⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

;Task: Given non-negative integers '''m''' and '''n''', generate all size '''m''' [http://mathworld.wolfram.com/Combination.html combinations] of the integers from '''0''' (zero) to '''n-1''' in sorted order (each combination is sorted and the entire table is sorted).

;Example: '''3''' comb '''5''' is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4

If it is more "natural" in your language to start counting from '''1''' (unity) instead of '''0''' (zero),

the combinations can be of the integers from '''1''' to '''n'''.

11l

{{trans|D}}

```F comb(arr, k)
I k == 0
R [[Int]()]

[[Int]] result
L(x) arr
V i = L.index
L(suffix) comb(arr[i+1..], k-1)
result [+]= x [+] suffix

R result

print(comb([0, 1, 2, 3, 4], 3))
```

{{out}}

```
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]

```

360 Assembly

{{trans|C}} Nice algorithm without recursion borrowed from C. Recursion is elegant but iteration is efficient. For maximum compatibility, this program uses only the basic instruction set (S/360) and two ASSIST macros (XDECO, XPRNT) to keep the code as short as possible.

```*        Combinations              26/05/2016
COMBINE  CSECT
USING  COMBINE,R13        base register
B      72(R15)            skip savearea
DC     17F'0'             savearea
STM    R14,R12,12(R13)    prolog
ST     R13,4(R15)         "
ST     R15,8(R13)         "
LR     R13,R15            "
SR     R3,R3              clear
LA     R7,C               @c(1)
LH     R8,N               v=n
LOOPI1   STC    R8,0(R7)           do i=1 to n; c(i)=n-i+1
LA     R7,1(R7)             @c(i)++
BCT    R8,LOOPI1          next i
LOOPBIG  LA     R10,PG             big loop {------------------
LH     R1,N               n
LA     R7,C-1(R1)         @c(i)
LH     R6,N               i=n
LOOPI2   IC     R3,0(R7)           do i=n to 1 by -1; r2=c(i)
XDECO  R3,PG+80             edit c(i)
MVC    0(2,R10),PG+90       output c(i)
LA     R10,3(R10)           @pgi=@pgi+3
BCTR   R7,0                 @c(i)--
BCT    R6,LOOPI2          next i
XPRNT  PG,80              print buffer
LA     R7,C               @c(1)
LH     R8,M               v=m
LA     R6,1               i=1
LOOPI3   LR     R1,R6              do i=1 by 1; r1=i
IC     R3,0(R7)             c(i)
CR     R3,R8                while c(i)>=m-i+1
BL     ELOOPI3              leave i
CH     R6,N                 if i>=n
BNL    ELOOPBIG             exit loop
BCTR   R8,0                 v=v-1
LA     R7,1(R7)             @c(i)++
LA     R6,1(R6)             i=i+1
B      LOOPI3             next i
ELOOPI3  LR     R1,R6              i
LA     R4,C-1(R1)         @c(i)
IC     R3,0(R4)           c(i)
LA     R3,1(R3)           c(i)+1
STC    R3,0(R4)           c(i)=c(i)+1
BCTR   R7,0               @c(i)--
LOOPI4   CH     R6,=H'2'           do i=i to 2 by -1
BL     ELOOPI4            leave i
IC     R3,1(R7)             c(i)
LA     R3,1(R3)             c(i)+1
STC    R3,0(R7)             c(i-1)=c(i)+1
BCTR   R7,0                 @c(i)--
BCTR   R6,0                 i=i-1
B      LOOPI4             next i
ELOOPI4  B      LOOPBIG            big loop }------------------
ELOOPBIG L      R13,4(0,R13)       epilog
LM     R14,R12,12(R13)    "
XR     R15,R15            "
BR     R14                exit
M        DC     H'5'               <=input
N        DC     H'3'               <=input
C        DS     64X                array of 8 bit integers
PG       DC     CL92' '            buffer
YREGS
END    COMBINE
```

{{out}}

```
1  2  3
1  2  4
1  2  5
1  3  4
1  3  5
1  4  5
2  3  4
2  3  5
2  4  5
3  4  5

```

```with Ada.Text_IO;  use Ada.Text_IO;

procedure Test_Combinations is
generic
type Integers is range <>;
package Combinations is
type Combination is array (Positive range <>) of Integers;
procedure First (X : in out Combination);
procedure Next (X : in out Combination);
procedure Put (X : Combination);
end Combinations;

package body Combinations is
procedure First (X : in out Combination) is
begin
X (1) := Integers'First;
for I in 2..X'Last loop
X (I) := X (I - 1) + 1;
end loop;
end First;
procedure Next (X : in out Combination) is
begin
for I in reverse X'Range loop
if X (I) < Integers'Val (Integers'Pos (Integers'Last) - X'Last + I) then
X (I) := X (I) + 1;
for J in I + 1..X'Last loop
X (J) := X (J - 1) + 1;
end loop;
return;
end if;
end loop;
raise Constraint_Error;
end Next;
procedure Put (X : Combination) is
begin
for I in X'Range loop
Put (Integers'Image (X (I)));
end loop;
end Put;
end Combinations;

type Five is range 0..4;
package Fives is new Combinations (Five);
use Fives;

X : Combination (1..3);
begin
First (X);
loop
Put (X); New_Line;
Next (X);
end loop;
exception
when Constraint_Error =>
null;
end Test_Combinations;
```

The solution is generic the formal parameter is the integer type to make combinations of. The type range determines ''n''. In the example it is

```
The parameter ''m'' is the object's constraint.
When ''n'' < ''m'' the procedure First (selects the first combination) will propagate Constraint_Error.
The procedure Next selects the next combination. Constraint_Error is propagated when it is the last one.

{{out}}

```txt

0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4

```

ALGOL 68

{{trans|Python}} {{works with|ALGOL 68|Revision 1 - one minor extension to language used - PRAGMA READ, similar to C's #include directive.}} {{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-2.6 algol68g-2.6].}} {{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of '''format'''[ted] ''transput''.}} '''File: prelude_combinations.a68'''

```# -*- coding: utf-8 -*- #

COMMENT REQUIRED BY "prelude_combinations_generative.a68"
MODE COMBDATA = ~;
PROVIDES:
# COMBDATA*=~* #
# comb*=~ list* #
END COMMENT

MODE COMBDATALIST = REF[]COMBDATA;
MODE COMBDATALISTYIELD = PROC(COMBDATALIST)VOID;

PROC comb gen combinations = (INT m, COMBDATALIST list, COMBDATALISTYIELD yield)VOID:(
CASE m IN
# case 1: transpose list #
FOR i TO UPB list DO yield(list[i]) OD
OUT
[m + LWB list - 1]COMBDATA out;
INT index out := 1;
FOR i TO UPB list DO
COMBDATA first = list[i];
# FOR COMBDATALIST sub recombination IN # comb gen combinations(m - 1, list[i+1:] #) DO (#,
##   (COMBDATALIST sub recombination)VOID:(
out[LWB list   ] := first;
out[LWB list+1:] := sub recombination;
yield(out)
# OD #))
OD
ESAC
);

SKIP
```

'''File: test_combinations.a68'''

```#!/usr/bin/a68g --script #
# -*- coding: utf-8 -*- #

CO REQUIRED BY "prelude_combinations.a68" CO
MODE COMBDATA = INT;
#PROVIDES:#
# COMBDATA~=INT~ #
# comb ~=int list ~#

FORMAT data fmt = \$g(0)\$;

main:(
INT m = 3;
FORMAT list fmt = \$"("n(m-1)(f(data fmt)",")f(data fmt)")"\$;
FLEX[0]COMBDATA test data list := (1,2,3,4,5);
# FOR COMBDATALIST recombination data IN # comb gen combinations(m, test data list #) DO (#,
##    (COMBDATALIST recombination)VOID:(
printf ((list fmt, recombination, \$l\$))
# OD # ))
)

```

{{out}}

```
(1,2,3)
(1,2,4)
(1,2,5)
(1,3,4)
(1,3,5)
(1,4,5)
(2,3,4)
(2,3,5)
(2,4,5)
(3,4,5)

```

AppleScript

Iteration

```on comb(n, k)
set c to {}
repeat with i from 1 to k
set end of c to i's contents
end repeat
set r to {c's contents}
repeat while my next_comb(c, k, n)
set end of r to c's contents
end repeat
return r
end comb

on next_comb(c, k, n)
set i to k
set c's item i to (c's item i) + 1
repeat while (i > 1 and c's item i ≥ n - k + 1 + i)
set i to i - 1
set c's item i to (c's item i) + 1
end repeat
if (c's item 1 > n - k + 1) then return false
repeat with i from i + 1 to k
set c's item i to (c's item (i - 1)) + 1
end repeat
return true
end next_comb

return comb(5, 3)
```

{{out}}

```{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}
```

Functional composition

{{Trans|JavaScript}}

```-- comb :: Int -> [a] -> [[a]]
on comb(n, lst)
if n < 1 then
{{}}
else
if not isNull(lst) then
set {h, xs} to uncons(lst)

map(curry(my cons)'s |λ|(h), comb(n - 1, xs)) & comb(n, xs)
else
{}
end if
end if
end comb

-- TEST -----------------------------------------------------------------------
on run

intercalate(linefeed, ¬
map(unwords, comb(3, enumFromTo(0, 4))))

end run

-- GENERIC FUNCTIONS ----------------------------------------------------------

-- cons :: a -> [a] -> [a]
on cons(x, xs)
{x} & xs
end cons

-- curry :: (Script|Handler) -> Script
on curry(f)
script
on |λ|(a)
script
on |λ|(b)
|λ|(a, b) of mReturn(f)
end |λ|
end script
end |λ|
end script
end curry

-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if n < m then
set d to -1
else
set d to 1
end if
set lst to {}
repeat with i from m to n by d
set end of lst to i
end repeat
return lst
end enumFromTo

-- intercalate :: Text -> [Text] -> Text
on intercalate(strText, lstText)
set {dlm, my text item delimiters} to {my text item delimiters, strText}
set strJoined to lstText as text
set my text item delimiters to dlm
return strJoined
end intercalate

-- isNull :: [a] -> Bool
on isNull(xs)
if class of xs is string then
xs = ""
else
xs = {}
end if
end isNull

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map

-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn

-- uncons :: [a] -> Maybe (a, [a])
on uncons(xs)
set lng to length of xs
if lng > 0 then
if class of xs is string then
set cs to text items of xs
{item 1 of cs, rest of cs}
else
{item 1 of xs, rest of xs}
end if
else
missing value
end if
end uncons

-- unwords :: [String] -> String
on unwords(xs)
intercalate(space, xs)
end unwords
```

{{Out}}

```0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
```

AutoHotkey

contributed by Laszlo on the ahk [http://www.autohotkey.com/forum/post-276224.html#276224 forum]

```MsgBox % Comb(1,1)
MsgBox % Comb(3,3)
MsgBox % Comb(3,2)
MsgBox % Comb(2,3)
MsgBox % Comb(5,3)

Comb(n,t) { ; Generate all n choose t combinations of 1..n, lexicographically
IfLess n,%t%, Return
Loop %t%
c%A_Index% := A_Index
i := t+1, c%i% := n+1

Loop {
Loop %t%
i := t+1-A_Index, c .= c%i% " "
c .= "`n"     ; combinations in new lines
j := 1, i := 2
Loop
If (c%j%+1 = c%i%)
c%j% := j, ++j, ++i
Else Break
If (j > t)
Return c
c%j% += 1
}
}
```

AWK

```BEGIN {
## Default values for r and n (Choose 3 from pool of 5).  Can
## alternatively be set on the command line:-
## awk -v r=<number of items being chosen> -v n=<how many to choose from> -f <scriptname>
if (length(r) == 0) r = 3
if (length(n) == 0) n = 5

for (i=1; i <= r; i++) { ## First combination of items:
A[i] = i
if (i < r ) printf i OFS
else print i}

## While 1st item is less than its maximum permitted value...
while (A[1] < n - r + 1) {
## loop backwards through all items in the previous
## combination of items until an item is found that is
## less than its maximum permitted value:
for (i = r; i >= 1; i--) {
## If the equivalently positioned item in the
## previous combination of items is less than its
## maximum permitted value...
if (A[i] < n - r + i) {
## increment the current item by 1:
A[i]++
## Save the current position-index for use
## outside this "for" loop:
p = i
break}}
## Put consecutive numbers in the remainder of the array,
## counting up from position-index p.
for (i = p + 1; i <= r; i++) A[i] = A[i - 1] + 1

## Print the current combination of items:
for (i=1; i <= r; i++) {
if (i < r) printf A[i] OFS
else print A[i]}}
exit}
```

Usage:

```
awk -v r=3 -v n=5 -f combn.awk

```

{{out}}

```
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

```

BBC BASIC

{{works with|BBC BASIC for Windows}}

```      INSTALL @lib\$+"SORTLIB"
sort% = FN_sortinit(0,0)

M% = 3
N% = 5

C% = FNfact(N%)/(FNfact(M%)*FNfact(N%-M%))
DIM s\$(C%)
PROCcomb(M%, N%, s\$())

CALL sort%, s\$(0)
FOR I% = 0 TO C%-1
PRINT s\$(I%)
NEXT
END

DEF PROCcomb(C%, N%, s\$())
LOCAL I%, U%
FOR U% = 0 TO 2^N%-1
IF FNbits(U%) = C% THEN
s\$(I%) = FNlist(U%)
I% += 1
ENDIF
NEXT
ENDPROC

DEF FNbits(U%)
LOCAL N%
WHILE U%
N% += 1
U% = U% AND (U%-1)
ENDWHILE
= N%

DEF FNlist(U%)
LOCAL N%, s\$
WHILE U%
IF U% AND 1 s\$ += STR\$(N%) + " "
N% += 1
U% = U% >> 1
ENDWHILE
= s\$

DEF FNfact(N%)
IF N%<=1 THEN = 1 ELSE = N%*FNfact(N%-1)

```

Bracmat

The program first constructs a pattern with `m` variables and an expression that evaluates `m` variables into a combination. Then the program constructs a list of the integers `0 ... n-1`. The real work is done in the expression `!list:!pat`. When a combination is found, it is added to the list of combinations. Then we force the program to backtrack and find the next combination by evaluating the always failing `~`. When all combinations are found, the pattern fails and we are in the rhs of the last `|` operator.

