b0
1110 RETURN
23