⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

;Task: Draw a [http://en.wikipedia.org/wiki/Cuboid cuboid] with relative dimensions of 2 × 3 × 4.

The cuboid can be represented graphically, or in [https://en.wikipedia.org/wiki/ASCII_art ASCII art], depending on the language capabilities.

To fulfill the criteria of being a cuboid, three faces must be visible.

Either static or rotational projection is acceptable for this task.

• [[Draw_a_rotating_cube|draw a rotating cube]]
• [[Write_language_name_in_3D_ASCII|write language name in 3D ASCII]]

ASCII-Art output, one width unit is two characters long ('--').

procedure Main is
type Char_Matrix is
array (Positive range <>, Positive range <>) of Character;

function Create_Cuboid
(Width, Height, Depth : Positive)
return                 Char_Matrix
is
Result : Char_Matrix (1 .. Height + Depth + 3,
1 .. 2 * Width + Depth + 3) := (others => (others => ' '));
begin
-- points
Result (1, 1)                                      := '+';
Result (Height + 2, 1)                             := '+';
Result (1, 2 * Width + 2)                          := '+';
Result (Height + 2, 2 * Width + 2)                 := '+';
Result (Height + Depth + 3, Depth + 2)             := '+';
Result (Depth + 2, 2 * Width + Depth + 3)          := '+';
Result (Height + Depth + 3, 2 * Width + Depth + 3) := '+';
-- width lines
for I in 1 .. 2 * Width loop
Result (1, I + 1)                          := '-';
Result (Height + 2, I + 1)                 := '-';
Result (Height + Depth + 3, Depth + I + 2) := '-';
end loop;
-- height lines
for I in 1 .. Height loop
Result (I + 1, 1)                             := '|';
Result (I + 1, 2 * Width + 2)                 := '|';
Result (Depth + I + 2, 2 * Width + Depth + 3) := '|';
end loop;
-- depth lines
for I in 1 .. Depth loop
Result (Height + 2 + I, 1 + I)             := '/';
Result (1 + I, 2 * Width + 2 + I)          := '/';
Result (Height + 2 + I, 2 * Width + 2 + I) := '/';
end loop;
return Result;
end Create_Cuboid;

procedure Print_Cuboid (Width, Height, Depth : Positive) is
Cuboid : Char_Matrix := Create_Cuboid (Width, Height, Depth);
begin
for Row in reverse Cuboid'Range (1) loop
for Col in Cuboid'Range (2) loop
end loop;
end loop;
end Print_Cuboid;
begin
Print_Cuboid (2, 3, 4);
end Main;

{{Out}}

+----+
/    /|
/    / |
/    /  |
/    /   +
+----+   /
|    |  /
|    | /
|    |/
+----+

## AutoHotkey

{{libheader|GDIP}}Some portions of code from [http://www.autohotkey.com/board/topic/29449-gdi-standard-library-145-by-tic/ Gdip examples].

Angle := 45
C := 0.01745329252
W := 200
H := 300
L := 400
LX := L * Cos(Angle * C), LY := L * Sin(Angle * C)

If !pToken := Gdip_Startup()
{
MsgBox, 48, gdiplus error!, Gdiplus failed to start. Please ensure you have gdiplus on your system
ExitApp
}
OnExit, Exit

A := 50, B := 650, WinWidth := 700, WinHeight := 700
TopX := (A_ScreenWidth - WinWidth) //2, TopY := (A_ScreenHeight - WinHeight) //2

Gui, 1: -Caption +E0x80000 +LastFound +AlwaysOnTop +ToolWindow +OwnDialogs
Gui, 1: Show, NA
hwnd1 := WinExist(), hbm := CreateDIBSection(WinWidth, WinHeight), hdc := CreateCompatibleDC()
, obm := SelectObject(hdc, hbm), G := Gdip_GraphicsFromHDC(hdc), Gdip_SetSmoothingMode(G, 4)

Points := A "," B "|" A+W "," B "|" A+W "," B-H "|" A "," B-H
, DrawFace(Points, 0xff0066ff, G)

Points := A+W "," B "|" A+W+LX "," B-LY "|" A+W+LX "," B-LY-H "|" A+W "," B-H
, DrawFace(Points, 0xff00d400, G)

Points := A "," B-H "|" A+W "," B-H "|" A+W+LX "," B-LY-H "|" A+LX "," B-LY-H
, DrawFace(Points, 0xffd40055, G)

UpdateLayeredWindow(hwnd1, hdc, TopX, TopY, WinWidth, WinHeight)

SelectObject(hdc, obm), DeleteObject(hbm), DeleteDC(hdc)
, Gdip_DeleteGraphics(G)
return

DrawFace(Points, Color, G) {
pBrush := Gdip_BrushCreateSolid(Color)
, Gdip_FillPolygon(G, pBrush, Points, 1)
, Gdip_DeleteBrush(pBrush)
return
}

Esc::
Exit:
Gdip_Shutdown(pToken)
ExitApp

## AWK

# syntax: GAWK -f DRAW_A_CUBOID.AWK [-v x=?] [-v y=?] [-v z=?]
# example: GAWK -f DRAW_A_CUBOID.AWK -v x=12 -v y=4 -v z=6
# converted from VBSCRIPT
BEGIN {
init_sides()
draw_cuboid(2,3,4)
draw_cuboid(1,1,1)
draw_cuboid(6,2,1)
exit (errors == 0) ? 0 : 1
}
function draw_cuboid(nx,ny,nz,  esf,i,i_max,j,j_max,lx,ly,lz) {
esf = errors # errors so far
if (nx !~ /^[0-9]+\$/ || nx <= 0) { error(nx,ny,nz,1) }
if (ny !~ /^[0-9]+\$/ || ny <= 0) { error(nx,ny,nz,2) }
if (nz !~ /^[0-9]+\$/ || nz <= 0) { error(nx,ny,nz,3) }
if (errors > esf) { return }
lx = x * nx
ly = y * ny
lz = z * nz
# define the array size
i_max = ly + lz
j_max = lx + ly
delete arr
printf("%s %s %s (%d rows x %d columns)\n",nx,ny,nz,i_max+1,j_max+1)
# draw lines
for (i=0; i<=nz-1; i++) { draw_line(lx,0,z*i,"-") }
for (i=0; i<=ny; i++)   { draw_line(lx,y*i,lz+y*i,"-") }
for (i=0; i<=nx-1; i++) { draw_line(lz,x*i,0,"|") }
for (i=0; i<=ny; i++)   { draw_line(lz,lx+y*i,y*i,"|") }
for (i=0; i<=nz-1; i++) { draw_line(ly,lx,z*i,"/") }
for (i=0; i<=nx; i++)   { draw_line(ly,x*i,lz,"/") }
# output the cuboid
for (i=i_max; i>=0; i--) {
for (j=0; j<=j_max; j++) {
printf("%1s",arr[i,j])
}
printf("\n")
}
}
function draw_line(n,x,y,c,  dx,dy,i,xi,yi) {
if      (c == "-") { dx = 1 ; dy = 0 }
else if (c == "|") { dx = 0 ; dy = 1 }
else if (c == "/") { dx = 1 ; dy = 1 }
for (i=0; i<=n; i++) {
xi = x + i * dx
yi = y + i * dy
arr[yi,xi] = (arr[yi,xi] ~ /^ ?\$/) ? c : "+"
}
}
function error(x,y,z,arg) {
printf("error: '%s,%s,%s' argument %d is invalid\n",x,y,z,arg)
errors++
}
function init_sides() {
# to change the defaults on the command line use: -v x=? -v y=? -v z=?
if (x+0 < 2) { x = 6 } # top
if (y+0 < 2) { y = 2 } # right
if (z+0 < 2) { z = 3 } # front
}

{{out}}

2 3 4 (19 rows x 19 columns)
+-----+-----+
/     /     /|
+-----+-----+ |
/     /     /| +
+-----+-----+ |/|
/     /     /| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/
|     |     |/| +
+-----+-----+ |/
|     |     | +
|     |     |/
+-----+-----+
1 1 1 (6 rows x 9 columns)
+-----+
/     /|
+-----+ |
|     | +
|     |/
+-----+
6 2 1 (8 rows x 41 columns)
+-----+-----+-----+-----+-----+-----+
/     /     /     /     /     /     /|
+-----+-----+-----+-----+-----+-----+ |
/     /     /     /     /     /     /| +
+-----+-----+-----+-----+-----+-----+ |/
|     |     |     |     |     |     | +
|     |     |     |     |     |     |/
+-----+-----+-----+-----+-----+-----+

In brlcad, we use the rpp (rectangular parallelepiped) primitive to create the cuboid. This defines the cuboid area using the parameters xmin,xmax,ymin,ymax,zmin,zmax

opendb cuboid.g y            # Create a database to hold our shapes
units cm                     # Set the unit of measure
in cuboid.s rpp 0 2 0 3 0 4  # Create a 2 x 3 x 4 cuboid named cuboid.s

## BBC BASIC

Uses BBC BASIC's native parallelogram plot.

ORIGIN 100, 100
PROCcuboid(200, 300, 400)
END

DEF PROCcuboid(x, y, z)
MOVE 0, 0 : MOVE 0, y
GCOL 1 : PLOT 117, x, y
GCOL 2 : PLOT 117, x + z * 0.4, y + z * 0.4
GCOL 4 : PLOT 117, x + z * 0.4, z * 0.4
ENDPROC

{{Out}} [[File:Cuboid_BBC.gif]]

## Befunge

Given a width, height, and depth, this produces an approximate isometric representation of the shape using ASCII art.

"  :htdiW">:#,_>&>00p" :thgieH">:#,_>&>:10p0"  :htpeD">:#,_\$>&>:20p55+,+:1`*:vv
v\-*`0:-g01\++*`\0:-\-1g01:\-*`0:-g02\+*`\0:-\-1g02<:::::<\g3`\g01:\1\+55\1-1_v
>":"\1\:20g\`!3g:30p\00g2*\::20g\`\20g1-\`+1+3g\1\30g\:20g-::0\`\2*1+*-\48*\:^v
/\_ @_\#!:!#\$>#\$_\#!:,#-\#1                         <+1\<*84g02"_"+1*2g00+551\$<

{{out}}

Width:  2
Height: 3
Depth:  4

_____
/    /\
/    /::\
/    /::::\
/____/:::::/
\\\\\\::::/
\\\\\\::/
\\\\\\/

## C

Code works fine but only '.' and ':' characters show up on the cuboid.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void vsub(double *v1, double *v2, double *s) {
s[0] = v1[0] - v2[0];
s[1] = v1[1] - v2[1];
s[2] = v1[2] - v2[2];
}

double normalize(double * v) {
double len = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
v[0] /= len; v[1] /= len; v[2] /= len;
return len;
}

double dot(double *x, double *y) {
return x[0]*y[0] + x[1]*y[1] + x[2]*y[2];
}

double * cross(double x[3], double y[3], double s[3]) {
s[0] = x[1] * y[2] - x[2] * y[1];
s[1] = x[2] * y[0] - x[0] * y[2];
s[2] = x[0] * y[1] - x[1] * y[0];
return s;
}

double* madd(double *x, double *y, double d, double *r) {
r[0] = x[0] + y[0] * d;
r[1] = x[1] + y[1] * d;
r[2] = x[2] + y[2] * d;
return r;
}

double v000[] = { -4, -3, -2 };
double v100[] = {  4, -3, -2 };
double v010[] = { -4,  3, -2 };
double v110[] = {  4,  3, -2 };
double v001[] = { -4, -3,  2 };
double v101[] = {  4, -3,  2 };
double v011[] = { -4,  3,  2 };
double v111[] = {  4,  3,  2 };

typedef struct {
double * v[4];
double norm[3];
} face_t;

face_t f[] = {
{ { v000, v010, v110, v100 }, {  0,  0, -1 } },
{ { v001, v011, v111, v101 }, {  0,  0,  1 } },
{ { v000, v010, v011, v001 }, { -1,  0,  0 } },
{ { v100, v110, v111, v101 }, {  1,  0,  0 } },
{ { v000, v100, v101, v001 }, {  0, -1,  0 } },
{ { v010, v110, v111, v011 }, {  0,  1,  0 } },
};

int in_range(double x, double x0, double x1) {
return (x - x0) * (x - x1) <= 0;
}

int face_hit(face_t *face, double src[3], double dir[3], double hit[3], double *d)
{
int i;
double dist;
for (i = 0; i < 3; i++)
if (face->norm[i])
dist = (face->v[0][i] - src[i]) / dir[i];