```(comb=
bvar combination combinations list m n pat pvar var
.     !arg:(?m.?n)
& ( pat
=   ?
& !combinations (.!combination):?combinations
& ~
)
& :?list:?combination:?combinations
&   whl
' ( !m+-1:~<0:?m
& chu\$(utf\$a+!m):?var
& glf\$('(%@?.\$var)):(=?pvar)
& '(? ()\$pvar ()\$pat):(=?pat)
& glf\$('(!.\$var)):(=?bvar)
& (   '\$combination:(=)
& '\$bvar:(=?combination)
| '(\$bvar ()\$combination):(=?combination)
)
)
&   whl
' (!n+-1:~<0:?n&!n !list:?list)
& !list:!pat
| !combinations);
```

comb\$(3.5)

(.0 1 2) (.0 1 3) (.0 1 4) (.0 2 3) (.0 2 4) (.0 3 4) (.1 2 3) (.1 2 4) (.1 3 4) (.2 3 4)

C

```#include <stdio.h>

/* Type marker stick: using bits to indicate what's chosen.  The stick can't
* handle more than 32 items, but the idea is there; at worst, use array instead */
typedef unsigned long marker;
marker one = 1;

void comb(int pool, int need, marker chosen, int at)
{
if (pool < need + at) return; /* not enough bits left */

if (!need) {
/* got all we needed; print the thing.  if other actions are
* desired, we could have passed in a callback function. */
for (at = 0; at < pool; at++)
if (chosen & (one << at)) printf("%d ", at);
printf("\n");
return;
}
/* if we choose the current item, "or" (|) the bit to mark it so. */
comb(pool, need - 1, chosen | (one << at), at + 1);
comb(pool, need, chosen, at + 1);  /* or don't choose it, go to next */
}

int main()
{
comb(5, 3, 0, 0);
return 0;
}
```

Lexicographic ordered generation

Without recursions, generate all combinations in sequence. Basic logic: put n items in the first n of m slots; each step, if right most slot can be moved one slot further right, do so; otherwise find right most item that can be moved, move it one step and put all items already to its right next to it.

```#include <stdio.h>

void comb(int m, int n, unsigned char *c)
{
int i;
for (i = 0; i < n; i++) c[i] = n - i;

while (1) {
for (i = n; i--;)
printf("%d%c", c[i], i ? ' ': '\n');

/* this check is not strictly necessary, but if m is not close to n,
it makes the whole thing quite a bit faster */
i = 0;
if (c[i]++ < m) continue;

for (; c[i] >= m - i;) if (++i >= n) return;
for (c[i]++; i; i--) c[i-1] = c[i] + 1;
}
}

int main()
{
unsigned char buf[100];
comb(5, 3, buf);
return 0;
}
```

C#

```using System;
using System.Collections.Generic;

public class Program
{
public static IEnumerable<int[]> Combinations(int m, int n)
{
int[] result = new int[m];
Stack<int> stack = new Stack<int>();
stack.Push(0);

while (stack.Count > 0)
{
int index = stack.Count - 1;
int value = stack.Pop();

while (value < n)
{
result[index++] = ++value;
stack.Push(value);

if (index == m)
{
yield return result;
break;
}
}
}
}

static void Main()
{
foreach (int[] c in Combinations(3, 5))
{
Console.WriteLine(string.Join(",", c));
Console.WriteLine();
}
}
}
```

Here is another implementation that uses recursion, intead of an explicit stack:

```
using System;
using System.Collections.Generic;

public class Program
{
public static IEnumerable<int[]> FindCombosRec(int[] buffer, int done, int begin, int end)
{
for (int i = begin; i < end; i++)
{
buffer[done] = i;

if (done == buffer.Length - 1)
yield return buffer;
else
foreach (int[] child in FindCombosRec(buffer, done+1, i+1, end))
yield return child;
}
}

public static IEnumerable<int[]> FindCombinations(int m, int n)
{
return FindCombosRec(new int[m], 0, 0, n);
}

static void Main()
{
foreach (int[] c in FindCombinations(3, 5))
{
for (int i = 0; i < c.Length; i++)
{
Console.Write(c[i] + " ");
}
Console.WriteLine();
}
}
}

```

Recursive version

```using System;
class Combinations
{
static int k = 3, n = 5;
static int [] buf = new int [k];

static void Main()
{
rec(0, 0);
}

static void rec(int ind, int begin)
{
for (int i = begin; i < n; i++)
{
buf [ind] = i;
if (ind + 1 < k) rec(ind + 1, buf [ind] + 1);
else Console.WriteLine(string.Join(",", buf));
}
}
}
```

C++

```#include <algorithm>
#include <iostream>
#include <string>

void comb(int N, int K)
{
bitmask.resize(N, 0); // N-K trailing 0's

// print integers and permute bitmask
do {
for (int i = 0; i < N; ++i) // [0..N-1] integers
{
if (bitmask[i]) std::cout << " " << i;
}
std::cout << std::endl;
}

int main()
{
comb(5, 3);
}
```

{{out}}

```
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4

```

Clojure

```(defn combinations
"If m=1, generate a nested list of numbers [0,n)
If m>1, for each x in [0,n), and for each list in the recursion on [x+1,n), cons the two"
[m n]
(letfn [(comb-aux
[m start]
(if (= 1 m)
(for [x (range start n)]
(list x))
(for [x (range start n)
xs (comb-aux (dec m) (inc x))]
(cons x xs))))]
(comb-aux m 0)))

(defn print-combinations
[m n]
(doseq [line (combinations m n)]
(doseq [n line]
(printf "%s " n))
(printf "%n")))
```

The below code do not comply to the task described above. However, the combinations of n elements taken from m elements might be more natural to be expressed as a set of unordered sets of elements in Clojure using its Set data structure.

```
(defn combinations
"Generate the combinations of n elements from a list of [0..m)"
[m n]
(let [xs (range m)]
(loop [i (int 0) res #{#{}}]
(if (== i n)
res
(recur (+ 1 i)
(set (for [x xs r res
:when (not-any? #{x} r)]
(conj r x))))))))

```

CoffeeScript

Basic backtracking solution.

```
combinations = (n, p) ->
return [ [] ] if p == 0
i = 0
combos = []
combo = []
while combo.length < p
if i < n
combo.push i
i += 1
else
break if combo.length == 0
i = combo.pop() + 1

if combo.length == p
combos.push clone combo
i = combo.pop() + 1
combos

clone = (arr) -> (n for n in arr)

N = 5
for i in [0..N]
console.log "------ #{N} #{i}"
for combo in combinations N, i
console.log combo

```

{{out}}

```> coffee combo.coffee
------ 5 0
[]
------ 5 1
[ 0 ]
[ 1 ]
[ 2 ]
[ 3 ]
[ 4 ]
------ 5 2
[ 0, 1 ]
[ 0, 2 ]
[ 0, 3 ]
[ 0, 4 ]
[ 1, 2 ]
[ 1, 3 ]
[ 1, 4 ]
[ 2, 3 ]
[ 2, 4 ]
[ 3, 4 ]
------ 5 3
[ 0, 1, 2 ]
[ 0, 1, 3 ]
[ 0, 1, 4 ]
[ 0, 2, 3 ]
[ 0, 2, 4 ]
[ 0, 3, 4 ]
[ 1, 2, 3 ]
[ 1, 2, 4 ]
[ 1, 3, 4 ]
[ 2, 3, 4 ]
------ 5 4
[ 0, 1, 2, 3 ]
[ 0, 1, 2, 4 ]
[ 0, 1, 3, 4 ]
[ 0, 2, 3, 4 ]
[ 1, 2, 3, 4 ]
------ 5 5
[ 0, 1, 2, 3, 4 ]

```

Common Lisp

```(defun map-combinations (m n fn)
"Call fn with each m combination of the integers from 0 to n-1 as a list. The list may be destroyed after fn returns."
(let ((combination (make-list m)))
(labels ((up-from (low)
(let ((start (1- low)))
(lambda () (incf start))))
(mc (curr left needed comb-tail)
(cond
((zerop needed)
(funcall fn combination))
((= left needed)
(map-into comb-tail (up-from curr))
(funcall fn combination))
(t
(setf (first comb-tail) curr)
(mc (1+ curr) (1- left) (1- needed) (rest comb-tail))
(mc (1+ curr) (1- left) needed comb-tail)))))
(mc 0 n m combination))))
```

{{out}}Example use

```> (map-combinations 3 5 'print)

(0 1 2)
(0 1 3)
(0 1 4)
(0 2 3)
(0 2 4)
(0 3 4)
(1 2 3)
(1 2 4)
(1 3 4)
(2 3 4)
(2 3 4)
```

Recursive method

```(defun comb (m list fn)
(labels ((comb1 (l c m)
(when (>= (length l) m)
(if (zerop m) (return-from comb1 (funcall fn c)))
(comb1 (cdr l) c m)
(comb1 (cdr l) (cons (first l) c) (1- m)))))
(comb1 list nil m)))

(comb 3 '(0 1 2 3 4 5) #'print)
```

=== Alternate, iterative method ===

```(defun next-combination (n a)
(let ((k (length a)) m)
(loop for i from 1 do
(when (> i k) (return nil))
(when (< (aref a (- k i)) (- n i))
(setf m (aref a (- k i)))
(loop for j from i downto 1 do
(incf m)
(setf (aref a (- k j)) m))
(return t)))))

(defun all-combinations (n k)
(if (or (< k 0) (< n k)) '()
(let ((a (make-array k)))
(loop for i below k do (setf (aref a i) i))
(loop collect (coerce a 'list) while (next-combination n a)))))

(defun map-combinations (n k fun)
(if (and (>= k 0) (>= n k))
(let ((a (make-array k)))
(loop for i below k do (setf (aref a i) i))
(loop do (funcall fun (coerce a 'list)) while (next-combination n a)))))

; all-combinations returns a list of lists

> (all-combinations 4 3)
((0 1 2) (0 1 3) (0 2 3) (1 2 3))

; map-combinations applies a function to each combination

> (map-combinations 6 4 #'print)
(0 1 2 3)
(0 1 2 4)
(0 1 2 5)
(0 1 3 4)
(0 1 3 5)
(0 1 4 5)
(0 2 3 4)
(0 2 3 5)
(0 2 4 5)
(0 3 4 5)
(1 2 3 4)
(1 2 3 5)
(1 2 4 5)
(1 3 4 5)
(2 3 4 5)
```

Crystal

```
def comb(m, n)
(0...n).to_a.each_combination(m) { |p| puts(p) }
end

```
```
[0, 1, 2]
[0, 1, 3]
[0, 1, 4]
[0, 2, 3]
[0, 2, 4]
[0, 3, 4]
[1, 2, 3]
[1, 2, 4]
[1, 3, 4]
[2, 3, 4]

```

D

Slow Recursive Version

{{trans|Python}}

```T[][] comb(T)(in T[] arr, in int k) pure nothrow {
if (k == 0) return [[]];
typeof(return) result;
foreach (immutable i, immutable x; arr)
foreach (suffix; arr[i + 1 .. \$].comb(k - 1))
result ~= x ~ suffix;
return result;
}

void main() {
import std.stdio;
[0, 1, 2, 3].comb(2).writeln;
}
```

{{out}}

```[[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]
```

More Functional Recursive Version

```import std.stdio, std.algorithm, std.range;

immutable(int)[][] comb(immutable int[] s, in int m) pure nothrow @safe {
if (!m) return [[]];
if (s.empty) return [];
return s[1 .. \$].comb(m - 1).map!(x => s[0] ~ x).array ~ s[1 .. \$].comb(m);
}

void main() {
4.iota.array.comb(2).writeln;
}
```

Lazy Version

```module combinations3;

import std.traits: Unqual;

struct Combinations(T, bool copy=true) {
Unqual!T[] pool, front;
size_t r, n;
bool empty = false;
size_t[] indices;
size_t len;
bool lenComputed = false;

this(T[] pool_, in size_t r_) pure nothrow @safe {
this.pool = pool_.dup;
this.r = r_;
this.n = pool.length;
if (r > n)
empty = true;
indices.length = r;
foreach (immutable i, ref ini; indices)
ini = i;
front.length = r;
foreach (immutable i, immutable idx; indices)
front[i] = pool[idx];
}

@property size_t length() /*logic_const*/ pure nothrow @nogc {
static size_t binomial(size_t n, size_t k) pure nothrow @safe @nogc
in {
assert(n > 0, "binomial: n must be > 0.");
} body {
if (k < 0 || k > n)
return 0;
if (k > (n / 2))
k = n - k;
size_t result = 1;
foreach (size_t d; 1 .. k + 1) {
result *= n;
n--;
result /= d;
}
return result;
}

if (!lenComputed) {
// Set cache.
len = binomial(n, r);
lenComputed = true;
}
return len;
}

void popFront() pure nothrow @safe {
if (!empty) {
bool broken = false;
size_t pos = 0;
foreach_reverse (immutable i; 0 .. r) {
pos = i;
if (indices[i] != i + n - r) {
broken = true;
break;
}
}
if (!broken) {
empty = true;
return;
}
indices[pos]++;
foreach (immutable j; pos + 1 .. r)
indices[j] = indices[j - 1] + 1;
static if (copy)
front = new Unqual!T[front.length];
foreach (immutable i, immutable idx; indices)
front[i] = pool[idx];
}
}
}

Combinations!(T, copy) combinations(bool copy=true, T)
(T[] items, in size_t k)
in {
assert(items.length, "combinations: items can't be empty.");
} body {
return typeof(return)(items, k);
}

// Compile with -version=combinations3_main to run main.
version(combinations3_main)
void main() {
import std.stdio, std.array, std.algorithm;
[1, 2, 3, 4].combinations!false(2).array.writeln;
[1, 2, 3, 4].combinations!true(2).array.writeln;
[1, 2, 3, 4].combinations(2).map!(x => x).writeln;
}
```

Lazy Lexicographical Combinations

Includes an algorithm to find [http://msdn.microsoft.com/en-us/library/aa289166.aspx#mth_lexicograp_topic3 mth Lexicographical Element of a Combination].

```module combinations4;
import std.stdio, std.algorithm, std.conv;

ulong choose(int n, int k) nothrow
in {
assert(n >= 0 && k >= 0, "choose: no negative input.");
} body {
static ulong[][] cache;

if (n < k)
return 0;
else if (n == k)
return 1;
while (n >= cache.length)
cache ~= [1UL]; // = choose(m, 0);
auto kmax  = min(k, n - k);
while(kmax >= cache[n].length) {
immutable h = cache[n].length;
cache[n] ~= choose(n - 1, h - 1) + choose(n - 1, h);
}

return cache[n][kmax];
}

int largestV(in int p, in int q, in long r) nothrow
in {
assert(p > 0 && q >= 0 && r >= 0, "largestV: no negative input.");
} body {
auto v = p - 1;
while (choose(v, q) > r)
v--;
return v;
}

struct Comb {
immutable int n, m;

@property size_t length() const /*nothrow*/ {
}

int[] opIndex(in size_t idx) const {
if (m < 0 || n < 0)
return [];
if (idx >= length)
throw new Exception("Out of bound");
ulong x = choose(n, m) - 1 - idx;
int a = n, b = m;
auto res = new int[m];
foreach (i; 0 .. m) {
a = largestV(a, b, x);
x = x - choose(a, b);
b = b - 1;
res[i] = n - 1 - a;
}
return res;
}

int opApply(int delegate(ref int[]) dg) const {
int[] yield;

foreach (i; 0 .. length) {
yield = this[i];
if (dg(yield))
break;
}

return 0;
}

static auto On(T)(in T[] arr, in int m) {
auto comb = Comb(arr.length, m);

return new class {
@property size_t length() const /*nothrow*/ {
return comb.length;
}

int opApply(int delegate(ref T[]) dg) const {
auto yield = new T[m];

foreach (c; comb) {
foreach (idx; 0 .. m)
yield[idx] = arr[c[idx]];
if (dg(yield))
break;
}

return 0;
}
};
}
}

version(combinations4_main)
void main() {
foreach (c; Comb.On([1, 2, 3], 2))
writeln(c);
}
```

E

```def combinations(m, range) {
return if (m <=> 0) { [[]] } else {
def combGenerator {
to iterate(f) {
for i in range {
for suffix in combinations(m.previous(), range & (int > i)) {
f(null, [i] + suffix)
}
}
}
}
}
}
```

? for x in combinations(3, 0..4) { println(x) }

EasyLang

{{trans|Julia}} n = 5 m = 3 len result[] m

func combinations pos val . . if pos < m for i = val to n - m result[pos] = pos + i call combinations pos + 1 i . else print result[] . . call combinations 0 0

```
{{out}}

```txt

[ 0 1 2 ]
[ 0 1 3 ]
[ 0 1 4 ]
[ 0 2 3 ]
[ 0 2 4 ]
[ 0 3 4 ]
[ 1 2 3 ]
[ 1 2 4 ]
[ 1 3 4 ]
[ 2 3 4 ]

```

EchoLisp

```
;;
;; using the native (combinations) function
(lib 'list)
(combinations (iota 5) 3)
→ ((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4))
;;
;; using an iterator
;;
(lib 'sequences)
(take (combinator (iota 5) 3) #:all)
→ ((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4))
;;
;; defining a function
;;
(define (combine lst p) (cond
[(null? lst) null]
[(< (length lst) p) null]
[(= (length lst) p) (list lst)]
[(= p 1) (map list lst)]
[else (append
(map cons (circular-list (first lst)) (combine (rest lst) (1- p)))
(combine (rest lst) p))]))

(combine (iota 5) 3)
→ ((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4))

```

Egison

```
(define \$comb
(lambda [\$n \$xs]
(match-all xs (list integer)
[(loop \$i [1 ,n] <join _ <cons \$a_i ...>> _) a])))

(test (comb 3 (between 0 4)))

```

{{out}}

```
{[|0 1 2|] [|0 1 3|] [|0 2 3|] [|1 2 3|] [|0 1 4|] [|0 2 4|] [|0 3 4|] [|1 2 4|] [|1 3 4|] [|2 3 4|]}

```

Eiffel

The core of the program is the recursive feature solve, which returns all possible strings of length n with k "ones" and n-k "zeros". The strings are then evaluated, each resulting in k corresponding integers for the digits where ones are found.

```

class
COMBINATIONS

create
make

feature

make (n, k: INTEGER)
require
n_positive: n > 0
k_positive: k > 0
k_smaller_equal: k <= n
do
create set.make
set.extend ("")
create sol.make
sol := solve (set, k, n - k)
sol := convert_solution (n, sol)
ensure
correct_num_of_sol: num_of_comb (n, k) = sol.count
end

feature {None}

-- strings of 'k' digits between 1 and 'n'
local
i, j: INTEGER
temp: STRING
do
create temp.make (n)
from
i := 1
until
i > solution.count
loop
from
j := 1
until
j > n
loop
if solution [i].at (j) = '1' then
temp.append (j.out)
end
j := j + 1
end
solution [i].deep_copy (temp)
temp.wipe_out
i := i + 1
end
Result := solution
end

-- list of strings with a number of 'one' 1s and 'zero' 0, standig for wether the corresponing digit is taken or not.
local
do
create new_P1.make
create new_P0.make
if one > 0 then
new_P1.deep_copy (seta)
across
new_P1 as P1
loop
new_P1.item.append ("1")
end
new_P1 := solve (new_P1, one - 1, zero)
end
if zero > 0 then
new_P0.deep_copy (seta)
across
new_P0 as P0
loop
new_P0.item.append ("0")
end
new_P0 := solve (new_P0, one, zero - 1)
end
if one = 0 and zero = 0 then
Result := seta
else
create Result.make
Result.fill (new_p0)
Result.fill (new_p1)
end
end

num_of_comb (n, k: INTEGER): INTEGER
-- number of 'k' sized combinations out of 'n'.
local
upper, lower, m, l: INTEGER
do
upper := 1
lower := 1
m := n
l := k
from
until
m < n - k + 1
loop
upper := m * upper
lower := l * lower
m := m - 1
l := l - 1
end
Result := upper // lower
end

end

```

Test:

```
class
APPLICATION

create
make

feature

make
do
create comb.make (5, 3)
across
comb.sol as ar
loop
io.put_string (ar.item.out + "%T")
end
end

comb: COMBINATIONS

end

```

{{out}}

```
345 245 235 234 145 135 134 125 124 123

```

Elena

ELENA 4.x :

```import system'routines;
import extensions;
import extensions'routines;

const int M = 3;
const int N = 5;

Numbers(n)
{
^ Array.allocate(n).populate:(int n => n)
}

public program()
{
var numbers := Numbers(N);
Combinator.new(M, numbers).forEach:(row)
{
console.printLine(row.toString())
};

}
```

{{out}}

```
0,1,2
0,1,3
0,1,4
0,2,3
0,2,4
0,3,4
1,2,3
1,2,4
1,3,4
2,3,4

```

Elixir

{{trans|Erlang}}

```defmodule RC do
def comb(0, _), do: [[]]
def comb(_, []), do: []
def comb(m, [h|t]) do
(for l <- comb(m-1, t), do: [h|l]) ++ comb(m, t)
end
end

{m, n} = {3, 5}
list = for i <- 1..n, do: i
Enum.each(RC.comb(m, list), fn x -> IO.inspect x end)
```

{{out}}

```
[1, 2, 3]
[1, 2, 4]
[1, 2, 5]
[1, 3, 4]
[1, 3, 5]
[1, 4, 5]
[2, 3, 4]
[2, 3, 5]
[2, 4, 5]
[3, 4, 5]

```

Emacs Lisp

```(defun comb-recurse (m n n-max)
(cond ((zerop m) '(()))
((= n-max n) '())
(t (append (mapcar #'(lambda (rest) (cons n rest))
(comb-recurse (1- m) (1+ n) n-max))
(comb-recurse m (1+ n) n-max)))))

(defun comb (m n)
(comb-recurse m 0 n))

(comb 3 5)
```

{{out}}

```((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4))
```

Erlang

```
-module(comb).
-compile(export_all).

comb(0,_) ->
[[]];
comb(_,[]) ->
[];
comb(N,[H|T]) ->
[[H|L] || L <- comb(N-1,T)]++comb(N,T).

```

Dynamic Programming

Could be optimized with a custom `zipwith/3` function instead of using `lists:sublist/2`.

```
-module(comb).
-export([combinations/2]).

combinations(K, List) ->
lists:last(all_combinations(K, List)).

all_combinations(K, List) ->
lists:foldr(
fun(X, Next) ->
Sub = lists:sublist(Next, length(Next) - 1),
Step = [[]] ++ [[[X|S] || S <- L] || L <- Sub],
lists:zipwith(fun lists:append/2, Step, Next)
end, [[[]]] ++ lists:duplicate(K, []), List).

```

ERRE

```
PROGRAM COMBINATIONS

CONST M_MAX=3,N_MAX=5

DIM COMBINATION[M_MAX],STACK[100,1]

PROCEDURE GENERATE(M)
LOCAL I
IF (M>M_MAX) THEN
FOR I=1 TO M_MAX DO
PRINT(COMBINATION[I];" ";)
END FOR
PRINT
ELSE
FOR N=1 TO N_MAX DO
IF ((M=1) OR (N>COMBINATION[M-1])) THEN
COMBINATION[M]=N
! --- PUSH STACK -----------
STACK[SP,0]=M  STACK[SP,1]=N
SP=SP+1
! --------------------------

GENERATE(M+1)

! --- POP STACK ------------
SP=SP-1
M=STACK[SP,0] N=STACK[SP,1]
! --------------------------
END IF
END FOR
END IF
END PROCEDURE

BEGIN
GENERATE(1)
END PROGRAM

```

{{out}}

```
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

```

```let choose m n =
let rec fC prefix m from = seq {
let rec loopFor f = seq {
match f with
| [] -> ()
| x::xs ->
yield (x, fC [] (m-1) xs)
yield! loopFor xs
}
if m = 0 then yield prefix
else
for (i, s) in loopFor from do
for x in s do
yield prefix@[i]@x
}
fC [] m [0..(n-1)]

[<EntryPoint>]
let main argv =
choose 3 5
|> Seq.iter (printfn "%A")
0
```

{{out}}

```[0; 1; 2]
[0; 1; 3]
[0; 1; 4]
[0; 2; 3]
[0; 2; 4]
[0; 3; 4]
[1; 2; 3]
[1; 2; 4]
[1; 3; 4]
[2; 3; 4]
```

Factor

```USING: math.combinatorics prettyprint ;

5 iota 3 all-combinations .
```
```
{
{ 0 1 2 }
{ 0 1 3 }
{ 0 1 4 }
{ 0 2 3 }
{ 0 2 4 }
{ 0 3 4 }
{ 1 2 3 }
{ 1 2 4 }
{ 1 3 4 }
{ 2 3 4 }
}

```

This works with any kind of sequence:

```{ "a" "b" "c" } 2 all-combinations .
```
```{ { "a" "b" } { "a" "c" } { "b" "c" } }
```