*d = fabs(dot(dir, face->norm) * dist);

if (face->norm[0]) {
return  in_range(hit[1], face->v[0][1], face->v[2][1]) &&
in_range(hit[2], face->v[0][2], face->v[2][2]);
}
else if (face->norm[1]) {
return  in_range(hit[0], face->v[0][0], face->v[2][0]) &&
in_range(hit[2], face->v[0][2], face->v[2][2]);
}
else if (face->norm[2]) {
return  in_range(hit[0], face->v[0][0], face->v[2][0]) &&
in_range(hit[1], face->v[0][1], face->v[2][1]);
}
return 0;
}

int main()
{
int i, j, k;
double eye[3] = { 7, 7, 6 };
double dir[3] = { -1, -1, -1 }, orig[3] = {0, 0, 0};
double hit[3], dx[3], dy[3] = {0, 0, 1}, proj[3];
double d, *norm, dbest, b;
double light[3] = { 6, 8, 6 }, ldist[3], decay, strength = 10;

normalize(cross(eye, dy, dx));
normalize(cross(eye, dx, dy));

for (i = -10; i <= 17; i++) {
for (j = -35; j < 35; j++) {
vsub(orig, orig, proj);
vsub(proj, eye, dir);
dbest = 1e100;
norm = 0;
for (k = 0; k < 6; k++) {
if (!face_hit(f + k, eye, dir, hit, &d)) continue;
if (dbest > d) {
dbest = d;
norm = f[k].norm;
}
}

if (!norm) {
putchar(' ');
continue;
}

vsub(light, hit, ldist);
decay = normalize(ldist);
b = dot(norm, ldist) / decay * strength;
if (b < 0) b = 0;
else if (b > 1) b = 1;
b += .2;
if (b > 1) b = 0;
else b = 1 - b;
}
putchar('\n');
}

return 0;
}

Output :

.
................
...............................
.............................................
........................................................
...............................................................
..............................................................::
...........................................................::::
.......................................................:::::::
.....................................................::::::::
.................................................::::::::::
:..............................................::::::::::::
:............................................::::::::::::
::..........................................:::::::::::::
:........................................:::::::::::::
......................................::::::::::::::
....................................:::::::::::::
.................................::::::::::::
............................::::::::::::
.........................:::::::::::
......................::::::::::
...................:::::::::
..............:::::::::
...........:::::::::
.........:::::::
.......:::::
.....:::
.::

## C++

This code needs the BGI for Windows available at [http://www.cs.colorado.edu/~main/cs1300/doc/bgi/bgi.html Colorado State University].

#include<graphics.h>
#include<iostream>

int main()
{
int k;
initwindow(1500,810,"Rosetta Cuboid");

do{
std::cout<<"Enter ratio of sides ( 0 or -ve to exit) : ";
std::cin>>k;

if(k>0){
bar3d(100, 100, 100 + 2*k, 100 + 4*k, 3*k, 1);
}
}while(k>0);

return 0;
}

[[Image:Box.jpg]]

## C#

{{trans|Java}}

using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

namespace Cuboid
{
public partial class Form1 : Form
{
double[][] nodes = {
new double[] {-1, -1, -1}, new double[] {-1, -1, 1}, new double[] {-1, 1, -1},
new double[] {-1, 1, 1}, new double[] {1, -1, -1}, new double[] {1, -1, 1},
new double[] {1, 1, -1}, new double[] {1, 1, 1} };

int[][] edges = {
new int[] {0, 1}, new int[] {1, 3}, new int[] {3, 2}, new int[] {2, 0}, new int[] {4, 5},
new int[] {5, 7}, new int[] {7, 6}, new int[] {6, 4}, new int[] {0, 4}, new int[] {1, 5},
new int[] {2, 6}, new int[] {3, 7}};

private int mouseX;
private int prevMouseX;
private int prevMouseY;
private int mouseY;

public Form1()
{
Width = Height = 640;
StartPosition = FormStartPosition.CenterScreen;
SetStyle(
ControlStyles.AllPaintingInWmPaint |
ControlStyles.UserPaint |
ControlStyles.DoubleBuffer,
true);

MouseMove += (s, e) =>
{
prevMouseX = mouseX;
prevMouseY = mouseY;
mouseX = e.X;
mouseY = e.Y;

double incrX = (mouseX - prevMouseX) * 0.01;
double incrY = (mouseY - prevMouseY) * 0.01;

RotateCuboid(incrX, incrY);
Refresh();
};

MouseDown += (s, e) =>
{
mouseX = e.X;
mouseY = e.Y;
};

Scale(80, 120, 160);
RotateCuboid(Math.PI / 5, Math.PI / 9);
}

private void RotateCuboid(double angleX, double angleY)
{
double sinX = Math.Sin(angleX);
double cosX = Math.Cos(angleX);

double sinY = Math.Sin(angleY);
double cosY = Math.Cos(angleY);

foreach (var node in nodes)
{
double x = node[0];
double y = node[1];
double z = node[2];

node[0] = x * cosX - z * sinX;
node[2] = z * cosX + x * sinX;

z = node[2];

node[1] = y * cosY - z * sinY;
node[2] = z * cosY + y * sinY;
}
}

private void Scale(int v1, int v2, int v3)
{
foreach (var item in nodes)
{
item[0] *= v1;
item[1] *= v2;
item[2] *= v3;
}
}

protected override void OnPaint(PaintEventArgs args)
{
var g = args.Graphics;
g.SmoothingMode = SmoothingMode.HighQuality;
g.Clear(Color.White);

g.TranslateTransform(Width / 2, Height / 2);

foreach (var edge in edges)
{
double[] xy1 = nodes[edge[0]];
double[] xy2 = nodes[edge[1]];
g.DrawLine(Pens.Black, (int)Math.Round(xy1[0]), (int)Math.Round(xy1[1]),
(int)Math.Round(xy2[0]), (int)Math.Round(xy2[1]));
}

foreach (var node in nodes)
{
g.FillEllipse(Brushes.Black, (int)Math.Round(node[0]) - 4,
(int)Math.Round(node[1]) - 4, 8, 8);
}
}
}
}

## Clojure

(use 'quil.core)

(def w 500)
(def h 400)

(defn setup []
(background 0))

(defn draw []
(push-matrix)
(translate (/ w 2) (/ h 2) 0)
(rotate-x 0.7)
(rotate-z 0.5)
(box 100 150 200)  ; 2x3x4 relative dimensions
(pop-matrix))

(defsketch main
:title "cuboid"
:setup setup
:size [w h]
:draw draw
:renderer :opengl)

{{out}} [http://i.imgur.com/7io7wo4.png]

## D

{{trans|Go}}

import std.stdio, std.array;

void printCuboid(in int dx, in int dy, in int dz) {
static cline(in int n, in int dx, in int dy, in string cde) {
writef("%*s", n+1, cde[0 .. 1]);
write(cde[1 .. 2].replicate(9*dx - 1));
write(cde[0]);
writefln("%*s", dy+1, cde[2 .. \$]);
}

cline(dy+1, dx, 0, "+-");
foreach (i; 1 .. dy+1)
cline(dy-i+1, dx, i-1, "/ |");
cline(0, dx, dy, "+-|");
foreach (_; 0 .. 4*dz - dy - 2)
cline(0, dx, dy, "| |");
cline(0, dx, dy, "| +");
foreach_reverse (i; 0 .. dy)
cline(0, dx, i, "| /");
cline(0, dx, 0, "+-\n");
}

void main() {
printCuboid(2, 3, 4);
printCuboid(1, 1, 1);
printCuboid(6, 2, 1);
}

{{Out}}

+-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+

## Elixir

{{trans|Ruby}}

defmodule Cuboid do
@x 6
@y 2
@z 3
@dir %{-: {1,0}, |: {0,1}, /: {1,1}}

def draw(nx, ny, nz) do
IO.puts "cuboid #{nx} #{ny} #{nz}:"
{x, y, z} = {@x*nx, @y*ny, @z*nz}
area = Map.new
area = Enum.reduce(0..nz-1, area, fn i,acc -> draw_line(acc, x,      0,   @z*i, :-) end)
area = Enum.reduce(0..ny,   area, fn i,acc -> draw_line(acc, x,   @y*i, z+@y*i, :-) end)
area = Enum.reduce(0..nx-1, area, fn i,acc -> draw_line(acc, z,   @x*i,      0, :|) end)
area = Enum.reduce(0..ny,   area, fn i,acc -> draw_line(acc, z, x+@y*i,   @y*i, :|) end)
area = Enum.reduce(0..nz-1, area, fn i,acc -> draw_line(acc, y,      x,   @z*i, :/) end)
area = Enum.reduce(0..nx,   area, fn i,acc -> draw_line(acc, y,   @x*i,      z, :/) end)
Enum.each(y+z..0, fn j ->
IO.puts Enum.map_join(0..x+y, fn i -> Map.get(area, {i,j}, " ") end)
end)
end

defp draw_line(area, n, sx, sy, c) do
{dx, dy} = Map.get(@dir, c)
draw_line(area, n, sx, sy, c, dx, dy)
end

defp draw_line(area, n, _, _, _, _, _) when n<0, do: area
defp draw_line(area, n, i, j, c, dx, dy) do
Map.update(area, {i,j}, c, fn _ -> :+ end)
|> draw_line(n-1, i+dx, j+dy, c, dx, dy)
end
end

Cuboid.draw(2,3,4)
Cuboid.draw(1,1,1)
Cuboid.draw(2,4,1)
Cuboid.draw(4,2,1)

{{out}}

cuboid 2 3 4:
+-----+-----+
/     /     /|
+-----+-----+ |
/     /     /| +
+-----+-----+ |/|
/     /     /| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/
|     |     |/| +
+-----+-----+ |/
|     |     | +
|     |     |/
+-----+-----+
cuboid 1 1 1:
+-----+
/     /|
+-----+ |
|     | +
|     |/
+-----+
cuboid 2 4 1:
+-----+-----+
/     /     /|
+-----+-----+ |
/     /     /| +
+-----+-----+ |/
/     /     /| +
+-----+-----+ |/
/     /     /| +
+-----+-----+ |/
|     |     | +
|     |     |/
+-----+-----+
cuboid 4 2 1:
+-----+-----+-----+-----+
/     /     /     /     /|
+-----+-----+-----+-----+ |
/     /     /     /     /| +
+-----+-----+-----+-----+ |/
|     |     |     |     | +
|     |     |     |     |/
+-----+-----+-----+-----+

## Factor

{{works with|Factor|0.99 development release 2019-07-10}}

USING: classes.struct kernel raylib.ffi ;

640 480 "cuboid" init-window

S{ Camera3D
{ position S{ Vector3 f 4.5 4.5 4.5 } }
{ target S{ Vector3 f 0 0 0 } }
{ up S{ Vector3 f 0 1 0 } }
{ fovy 45.0 }
{ type 0 }
}

60 set-target-fps

[ window-should-close ] [
begin-drawing
BLACK clear-background dup
begin-mode-3d
S{ Vector3 f 0 0 0 } 2 3 4 LIME draw-cube-wires
end-mode-3d
end-drawing
] until drop close-window

{{out}} [https://i.imgur.com/JQMPjhk.png]

## Go

{{trans|PicoLisp}}

package main

import "fmt"

func cuboid(dx, dy, dz int) {
fmt.Printf("cuboid %d %d %d:\n", dx, dy, dz)
cubLine(dy+1, dx, 0, "+-")
for i := 1; i <= dy; i++ {
cubLine(dy-i+1, dx, i-1, "/ |")
}
cubLine(0, dx, dy, "+-|")
for i := 4*dz - dy - 2; i > 0; i-- {
cubLine(0, dx, dy, "| |")
}
cubLine(0, dx, dy, "| +")
for i := 1; i <= dy; i++ {
cubLine(0, dx, dy-i, "| /")
}
cubLine(0, dx, 0, "+-\n")
}

func cubLine(n, dx, dy int, cde string) {
fmt.Printf("%*s", n+1, cde[:1])
for d := 9*dx - 1; d > 0; d-- {
fmt.Print(cde[1:2])
}
fmt.Print(cde[:1])
fmt.Printf("%*s\n", dy+1, cde[2:])
}

func main() {
cuboid(2, 3, 4)
cuboid(1, 1, 1)
cuboid(6, 2, 1)
}

{{Out}}

cuboid 2 3 4:
+-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

cuboid 1 1 1:
+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

cuboid 6 2 1:
+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+

import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT

-- Draw a cuboid.  Its vertices are those of a unit cube, which is then scaled
-- to the required dimensions.  We only specify the visible faces, each of
-- which is composed of two triangles.  The faces are rotated into position and
-- rendered with a perspective transformation.