Fortran

```program Combinations
use iso_fortran_env
implicit none

type comb_result
integer, dimension(:), allocatable :: combs
end type comb_result

type(comb_result), dimension(:), pointer :: r
integer :: i, j

call comb(5, 3, r)
do i = 0, choose(5, 3) - 1
do j = 2, 0, -1
write(*, "(I4, ' ')", advance="no") r(i)%combs(j)
end do
deallocate(r(i)%combs)
write(*,*) ""
end do
deallocate(r)

contains

function choose(n, k, err)
integer :: choose
integer, intent(in) :: n, k
integer, optional, intent(out) :: err

integer :: imax, i, imin, ie

ie = 0
if ( (n < 0 ) .or. (k < 0 ) ) then
write(ERROR_UNIT, *) "negative in choose"
choose = 0
ie = 1
else
if ( n < k ) then
choose = 0
else if ( n == k ) then
choose = 1
else
imax = max(k, n-k)
imin = min(k, n-k)
choose = 1
do i = imax+1, n
choose = choose * i
end do
do i = 2, imin
choose = choose / i
end do
end if
end if
if ( present(err) ) err = ie
end function choose

subroutine comb(n, k, co)
integer, intent(in) :: n, k
type(comb_result), dimension(:), pointer, intent(out) :: co

integer :: i, j, s, ix, kx, hm, t
integer :: err

hm = choose(n, k, err)
if ( err /= 0 ) then
nullify(co)
return
end if

allocate(co(0:hm-1))
do i = 0, hm-1
allocate(co(i)%combs(0:k-1))
end do
do i = 0, hm-1
ix = i; kx = k
do s = 0, n-1
if ( kx == 0 ) exit
t = choose(n-(s+1), kx-1)
if ( ix < t ) then
co(i)%combs(kx-1) = s
kx = kx - 1
else
ix = ix - t
end if
end do
end do

end subroutine comb

end program Combinations
```

Alternatively:

```program combinations

implicit none
integer, parameter :: m_max = 3
integer, parameter :: n_max = 5
integer, dimension (m_max) :: comb
character (*), parameter :: fmt = '(i0' // repeat (', 1x, i0', m_max - 1) // ')'

call gen (1)

contains

recursive subroutine gen (m)

implicit none
integer, intent (in) :: m
integer :: n

if (m > m_max) then
write (*, fmt) comb
else
do n = 1, n_max
if ((m == 1) .or. (n > comb (m - 1))) then
comb (m) = n
call gen (m + 1)
end if
end do
end if

end subroutine gen

end program combinations
```

{{out}}

```1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
```

GAP

```# Built-in
Combinations([1 .. n], m);

Combinations([1 .. 5], 3);
# [ [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 2, 5 ], [ 1, 3, 4 ], [ 1, 3, 5 ],
#   [ 1, 4, 5 ], [ 2, 3, 4 ], [ 2, 3, 5 ], [ 2, 4, 5 ], [ 3, 4, 5 ] ]
```

Glee

```5!3 >>> ,,\

\$\$(5!3) give all combinations of 3 out of 5
\$\$(>>>) sorted up,
\$\$(,,\) printed with crlf delimiters.
```

Result:

```Result:
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
```

Go

```package main

import (
"fmt"
)

func main() {
comb(5, 3, func(c []int) {
fmt.Println(c)
})
}

func comb(n, m int, emit func([]int)) {
s := make([]int, m)
last := m - 1
var rc func(int, int)
rc = func(i, next int) {
for j := next; j < n; j++ {
s[i] = j
if i == last {
emit(s)
} else {
rc(i+1, j+1)
}
}
return
}
rc(0, 0)
}
```

{{out}}

```[0 1 2]
[0 1 3]
[0 1 4]
[0 2 3]
[0 2 4]
[0 3 4]
[1 2 3]
[1 2 4]
[1 3 4]
[2 3 4]
```

Groovy

In General

A recursive closure must be ''pre-declared''.

```def comb
comb = { m, list ->
def n = list.size()
m == 0 ?
[[]] :
(0..(n-m)).inject([]) { newlist, k ->
def sublist = (k+1 == n) ? [] : list[(k+1)..<n]
newlist += comb(m-1, sublist).collect { [list[k]] + it }
}
}
```

Test program:

```def csny = [ "Crosby", "Stills", "Nash", "Young" ]
println "Choose from \${csny}"
(0..(csny.size())).each { i -> println "Choose \${i}:"; comb(i, csny).each { println it }; println() }
```

{{out}}

```Choose from [Crosby, Stills, Nash, Young]
Choose 0:
[]

Choose 1:
[Crosby]
[Stills]
[Nash]
[Young]

Choose 2:
[Crosby, Stills]
[Crosby, Nash]
[Crosby, Young]
[Stills, Nash]
[Stills, Young]
[Nash, Young]

Choose 3:
[Crosby, Stills, Nash]
[Crosby, Stills, Young]
[Crosby, Nash, Young]
[Stills, Nash, Young]

Choose 4:
[Crosby, Stills, Nash, Young]
```

===Zero-based Integers===

```groovy
def comb0 = { m, n -> comb(m, (0.. println "Choose \${i}:"; comb0(i, 5).each { println it }; println() }
```

{{out}}
Choose out of 5 (zero-based):
Choose 0:
[]

Choose 1:
[0]
[1]
[2]
[3]
[4]

Choose 2:
[0, 1]
[0, 2]
[0, 3]
[0, 4]
[1, 2]
[1, 3]
[1, 4]
[2, 3]
[2, 4]
[3, 4]

Choose 3:
[0, 1, 2]
[0, 1, 3]
[0, 1, 4]
[0, 2, 3]
[0, 2, 4]
[0, 3, 4]
[1, 2, 3]
[1, 2, 4]
[1, 3, 4]
[2, 3, 4]
```

===One-based Integers===

```groovy
def comb1 = { m, n -> comb(m, (1..n)) }
```

Test program:

```groovy
println "Choose out of 5 (one-based):"
(0..3).each { i -> println "Choose \${i}:"; comb1(i, 5).each { println it }; println() }
```

{{out}}
Choose out of 5 (one-based):
Choose 0:
[]

Choose 1:
[1]
[2]
[3]
[4]
[5]

Choose 2:
[1, 2]
[1, 3]
[1, 4]
[1, 5]
[2, 3]
[2, 4]
[2, 5]
[3, 4]
[3, 5]
[4, 5]

Choose 3:
[1, 2, 3]
[1, 2, 4]
[1, 2, 5]
[1, 3, 4]
[1, 3, 5]
[1, 4, 5]
[2, 3, 4]
[2, 3, 5]
[2, 4, 5]
[3, 4, 5]
```

It's more natural to extend the task to all (ordered) sublists of size ''m'' of a list.

Straightforward, unoptimized implementation with divide-and-conquer:

comb :: Int -> [a] -> [[a]]
comb 0 _      = [[]]
comb _ []     = []
comb m (x:xs) = map (x:) (comb (m-1) xs) ++ comb m xs
```

In the induction step, either ''x'' is not in the result and the recursion proceeds with the rest of the list ''xs'', or it is in the result and then we only need ''m-1'' elements.

Shorter version of the above:

import Data.List (tails)

comb :: Int -> [a] -> [[a]]
comb 0 _      = [[]]
comb m l = [x:ys | x:xs <- tails l, ys <- comb (m-1) xs]
```

To generate combinations of integers between 0 and ''n-1'', use

comb0 m n = comb m [0..n-1]
```

Similar, for integers between 1 and ''n'', use

comb1 m n = comb m [1..n]
```

Another method is to use the built in ''Data.List.subsequences'' function, filter for subsequences of length ''m'' and then sort:

import Data.List (sort, subsequences)
comb m n = sort . filter ((==m) . length) \$ subsequences [0..n-1]
```

And yet another way is to use the list monad to generate all possible subsets:

comb m n = filter ((==m . length) \$ filterM (const [True, False]) [0..n-1]
```

### Dynamic Programming

The first solution is inefficient because it repeatedly calculates the same subproblem in different branches of recursion. For example, `comb m (x1:x2:xs)` involves computing `comb (m-1) (x2:xs)` and `comb m (x2:xs)`, both of which (separately) compute `comb (m-1) xs`. To avoid repeated computation, we can use dynamic programming:

comb :: Int -> [a] -> [[a]]
comb m xs = combsBySize xs !! m
where
combsBySize = foldr f ([[]] : repeat [])
f x next = zipWith (++) (map (map (x:)) ([]:next)) next
```

```Icon
procedure main()
return combinations(3,5,0)
end

procedure combinations(m,n,z)                      # demonstrate combinations
/z := 1

write(m," combinations of ",n," integers starting from ",z)
every put(L := [], z to n - 1 + z by 1)            # generate list of n items from z
write("Intial list\n",list2string(L))
write("Combinations:")
every write(list2string(lcomb(L,m)))
end

procedure list2string(L)                           # helper function
every (s := "[") ||:= " " || (!L|"]")
return s
end

```

The {{libheader|Icon Programming Library}} provides the core procedure [http://www.cs.arizona.edu/icon/library/src/procs/lists.icn lcomb in lists] written by Ralph E. Griswold and Richard L. Goerwitz.

```Icon
procedure lcomb(L,i)			#: list combinations
local j

if i < 1 then fail
suspend if i = 1 then [!L]
else [L[j := 1 to *L - i + 1]] ||| lcomb(L[j + 1:0],i - 1)

end
```

{{out}}

```txt
3 combinations of 5 integers starting from 0
Intial list
[ 0 1 2 3 4 ]
Combinations:
[ 0 1 2 ]
[ 0 1 3 ]
[ 0 1 4 ]
[ 0 2 3 ]
[ 0 2 4 ]
[ 0 3 4 ]
[ 1 2 3 ]
[ 1 2 4 ]
[ 1 3 4 ]
[ 2 3 4 ]
```

100 PROGRAM "Combinat.bas"
110 LET MMAX=3:LET NMAX=5
120 NUMERIC COMB(0 TO MMAX)
130 CALL GENERATE(1)
140 DEF GENERATE(M)
150   NUMERIC N,I
160   IF M>MMAX THEN
170     FOR I=1 TO MMAX
180       PRINT COMB(I);
190     NEXT
200     PRINT
220   ELSE
230     FOR N=0 TO NMAX-1
240       IF M=1 OR N>COMB(M-1) THEN
250         LET COMB(M)=N
260         CALL GENERATE(M+1)
270       END IF
280     NEXT
290   END IF
300 END DEF
```

## J

### Library

```j
require'stats'
```

Example use:

```j
3 comb 5
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
```

All implementations here give that same result if given the same arguments.

### Iteration

```j
c=. 1 {.~ - d=. 1+y-x
z=. i.1 0
for_j. (d-1+y)+/&i.d do. z=. (c#j) ,. z{~;(-c){.&.>:y)+.0=x do. i.(x<:y),x else. (0,.x combr&.<: y),1+x combr y-1 end.
)
```

The `M.` uses memoization (caching) which greatly reduces the running time. As a result, this is probably the fastest of the implementations here.

### Brute Force

We can also generate all permutations and exclude those which are not properly sorted combinations. This is inefficient, but efficiency is not always important.

```j
combb=: (#~ ((-:/:~)>/:~-:\:~)"1)@(# #: [: i. ^~)
```

## Java

{{trans|JavaScript}}

{{works with|Java|1.5+}}

```java5
import java.util.Collections;

public class Comb{

public static void main(String[] args){
System.out.println(comb(3,5));
}

public static String bitprint(int u){
String s= "";
for(int n= 0;u > 0;++n, u>>= 1)
if((u & 1) > 0) s+= n + " ";
return s;
}

public static int bitcount(int u){
int n;
for(n= 0;u > 0;++n, u&= (u - 1));//Turn the last set bit to a 0
return n;
}

public static LinkedList comb(int c, int n){
for(int u= 0;u < 1 << n;u++)
if(bitcount(u) == c) s.push(bitprint(u));
Collections.sort(s);
return s;
}
}
```

## JavaScript

### Imperative

```javascript
function bitprint(u) {
var s="";
for (var n=0; u; ++n, u>>=1)
if (u&1) s+=n+" ";
return s;
}
function bitcount(u) {
for (var n=0; u; ++n, u=u&(u-1));
return n;
}
function comb(c,n) {
var s=[];
for (var u=0; u<1< [a] -> [[a]]
function comb(n, lst) {
if (!n) return [[]];
if (!lst.length) return [];

var x = lst[0],
xs = lst.slice(1);

return comb(n - 1, xs).map(function (t) {
return [x].concat(t);
}).concat(comb(n, xs));
}

// f -> f
function memoized(fn) {
m = {};
return function (x) {
var args = [].slice.call(arguments),
strKey = args.join('-');

v = m[strKey];
if ('u' === (typeof v)[0])
m[strKey] = v = fn.apply(null, args);
return v;
}
}

// [m..n]
function range(m, n) {
return Array.apply(null, Array(n - m + 1)).map(function (x, i) {
return m + i;
});
}

var fnMemoized = memoized(comb),
lstRange = range(0, 4);

return fnMemoized(n, lstRange)

.map(function (x) {
return x.join(' ');
}).join('\n');

})(3);
```

{{Out}}

```JavaScript
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
```

### =ES6=

Memoizing:

```JavaScript
(() => {

// combinations :: Int -> [a] -> [[a]]
const combinations = (n, xs) => {
const cmb_ = (n, xs) => {
if (n < 1) return [
[]
];
if (xs.length === 0) return [];
const h = xs[0],
tail = xs.slice(1);
return cmb_(n - 1, tail)
.map(cons(h))
.concat(cmb_(n, tail));
};
return memoized(cmb_)(n, xs);
}

// GENERIC FUNCTIONS ------------------------------------------------------

// 2 or more arguments
// curry :: Function -> Function
const curry = (f, ...args) => {
const go = xs => xs.length >= f.length ? (f.apply(null, xs)) :
function () {
return go(xs.concat(Array.from(arguments)));
};
return go([].slice.call(args, 1));
};

// cons :: a -> [a] -> [a]
const cons = curry((x, xs) => [x].concat(xs));

// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = (m, n) =>
Array.from({
length: Math.floor(n - m) + 1
}, (_, i) => m + i);

// Derive a memoized version of a function
// memoized :: Function -> Function
const memoized = f => {
let m = {};
return function (x) {
let args = [].slice.call(arguments),
strKey = args.join('-'),
v = m[strKey];
return (
(v === undefined) &&
(m[strKey] = v = f.apply(null, args)),
v
);
}
};

// show :: a -> String
const show = (...x) =>
JSON.stringify.apply(
null, x.length > 1 ? [x[0], null, x[1]] : x
);

return show(
memoized(combinations)(3, enumFromTo(0, 4))
);
})();
```

{{Out}}

```txt
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4],
[0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
```

Or, more generically:

```JavaScript
(() => {
'use strict';

// COMBINATIONS -----------------------------------------------------------

// comb :: Int -> Int -> [[Int]]
const comb = (m, n) => combinations(m, enumFromTo(0, n - 1));

// combinations :: Int -> [a] -> [[a]]
const combinations = (k, xs) =>
sort(filter(xs => k === xs.length, subsequences(xs)));

// GENERIC FUNCTIONS -----------------------------------------------------

// cons :: a -> [a] -> [a]
const cons = (x, xs) => [x].concat(xs);

// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = (m, n) =>
Array.from({
length: Math.floor(n - m) + 1
}, (_, i) => m + i);

// filter :: (a -> Bool) -> [a] -> [a]
const filter = (f, xs) => xs.filter(f);

// foldr (a -> b -> b) -> b -> [a] -> b
const foldr = (f, a, xs) => xs.reduceRight(f, a);

// isNull :: [a] -> Bool
const isNull = xs => (xs instanceof Array) ? xs.length < 1 : undefined;

// show :: a -> String
const show = x => JSON.stringify(x) //, null, 2);

// sort :: Ord a => [a] -> [a]
const sort = xs => xs.sort();

// stringChars :: String -> [Char]
const stringChars = s => s.split('');

// subsequences :: [a] -> [[a]]
const subsequences = xs => {

// nonEmptySubsequences :: [a] -> [[a]]
const nonEmptySubsequences = xxs => {
if (isNull(xxs)) return [];
const [x, xs] = uncons(xxs);
const f = (r, ys) => cons(ys, cons(cons(x, ys), r));

return cons([x], foldr(f, [], nonEmptySubsequences(xs)));
};

return nonEmptySubsequences(
(typeof xs === 'string' ? stringChars(xs) : xs)
);
};

// uncons :: [a] -> Maybe (a, [a])
const uncons = xs => xs.length ? [xs[0], xs.slice(1)] : undefined;

// TEST -------------------------------------------------------------------
return show(
comb(3, 5)
);
})();
```

{{Out}}

```txt
[[0,1,2],[0,1,3],[0,1,4],[0,2,3],[0,2,4],[0,3,4],[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
```

## jq

combination(r) generates a stream of combinations of the input array.
The stream can be captured in an array as shown in the second example.

```jq
def combination(r):
if r > length or r < 0 then empty
elif r == length then .
else  ( [.[0]] + (.[1:]|combination(r-1))),
( .[1:]|combination(r))
end;

# select r integers from the set (0 .. n-1)
def combinations(n;r): [range(0;n)] | combination(r);
```

'''Example 1'''
combinations(5;3)
{{Out}}
[0,1,2]
[0,1,3]
[0,1,4]
[0,2,3]
[0,2,4]
[0,3,4]
[1,2,3]
[1,2,4]
[1,3,4]
[2,3,4]

'''Example 2'''
["a", "b", "c", "d", "e"] | combination(3) ] | length
{{Out}}
10

## Julia

The `combinations` function in the `Combinatorics.jl`  package generates an iterable sequence of the combinations that you can loop over.  (Note that the combinations are computed on the fly during the loop iteration, and are not pre-computed or stored since there many be a very large number of them.)

```julia
using Combinatorics
n = 4
m = 3
for i in combinations(0:n,m)
println(i')
end
```

{{out}}

```txt
[0 1 2]
[0 1 3]
[0 1 4]
[0 2 3]
[0 2 4]
[0 3 4]
[1 2 3]
[1 2 4]
[1 3 4]
[2 3 4]

```

'''Recursive solution without the library'''

The previous solution is the best: it is most elegant, production stile solution.

If, on the other hand we wanted to show how it could be done in Julia, this recursive solution shows some potentials of Julia lang.

```julia
##############################
# COMBINATIONS OF 3 OUT OF 5 #
##############################

# Set n and m
m = 5
n = 3

# Prepare the boundary of the calculation. Only m - n numbers are changing in each position.
max_n = m - n

#Prepare an array for result
result = zeros(Int64, n)

function combinations(pos, val)            # n, max_n and result are visible in the function
for i = val:max_n                      # from current value to the boundary
result[pos] = pos + i              # fill the position of result
if pos < n                         # if combination isn't complete,
combinations(pos+1, i)         # go to the next position
else
println(result)                # combination is complete, print it
end
end
end

combinations(1, 0)
end
```

{{out}}

```txt

[1, 2, 3]
[1, 2, 4]
[1, 2, 5]
[1, 3, 4]
[1, 3, 5]
[1, 4, 5]
[2, 3, 4]
[2, 3, 5]
[2, 4, 5]
[3, 4, 5]

```

## K

Recursive implementation:

```k
comb:{[n;k]
f:{:[k=#x; :,x; :,/_f' x,'(1+*|x) _ !n]}
:,/f' !n
}
```

## Kotlin

{{trans|Pascal}}

```scala
class Combinations(val m: Int, val n: Int) {
private val combination = IntArray(m)

init {
generate(0)
}

private fun generate(k: Int) {
if (k >= m) {
for (i in 0 until m) print("\${combination[i]} ")
println()
}
else {
for (j in 0 until n)
if (k == 0 || j > combination[k - 1]) {
combination[k] = j
generate(k + 1)
}
}
}
}

fun main(args: Array) {
Combinations(3, 5)
}
```

{{out}}

```txt

0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4

```

## Logo

```logo
to comb :n :list
if :n = 0 [output [[]]]
if empty? :list [output []]
output sentence map [sentence first :list ?] comb :n-1 bf :list ~
comb :n bf :list
end
print comb 3 [0 1 2 3 4]
```

## Lua

```lua

function map(f, a, ...) if a then return f(a), map(f, ...) end end
function incr(k) return function(a) return k > a and a or a+1 end end
function combs(m, n)
if m * n == 0 then return {{}} end
local ret, old = {}, combs(m-1, n-1)
for i = 1, n do
for k, v in ipairs(old) do ret[#ret+1] = {i, map(incr(i), unpack(v))} end
end
return ret
end

for k, v in ipairs(combs(3, 5)) do print(unpack(v)) end

```

## M2000 Interpreter

Including a helper sub to export result to clipboard through a global variable (a temporary global variable)

```M2000 Interpreter

Module Checkit {
Global a\$
Document a\$
Module Combinations (m as long, n as long){
Module Level (n, s, h)   {
If n=1 then {
while Len(s) {
Print h, car(s)
ToClipBoard()
s=cdr(s)
}
} Else {
While len(s) {
call Level n-1, cdr(s),  cons(h, car(s))
s=cdr(s)
}
}
Sub ToClipBoard()
local m=each(h)
Local b\$=""
While m {
b\$+=If\$(Len(b\$)<>0->" ","")+Format\$("{0::-10}",Array(m))
}
b\$+=If\$(Len(b\$)<>0->" ","")+Format\$("{0::-10}",Array(s,0))+{
}
a\$<=b\$   ' assign to global need <=
End Sub
}
If m<1 or n<1 then Error
s=(,)
for i=0 to n-1 {
s=cons(s, (i,))
}
}
Clear a\$
Combinations 3, 5
ClipBoard a\$
}
Checkit

```

{{out}}

```txt

0          1          2
0          1          3
0          1          4
0          2          3
0          2          4
0          3          4
1          2          3
1          2          4
1          3          4
2          3          4

```

### Step by Step

```M2000 Interpreter

Module StepByStep {
Function CombinationsStep (a, nn) {
c1=lambda (&f, &a) ->{
=car(a) : a=cdr(a) : f=len(a)=0
}
m=len(a)
c=c1
n=m-nn+1
p=2
while m>n {
c1=lambda c2=c,n=p, z=(,) (&f, &m) ->{
if len(z)=0 then z=cdr(m)
=cons(car(m),c2(&f, &z))
if f then z=(,) : m=cdr(m) : f=len(m)+len(z) {
=c(&f, &a)
}
}
k=false
StepA=CombinationsStep((1, 2, 3, 4,5), 3)
while not k {
Print StepA(&k)
}
k=false
StepA=CombinationsStep((0, 1, 2, 3, 4), 3)
while not k {
Print StepA(&k)
}
k=false
StepA=CombinationsStep(("A", "B", "C", "D","E"), 3)
while not k {
Print StepA(&k)
}
k=false
StepA=CombinationsStep(("CAT", "DOG", "BAT"), 2)
while not k {
Print StepA(&k)
}
}
StepByStep

```

## M4

```M4
divert(-1)
define(`set',`define(`\$1[\$2]',`\$3')')
define(`get',`defn(`\$1[\$2]')')
define(`setrange',`ifelse(`\$3',`',\$2,`define(\$1[\$2],\$3)`'setrange(\$1,
incr(\$2),shift(shift(shift(\$@))))')')
define(`for',
`ifelse(\$#,0,``\$0'',
`ifelse(eval(\$2<=\$3),1,
`pushdef(`\$1',\$2)\$4`'popdef(`\$1')\$0(`\$1',incr(\$2),\$3,`\$4')')')')
define(`show',
`for(`k',0,decr(\$1),`get(a,k) ')')

define(`chklim',
`ifelse(get(`a',\$3),eval(\$2-(\$1-\$3)),
`chklim(\$1,\$2,decr(\$3))',
`set(`a',\$3,incr(get(`a',\$3)))`'for(`k',incr(\$3),decr(\$2),
`set(`a',k,incr(get(`a',decr(k))))')`'nextcomb(\$1,\$2)')')
define(`nextcomb',
`show(\$1)
ifelse(eval(get(`a',0)<\$2-\$1),1,
`chklim(\$1,\$2,decr(\$1))')')
define(`comb',
`for(`j',0,decr(\$1),`set(`a',j,j)')`'nextcomb(\$1,\$2)')
divert

comb(3,5)
```

## Maple

This is built-in in Maple:

```Maple>
combinat:-choose( 5, 3 );
[[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5],

[2, 4, 5], [3, 4, 5]]

```

## Mathematica

```Mathematica
combinations[n_Integer, m_Integer]/;m>= 0:=Union[Sort /@ Permutations[Range[0, n - 1], {m}]]
```

## MATLAB

This a built-in function in MATLAB called "nchoosek(n,k)". The argument "n" is a vector of values from which the combinations are made, and "k" is a scalar representing the amount of values to include in each combination.

```MATLAB>>
nchoosek((0:4),3)

ans =

0     1     2
0     1     3
0     1     4
0     2     3
0     2     4
0     3     4
1     2     3
1     2     4
1     3     4
2     3     4
```

## Maxima

```maxima
next_comb(n, p, a) := block(
[a: copylist(a), i: p],
if a[1] + p = n + 1 then return(und),
while a[i] - i >= n - p do i: i - 1,
a[i]: a[i] + 1,
for j from i + 1 thru p do a[j]: a[j - 1] + 1,
a
)\$

combinations(n, p) := block(
[a: makelist(i, i, 1, p), v: [ ]],
while a # 'und do (v: endcons(a, v), a: next_comb(n, p, a)),
v
)\$

combinations(5, 3);
/* [[1, 2, 3],
[1, 2, 4],
[1, 2, 5],
[1, 3, 4],
[1, 3, 5],
[1, 4, 5],
[2, 3, 4],
[2, 3, 5],
[2, 4, 5],
[3, 4, 5]] */
```

{{trans|Pascal}}

```modula2

MODULE Combinations;
FROM STextIO IMPORT
WriteString, WriteLn;
FROM SWholeIO IMPORT
WriteInt;

CONST
MMax = 3;
NMax = 5;

VAR
Combination: ARRAY [0 .. MMax] OF CARDINAL;

PROCEDURE Generate(M: CARDINAL);
VAR
N, I: CARDINAL;
BEGIN
IF (M > MMax) THEN
FOR I := 1 TO MMax DO
WriteInt(Combination[I], 1);
WriteString(' ');
END;
WriteLn;
ELSE
FOR N := 1 TO NMax DO
IF (M = 1) OR (N > Combination[M - 1]) THEN
Combination[M] := N;
Generate(M + 1);
END
END
END
END Generate;

BEGIN
Generate(1);
END Combinations.