type Fl = GLfloat

cuboid :: IO ()
cuboid = do
color red   ; render front
color green ; render side
color blue  ; render top

red,green,blue :: Color4 GLfloat
red   = Color4 1 0 0 1
green = Color4 0 1 0 1
blue  = Color4 0 0 1 1

render :: [(Fl, Fl, Fl)] -> IO ()
render = renderPrimitive TriangleStrip . mapM_ toVertex
where toVertex (x,y,z) = vertex \$ Vertex3 x y z

front,side,top :: [(Fl,Fl,Fl)]
front = vertices [0,1,2,3]
side  = vertices [4,1,5,3]
top   = vertices [3,2,5,6]

vertices :: [Int] -> [(Fl,Fl,Fl)]
vertices = map (verts !!)

verts :: [(Fl,Fl,Fl)]
verts = [(0,0,1), (1,0,1), (0,1,1), (1,1,1), (1,0,0), (1,1,0), (0,1,0)]

transform :: IO ()
transform = do
translate \$ Vector3 0 0 (-10 :: Fl)
rotate (-14) \$ Vector3 0 0 (1 :: Fl)
rotate (-30) \$ Vector3 0 1 (0 :: Fl)
rotate   25  \$ Vector3 1 0 (0 :: Fl)
scale 2 3 (4 :: Fl)
translate \$ Vector3 (-0.5) (-0.5) (-0.5 :: Fl)

display :: IO ()
display = do
clear [ColorBuffer]
perspective 40 1 1 (15 :: GLdouble)
transform
cuboid
flush

main :: IO ()
main = do
let name = "Cuboid"
initialize name []
createWindow name
displayCallback \$= display
mainLoop

## J

Hack alert! I haven't even bothered to center the display. With larger resolutions and the viewmat script, this code can generate reasonable 2D displays with a different color for each face.

vectors =. ((% +/&.:*:"1) _1 1 0,:_1 _1 3) +/@:*"1/~ 2 3 4*=i.3
' .*o' {~  +/ 1 2 3* (|:"2 -."_ 1~ vectors) ([:*./ 1 = 0 1 I. %.~)"_ 1"_1 _ ]4j21 ,~"0/&:i: 4j41

oooo
ooooooooooooo
oooooooooooooo....
*****oooo.........
*******...........
*******...........
*******...........
*******...........
*******...........
*******...........
*******...........
*******.........
*****.....

## Java

[[File:cuboid_java.png|200px|thumb|right]] {{works with|Java|8}}

import java.awt.*;
import java.awt.event.*;
import static java.lang.Math.*;
import javax.swing.*;

public class Cuboid extends JPanel {
double[][] nodes = {{-1, -1, -1}, {-1, -1, 1}, {-1, 1, -1}, {-1, 1, 1},
{1, -1, -1}, {1, -1, 1}, {1, 1, -1}, {1, 1, 1}};

int[][] edges = {{0, 1}, {1, 3}, {3, 2}, {2, 0}, {4, 5}, {5, 7}, {7, 6},
{6, 4}, {0, 4}, {1, 5}, {2, 6}, {3, 7}};

int mouseX, prevMouseX, mouseY, prevMouseY;

public Cuboid() {
setPreferredSize(new Dimension(640, 640));
setBackground(Color.white);

scale(80, 120, 160);
rotateCube(PI / 5, PI / 9);

@Override
public void mousePressed(MouseEvent e) {
mouseX = e.getX();
mouseY = e.getY();
}
});

@Override
public void mouseDragged(MouseEvent e) {
prevMouseX = mouseX;
prevMouseY = mouseY;
mouseX = e.getX();
mouseY = e.getY();

double incrX = (mouseX - prevMouseX) * 0.01;
double incrY = (mouseY - prevMouseY) * 0.01;

rotateCube(incrX, incrY);
repaint();
}
});
}

private void scale(double sx, double sy, double sz) {
for (double[] node : nodes) {
node[0] *= sx;
node[1] *= sy;
node[2] *= sz;
}
}

private void rotateCube(double angleX, double angleY) {
double sinX = sin(angleX);
double cosX = cos(angleX);

double sinY = sin(angleY);
double cosY = cos(angleY);

for (double[] node : nodes) {
double x = node[0];
double y = node[1];
double z = node[2];

node[0] = x * cosX - z * sinX;
node[2] = z * cosX + x * sinX;

z = node[2];

node[1] = y * cosY - z * sinY;
node[2] = z * cosY + y * sinY;
}
}

void drawCube(Graphics2D g) {
g.translate(getWidth() / 2, getHeight() / 2);

for (int[] edge : edges) {
double[] xy1 = nodes[edge[0]];
double[] xy2 = nodes[edge[1]];
g.drawLine((int) round(xy1[0]), (int) round(xy1[1]),
(int) round(xy2[0]), (int) round(xy2[1]));
}

for (double[] node : nodes) {
g.fillOval((int) round(node[0]) - 4, (int) round(node[1]) - 4, 8, 8);
}
}

@Override
public void paintComponent(Graphics gg) {
super.paintComponent(gg);
Graphics2D g = (Graphics2D) gg;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

drawCube(g);
}

public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("Cuboid");
f.setResizable(false);
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
});
}
}

## JavaScript

{{trans|Java}}

<!DOCTYPE html>
<html lang="en">

<meta charset="UTF-8">
<style>
canvas {
background-color: black;
}
</style>
<body>
<canvas></canvas>
<script>
var canvas = document.querySelector("canvas");
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;

var g = canvas.getContext("2d");

prevMouseX = mouseX;
prevMouseY = mouseY;
mouseX = event.x;
mouseY = event.y;

var incrX = (mouseX - prevMouseX) * 0.01;
var incrY = (mouseY - prevMouseY) * 0.01;

rotateCuboid(incrX, incrY);
drawCuboid();
});

var nodes = [[-1, -1, -1], [-1, -1, 1], [-1, 1, -1], [-1, 1, 1],
[1, -1, -1], [1, -1, 1], [1, 1, -1], [1, 1, 1]];

var edges = [[0, 1], [1, 3], [3, 2], [2, 0], [4, 5], [5, 7], [7, 6],
[6, 4], [0, 4], [1, 5], [2, 6], [3, 7]];

var mouseX = 0, prevMouseX, mouseY = 0, prevMouseY;

function scale(factor0, factor1, factor2) {
nodes.forEach(function (node) {
node[0] *= factor0;
node[1] *= factor1;
node[2] *= factor2;
});
}

function rotateCuboid(angleX, angleY) {

var sinX = Math.sin(angleX);
var cosX = Math.cos(angleX);

var sinY = Math.sin(angleY);
var cosY = Math.cos(angleY);

nodes.forEach(function (node) {
var x = node[0];
var y = node[1];
var z = node[2];

node[0] = x * cosX - z * sinX;
node[2] = z * cosX + x * sinX;

z = node[2];

node[1] = y * cosY - z * sinY;
node[2] = z * cosY + y * sinY;
});
}

function drawCuboid() {
g.save();

g.clearRect(0, 0, canvas.width, canvas.height);
g.translate(canvas.width / 2, canvas.height / 2);
g.strokeStyle = "#FFFFFF";
g.beginPath();

edges.forEach(function (edge) {
var p1 = nodes[edge[0]];
var p2 = nodes[edge[1]];
g.moveTo(p1[0], p1[1]);
g.lineTo(p2[0], p2[1]);
});

g.closePath();
g.stroke();

g.restore();
}

scale(80, 120, 160);
rotateCuboid(Math.PI / 5, Math.PI / 9);
</script>

</body>
</html>

## Julia

### ASCII Art

{{trans|Python}} {{works with|Julia|0.6}}

_pr(t::Dict, x::Int, y::Int, z::Int) = join((rstrip(join(t[(n, m)] for n in range(0, 3+x+z))) for m in reverse(range(0, 3+y+z))), "\n")

function cuboid(x::Int, y::Int, z::Int)
t = Dict((n, m) => " " for n in range(0, 3 + x + z), m in range(0, 3 + y + z))
xrow = vcat("+", collect("\$(i % 10)" for i in range(0, x)), "+")
for (i, ch) in enumerate(xrow) t[(i, 0)] = t[(i, 1+y)] = t[(1+z+i, 2+y+z)] = ch end
yrow = vcat("+", collect("\$(j % 10)" for j in range(0, y)), "+")
for (j, ch) in enumerate(yrow) t[(0, j)] = t[(x+1, j)] = t[(2+x+z, 1+z+j)] = ch end
zdep = vcat("+", collect("\$(k % 10)" for k in range(0, y)), "+")
for (k, ch) in enumerate(xrow) t[(k, 1+y+k)] = t[(1+x+k, 1+y+k)] = t[(1+x+k, k)] = ch end

return _pr(t, x, y, z)
end

for (x, y, z) in [(2, 3, 4), (3, 4, 2), (4, 2, 3), (5, 5, 6)]
println("\nCUBOID(\$x, \$y, \$z)\n")
println(cuboid(x, y, z))
end

{{out}}

CUBOID(2, 3, 4)

+02
+  +1
1  1 0
0  0  +
++ ++
2+02+  +
1  1  1
0  0 0
+  ++
+01+

CUBOID(3, 4, 2)

1+011
0   02
++  ++ 1
3+013+ 0
2   2  +
1   1  1
0   0 0
+   ++
+012+

CUBOID(4, 2, 3)

2+0122
1    10
0    0 +
++   ++  2
1+0121+ 1
0    0 0
+    ++
+0123+

CUBOID(5, 5, 6)

++0123+
4     43
3     3 2
2     2  1
1     1   0
0     0    +
++    ++     +
4+01234+    4
3     3    3
2     2   2
1     1  1
0     0 0
+     ++
+01234+

## Kotlin

{{trans|Java}}

// version 1.1

import java.awt.*
import java.awt.event.MouseEvent
import javax.swing.*

class Cuboid: JPanel() {
private val nodes = arrayOf(
doubleArrayOf(-1.0, -1.0, -1.0),
doubleArrayOf(-1.0, -1.0,  1.0),
doubleArrayOf(-1.0,  1.0, -1.0),
doubleArrayOf(-1.0,  1.0,  1.0),
doubleArrayOf( 1.0, -1.0, -1.0),
doubleArrayOf( 1.0, -1.0,  1.0),
doubleArrayOf( 1.0,  1.0, -1.0),
doubleArrayOf( 1.0,  1.0,  1.0)
)
private val edges = arrayOf(
intArrayOf(0, 1),
intArrayOf(1, 3),
intArrayOf(3, 2),
intArrayOf(2, 0),
intArrayOf(4, 5),
intArrayOf(5, 7),
intArrayOf(7, 6),
intArrayOf(6, 4),
intArrayOf(0, 4),
intArrayOf(1, 5),
intArrayOf(2, 6),
intArrayOf(3, 7)
)

private var mouseX: Int = 0
private var prevMouseX: Int = 0
private var mouseY: Int = 0
private var prevMouseY: Int = 0

init {
preferredSize = Dimension(640, 640)
background = Color.white
scale(80.0, 120.0, 160.0)
rotateCube(Math.PI / 5.0, Math.PI / 9.0)
override fun mousePressed(e: MouseEvent) {
mouseX = e.x
mouseY = e.y
}
})

override fun mouseDragged(e: MouseEvent) {
prevMouseX = mouseX
prevMouseY = mouseY
mouseX = e.x
mouseY = e.y
val incrX = (mouseX - prevMouseX) * 0.01
val incrY = (mouseY - prevMouseY) * 0.01
rotateCube(incrX, incrY)
repaint()
}
})
}

private fun scale(sx: Double, sy: Double, sz: Double) {
for (node in nodes) {
node[0] *= sx
node[1] *= sy
node[2] *= sz
}
}

private fun rotateCube(angleX: Double, angleY: Double) {
val sinX = Math.sin(angleX)
val cosX = Math.cos(angleX)
val sinY = Math.sin(angleY)
val cosY = Math.cos(angleY)
for (node in nodes) {
val x = node[0]
val y = node[1]
var z = node[2]
node[0] = x * cosX - z * sinX
node[2] = z * cosX + x * sinX
z = node[2]
node[1] = y * cosY - z * sinY
node[2] = z * cosY + y * sinY
}
}

private fun drawCube(g: Graphics2D) {
g.translate(width / 2, height / 2)
for (edge in edges) {
val xy1 = nodes[edge[0]]
val xy2 = nodes[edge[1]]
g.drawLine(Math.round(xy1[0]).toInt(), Math.round(xy1[1]).toInt(),
Math.round(xy2[0]).toInt(), Math.round(xy2[1]).toInt())
}
for (node in nodes) {
g.fillOval(Math.round(node[0]).toInt() - 4, Math.round(node[1]).toInt() - 4, 8, 8)
}
}

override public fun paintComponent(gg: Graphics) {
super.paintComponent(gg)
val g = gg as Graphics2D
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON)
g.color = Color.blue
drawCube(g)
}
}

fun main(args: Array<String>) {
SwingUtilities.invokeLater {
val f = JFrame()
f.defaultCloseOperation = JFrame.EXIT_ON_CLOSE
f.title = "Cuboid"
f.isResizable = false
f.pack()
f.setLocationRelativeTo(null)
f.isVisible = true
}
}