```

{{out}}

```txt

1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

```

## Nim

```nim
iterator comb(m, n): seq[int] =
var c = newSeq[int](n)
for i in 0 .. = m - n + i:
dec i
if i < 0: break outer
inc c[i]
while i < n-1:
c[i+1] = c[i] + 1
inc i

for i in comb(5, 3): echo i
```

{{out}}

```txt
@[0, 1, 2]
@[0, 1, 3]
@[0, 1, 4]
@[0, 2, 3]
@[0, 2, 4]
@[0, 3, 4]
@[1, 2, 3]
@[1, 2, 4]
@[1, 3, 4]
@[2, 3, 4]
```

Using explicit stack (deque) adopted from C#:

```nim
iterator Combinations(m: int, n: int): seq[int] =
var result = newSeq[int](m)
var stack = initDeque[int]()
while len(stack) > 0:
var index = len(stack) - 1
var value = stack.popLast()
while value < n:
value = value + 1
result[index] = value
index = index + 1

if index == m:
yield result
break

```

## OCaml

```ocaml
let combinations m n =
let rec c = function
| (0,_) -> [[]]
| (_,0) -> []
| (p,q) -> List.append
(List.map (List.cons (n-q)) (c (p-1, q-1)))
(c (p , q-1))
in c (m , n)

let () =
let rec print_list = function
| [] -> print_newline ()
| hd :: tl -> print_int hd ; print_string " "; print_list tl
in List.iter print_list (combinations 3 5)

```

## Octave

```octave
nchoosek([0:4], 3)
```

## Oz

This can be implemented as a trivial application of finite set constraints:

```oz
declare
fun {Comb M N}
proc {CombScript Comb}
%% Comb is a subset of [0..N-1]
Comb = {FS.var.upperBound {List.number 0 N-1 1}}
%% Comb has cardinality M
{FS.card Comb M}
%% enumerate all possibilities
{FS.distribute naive [Comb]}
end
in
%% Collect all solutions and convert to lists
{Map {SearchAll CombScript} FS.reflect.upperBoundList}
end
in
{Inspect {Comb 3 5}}
```

## PARI/GP

```parigp
c(n,k,r,d)={
if(d==k,
for(i=2,k+1,
print1(r[i]" "));
print
,
for(i=r[d+1]+1,n,
r[d+2]=i;
c(n,k,r,d+1)));
}

c(5,3,vector(5,i,i-1),0)

```

## Pascal

```pascal
Program Combinations;

const
m_max = 3;
n_max = 5;
var
combination: array [0..m_max] of integer;

procedure generate(m: integer);
var
n, i: integer;
begin
if (m > m_max) then
begin
for i := 1 to m_max do
write (combination[i], ' ');
writeln;
end
else
for n := 1 to n_max do
if ((m = 1) or (n > combination[m-1])) then
begin
combination[m] := n;
generate(m + 1);
end;
end;

begin
generate(1);
end.
```

{{out}}

```txt

1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

```

## Perl

The [https://metacpan.org/pod/ntheory ntheory] module has a combinations iterator that runs in lexicographic order.

```perl
use ntheory qw/forcomb/;
forcomb { print "@_\n" } 5,3
```

{{out}}

```txt

0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4

```

[https://metacpan.org/pod/Algorithm::Combinatorics Algorithm::Combinatorics] also does lexicographic order and can return the whole array or an iterator:

```perl
use Algorithm::Combinatorics qw/combinations/;
my @c = combinations( [0..4], 3 );
print "@\$_\n" for @c;
```

```perl
use Algorithm::Combinatorics qw/combinations/;
my \$iter = combinations([0..4],3);
while (my \$c = \$iter->next) {
print "@\$c\n";
}
```

[https://metacpan.org/pod/Math::Combinatorics Math::Combinatorics] is another option but results will not be in lexicographic order as specified by the task.

## Perl5i

Use a recursive solution, derived from the Perl6 (Haskell) solution

If we run out of eligable characters, we've gone too far, and  won't find a solution along this path.
If we are looking for a single character, each character in @set is  elegible, so return each as the single element of an array.
We have not yet reached the last character, so there are two  possibilities:

push the first element of the set onto the front of an N-1 length combination from the remainder of the set.
skip the current element, and generate an N-length combination from the remainder

The major Perl5i -isms are the implicit "autoboxing" of the intermediate resulting array into an array object, with the use of unshift() as a method, and the "func" keyword and signature.
Note that Perl can construct ranges of numbers or of letters, so it is natural to identify the characters as 'a' .. 'e'.

```Perl5i

use perl5i::2;

# ----------------------------------------
# generate combinations of length \$n consisting of characters
# from the sorted set @set, using each character once in a
# combination, with sorted strings in sorted order.
#
# Returns a list of array references, each containing one combination.
#
func combine(\$n, @set) {
return unless @set;
return map { [ \$_ ] } @set if \$n == 1;

my @result = combine( \$n-1, @set );
for my \$subarray ( @result ) {
}
return ( @result, combine( \$n, @set ) );
}

say @\$_ for combine( 3, ('a'..'e') );

```

{{out}}

```txt

abc
abd
abe
acd
ace
bcd
bce
bde
cde

```

## Perl 6

{{works with|rakudo|2015.12}}
There actually is a builtin:

```perl6
.say for combinations(5,3);
```

{{out}}

```txt
(0 1 2)
(0 1 3)
(0 1 4)
(0 2 3)
(0 2 4)
(0 3 4)
(1 2 3)
(1 2 4)
(1 3 4)
(2 3 4)
```

Here is an iterative routine with the same output:

```perl6
sub combinations(Int \$n, Int \$k) {
return ([],) unless \$k;
return if \$k > \$n || \$n <= 0;
my @c = ^\$k;
gather loop {
take [@c];
next if @c[\$k-1]++ < \$n-1;
my \$i = \$k-2;
\$i-- while \$i >= 0 && @c[\$i] >= \$n-(\$k-\$i);
last if \$i < 0;
@c[\$i]++;
while ++\$i < \$k { @c[\$i] = @c[\$i-1] + 1; }
}
}
.say for combinations(5,3);
```

## Phix

It does not get much simpler or easier than this. See [[Sudoku#Phix|Sudoku]] for a practical application of this algorithm

```Phix
procedure comb(integer pool, needed, done=0, sequence chosen={})
if needed=0 then    -- got a full set
?chosen         -- (or use a routine_id, result arg, or whatever)
return
end if
if done+needed>pool then return end if -- cannot fulfil
-- get all combinations with and without the next item:
done += 1
comb(pool,needed-1,done,append(chosen,done))
comb(pool,needed,done,chosen)
end procedure

comb(5,3)
```

{{out}}

```txt

{1,2,3}
{1,2,4}
{1,2,5}
{1,3,4}
{1,3,5}
{1,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5}

```

## PHP

===non-recursive===
Full non-recursive algorithm generating all combinations without repetions. Taken from here: [https://habrahabr.ru/post/311934/]

Much slower than normal algorithm.

```php

= 0) {

if (\$i == 0 && \$b[\$i] == \$n-\$k+1) break 2;

\$m=array_search(\$b[\$i]+1,\$c);
if (\$m!==false) {
\$c[\$m]=\$c[\$m]-1;
\$b[\$i]=\$b[\$i]+1;

\$g=\$i;
while (\$g != \$k-1) {
array_unshift (\$c, \$b[\$g+1]);
\$b[\$g+1]=\$b[\$g]+1;
\$g++;
}
\$c=array_diff(\$c,\$b);
print_r(\$b);
break;
}
\$i--;

}

}

}

?>

```

'''
Output:'''

```txt

Array
(
[0] => 1
[1] => 2
)
Array
(
[0] => 1
[1] => 3
)
Array
(
[0] => 2
[1] => 3
)

```

### recursive

```php
ress;
else
for i from l to n - m do
do_combs(i + 1, m - 1, cons(i, el_lst));
endfor;
endif;
enddefine;
do_combs(0, m, []);
rev(ress);
enddefine;

comb(5, 3) ==>
```

## PowerShell

An example of how PowerShell itself can translate C# code:

```PowerShell

\$source = @'
using System;
using System.Collections.Generic;

namespace Powershell
{
public class CSharp
{
public static IEnumerable Combinations(int m, int n)
{
int[] result = new int[m];
Stack stack = new Stack();
stack.Push(0);

while (stack.Count > 0) {
int index = stack.Count - 1;
int value = stack.Pop();

while (value < n) {
result[index++] = value++;
stack.Push(value);
if (index == m) {
yield return result;
break;
}
}
}
}
}
}
'@

[Powershell.CSharp]::Combinations(3,5) | Format-Wide {\$_} -Column 3 -Force

```

{{Out}}

```txt

0                              1                             2
0                              1                             3
0                              1                             4
0                              2                             3
0                              2                             4
0                              3                             4
1                              2                             3
1                              2                             4
1                              3                             4
2                              3                             4

```

## OpenEdge/Progress

{{trans|Julia}}

```OpenEdge/Progress

define variable r as integer no-undo extent 3.
define variable m as integer no-undo initial 5.
define variable n as integer no-undo initial 3.
define variable max_n as integer no-undo.

max_n = m - n.

function combinations returns logical (input pos as integer, input val as integer):
define variable i as integer no-undo.
do i = val to max_n:
r[pos] = pos + i.
if pos lt n then
combinations(pos + 1, i).
else
message r[1] - 1 r[2] - 1 r[3] - 1.
end.
end function.

combinations(1, 0).

```

{{out}}
0 1 2

0 1 3

0 1 4

0 2 3

0 2 4

0 3 4

1 2 3

1 2 4

1 3 4

2 3 4

## Prolog

The solutions work with SWI-Prolog
Solution with library  clpfd : we first create a list of M elements, we say that the members of the list are numbers between 1 and N and there are in ascending order, finally we ask for a solution.

```prolog
:- use_module(library(clpfd)).

comb_clpfd(L, M, N) :-
length(L, M),
L ins 1..N,
chain(L, #<),
label(L).
```

{{out}}

```txt
?- comb_clpfd(L, 3, 5), writeln(L), fail.
[1,2,3]
[1,2,4]
[1,2,5]
[1,3,4]
[1,3,5]
[1,4,5]
[2,3,4]
[2,3,5]
[2,4,5]
[3,4,5]
false.
```

Another solution :

```prolog
comb_Prolog(L, M, N) :-
length(L, M),
fill(L, 1, N).

fill([], _, _).

fill([H | T], Min, Max) :-
between(Min, Max, H),
H1 is H + 1,
fill(T, H1, Max).

```

with the same output.

### List comprehension

Works with SWI-Prolog, library '''clpfd''' from '''Markus Triska''', and list comprehension (see [[List comprehensions]] ).

```Prolog
:- use_module(library(clpfd)).
comb_lstcomp(N, M, V) :-
V <- {L	& length(L, N), L ins 1..M & all_distinct(L), chain(L, #<), label(L)}.

```

{{out}}

```txt
2?- comb_lstcomp(3, 5, V).
V = [[1,2,3],[1,2,4],[1,2,5],[1,3,4],[1,3,5],[1,4,5],[2,3,4],[2,3,5],[2,4,5],[3,4,5]] ;
false.

```

## Pure

```pure
comb m n = comb m (0..n-1) with
comb 0 _ = [[]];
comb _ [] = [];
comb m (x:xs) = [x:xs | xs = comb (m-1) xs] + comb m xs;
end;

comb 3 5;
```

## PureBasic

```PureBasic
Procedure.s Combinations(amount, choose)
NewList comb.s()
; all possible combinations with {amount} Bits
For a = 0 To 1 << amount
count = 0
; count set bits
For x = 0 To amount
If (1 << x)&a
count + 1
EndIf
Next
; if set bits are equal to combination length
; we generate a String representing our combination and add it to list
If count = choose
string\$ = ""
For x = 0 To amount
If (a >> x)&1
; replace x by x+1 to start counting with 1
String\$ + Str(x) + " "
EndIf
Next
comb() = string\$
EndIf
Next
; now we sort our list and format it for output as string
SortList(comb(), #PB_Sort_Ascending)
ForEach comb()
out\$ + ", [ " + comb() + "]"
Next
ProcedureReturn Mid(out\$, 3)
EndProcedure

Debug Combinations(5, 3)
```