## Liberty BASIC

Text solution

Call cuboid 1,3,4

End

Sub cuboid width, height, depth
wd=width*7+2: hi=height*3: dp=depth
For i=1 To wd-2
w\$=w\$+"-":h\$=h\$+" "
Next
w\$="+"+w\$+"+":d\$="/"+h\$+"/":h\$="|"+h\$+"|"
px=dp+2:py=1:Locate dp+2,py:Print w\$;
For i=2 To hi+1
Locate wd+dp+1,i:Print"|";
Next
Locate wd+dp+1, i: Print "+";
For i=dp+1 To 1 Step -1
py=py+1:Locate i,py:Print d\$;
Next
For i=1 To dp
Locate wd+(dp+1)-i,hi+d+2+i:Print "/";
Next
Locate 1, dp+2: Print w\$;
For i=dp+3 To hi+dp+2
Locate 1,i:Print h\$;
Next
Locate 1, dp+hi+3: Print w\$
End Sub

{{Out}}

+-------+
/       /|
/       / |
/       /  |
/       /   |
+-------+    |
|       |    |
|       |    |
|       |    |
|       |    |
|       |    +
|       |   /
|       |  /
|       | /
|       |/
+-------+

Graphic solution

NoMainWin
Global sw, sh
sw = 400: sh = 400
WindowWidth = sw+6
WindowHeight= sh+32
Open "[RC] Draw Cuboid" For graphics_nsb_nf As #g
#g "Down; Fill black; TrapClose [xit]"
#g "when leftButtonDown [xit]"

Call drawCuboid 3,4,5

Wait

[xit]
Close #g
End

Sub drawCuboid width, height, depth
wd = width*50
ht = height*50
dp = depth*20
sx = Int((sw-(wd+dp))/2)
sy = Int((sh-(ht-dp))/2)
#g "Color 0 128 255; BackColor 0 128 255"
#g "Place ";sx;" ";sy
#g "boxFilled ";sx+wd;" ";sy+ht
x1 = sx+dp : y1 = sy-dp
x2 = x1+wd-1 : y2 = y1+1
#g "Color 0 64 128"
Call triFill sx,sy, x1,y1, x2,y2
Call triFill sx,sy, x2,y2, sx+wd, sy
#g "Color 0 96 192"
x3 = x2: y3 = y2+ht
Call triFill x2,y2, x3,y3, sx+wd-1, sy+ht-1
Call triFill x2,y2, sx+wd-1, sy+ht-1, sx+wd-1, sy
#g "Color white;BackColor black;Place 5 20"
#g "\Size: ";width;", ";height;", ";depth
End Sub

Sub triFill x1,y1, x2,y2, x3,y3
If x2<x1 Then x=x2: y=y2: x2=x1: y2=y1: x1=x: y1=y
If x3<x1 Then x=x3: y=y3: x3=x1: y3=y1: x1=x: y1=y
If x3<x2 Then x=x3: y=y3: x3=x2: y3=y2: x2=x: y2=y
If x1<>x3 Then slope1=(y3-y1)/(x3-x1)
length=x2-x1
If length<>0 Then
slope2=(y2-y1)/(x2-x1)
For x = 0 To length
#g "Line ";Int(x+x1);" ";Int(x*slope1+y1);" ";Int(x+x1);" ";Int(x*slope2+y1)
Next
End If
y = length*slope1+y1 :length=x3-x2
If length<>0 Then
slope3=(y3-y2)/(x3-x2)
For x = 0 To length
#g "Line ";Int(x+x2);" ";Int(x*slope1+y);" ";Int(x+x2);" ";Int(x*slope3+y2)
Next
End If
End Sub

In Logo, we can use the ''perspective'' function to make drawing 3D-objects easier. {{works with|MSWlogo}} Simple implementation, just moving to the appropriate points every time.

to cuboid :l1 :l2 :l3
cs perspective ;making the room ready to use
setxyz :l1   0    0
setxyz :l1 :l2    0
setxyz   0 :l2    0
setxyz   0   0    0
setxyz :l1   0    0
setxyz :l1   0 -:l3
setxyz :l1 :l2 -:l3
setxyz :l1 :l2    0
setxyz   0 :l2    0
setxyz   0 :l2 -:l3
setxyz :l1 :l2 -:l3
end

## LSL

Rez a box on the ground, raise it up a few meters, add the following as a New Script.

```LSL
vector vSCALE = <2.0, 3.0, 4.0>;
default {
state_entry() {
llSetScale(vSCALE);
}
}

{{Out}} ''Ahhhhh; I always wondered what a Cuboid looked like, now I know!'' :)

[[File:Draw_A_Cuboid_LSL.jpg|200px|Draw a Cuboid]]

A Cuboid in a Sandbox.

## Maple

This creates a cuboid with one corner at (0,0,0) and the opposite at (2,3,4):

plots:-display(plottools:-parallelepiped([2, 0, 0], [0, 0, 4], [0, 3, 0]), orientation = [45, 60])

=={{header|Mathematica}} / {{header|Wolfram Language}}== This creates a cuboid with one corner at (0,0,0) and the opposite at (2,3,4):

Graphics3D[Cuboid[{0,0,0},{2,3,4}]]

Output would be fully-rendered, rotatable 3D in the notebook. Also, many aspects of the cuboid's appearance and lighting can be controlled quite easily. For those, see Mathematica's documentation in the program or on the web.

## Maxima

draw3d(xu_grid=100, yv_grid=100, surface_hide=true,
palette=gray, enhanced3d=[x - z / 4 - y / 4, x, y, z],
implicit(max(abs(x / 4), abs(y / 6), abs(z / 8)) = 1,
x,-10,10,y,-10,10,z,-10,10))\$

## Nim

{{trans|PicoLisp}}

import strutils

proc cline(n, x, y: int, cde: string) =
echo cde[0..0].align n+1,
repeatChar(9*x-1, cde[1]),
cde[0], cde[2..2].align y+1

proc cuboid(x, y, z: int) =
cline y+1, x, 0, "+-"
for i in 1..y: cline y-i+1, x, i-1, "/ |"
cline 0, x, y, "+-|"
for i in 0..4*z-y-3: cline 0, x, y, "| |"
cline 0, x, y, "| +"
for i in countdown(y-1, 0): cline 0, x, i, "| /"
cline 0, x, 0, "+-\n"

cuboid 2, 3, 4
cuboid 1, 1, 1
cuboid 6, 2, 1

{{Out}}

+-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+

Drawing a cuboid is easy in openscad:

// This will produce a simple cuboid
cube([2,3,4]);

## PARI/GP

[[File:Cuboid1.png|right|thumb|Output Cuboid1.png]] [[File:Cuboid2.png|right|thumb|Output Cuboid2.png]] Plotting lines and scaling in PARI/GP is not designed for "cuboids". But you are welcome to play with parameters of this Cuboid() function.

{{Works with|PARI/GP|2.7.4 and above}}

\\ Simple "cuboid". Try different parameters of this Cuboid() function.
\\ 4/11/16 aev
Cuboid(a,b,c,u=10)={
my(dx,dy,ttl="Cuboid AxBxC: ",size=200,da=a*u,db=b*u,dc=c*u);
print(" *** ",ttl,a,"x",b,"x",c,"; u=",u);
plotinit(0);
plotscale(0, 0,size, 0,size);
plotcolor(0,7); \\grey
plotmove(0, 0,0);
plotrline(0,dc,da\2); plotrline(0,db,0); plotrline(0,-db,0);
plotrline(0,0,da);
plotcolor(0,2); \\black
plotmove(0, db,da);
plotrline(0,0,-da); plotrline(0,-db,0);
plotrline(0,0,da); plotrline(0,db,0);
plotrline(0,dc,da\2); plotrline(0,-db,0); plotrline(0,-dc,-da\2);
plotmove(0, db,0);
plotrline(0,dc,da\2); plotrline(0,0,da);
plotdraw([0,size,size]);
}

{\\ Executing:
Cuboid(2,3,4,20); \\Cuboid1.png
Cuboid(5,3,1,20); \\Cuboid2.png
}

{{Output}}

> Cuboid(2,3,4,20); \\Cuboid1.png
*** Cuboid AxBxC: 2x3x4; u=20
> Cuboid(5,3,1,20); \\Cuboid2.png
*** Cuboid AxBxC: 5x3x1; u=20

## Pascal

program Cuboid_Demo(output);

procedure DoCuboid(sWidth, sHeight, Depth: integer);
const
widthScale  = 4;
heightScale = 3;
type
TPage = array of array of char;
var
Cuboid: TPage;
i, j: integer;
Width, Height: integer;
totalWidth, totalHeight: integer;
begin
Width  := widthScale  * sWidth;
Height := heightScale * sHeight;
totalWidth  := 2 * Width + Depth + 3;
totalHeight := Height + Depth + 3;
setlength (Cuboid, totalHeight + 1);
for i := 1 to totalHeight do
setlength (Cuboid[i], totalwidth + 1);
// points
for i := low(Cuboid) to high(Cuboid) do
for j := low(Cuboid[i]) to high(Cuboid[i]) do
Cuboid[i,j] := ' ';
Cuboid [1, 1]                      := '+';
Cuboid [Height + 2, 1]             := '+';
Cuboid [1, 2 * Width + 2]          := '+';
Cuboid [Height + 2, 2 * Width + 2] := '+';
Cuboid [totalHeight, Depth + 2]    := '+';
Cuboid [Depth + 2, totalWidth]     := '+';
Cuboid [totalHeight, totalWidth]   := '+';
// width lines
for I := 1 to 2 * Width do
begin
Cuboid [1, I + 1]                   := '-';
Cuboid [Height + 2, I + 1]          := '-';
Cuboid [totalHeight, Depth + I + 2] := '-';
end;
// height lines
for I := 1 to Height do
begin
Cuboid [I + 1, 1]                  := '|';
Cuboid [I + 1, 2 * Width + 2]      := '|';
Cuboid [Depth + I + 2, totalWidth] := '|';
end;
// depth lines
for I := 1 to Depth do
begin
Cuboid [Height + 2 + I, 1 + I]             := '/';
Cuboid [1 + I, 2 * Width + 2 + I]          := '/';
Cuboid [Height + 2 + I, 2 * Width + 2 + I] := '/';
end;
for i := high(Cuboid) downto 1 do
begin
for j := 1 to high(Cuboid[i]) do
write (Cuboid[i,j]);
writeln;
end;
end;

begin
writeln('1, 1, 1:');
DoCuboid(1, 1, 1);
writeln('2, 3, 4:');
DoCuboid(2, 3, 4);
writeln('6, 2, 1:');
DoCuboid(6, 2, 1);
end.

{{Out}}

% ./Cuboid
1, 1, 1:
+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+
2, 3, 4:
+----------------+
/                /|
/                / |
/                /  |
/                /   |
+----------------+    |
|                |    |
|                |    |
|                |    |
|                |    |
|                |    +
|                |   /
|                |  /
|                | /
|                |/
+----------------+
6, 2, 1:
+------------------------------------------------+
/                                                /|
+------------------------------------------------+ |
|                                                | |
|                                                | |
|                                                | |
|                                                | |
|                                                | +
|                                                |/
+------------------------------------------------+

## Perl

{{trans|Go}}

sub cubLine (\$\$\$\$) {
my (\$n, \$dx, \$dy, \$cde) = @_;

printf '%*s', \$n + 1, substr(\$cde, 0, 1);

for (my \$d = 9 * \$dx - 1 ; \$d > 0 ; --\$d) {
print substr(\$cde, 1, 1);
}

print substr(\$cde, 0, 1);
printf "%*s\n", \$dy + 1, substr(\$cde, 2, 1);
}

sub cuboid (\$\$\$) {
my (\$dx, \$dy, \$dz) = @_;

printf "cuboid %d %d %d:\n", \$dx, \$dy, \$dz;
cubLine \$dy + 1, \$dx, 0, '+-';

for (my \$i = 1 ; \$i <= \$dy ; ++\$i) {
cubLine \$dy - \$i + 1, \$dx, \$i - 1, '/ |';
}
cubLine 0, \$dx, \$dy, '+-|';

for (my \$i = 4 * \$dz - \$dy - 2 ; \$i > 0 ; --\$i) {
cubLine 0, \$dx, \$dy, '| |';
}
cubLine 0, \$dx, \$dy, '| +';

for (my \$i = 1 ; \$i <= \$dy ; ++\$i) {
cubLine 0, \$dx, \$dy - \$i, '| /';
}
cubLine 0, \$dx, 0, "+-\n";
}

cuboid 2, 3, 4;
cuboid 1, 1, 1;
cuboid 6, 2, 1;

{{Out}}

cuboid 2 3 4:
+-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

cuboid 1 1 1:
+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

cuboid 6 2 1:
+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+

'''ASCII Art'''

use 5.010;

# usage: script X Y Z [S]

sub cuboid {

# Constant dimnesions of the cuboid
my (\$x, \$y, \$z) = map int, @_[0 .. 2];

# ASCII characters
# \$c = corner point
# \$h = horizontal line
# \$v = vertical line
# \$d = diagonal line
# \$s = space (inside the cuboid)
my (\$c, \$h, \$v, \$d, \$s) = ('+', '-', '|', '/', shift(@ARGV) // q{ });

say q{ } x (\$z + 1), \$c, \$h x \$x, \$c;
say q{ } x (\$z - \$_ + 1), \$d, \$s x \$x, \$d, \$s x (\$_ - (\$_ > \$y ? (\$_ - \$y) : 1)),
\$_ - 1 == \$y ? \$c : \$_ > \$y ? \$d : \$v for 1 .. \$z;
say \$c, \$h x \$x, \$c, (\$s x (\$z < \$y ? \$z : \$y), \$z < \$y ? \$v : \$z == \$y ? \$c : \$d);
say \$v, \$s x \$x, \$v, \$z > \$y ? \$_ >= \$z ? (\$s x \$x, \$c) : (\$s x (\$y - \$_), \$d)
: \$y - \$_ > \$z ? (\$s x \$z, \$v) : (\$s x (\$y - \$_), \$y - \$_ == \$z ? \$c : \$d) for 1 .. \$y;
say \$c, \$h x \$x, \$c;
}

cuboid shift // rand 20, shift // rand 10, shift // rand 10;

Cuboid(2,3,4)

+--+
/  /|
/  / |
/  /  |
/  /   +
+--+   /
|  |  /
|  | /
|  |/
+--+

## Perl 6

{{works with|moar|2015-11-27}}

sub braille-graphics (%a) {
my (\$ylo, \$yhi, \$xlo, \$xhi);
for %a.keys -> \$y {
\$ylo min= +\$y; \$yhi max= +\$y;
for %a{\$y}.keys -> \$x {
\$xlo min= +\$x; \$xhi max= +\$x;
}
}

for \$ylo, \$ylo + 4 ...^ * > \$yhi -> \y {
for \$xlo, \$xlo + 2 ...^ * > \$xhi -> \x {
my \$cell = 0x2800;
\$cell += 1   if %a{y + 0}{x + 0};
\$cell += 2   if %a{y + 1}{x + 0};
\$cell += 4   if %a{y + 2}{x + 0};
\$cell += 8   if %a{y + 0}{x + 1};
\$cell += 16  if %a{y + 1}{x + 1};
\$cell += 32  if %a{y + 2}{x + 1};
\$cell += 64  if %a{y + 3}{x + 0};
\$cell += 128 if %a{y + 3}{x + 1};
print chr(\$cell);
}
print "\n";
}
}

sub cuboid ( [\$x, \$y, \$z] ) {
my \x = \$x * 4;
my \y = \$y * 4;
my \z = \$z * 2;
my %t;
sub horz (\$X, \$Y) { %t{\$Y     }{\$X + \$_} = True for 0 .. x }
sub vert (\$X, \$Y) { %t{\$Y + \$_}{\$X     } = True for 0 .. y }
sub diag (\$X, \$Y) { %t{\$Y - \$_}{\$X + \$_} = True for 0 .. z }

horz(0, z); horz(z, 0); horz(  0, z+y);
vert(0, z); vert(x, z); vert(z+x,   0);
diag(0, z); diag(x, z); diag(  x, z+y);

say "[\$x, \$y, \$z]";
braille-graphics %t;
}

cuboid \$_ for [2,3,4], [3,4,2], [4,2,3], [1,1,1], [8,1,1], [1,8,1], [1,1,8];

{{out}} [[File:Cuboid_Perl_6.png]]

## Phix

Press space to toggle auto-rotate on and off, cursor keys to rotate manually, and +/- to zoom in/out. Simple orthogonal projection, no perspective. [[File:CuboidXPL0.gif|right]]

--
-- demo\rosetta\draw_cuboid.exw
--
include pGUI.e

Ihandle dlg, canvas, hTimer
cdCanvas cd_canvas

-- arrays: 3D coordinates of vertices
sequence x = {-2.0, +2.0, +2.0, -2.0,  -2.0, +2.0, +2.0, -2.0},
y = {-1.5, -1.5, +1.5, +1.5,  -1.5, -1.5, +1.5, +1.5},
z = {-1.0, -1.0, -1.0, -1.0,  +1.0, +1.0, +1.0, +1.0},
Segment = {1,2, 2,3, 3,4, 4,1, 5,6, 6,7, 7,8, 8,5, 1,5, 2,6, 3,7, 4,8}

atom Size = 50.0,       -- drawing size
Sz = 0.008,        -- tumbling speeds
Sx =-0.013,        -- ""
Sy =-0.013,        -- ""
S = 2

procedure draw_cube(integer wx, wh)
atom farthest = 0.0             -- find the farthest vertex
integer farv, v1, v2, c, style
for i=1 to 8 do
if z[i]>farthest then farthest = z[i]  farv = i end if
end for
for v=1 to 2*12 by 2 do         -- for all the vertices...
v1 = Segment[v]             -- get vertex number
v2 = Segment[v+1]
c = CD_RED
style = CD_CONTINUOUS
if v1=farv or v2=farv then
c = CD_BLUE
style = CD_DASHED
end if
cdCanvasSetForeground(cd_canvas, c)
cdCanvasLineStyle(cd_canvas, style)
atom x1 = x[v1]*Size+wx,
y1 = y[v1]*Size+wh,
x2 = x[v2]*Size+wx,
y2 = y[v2]*Size+wh
cdCanvasLine(cd_canvas,x1,y1,x2,y2)
end for
end procedure

function canvas_action_cb(Ihandle canvas)
cdCanvasActivate(cd_canvas)
cdCanvasClear(cd_canvas)
integer {wx, wh} = sq_floor_div(IupGetIntInt(canvas, "DRAWSIZE"),2)
draw_cube(wx,wh)
cdCanvasFlush(cd_canvas)
return IUP_DEFAULT
end function

function canvas_map_cb(Ihandle canvas)
atom res = IupGetDouble(NULL, "SCREENDPI")/25.4
IupGLMakeCurrent(canvas)
cd_canvas = cdCreateCanvas(CD_GL, "10x10 %g", {res})
cdCanvasSetBackground(cd_canvas, CD_BLACK)
return IUP_DEFAULT
end function

function canvas_unmap_cb(Ihandle canvas)
cdKillCanvas(cd_canvas)
return IUP_DEFAULT
end function

function canvas_resize_cb(Ihandle /*canvas*/)
integer {canvas_width, canvas_height} = IupGetIntInt(canvas, "DRAWSIZE")
atom res = IupGetDouble(NULL, "SCREENDPI")/25.4
cdCanvasSetAttribute(cd_canvas, "SIZE", "%dx%d %g", {canvas_width, canvas_height, res})
return IUP_DEFAULT
end function

function k_any(Ihandle /*ih*/, atom c)
if c=K_ESC then
return IUP_CLOSE
elsif c=K_UP then
for i=1 to 8 do
y[i] = y[i]+z[i]*Sx*S   -- rotate vertices in Y-Z plane
z[i] = z[i]-y[i]*Sx*S
end for
elsif c=K_DOWN then
for i=1 to 8 do
y[i] = y[i]-z[i]*Sx*S   -- rotate vertices in Y-Z plane
z[i] = z[i]+y[i]*Sx*S
end for
elsif c=K_LEFT then
for i=1 to 8 do
x[i] = x[i]+z[i]*Sy*S   -- rotate vertices in X-Z plane
z[i] = z[i]-x[i]*Sy*S
end for
elsif c=K_RIGHT then
for i=1 to 8 do
x[i] = x[i]-z[i]*Sy*S   -- rotate vertices in X-Z plane
z[i] = z[i]+x[i]*Sy*S
end for
elsif c='+' then
Size += 5
elsif c='-' then
Size = max(10,Size-5)
elsif c=' ' then
IupSetInt(hTimer,"RUN",not IupGetInt(hTimer,"RUN"))
end if
IupRedraw(canvas)
return IUP_CONTINUE
end function

function timer_cb(Ihandle /*ih*/)
for i=1 to 8 do
x[i] = x[i]+y[i]*Sz*S   -- rotate vertices in X-Y plane
y[i] = y[i]-x[i]*Sz*S
y[i] = y[i]+z[i]*Sx*S   -- rotate vertices in Y-Z plane
z[i] = z[i]-y[i]*Sx*S
x[i] = x[i]+z[i]*Sy*S   -- rotate vertices in X-Z plane
z[i] = z[i]-x[i]*Sy*S
end for
IupUpdate(canvas)
return IUP_IGNORE
end function

procedure main()
IupOpen()
IupImageLibOpen()
canvas = IupGLCanvas()
IupSetAttribute(canvas, "RASTERSIZE", "640x480")
IupSetCallback(canvas, "ACTION", Icallback("canvas_action_cb"))
IupSetCallback(canvas, "MAP_CB", Icallback("canvas_map_cb"))
IupSetCallback(canvas, "UNMAP_CB", Icallback("canvas_unmap_cb"))
IupSetCallback(canvas, "RESIZE_CB", Icallback("canvas_resize_cb"))
dlg = IupDialog(IupVbox({canvas}))
IupSetAttribute(dlg, "TITLE", "Draw Cuboid")
IupSetCallback(dlg, "K_ANY",  Icallback("k_any"))
IupShow(dlg)
IupSetAttribute(canvas, "RASTERSIZE", NULL)
hTimer = IupTimer(Icallback("timer_cb"), 40)

IupMainLoop()
IupClose()
end procedure
main()

### ascii

Two versions: the first uses a complete/rectangular grid and outputs at the end, whereas the second uses a slightly trickier line-by-line approach.

function draw_line(sequence res, integer x,y,dx,dy,len,c)
string line = '+'&repeat(c,len-2)&'+'
for i=1 to len do
res[y,x] = line[i]
y += dy; x += dx
end for
return res
end function

procedure ascii_cuboid(integer x,y,z)
sequence res = repeat(repeat(' ',x+z+3),y+z+3)
res = draw_line(res,    1,  z+2,+1,-1,z+2,'/')
res = draw_line(res,  x+2,  z+2,+1,-1,z+2,'/')
res = draw_line(res,  x+2,y+z+3,+1,-1,z+2,'/')
res = draw_line(res,    1,  z+2, 0,+1,y+2,'|')
res = draw_line(res,  x+2,  z+2, 0,+1,y+2,'|')
res = draw_line(res,x+z+3,    1, 0,+1,y+2,'|')
res = draw_line(res,  z+2,    1,+1, 0,x+2,'-')
res = draw_line(res,    1,  z+2,+1, 0,x+2,'-')
res = draw_line(res,    1,y+z+3,+1, 0,x+2,'-')
printf(1,"%s\n",{join(res,"\n")})
end procedure
ascii_cuboid(0,0,0)
ascii_cuboid(1,1,1)
ascii_cuboid(2,1,2)
ascii_cuboid(3,2,1)

{{out}}

++
+++
++
+-+
/ /|
+-+ +
| |/
+-+
+--+
/  /|
/  / +
+--+ /
|  |/
+--+
+---+
/   /|
+---+ |
|   | +
|   |/
+---+

And as promised a line-by-line solution. Same output.

procedure cuboid(integer x,y,z)
--
--                                        +-+   -- 1) (with x -)
--                                       / /|   -- 2) (times z)
--  Output an x by y by z cube such as  +-+ +   -- 3) (with x -)
--                                      | |/    -- 4) (times y)
--                                      +-+     -- 5) (with x -)
--
--  Nb: trailing '+' shown on stage 3 can occur higher or lower.
--
integer mn = min(y,z)+1, mx = max(y,z)+1,
stage = 1, -- (1..5 as above)
pre = z+1, pad = -1, last = 1
for l=1 to y+z+3 do
integer c = "+/+|+"[stage]   -- (front/top corner/edge)
puts(1,repeat(' ',pre)&c&repeat(iff(c='+'?'-':' '),x)&c&
pre -= pre>0   -- (shrink the initial lhs space prefix)
pad += (l<=mn)-(l>mx) -- +1 early on, -1 later, or both
stage += (c='+') + (l=z+1 or l=y+z+2) -- (can skip 2&4)
last += (last=2 or l=y+1 or l=y+z+2) -- ('|'->'+'->'/')
end for
end procedure
cuboid(0, 0, 0)
cuboid(1, 1, 1)
cuboid(2, 1, 2)
cuboid(3, 2, 1)

## PicoLisp

### Using ASCII

(de cuboid (DX DY DZ)
(cubLine (inc DY) "+" DX "-" 0)
(for I DY
(cubLine (- DY I -1) "/" DX " " (dec I) "|") )
(cubLine 0 "+" DX "-" DY "|")
(do (- (* 4 DZ) DY 2)
(cubLine 0 "|" DX " " DY "|") )
(cubLine 0 "|" DX " " DY "+")
(for I DY
(cubLine 0 "|" DX " " (- DY I) "/") )
(cubLine 0 "+" DX "-" 0) )

(de cubLine (N C DX D DY E)
(space N)
(prin C)
(do (dec (* 9 DX)) (prin D))
(prin C)
(space DY)
(prinl E) )

{{Out}}

: (cuboid 2 3 4)
+-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

: (cuboid 1 1 1)
+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

: (cuboid 6 2 1)
+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+

### Using OpenGL

(setq *AngleX -26.0 *AngleY 74.0)
(setq *LastX 0 *LastY 0)

(glutInit)
(glutInitDisplayMode (| GLUT_RGBA GLUT_DOUBLE GLUT_DEPTH))
(glutInitWindowSize 512 512)
(glutInitWindowPosition 10 50)
(glutCreateWindow "PicoLisp Cube")

(glClearColor 1.0 1.0 1.0 1.0)	# The background color
(glEnable GL_DEPTH_TEST)
(glEnable GL_LIGHTING)
(glEnable GL_LIGHT0)
(glDisable GL_CULL_FACE)

(glEnable GL_BLEND)
(glBlendFunc GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA)
(glEnable GL_LINE_SMOOTH)
(glHint GL_LINE_SMOOTH_HINT GL_NICEST)
(glLineWidth 2.0)

(mouseFunc
'((Btn State X Y)
(setq *LastX X  *LastY Y) ) )

(motionFunc
'((X Y)
(inc '*AngleX (* (- Y *LastY) 1.0))
(inc '*AngleY (* (- X *LastX) 1.0))
(setq *LastX X  *LastY Y)
(glutPostRedisplay) ) )

(reshapeFunc
'((Width Height)
(glMatrixMode GL_PROJECTION)
(gluPerspective 45.0 (*/ Width 1.0 Height) 1.0 10.0)
(glMatrixMode GL_MODELVIEW)
(glViewport 0 0 Width Height) ) )

(displayPrg
(glClear (| GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT))
(glTranslatef 0.0 0.0 -3.0)
(glRotatef *AngleX 1 0 0)
(glRotatef *AngleY 0 1 0)
(glutSolidCube 1.0)

(glDisable GL_LIGHTING)
(glColor4f 0.4 0.4 0.4 1.0)
(glutWireCube 1.002)
(glEnable GL_LIGHTING)

(glFlush)
(glutSwapBuffers) )

(glutMainLoop)

=={{header|POV-Ray}}== camera { perspective location <2.6,2.2,-4.2> look_at <0,-.5,0> aperture .05 blur_samples 100 variance 1/100000 focal_point <2,1,-2>}

light_source{< 60,20,-20> color rgb 2}

sky_sphere { pigment{ gradient z color_map{[0 rgb 0.3][.1 rgb <.7,.8,1>][1 rgb .2]} }}

box { <0,0,0> <3,2,4> texture { pigment{ agate } normal { checker } finish { reflection {0.20 metallic 0.2} } } translate <-1,-.5,-2> }

[[FILE:PovRay-cuboid.jpg‎]]

## Prolog

Works with SWI-Prolog and XPCE.