## Pyret

```pyret

fun combos(lst :: List, size :: Number) -> List>:
# return all subsets of lst of a certain size,
# maintaining the original ordering of the list

# Let's handle a bunch of degenerate cases up front
# to be defensive...
if lst.length() < size:
# return an empty list if size is too big
[list:]
else if lst.length() == size:
# combos([list: 1,2,3,4]) == list[list: 1,2,3,4]]
[list: lst]
else if size == 1:
# combos(list: 5, 9]) == list[[list: 5], [list: 9]]
lst.map(lam(elem): [list: elem] end)
else:
# The main resursive step here is to consider
# all the combinations of the list that have the
# first element (aka head) and then those that don't
# don't.
cases(List) lst:
| empty => [list:]
# All the subsets of our list either include the
# first element of the list (aka head) or they don't.
with-head-combos = combos(rest, size - 1).map(
lam(combo):
)
end
end
where:
# define semantics for the degenerate cases, although
# maybe we should just make some of these raise errors
combos([list:], 0) is [list: [list:]]
combos([list:], 1) is [list:]
combos([list: "foo"], 1) is [list: [list: "foo"]]
combos([list: "foo"], 2) is [list:]

# test the normal stuff
lst = [list: 1, 2, 3]
combos(lst, 1) is [list:
[list: 1],
[list: 2],
[list: 3]
]
combos(lst, 2) is [list:
[list: 1, 2],
[list: 1, 3],
[list: 2, 3]
]
combos(lst, 3) is [list:
[list: 1, 2, 3]
]

# remember the 10th row of Pascal's Triangle? :)
lst10 = [list: 1,2,3,4,5,6,7,8,9,10]
combos(lst10, 3).length() is 120
combos(lst10, 4).length() is 210
combos(lst10, 5).length() is 252
combos(lst10, 6).length() is 210
combos(lst10, 7).length() is 120

# more sanity checks...
for each(sublst from combos(lst10, 6)):
sublst.length() is 6
end

for each(sublst from combos(lst10, 9)):
sublst.length() is 9
end
end

fun int-combos(n :: Number, m :: Number) -> List>:
doc: "return all lists of size m containing distinct, ordered nonnegative ints < n"
lst = range(0, n)
combos(lst, m)
where:
int-combos(5, 5) is [list: [list: 0,1,2,3,4]]
int-combos(3, 2) is [list:
[list: 0, 1],
[list: 0, 2],
[list: 1, 2]
]
end

fun display-3-comb-5-for-rosetta-code():
# The very concrete nature of this function is driven
# by the web page from Rosetta Code.  We want to display
#
# https://rosettacode.org/wiki/Combinations
results = int-combos(5, 3)
for each(lst from results):
print(lst.join-str(" "))
end
end

display-3-comb-5-for-rosetta-code()

```

## Python

Starting from Python 2.6 and 3.0 you have a pre-defined function that returns an iterator. Here we turn the result into a list for easy printing:

```python>>>
from itertools import combinations
>>> list(combinations(range(5),3))
[(0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2, 3), (0, 2, 4), (0, 3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
```

Earlier versions could use functions like the following:
{{trans|E}}

```python
def comb(m, lst):
if m == 0: return [[]]
return [[x] + suffix for i, x in enumerate(lst)
for suffix in comb(m - 1, lst[i + 1:])]
```

Example:

```python>>>
comb(3, range(5))
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
```

```python
def comb(m, s):
if m == 0: return [[]]
if s == []: return []
return [s[:1] + a for a in comb(m-1, s[1:])] + comb(m, s[1:])

print comb(3, range(5))
```

## R

```R
print(combn(0:4, 3))
```

Combinations are organized per column,
so to provide an output similar to the one in the task text, we need the following:

```R
r <- combn(0:4, 3)
for(i in 1:choose(5,3)) print(r[,i])
```

## Racket

```racket

(define sublists
(match-lambda**
[(0 _)           '(())]
[(_ '())         '()]
[(m (cons x xs)) (append (map (curry cons x) (sublists (- m 1) xs))
(sublists m xs))]))

(define (combinations n m)
(sublists n (range m)))

```

{{out}}

```txt

> (combinations 3 5)
'((0 1 2)
(0 1 3)
(0 1 4)
(0 2 3)
(0 2 4)
(0 3 4)
(1 2 3)
(1 2 4)
(1 3 4)
(2 3 4))

```

## REXX

This REXX program supports up to   61   symbols   (one symbol for each "thing").

It supports any number of "things" beyond the 61 symbols by using the actual number instead of a symbol.

```rexx
/*REXX program displays   combination sets   for   X   things taken   Y   at a time.    */
parse arg x y \$ .                                /*get optional arguments from the C.L. */
if x=='' | x==","  then x=5                      /*No  X  specified?   Then use default.*/
if y=='' | y==","  then y=3                      /* "  Y      "          "   "     "    */
if \$=='' | \$==","  then \$= '123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
/* [↑]  No  \$  specified?  Use default.*/
say "────────────"             x            ' things taken '        y        " at a time:"
say "────────────"       combN(x,y)         ' combinations.'
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
combN:  procedure expose \$;   parse arg x,y;     xp=x+1;    xm=xp-y;   !.=0
do i=1  for y; !.i=i;                            end /*i*/
do j=1;  L=;  do d=1  for y; L=L word(substr(\$,!.d,1) !.d, 1); end /*d*/
say L;      !.y=!.y+1
if !.y==xp  then  if .combN(y-1)  then leave
end   /*j*/
return j
.combN: procedure expose !. y xm;  parse arg d;  if d==0  then return 1;             p=!.d
do u=d  to y;  !.u=p+1;   if !.u==xm+u  then return .combN(u-1);   p=!.u
end   /*u*/
return 0
```

'''output'''   when the following was specified:    5   3   01234

```txt

──────────── 5  things taken  3  at a time:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
──────────── 10  combinations.

```

'''output'''   when the following was specified:    5   3   abcde

```txt

──────────── 5  things taken  3  at a time:
a b c
a b d
a b e
a c d
a c e
a d e
b c d
b c e
b d e
c d e
──────────── 10  combinations.

```

## Ring

```ring

# Project : Combinations

n = 5
k = 3
temp = []
comb = []
num = com(n, k)
while true
temp = []
for n = 1 to 3
tm = random(4) + 1
next
bool1 = (temp[1] = temp[2]) and (temp[1] = temp[3]) and (temp[2] = temp[3])
bool2 = (temp[1] < temp[2]) and (temp[2] < temp[3])
if not bool1 and bool2
ok
for p = 1  to len(comb) - 1
for q = p + 1 to len(comb)
if (comb[p][1] = comb[q][1]) and (comb[p][2] = comb[q][2]) and (comb[p][3] = comb[q][3])
del(comb, p)
ok
next
next
if len(comb) = num
exit
ok
end
comb = sortfirst(comb, 1)
see showarray(comb) + nl

func com(n, k)
res1 = 1
for n1 = n - k + 1 to n
res1 = res1 * n1
next
res2 = 1
for n2 = 1 to k
res2 = res2 * n2
next
res3 = res1/res2
return res3

func showarray(vect)
svect = ""
for nrs = 1 to len(vect)
svect = "[" + vect[nrs][1] + " " + vect[nrs][2] + " " + vect[nrs][3] + "]" + nl
see svect
next

Func sortfirst(alist, ind)
aList = sort(aList,ind)
for n = 1 to len(alist)-1
for m= n + 1 to len(aList)
if alist[n][1] = alist[m][1] and alist[m][2] < alist[n][2]
temp = alist[n]
alist[n] = alist[m]
alist[m] = temp
ok
next
next
for n = 1 to len(alist)-1
for m= n + 1 to len(aList)
if alist[n][1] = alist[m][1] and alist[n][2] = alist[m][2] and alist[m][3] < alist[n][3]
temp = alist[n]
alist[n] = alist[m]
alist[m] = temp
ok
next
next
return aList

```

Output:

```txt

[1 2 3]
[1 2 4]
[1 2 5]
[1 3 4]
[1 3 5]
[1 4 5]
[2 3 4]
[2 3 5]
[2 4 5]
[3 4 5]

```

## Ruby

{{works with|Ruby|1.8.7+}}

```ruby
def comb(m, n)
(0...n).to_a.combination(m).to_a
end

comb(3, 5)  # => [[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
```

## Rust

{{works with|Rust|0.9}}

```rust

fn comb(arr: &[T], n: uint) {
let mut incl_arr: ~[bool] = std::vec::from_elem(arr.len(), false);
comb_intern(arr, n, incl_arr, 0);
}

fn comb_intern(arr: &[T], n: uint, incl_arr: &mut [bool], index: uint) {
if (arr.len() < n + index) { return; }
if (n == 0) {
let mut it = arr.iter().zip(incl_arr.iter()).filter_map(|(val, incl)|
if (*incl) { Some(val) } else { None }
);
for val in it { print!("{} ", *val); }
print("\n");
return;
}

incl_arr[index] = true;
comb_intern(arr, n-1, incl_arr, index+1);
incl_arr[index] = false;

comb_intern(arr, n, incl_arr, index+1);
}

fn main() {
let arr1 = ~[1, 2, 3, 4, 5];
comb(arr1, 3);

let arr2 = ~["A", "B", "C", "D", "E"];
comb(arr2, 3);
}

```

{{works with|Rust|1.26}}

```rust

struct Combo {
data_len: usize,
chunk_len: usize,
min: usize,
data: Vec,
}

impl Combo {
fn new(chunk_len: i32, data: Vec) -> Self {
let d_len = data.len();
let min = 2usize.pow(chunk_len as u32) - 1;
let max = 2usize.pow(d_len as u32) - 2usize.pow((d_len - chunk_len as usize) as u32);

Combo {
data_len: d_len,
chunk_len: chunk_len as usize,
min: min,
data: data,
}
}

fn get_chunk(&self) -> Vec {
let b = format!("{:01\$b}", self.mask, self.data_len);
b
.chars()
.enumerate()
.filter(|&(_, e)| e == '1')
.map(|(i, _)| self.data[i].clone())
.collect()
}
}

impl Iterator for Combo {
type Item = Vec;
fn next(&mut self) -> Option {
if self.mask.count_ones() == self.chunk_len as u32 {
let res = self.get_chunk();
return Some(res);
}
}
None
}
}

fn main() {
let v1 = vec![1, 2, 3, 4, 5];
let combo = Combo::new(3, v1);
for c in combo.into_iter() {
println!("{:?}", c);
}

let v2 = vec!("A", "B", "C", "D", "E");
let combo = Combo::new(3, v2);
for c in combo.into_iter() {
println!("{:?}", c);
}
}

```

## Scala

```scala
implicit def toComb(m: Int) = new AnyRef {
def comb(n: Int) = recurse(m, List.range(0, n))
private def recurse(m: Int, l: List[Int]): List[List[Int]] = (m, l) match {
case (0, _)   => List(Nil)
case (_, Nil) => Nil
case _        => (recurse(m - 1, l.tail) map (l.head :: _)) ::: recurse(m, l.tail)
}
}
```

Usage:

```txt

scala> 3 comb 5
res170: List[List[Int]] = List(List(0, 1, 2), List(0, 1, 3), List(0, 1, 4), List(0, 2, 3), List(0, 2, 4), List(0, 3, 4),
List(1, 2, 3), List(1, 2, 4), List(1, 3, 4), List(2, 3, 4))

```

Lazy version using iterators:

```scala
def combs[A](n: Int, l: List[A]): Iterator[List[A]] = n match {
case _ if n < 0 || l.lengthCompare(n) < 0 => Iterator.empty
case 0 => Iterator(List.empty)
case n => l.tails.flatMap({
case Nil => Nil
case x :: xs => combs(n - 1, xs).map(x :: _)
})
}
```

Usage:

```txt

scala> combs(3, (0 to 4).toList).toList
res0: List[List[Int]] = List(List(0, 1, 2), List(0, 1, 3), List(0, 1, 4), List(0, 2, 3), List(0, 2, 4), List(0, 3, 4), List(1, 2, 3), List(1, 2, 4), List(1, 3, 4), List(2, 3, 4))

```

### Dynamic programming

```scala
def combs[A](n: Int, xs: List[A]): Stream[List[A]] =
combsBySize(xs)(n)

def combsBySize[A](xs: List[A]): Stream[Stream[List[A]]] = {
val z: Stream[Stream[List[A]]] = Stream(Stream(List())) ++ Stream.continually(Stream.empty)
xs.toStream.foldRight(z)((a, b) => zipWith[Stream[List[A]]](_ ++ _, f(a, b), b))
}

def zipWith[A](f: (A, A) => A, as: Stream[A], bs: Stream[A]): Stream[A] = (as, bs) match {
case (Stream.Empty, _) => Stream.Empty
case (_, Stream.Empty) => Stream.Empty
case (a #:: as, b #:: bs) => f(a, b) #:: zipWith(f, as, bs)
}

def f[A](x: A, xsss: Stream[Stream[List[A]]]): Stream[Stream[List[A]]] =
Stream.empty #:: xsss.map(_.map(x :: _))
```

Usage:

```txt

combs(3, (0 to 4).toList).toList
res0: List[List[Int]] = List(List(0, 1, 2), List(0, 1, 3), List(0, 1, 4), List(0, 2, 3), List(0, 2, 4), List(0, 3, 4), List(1, 2, 3), List(1, 2, 4), List(1, 3, 4), List(2, 3, 4))

```

### Using Scala Standard Runtime Library

### =Scala REPL=

```scala>scala
(0 to 4).combinations(3).toList
res0: List[scala.collection.immutable.IndexedSeq[Int]] = List(Vector(0, 1, 2), Vector(0, 1, 3), Vector(0, 1, 4), Vector(0, 2, 3), Vector(0, 2, 4), Vector(0, 3, 4), Vector(1, 2, 3), Vector(1, 2, 4), Vector(1, 3, 4), Vector(2, 3, 4))
```

### =Other environments=

{{Out}}See it running in your browser by [https://scalafiddle.io/sf/DH34cqq/0 ScalaFiddle (JavaScript, non JVM)] or by [https://scastie.scala-lang.org/bwADub2XR8eu6bVVDbQw7g Scastie (JVM)].