```Prolog
cuboid(D1,D2,D3) :-
W is D1 * 50,
H is D2 * 50,
D is D3 * 50,

new(C, window(cuboid)),

% compute the size of the window
Width is W + ceiling(sqrt(H * 48)) + 50,
Height is H +  ceiling(sqrt(H * 48)) + 50,
send(C, size, new(_,size(Width,Height))),

%compute the top-left corner of the front face of the cuboid
PX is 25,
PY is 25 + ceiling(sqrt(H * 48)),

% colors of the faces
new(C1, colour(@default, 65535, 0, 0)),
new(C2, colour(@default, 0, 65535, 0)),
new(C3, colour(@default, 0, 0, 65535)),

% the front face
new(B1, box(W, H)),
send(B1, fill_pattern, C1),
send(C, display,B1, point(PX, PY)),

% the top face
new(B2, hpara(point(PX,PY), W, D, C2)),
send(C, display, B2),

% the left face
PX1 is PX + W,
new(B3, vpara(point(PX1,PY), H, D, C3)),
send(C, display, B3),

send(C, open).

:- pce_begin_class(hpara, path, "drawing of a horizontal parallelogram").

initialise(P, Pos, Width, Height, Color) :->
send(P, send_super, initialise),
send(P, append, Pos),
H is ceiling(sqrt(Height * 48)),
get(Pos, x, X),
get(Pos, y, Y),
X1 is X + H,
Y1 is Y - H,
send(P, append, point(X1, Y1)),
X2 is X1 + Width,
send(P, append, point(X2, Y1)),
X3 is X2 - H,
send(P, append, point(X3, Pos?y)),
send(P, append, Pos),
send(P, fill_pattern, Color).

:- pce_end_class.

:- pce_begin_class(vpara, path, "drawing of a vertical parallelogram").

initialise(P, Pos, Height, Depth, Color) :->
send(P, send_super, initialise),
send(P, append, Pos),
H is ceiling(sqrt(Depth * 48)),
get(Pos, x, X),
get(Pos, y, Y),
X1 is X + H,
Y1 is Y - H,
send(P, append, point(X1, Y1)),
Y2 is Y1 + Height,
send(P, append, point(X1, Y2)),
Y3 is Y2 + H,
send(P, append, point(X, Y3)),
send(P, append, Pos),
send(P, fill_pattern, Color).

:- pce_end_class.

{{Out}}

?- cuboid(2,3,4).
true.

[[FILE:Prolog-Cuboid.png‎]]

## Pure Data

Requires Gem

#N canvas 1 51 450 300 10;
#X obj 66 67 gemwin;
#X obj 239 148 cuboid 2 3 4;
#X obj 239 68 scale 0.3;
#X msg 66 45 lighting 1 \, create \, 1;
#X obj 61 140 world_light;
#X msg 294 90 1;
#X obj 239 90 t a b;
#X obj 239 118 accumrotate;
#X connect 2 0 3 0;
#X connect 3 0 8 0;
#X connect 4 0 0 0;
#X connect 5 0 6 0;
#X connect 7 0 9 1;
#X connect 7 0 9 2;
#X connect 7 0 9 3;
#X connect 8 0 9 0;
#X connect 8 1 7 0;
#X connect 9 0 1 0;

Displays a rotating cuboid.

[[FILE:PureData-cuboid.png‎]]

## Python

===Ascii-Art===

def _pr(t, x, y, z):
txt = '\n'.join(''.join(t[(n,m)] for n in range(3+x+z)).rstrip()
for m in reversed(range(3+y+z)))
return txt

def cuboid(x,y,z):
t = {(n,m):' ' for n in range(3+x+z) for m in range(3+y+z)}
xrow = ['+'] + ['%i' % (i % 10) for i in range(x)] + ['+']
for i,ch in enumerate(xrow):
t[(i,0)] = t[(i,1+y)] = t[(1+z+i,2+y+z)] = ch
if _debug: print(_pr(t, x, y, z))
ycol = ['+'] + ['%i' % (j % 10) for j in range(y)] + ['+']
for j,ch in enumerate(ycol):
t[(0,j)] = t[(x+1,j)] = t[(2+x+z,1+z+j)] = ch
zdepth = ['+'] + ['%i' % (k % 10) for k in range(z)] + ['+']
if _debug: print(_pr(t, x, y, z))
for k,ch in enumerate(zdepth):
t[(k,1+y+k)] = t[(1+x+k,1+y+k)] = t[(1+x+k,k)] = ch

return _pr(t, x, y, z)

_debug = False
if __name__ == '__main__':
for dim in ((2,3,4), (3,4,2), (4,2,3)):
print("CUBOID%r" % (dim,), cuboid(*dim), sep='\n')

{{Out}}

CUBOID(2, 3, 4)
+01+
3  32
2  2 1
1  1  0
0  0   +
+01+   3
2  2  2
1  1 1
0  00
+01+
CUBOID(3, 4, 2)
+012+
1   13
0   0 2
+012+  1
3   3  0
2   2  +
1   1 1
0   00
+012+
CUBOID(4, 2, 3)
+0123+
2    21
1    1 0
0    0  +
+0123+  2
1    1 1
0    00
+0123+

==={{libheader|VPython}}=== The cuboid (otherwise known as a "box" :) {{works with|Python|2.7.5}}

### =Short version=

from visual import *
mybox = box(pos=(0,0,0), length=4, height=2, width=3, axis=(-0.1,-0.1,0.1) )
scene.title = "VPython: cuboid"

### =Cuboid viewer=

This has a lot of extras around the cuboid, so you can rotate the box (stepwise and continous), change the background, color, transparancy, material, show infos about scene and object, plus a selfrunning demo-mode that cycles thru everything.

from __future__ import print_function, division
from visual import *
import itertools

title = "VPython: Draw a cuboid"
scene.title = title
print( "%s\n" % title )

msg = """
Drag with right mousebutton to rotate view.
Drag up+down with middle mousebutton to zoom.
Left mouseclick to show info.

Press x,X, y,Y, z,Z to rotate the box in single steps.
Press b, c,o,m to change background, color, opacity, material.
Press r,R to rotate, d,a for demo, automatic,  space to stop.
Press h to show this help,  ESC or q to quit.
"""

#...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

## Rotate one step per keypress:

def rotX(obj, a) :
obj.rotate( angle=a, axis=(1,0,0) )
def rotY(obj, a) :
obj.rotate( angle=a, axis=(0,1,0) )
def rotZ(obj, a) :
obj.rotate( angle=a, axis=(0,0,1) )

## Selection of background-colors:

bg_list = [color.gray(0.2), color.gray(0.4), color.gray(0.7), color.gray(0.9)]
bg = itertools.cycle(bg_list)
def backgr() :
b = next(bg)
print("BackgroundColor=",b)
scene.background = b

## Selection of colors:

col_list = [color.white, color.red,  color.orange, color.yellow,
color.green, color.blue, color.cyan,   color.magenta,
color.black]
col = itertools.cycle(col_list)
#c = col.next()
#c = next(col)
def paint(obj) :
c = next(col)
print("Color=",c)
obj.color = c

## Selection of opacity / transparancy :

opa_list = [1.0, 0.7, 0.5, 0.2]
opa = itertools.cycle(opa_list)
def solid(obj) :
o = next(opa)
print("opacity =",o)
obj.opacity = o

## Selection of materials:

mName_list = ["None",
"wood",
"rough",
"bricks",
"glass",
"earth",
"plastic",
"ice",
"diffuse",
"marble" ]
mat_list  = [ None,
materials.wood,
materials.rough,
materials.bricks,
materials.glass,
materials.earth,
materials.plastic,
materials.ice,
materials.diffuse,
materials.marble ]
mName = itertools.cycle(mName_list)
mat   = itertools.cycle(mat_list)
def surface(obj) :
mM = next(mat)
mN = next(mName)
print("Material:", mN)
obj.material = mM
obj.mat      = mN

## Selection for rotation-angle & axis :

rotAng_list = [ 0.0, 0.005, 0.0, -0.005 ]
rotDir_list = [ (1,0,0), (0,1,0), (0,0,1) ]

rotAng = itertools.cycle(rotAng_list)
rotDir = itertools.cycle(rotDir_list)

rotAn = next(rotAng)     # rotAn = 0.005
rotAx = next(rotDir)     # rotAx = (1,0,0)

def rotAngle() :
global rotAn
rotAn = next(rotAng)
print("RotateAngle=",rotAn)

def rotAxis() :
global rotAx
rotAx = next(rotDir)
print("RotateAxis=",rotAx)

## List of keypresses for demo:

#demoC_list = [ "h", "c", "a", "o", "m", "b" ]
demoCmd_list = "rcbr"+"robr"+"rmR_r?"
demoCmd = itertools.cycle(demoCmd_list)
def demoStep() :
k = next(demoCmd)
print("Demo:",k)
cmd(k)