## Scheme

```scheme
(define (comb m lst)
(cond ((= m 0) '(()))
((null? lst) '())
(else (append (map (lambda (y) (cons (car lst) y))
(comb (- m 1) (cdr lst)))
(comb m (cdr lst))))))

(comb 3 '(0 1 2 3 4))
```

## Seed7

```seed7
\$ include "seed7_05.s7i";

const type: combinations is array array integer;

const func combinations: comb (in array integer: arr, in integer: k) is func
result
var combinations: combResult is combinations.value;
local
var integer: x is 0;
var integer: i is 0;
var array integer: suffix is 0 times 0;
begin
if k = 0 then
combResult := 1 times 0 times 0;
else
for x key i range arr do
for suffix range comb(arr[succ(i) ..], pred(k)) do
combResult &:= [] (x) & suffix;
end for;
end for;
end if;
end func;

const proc: main is func
local
var array integer: aCombination is 0 times 0;
var integer: element is 0;
begin
for aCombination range comb([] (0, 1, 2, 3, 4), 3) do
for element range aCombination do
end for;
writeln;
end for;
end func;
```

{{out}}

```txt

0  1  2
0  1  3
0  1  4
0  2  3
0  2  4
0  3  4
1  2  3
1  2  4
1  3  4
2  3  4

```

## SETL

```SETL
print({0..4} npow 3);
```

## Sidef

===Built-in===

```ruby
combinations(5, 3, {|*c| say c })
```

### Recursive

{{trans|Perl5i}}

```ruby
func combine(n, set) {

set.len || return []
n == 1  && return set.map{[_]}

result = combine(n-1, [set...])

for subarray in result {
}

result + combine(n, set)
}

combine(3, @^5).each {|c| say c }
```

### Iterative

```ruby
func forcomb(callback, n, k) {

if (k == 0) {
callback([])
return()
}

if (k<0 || k>n || n==0) {
return()
}

var c = @^k

loop {
callback([c...])
c[k-1]++ < n-1 && next
var i = k-2
while (i>=0 && c[i]>=(n-(k-i))) {
--i
}
i < 0 && break
c[i]++
while (++i < k) {
c[i] = c[i-1]+1
}
}

return()
}

forcomb({|c| say c }, 5, 3)
```

{{out}}

```txt

[0, 1, 2]
[0, 1, 3]
[0, 1, 4]
[0, 2, 3]
[0, 2, 4]
[0, 3, 4]
[1, 2, 3]
[1, 2, 4]
[1, 3, 4]
[2, 3, 4]

```

{{works with|FriCAS}}
{{works with|OpenAxiom}}
{{works with|Axiom}}

[reverse subSet(5,3,i)\$SGCF for i in 0..binomial(5,3)-1]

[[0,1,2], [0,1,3], [0,2,3], [1,2,3], [0,1,4], [0,2,4], [1,2,4], [0,3,4],
[1,3,4], [2,3,4]]
Type: List(List(Integer))

```

[http://fricas.github.io/api/SymmetricGroupCombinatoricFunctions.html?highlight=choose SGCF]
==> SymmetricGroupCombinatoricFunctions

## Smalltalk

{{works with|Pharo}}
{{works with|Squeak}}

```smalltalk

(0 to: 4) combinations: 3 atATimeDo: [ :x | Transcript cr; show: x printString].

"output on Transcript:
#(0 1 2)
#(0 1 3)
#(0 1 4)
#(0 2 3)
#(0 2 4)
#(0 3 4)
#(1 2 3)
#(1 2 4)
#(1 3 4)
#(2 3 4)"

```

## Standard ML

```sml
fun comb (0, _    ) = [[]]
| comb (_, []   ) = []
| comb (m, x::xs) = map (fn y => x :: y) (comb (m-1, xs)) @
comb (m, xs)
;
comb (3, [0,1,2,3,4]);
```

## Stata

```stata
program combin
tempfile cp
tempvar k
gen `k'=1
quietly save "`cp'"
rename `1' `1'1
forv i=2/`2' {
joinby `k' using "`cp'"
rename `1' `1'`i'
quietly drop if `1'`i'<=`1'`=`i'-1'
}
sort `1'*
end
```

'''Example'''

```stata
. set obs 5
. gen a=_n
. combin a 3
. list

+--------------+
| a1   a2   a3 |
|--------------|
1. |  1    2    3 |
2. |  1    2    4 |
3. |  1    2    5 |
4. |  1    3    4 |
5. |  1    3    5 |
|--------------|
6. |  1    4    5 |
7. |  2    3    4 |
8. |  2    3    5 |
9. |  2    4    5 |
10. |  3    4    5 |
+--------------+
```

###  Mata

```stata
function combinations(n,k) {
a = J(comb(n,k),k,.)
u = 1..k
for (i=1; 1; i++) {
a[i,.] = u
for (j=k; j>0; j--) {
if (u[j]-j [([Int], [Int])] {

return (0.. ([Int], [Int]) in
(prevCombo + [pivotList.removeAtIndex(0)], pivotList)
}
}
func combosOfLength(n: Int, m: Int) -> [[Int]] {

return [Int](1...m)
.reduce([([Int](), [Int](0.. {0 1 2} {0 1 3} {0 1 4} {0 2 3} {0 2 4} {0 3 4} {1 2 3} {1 2 4} {1 3 4} {2 3 4}
```

## TXR

TXR has repeating and non-repeating permutation and combination functions that produce lazy lists. They are generic over lists, strings and vectors. In addition, the combinations function also works over hashes.

Combinations and permutations are produced in lexicographic order (except in the case of hashes).

```txrlisp
(defun comb-n-m (n m)
(comb (range* 0 n) m))

(put-line `3 comb 5 = @(comb-n-m 5 3)`)
```

{{out|Run}}

```txt
\$ txr combinations.tl
3 comb 5 = ((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 4) (1 3 4) (2 3 4))
```

## Ursala

Most of the work is done by the standard library function `choices`, whose implementation is shown here for the sake of comparison with other solutions,

```Ursala
choices = ^(iota@r,~&l); leql@a^& ~&al?\&! ~&arh2fabt2RDfalrtPXPRT
```

where `leql` is the predicate that compares list lengths. The main body of the algorithm (`~&arh2fabt2RDfalrtPXPRT`)  concatenates the results of two recursive calls, one of which finds all combinations of the required size from the tail of the list, and the other of which finds all combinations of one less size from the tail, and then inserts the head into each.
`choices` generates combinations of an arbitrary set but
not necessarily in sorted order, which can be done like this.

```Ursala
#import std
#import nat

combinations = @rlX choices^|(iota,~&); -< @p nleq+ ==-~rh
```

* The sort combinator (`-<`) takes a binary predicate to a function that sorts a list in order of that predicate.
* The predicate in this case begins by zipping its two arguments together with `@p`.
* The prefiltering operator `-~` scans a list from the beginning until it finds the first item to falsify a predicate (in this case equality, `==`) and returns a pair of lists with the scanned items satisfying the predicate on the left and the remaining items on the right.
* The `rh` suffix on the `-~` operator causes it to return only the head of the right list as its result, which in this case will be the first pair of unequal items in the list.
* The `nleq` function then tests whether the left side of this pair is less than or equal to the right.
* The overall effect of using everything starting from the `@p` as the predicate to a sort combinator is therefore to sort a list of lists of natural numbers according to the order of the numbers in the first position where they differ.
test program:

```Ursala
#cast %nLL

example = combinations(3,5)
```

{{out}}

```txt
<
<0,1,2>,
<0,1,3>,
<0,1,4>,
<0,2,3>,
<0,2,4>,
<0,3,4>,
<1,2,3>,
<1,2,4>,
<1,3,4>,
<2,3,4>>
```

## V

like scheme (using variables)

```v
[comb [m lst] let
[ [m zero?] [[[]]]
[lst null?] [[]]
[true] [m pred lst rest comb [lst first swap cons]  map
m lst rest comb concat]
] when].
```

Using destructuring view and stack not *pure at all

```v
[comb
[ [pop zero?] [pop pop [[]]]
[null?] [pop pop []]
[true] [ [m lst : [m pred lst rest comb [lst first swap cons]  map
m lst rest comb concat]] view i ]
] when].
```

Pure concatenative version

```v
[comb
[2dup [a b : a b a b] view].
[2pop pop pop].

[ [pop zero?] [2pop [[]]]
[null?] [2pop []]
[true] [2dup [pred] dip uncons swapd comb [cons] map popd rollup rest comb concat]
] when].
```

Using it
|3 [0 1 2 3 4] comb
=[[0 1 2] [0 1 3] [0 1 4] [0 2 3] [0 2 4] [0 3 4] [1 2 3] [1 2 4] [1 3 4] [2 3 4]]

## VBA

```vb
Option Explicit
Option Base 0
'Option Base 1

Private ArrResult

Sub test()
'compute
Main_Combine 5, 3

'return
Dim j As Long, i As Long, temp As String
For i = LBound(ArrResult, 1) To UBound(ArrResult, 1)
temp = vbNullString
For j = LBound(ArrResult, 2) To UBound(ArrResult, 2)
temp = temp & " " & ArrResult(i, j)
Next
Debug.Print temp
Next
Erase ArrResult
End Sub

Private Sub Main_Combine(M As Long, N As Long)
Dim MyArr, i As Long
ReDim MyArr(M - 1)
If LBound(MyArr) > 0 Then ReDim MyArr(M) 'Case Option Base 1
For i = LBound(MyArr) To UBound(MyArr)
MyArr(i) = i
Next i
i = IIf(LBound(MyArr) > 0, N, N - 1)
ReDim ArrResult(i, LBound(MyArr))
Combine MyArr, N, LBound(MyArr), LBound(MyArr)
ReDim Preserve ArrResult(UBound(ArrResult, 1), UBound(ArrResult, 2) - 1)
'In VBA Excel we can use Application.Transpose instead of personal Function Transposition
ArrResult = Transposition(ArrResult)
End Sub

Private Sub Combine(MyArr As Variant, Nb As Long, Deb As Long, Ind As Long)
Dim i As Long, j As Long, N As Long
For i = Deb To UBound(MyArr, 1)
ArrResult(Ind, UBound(ArrResult, 2)) = MyArr(i)
N = IIf(LBound(ArrResult, 1) = 0, Nb - 1, Nb)
If Ind = N Then
ReDim Preserve ArrResult(UBound(ArrResult, 1), UBound(ArrResult, 2) + 1)
For j = LBound(ArrResult, 1) To UBound(ArrResult, 1)
ArrResult(j, UBound(ArrResult, 2)) = ArrResult(j, UBound(ArrResult, 2) - 1)
Next j
Else
Call Combine(MyArr, Nb, i + 1, Ind + 1)
End If
Next i
End Sub

Private Function Transposition(ByRef MyArr As Variant) As Variant
Dim T, i As Long, j As Long
ReDim T(LBound(MyArr, 2) To UBound(MyArr, 2), LBound(MyArr, 1) To UBound(MyArr, 1))
For i = LBound(MyArr, 1) To UBound(MyArr, 1)
For j = LBound(MyArr, 2) To UBound(MyArr, 2)
T(j, i) = MyArr(i, j)
Next j
Next i
Transposition = T
Erase T
End Function
```

{{Out}}
If Option Base 0 :

```txt
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
```

If Option Base 1 :

```txt
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
```

{{trans|Phix}}

```vb
Private Sub comb(ByVal pool As Integer, ByVal needed As Integer, Optional ByVal done As Integer = 0, Optional ByVal chosen As Variant)
If needed = 0 Then  '-- got a full set
For Each x In chosen: Debug.Print x;: Next x
Debug.Print
Exit Sub
End If
If done + needed > pool Then Exit Sub '-- cannot fulfil
'-- get all combinations with and without the next item:
done = done + 1
Dim tmp As Variant
tmp = chosen
If IsMissing(chosen) Then
ReDim tmp(1)
Else
ReDim Preserve tmp(UBound(chosen) + 1)
End If
tmp(UBound(tmp)) = done
comb pool, needed - 1, done, tmp
comb pool, needed, done, chosen
End Sub

Public Sub main()
comb 5, 3
End Sub
```

## VBScript

```vb

Function Dec2Bin(n)
q = n
Dec2Bin = ""
Do Until q = 0
Dec2Bin = CStr(q Mod 2) & Dec2Bin
q = Int(q / 2)
Loop
Dec2Bin = Right("00000" & Dec2Bin,6)
End Function

Sub Combination(n,k)
Dim arr()
ReDim arr(n-1)
For h = 0 To n-1
arr(h) = h + 1
Next
Set list = CreateObject("System.Collections.Arraylist")
For i = 1 To 2^n
bin = Dec2Bin(i)
c = 0
tmp_combo = ""
If Len(Replace(bin,"0","")) = k Then
For j = Len(bin) To 1 Step -1
If CInt(Mid(bin,j,1)) = 1 Then
tmp_combo = tmp_combo & arr(c) & ","
End If
c = c + 1
Next
End If
Next
list.Sort
For l = 0 To list.Count-1
WScript.StdOut.Write list(l)
WScript.StdOut.WriteLine
Next
End Sub

'Testing with n = 5 / k = 3
Call Combination(5,3)

```

{{Out}}

```txt

1,2,3
1,2,4
1,2,5
1,3,4
1,3,5
1,4,5
2,3,4
2,3,5
2,4,5
3,4,5

```

## XPL0

```XPL0
code ChOut=8, CrLf=9, IntOut=11;
def M=3, N=5;
int A(N-1);

proc Combos(D, S);      \Display all size M combinations of N in sorted order
int  D, S;              \depth of recursion, starting value of N
int  I;
[if D

```