#...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

def objCount():
n=0
for obj in scene.objects:
n=n+1
return n

def objInfo(obj) :
print( "\nObject:", obj )
print( "Pos:",  obj.pos,   "Size:", obj.size )
print( "Axis:", obj.axis,  "Up:",   obj.up )
print( "Color", obj.color, obj.opacity )
print( "Mat:",  obj.mat,   obj.material )

def sceneInfo(sc) :
print( "\nScene:",  sc )
print( ".width x height:",   sc.width, "x", sc.height )
print( ".range:",   sc.range, ".scale:", sc.scale )
print( ".center:",  sc.center )    # Camera
print( ".forward:", sc.forward, ".fov:", sc.fov )
print( "Mouse:",    sc.mouse.camera, "ray:", sc.mouse.ray )
print( ".ambient:", sc.ambient )
print( "Lights:",   sc.lights  )    # distant_light
print( "objects:", objCount(), scene.objects )

#...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

scene.width  = 600
scene.height = 400
scene.range  = 4
#scene.autocenter = True
#scene.background = color.gray(0.2)
scene.background = next(bg)

autoDemo = -1

print( msg )

## Create cuboid (aka "box") :

# c = box()     # using default-values --> cube
# c = box(pos=(0,0,0), length=4, height=2, width=3, axis=(-0.1,-0.1,0.1) )
##c  = box(pos =( 0.0, 0.0, 0.0 ),
##         size=( 4, 2, 3 ),            # L,H,W
##         axis=( 1.0, 0.0, 0.0 ),
##         up  =( 0.0, 1.0, 0.0 ),
##         color   = color.orange,
##         opacity = 1.0,
##         material= materials.marble
##         )
c  = box(pos =( 0.0, 0.0, 0.0 ),
size=( 4, 2, 3 ),            # L,H,W
axis=( 1.0, 0.0, 0.0 ),
up  =( 0.0, 1.0, 0.0 )
)
print("Box:", c)
paint(c)     # c.color    = color.red
solid(c)     # c.opacity  = 1.0
surface(c)   # c.material = materials.marble

rotX(c,0.4)         # rotate box, to bring three faces into view
rotY(c,0.6)

#sceneInfo(scene)
#objInfo(c)
print("\nPress 'a' to start auto-running demo.")

#...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

## Processing of input:

cCount = 0
def click():
global cCount
cCount=cCount+1
sceneInfo(scene)
objInfo(c)
scene.bind( 'click', click )

def keyInput():
key = scene.kb.getkey()
print( 'Key: "%s"' % key )

if ( (key == 'esc') or (key == 'q') ) :
print( "Bye!" )
exit(0)
else :
cmd(key)
scene.bind('keydown', keyInput)

def cmd(key):
global autoDemo
if (key == 'h') :  print( msg )
if (key == '?') :  print( msg )
if (key == 's') :  sceneInfo(scene)
if (key == 'i') :  objInfo(c)

if (key == 'x') :  rotX(c, 0.1)
if (key == 'X') :  rotX(c,-0.1)
if (key == 'y') :  rotY(c, 0.1)
if (key == 'Y') :  rotY(c,-0.1)
if (key == 'z') :  rotZ(c, 0.1)
if (key == 'Z') :  rotZ(c,-0.1)

if (key == 'c') :  paint(c)
if (key == 'o') :  solid(c)
if (key == 'm') :  surface(c)

if (key == 'b') :  backgr()
if (key == 'r') :  rotAngle()
if (key == 'R') :  rotAxis()
if (key == 'd') :  demoStep()
if (key == 'a') :  autoDemo = -autoDemo
if (key == 'A') :  autoDemo = -autoDemo
if (key == ' ') :  stop()

def stop() :
global autoDemo, rotAn
autoDemo = -1
while rotAn <> 0 :
rotAngle()
print("**Stop**")

r=100
t=0
while True:                 # Animation-loop
rate(50)
t = t+1
if rotAn != 0 :
c.rotate( angle=rotAn, axis=rotAx )

if t>=r :
t=0
if autoDemo>0 :
demoStep()

## PureBasic

Using generic PureBasic 2D-library.

Procedure Draw_a_Cuboid(Window, X,Y,Z)
w=WindowWidth(Window)
h=WindowHeight(Window)
diag.f=1.9
If Not (w And h): ProcedureReturn: EndIf
xscale.f = w/(x+z/diag)*0.98
yscale.f = h/(y+z/diag)*0.98
If xscale<yscale
Scale.f = xscale
Else
Scale = yscale
EndIf
x*Scale: Y*Scale: Z*Scale
CreateImage(0,w,h)
If StartDrawing(ImageOutput(0))
c= RGB(250, 40, 5)

;- Calculate the cones in the Cuboid
xk = w/50     : yk = h/50
x0 = Z/2 + xk : y0 = yk
x1 = x0 + X   : y1 = y0
x2 = xk       : y2 = y0 + Z/2
x3 = x2 + X   : y3 = y2
x4 = x2       : y4 = y2 + Y
x5 = x4 + X   : y5 = y4
x6 = x5 + Z/2 : y6 = y5 - Z/2

;- Draw it
LineXY(x0,y0,x1,y1,c)
LineXY(x0,y0,x2,y2,c)
LineXY(x2,y2,x3,y3,c)
LineXY(x1,y1,x3,y3,c)
LineXY(x2,y2,x4,y4,c)
LineXY(x4,y4,x5,y5,c)
LineXY(x5,y5,x4,y4,c)
LineXY(x5,y5,x6,y6,c)
LineXY(x5,y5,x3,y3,c)
LineXY(x6,y6,x1,y1,c)

;- Fill the areas
FillArea(x,y,-1,RGB(255, 0, 0))
FillArea(x,y-z/2,-1,RGB(0, 0, 255))
FillArea(x+z/2,y,-1,RGB(0, 255, 0))
StopDrawing()
EndIf
;- Update the graphic
EndProcedure

#title  = "PureBasic Cuboid"
MyWin = OpenWindow(#PB_Any, 0, 0, 200, 250, #title, #WFlags)

Repeat
WEvent = WaitWindowEvent()
If WEvent = #PB_Event_SizeWindow
Draw_a_Cuboid(MyWin, 2, 3, 4)
EndIf
Until WEvent = #PB_Event_CloseWindow

;-  Save the image?
UsePNGImageEncoder()
respons = MessageRequester("Question","Save the image?",#PB_MessageRequester_YesNo)
If respons=#PB_MessageRequester_Yes
SaveImage(0, SaveFileRequester("","","",0),#PB_ImagePlugin_PNG,9)
EndIf

[[Image:PB_Cuboid.png]]

## Racket

#lang racket/gui
(require sgl/gl)

; Macro to delimit and automatically end glBegin - glEnd contexts.
(define-syntax-rule (gl-begin-end Vertex-Mode statement ...)
(let () (glBegin Vertex-Mode) statement ... (glEnd)))

(define (resize w h)
(glViewport 0 0 w h))

(define (draw-opengl x y z)
(glClearColor 0.0 0.0 0.0 0.0)
(glEnable GL_DEPTH_TEST)
(glClear GL_COLOR_BUFFER_BIT)
(glClear GL_DEPTH_BUFFER_BIT)

(define max-axis (add1 (max x y z)))

(glMatrixMode GL_PROJECTION)
(glOrtho (/ (- max-axis) 2) max-axis (/ (- max-axis) 2) max-axis (/ (- max-axis) 2) max-axis)
(glMatrixMode GL_MODELVIEW)
(glRotatef -45 1.0 0.0 0.0)
(glRotatef 45 0.0 1.0 0.0)

(glColor3f 0 0 1)
(glVertex3d x 0.0 z)
(glVertex3d x y z)
(glVertex3d x y 0.0)
(glVertex3d x 0.0 0.0))
(glColor3f 1 0 0)
(glVertex3d x 0.0 0.0)
(glVertex3d x y 0.0)
(glVertex3d 0.0 y 0.0)
(glVertex3d 0.0 0.0 0.0))
(glColor3f 0 1 0)
(glVertex3d x y 0.0)
(glVertex3d x y z)
(glVertex3d 0.0 y z)
(glVertex3d 0.0 y 0.0)))

(define my-canvas%
(class* canvas% ()
(inherit with-gl-context swap-gl-buffers)
(init-field (x 2) (y 3) (z 4))

(define/override (on-paint)
(with-gl-context
(lambda ()
(draw-opengl x y z)
(swap-gl-buffers))))

(define/override (on-size width height)
(with-gl-context
(lambda ()
(resize width height))))

(super-instantiate () (style '(gl)))))

(define win (new frame% (label "Racket Draw a cuboid") (min-width 300) (min-height 300)))
(define gl  (new my-canvas% (parent win) (x 2) (y 3) (z 4)))

(send win show #t)

[[Image:Racket_cuboid.png]]

## Retro

3 elements d h w

: spaces  ( n- )  &space times ;
: ---     ( -  )  '+ putc @w 2 * [ '- putc ] times '+ putc ;
: ?       ( n- )  @h <> [ '| ] [ '+ ] if ;
: slice   ( n- )  '/ putc @w 2 * spaces '/ putc @d swap - dup spaces ? putc cr ;
: |...|/  ( -  )  @h [ '| putc @w 2 * spaces '| putc 1- spaces '/ putc cr ] iterd ;
: face    ( -  )
---    @w 1+ spaces '/ putc cr
|...|/
---    cr ;

: cuboid  ( whd- )
!d !h !w cr
@d 1+ spaces --- cr
@d [ dup spaces slice ] iterd
face ;

2 3 4 cuboid

{{Out}}

+----+
/    /|
/    / |
/    /  |
/    /   +
+----+   /
|    |  /
|    | /
|    |/
+----+

## REXX

/*REXX program displays a cuboid  (dimensions, if specified, must be positive integers).*/
parse arg x  y  z  indent .                      /*x, y, z:  dimensions and indentation.*/
x=p(x 2);  y=p(y 3);  z=p(z 4);  in=p(indent 0)  /*use the defaults if not specified.   */
pad=left('', in)                                 /*indentation must be non-negative.    */
call show  y+2  ,        ,     "+-"
do j=1  for y;   call show  y-j+2,     j-1,     "/ |"     ;       end  /*j*/
call show       ,     y  ,     "+-|"
do z-1;          call show       ,     y  ,     "| |"     ;       end  /*z-1*/
call show       ,     y  ,     "| +"
do j=1  for y;   call show       ,     y-j,     "| /"     ;       end  /*j*/
call show       ,        ,     "+-"
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
p:     return word( arg(1), 1)                   /*pick the first number or word in list*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
show:  parse arg #,\$,a 2 b 3 c 4                 /*get the arguments (or parts thereof).*/
say pad || right(a, p(# 1) )copies(b, 4*x)a || right(c, p(\$ 0) + 1);         return

'''output''' when using the input of: 2 3 4 35

+--------+
/        /|
/        / |
/        /  |
+--------+   |
|        |   |
|        |   |
|        |   |
|        |   +
|        |  /
|        | /
|        |/
+--------+

'''output''' when using the input of: 1 1 1

+----+
/    /|
+----+ |
|    | +
|    |/
+----+

'''output''' when using the input of: 6 2 1 25

+------------------------+
/                        /|
/                        / |
+------------------------+  |
|                        |  +
|                        | /
|                        |/
+------------------------+

## Ring

# Project : Draw a cuboid

paint = null

new qapp
{
win1 = new qwidget() {
setwindowtitle("Draw a cuboid")
setgeometry(100,100,500,600)
label1 = new qlabel(win1) {
setgeometry(10,10,400,400)
settext("")
}
new qpushbutton(win1) {
setgeometry(150,500,100,30)
settext("draw")
setclickevent("draw()")
}
show()
}
exec()
}

func draw
p1 = new qpicture()
color = new qcolor() {
setrgb(0,0,255,255)
}
pen = new qpen() {
setcolor(color)
setwidth(1)
}
paint = new qpainter() {
begin(p1)
setpen(pen)

color = new qcolor()
color.setrgb(255,0,0,255)
mybrush = new qbrush() {setstyle(1) setcolor(color)}
setbrush(mybrush)
paint.drawPolygon([[200,200],[300,200],[300,100],[200,100]], 0)
color = new qcolor()
color.setrgb(0,255,0,255)
mybrush = new qbrush() {setstyle(1) setcolor(color)}
setbrush(mybrush)
paint.drawPolygon([[200,100],[250,50],[350,50],[300,100]], 0)
color = new qcolor()
color.setrgb(0, 0, 255,255)
mybrush = new qbrush() {setstyle(1) setcolor(color)}
setbrush(mybrush)
paint.drawPolygon([[350,50],[350,150],[300,200],[300,100]], 0)

endpaint()
}
label1 { setpicture(p1) show() }
return

Output:

https://www.dropbox.com/s/bdew8ihhm0c79sd/DrawCuboid.jpg?dl=0

## Ruby

X, Y, Z = 6, 2, 3
DIR = {"-" => [1,0], "|" => [0,1], "/" => [1,1]}

def cuboid(nx, ny, nz)
puts "cuboid %d %d %d:" % [nx, ny, nz]
x, y, z = X*nx, Y*ny, Z*nz
area = Array.new(y+z+1){" " * (x+y+1)}
draw_line = lambda do |n, sx, sy, c|
dx, dy = DIR[c]
(n+1).times do |i|
xi, yi = sx+i*dx, sy+i*dy
area[yi][xi] = (area[yi][xi]==" " ? c : "+")
end
end
nz    .times {|i| draw_line[x,     0,   Z*i, "-"]}
(ny+1).times {|i| draw_line[x,   Y*i, z+Y*i, "-"]}
nx    .times {|i| draw_line[z,   X*i,     0, "|"]}
(ny+1).times {|i| draw_line[z, x+Y*i,   Y*i, "|"]}
nz    .times {|i| draw_line[y,     x,   Z*i, "/"]}
(nx+1).times {|i| draw_line[y,   X*i,     z, "/"]}
puts area.reverse
end

cuboid(2, 3, 4)
cuboid(1, 1, 1)
cuboid(6, 2, 1)
cuboid(2, 4, 1)

{{out}}

cuboid 2 3 4:
+-----+-----+
/     /     /|
+-----+-----+ |
/     /     /| +
+-----+-----+ |/|
/     /     /| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/
|     |     |/| +
+-----+-----+ |/
|     |     | +
|     |     |/
+-----+-----+
cuboid 1 1 1:
+-----+
/     /|
+-----+ |
|     | +
|     |/
+-----+
cuboid 6 2 1:
+-----+-----+-----+-----+-----+-----+
/     /     /     /     /     /     /|
+-----+-----+-----+-----+-----+-----+ |
/     /     /     /     /     /     /| +
+-----+-----+-----+-----+-----+-----+ |/
|     |     |     |     |     |     | +
|     |     |     |     |     |     |/
+-----+-----+-----+-----+-----+-----+
cuboid 2 4 1:
+-----+-----+
/     /     /|
+-----+-----+ |
/     /     /| +
+-----+-----+ |/
/     /     /| +
+-----+-----+ |/
/     /     /| +
+-----+-----+ |/
|     |     | +
|     |     |/
+-----+-----+

## Scala

### Java Swing Interoperability

import java.awt._

import javax.swing._

import scala.math.{Pi, cos, sin}

object Cuboid extends App {
SwingUtilities.invokeLater(() => {

class Cuboid extends JPanel {
private val nodes: Array[Array[Double]] =
Array(Array(-1, -1, -1), Array(-1, -1, 1), Array(-1, 1, -1), Array(-1, 1, 1),
Array(1, -1, -1), Array(1, -1, 1), Array(1, 1, -1), Array(1, 1, 1))
private var mouseX, prevMouseX, mouseY, prevMouseY: Int = _

private def edges =
Seq(Seq(0, 1), Seq(1, 3), Seq(3, 2), Seq(2, 0),
Seq(4, 5), Seq(5, 7), Seq(7, 6), Seq(6, 4),
Seq(0, 4), Seq(1, 5), Seq(2, 6), Seq(3, 7))

override def paintComponent(gg: Graphics): Unit = {
val g = gg.asInstanceOf[Graphics2D]

def drawCube(g: Graphics2D): Unit = {
g.translate(getWidth / 2, getHeight / 2)
for (edge <- edges) {
nodes(edge(1))(0).round.toInt, nodes(edge(1))(1).round.toInt)
}
for (node <- nodes) g.fillOval(node(0).round.toInt - 4, node(1).round.toInt - 4, 8, 8)
}

super.paintComponent(gg)
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON)
drawCube(g)
}

private def scale(sx: Double, sy: Double, sz: Double): Unit = {
for (node <- nodes) {
node(0) *= sx
node(1) *= sy
node(2) *= sz
}
}

private def rotateCube(angleX: Double, angleY: Double): Unit = {
val (sinX, cosX, sinY, cosY) = (sin(angleX), cos(angleX), sin(angleY), cos(angleY))
for (node <- nodes) {
val (x, y, z) = (node.head, node(1), node(2))
node(0) = x * cosX - z * sinX
node(2) = z * cosX + x * sinX
node(1) = y * cosY - node(2) * sinY
node(2) = node(2) * cosY + y * sinY
}
}

override def mousePressed(e: MouseEvent): Unit = {
mouseX = e.getX
mouseY = e.getY
}
})

override def mouseDragged(e: MouseEvent): Unit = {
prevMouseX = mouseX
prevMouseY = mouseY
mouseX = e.getX
mouseY = e.getY
rotateCube((mouseX - prevMouseX) * 0.01, (mouseY - prevMouseY) * 0.01)
repaint()
}
})

scale(80, 120, 160)
rotateCube(Pi / 5, Pi / 9)
setPreferredSize(new Dimension(640, 640))
setBackground(Color.white)
}

new JFrame("Cuboid") {
pack()
setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
setLocationRelativeTo(null)
setResizable(false)
setVisible(true)
}
})
}

## Sidef

{{trans|Ruby}}

const dirs = Hash("-" => [1,0], "|" => [0,1], "/" => [1,1])

func cuboid(nx, ny, nz) {
say("cuboid %d %d %d:" % [nx, ny, nz])
var(x, y, z) = (8*nx, 2*ny, 4*nz)
var area = []
var line = func(n, sx, sy, c) {
var(dx, dy) = dirs{c}...
for i (0..n) {
var (xi, yi) = (sx + i*dx, sy + i*dy)
area[yi] \\= [" "]*(x+y+1)
area[yi][xi] = (area[yi][xi] == " " ?: '+')
}
}

0 .. nz-1 -> each {|i| line(x,       0,     4*i, "-") }
0 .. ny   -> each {|i| line(x,     2*i, z + 2*i, "-") }
0 .. nx-1 -> each {|i| line(z,     8*i,       0, "|") }
0 .. ny   -> each {|i| line(z, x + 2*i,     2*i, "|") }
0 .. nz-1 -> each {|i| line(y,       x,     4*i, "/") }
0 .. nx   -> each {|i| line(y,     8*i,       z, "/") }

area.reverse.each { |line|
say line.join('')
}
}

cuboid(2, 3, 4)
cuboid(1, 1, 1)
cuboid(6, 2, 1)
cuboid(2, 4, 1)

A faster approach:

func cuboid (x=1,y=1,z=1,s=' ',c='+',h='-',v='|',d='/') {
say("cuboid %d %d %d:" % (x, y, z))
' ' * z+1 + c + h*x + c -> say

{ |i|
' ' * (z - i + 1) + d + s*x + d +
(s * (i - (i >? i-: 1))) +
(i - 1 ==?: (i >?: v)) -> say
}.for(1..z)

c + h*x + c + (s * (z <?: y) +
(z <?: (z ==?: d))) -> say

{ |i|
v + s*x + v + (z > y
? (i >=? (s*x + c) : (s * y-i + d))
: (y - i > z
? (s * z + v)
: (s * y-i + (y-i ==?: d))
)
) -> say;
}.for(1..y)

c + h*x + c -> say
}

cuboid(2, 3, 4)
cuboid(1, 1, 1)
cuboid(6, 2, 1)
cuboid(2, 4, 1)

{{out}}

cuboid 2 3 4:
+--+
/  /|
/  / |
/  /  |
/  /   +
+--+   /
|  |  /
|  | /
|  |/
+--+
cuboid 1 1 1:
+-+
/ /|
+-+ +
| |/
+-+
cuboid 6 2 1:
+------+
/      /|
+------+ |
|      | +
|      |/
+------+
cuboid 2 4 1:
+--+
/  /|
+--+ |
|  | |
|  | |
|  | +
|  |/
+--+

## Tcl

package require Tcl 8.5
package require Tk
package require math::linearalgebra
package require math::constants

# Helper for constructing a rectangular face in 3D
proc face {px1 py1 pz1 px2 py2 pz2 px3 py3 pz3 px4 py4 pz4 color} {
set centroidX [expr {(\$px1+\$px2+\$px3+\$px4)/4.0}]
set centroidY [expr {(\$py1+\$py2+\$py3+\$py4)/4.0}]
set centroidZ [expr {(\$pz1+\$pz2+\$pz3+\$pz4)/4.0}]
list [list \
[list [expr {double(\$px1)}] [expr {double(\$py1)}] [expr {double(\$pz1)}]] \
[list [expr {double(\$px2)}] [expr {double(\$py2)}] [expr {double(\$pz2)}]] \
[list [expr {double(\$px3)}] [expr {double(\$py3)}] [expr {double(\$pz3)}]] \
[list [expr {double(\$px4)}] [expr {double(\$py4)}] [expr {double(\$pz4)}]]] \
[list \$centroidX \$centroidY \$centroidZ] \
\$color
}

# How to make a cuboid of given size at the origin
proc makeCuboid {size} {
lassign \$size x y z
list \
[face  0  0  0   0 \$y  0  \$x \$y  0  \$x  0  0  "#800000"] \
[face  0  0  0   0 \$y  0   0 \$y \$z   0  0 \$z  "#ff8080"] \
[face  0  0  0  \$x  0  0  \$x  0 \$z   0  0 \$z  "#000080"] \
[face \$x  0  0  \$x \$y  0  \$x \$y \$z  \$x  0 \$z  "#008000"] \
[face  0 \$y  0  \$x \$y  0  \$x \$y \$z   0 \$y \$z  "#80ff80"] \
[face  0  0 \$z  \$x  0 \$z  \$x \$y \$z   0 \$y \$z  "#8080ff"]
}

# Project a shape onto a surface (Tk canvas); assumes that the shape's faces
# are simple and non-intersecting (i.e., it sorts by centroid z-order).
proc drawShape {surface shape} {
global projection
lassign \$projection pmat poff
lassign \$poff px py pz
foreach side \$shape {
lassign \$side points centroid color
set pc [::math::linearalgebra::matmul \$pmat \$centroid]
lappend sorting [list [expr {[lindex \$pc 2]+\$pz}] \$points \$color]
}
foreach side [lsort -real -decreasing -index 0 \$sorting] {
lassign \$side sortCriterion points color
set plotpoints {}
foreach p \$points {
set p [::math::linearalgebra::matmul \$pmat \$p]
lappend plotpoints \
[expr {[lindex \$p 0]+\$px}] [expr {[lindex \$p 1]+\$py}]
}
\$surface create poly \$plotpoints -outline {} -fill \$color
}
}

# How to construct the projection transform.
# This is instead of using a hokey hard-coded version
namespace eval transform {
namespace import ::math::linearalgebra::*
::math::constants::constants pi
proc make {angle scale offset} {
variable pi
set c [expr {cos(\$angle*\$pi/180)}]
set s [expr {sin(\$angle*\$pi/180)}]
set ms [expr {-\$s}]
set rotX [list {1.0 0.0 0.0} [list 0.0 \$c \$ms] [list 0.0 \$s \$c]]
set rotY [list [list \$c 0.0 \$s] {0.0 1.0 0.0} [list \$ms 0.0 \$c]]
set rotZ [list [list \$c \$s 0.0] [list \$ms \$c 0.0] {0.0 0.0 1.0}]
set mat [scale \$scale [mkIdentity 3]]
set mat [matmul [matmul [matmul \$mat \$rotX] \$rotY] \$rotZ]
return [list \$mat \$offset]
}
}
### End of definitions

# Put the pieces together
pack [canvas .c -width 400 -height 400]
set cuboid [makeCuboid {2 3 4}]
set projection [transform::make 15 50 {100 100 100}]
drawShape .c \$cuboid

[[File:Cuboid tcl.png|Output (cropped)]]

This becomes more engaging if the drawing is animated with a final driver piece like this (the definitions part of the code is identical to above):

pack [canvas .c -width 400 -height 400]
set cuboid [makeCuboid {2 3 4}]
wm protocol . WM_DELETE_WINDOW { exit }
while 1 {
incr i
.c delete all
set projection [transform::make \$i 40 {150 150 100}]
drawShape .c \$cuboid
update
after 50
}

## VBScript

{{trans|Ruby}}

x = 6 : y = 2 : z = 3

Sub cuboid(nx, ny, nz)
WScript.StdOut.WriteLine "Cuboid " & nx & " " & ny & " " & nz & ":"
lx = X * nx : ly = y * ny : lz = z * nz

'define the array
Dim area(): ReDim area(ly+lz, lx+ly)
For i = 0 to ly+lz
For j = 0 to lx+ly : area(i,j) = " " : Next
Next

'drawing lines
For i = 0 to nz-1 : drawLine area, lx,      0,    Z*i, "-" : Next
For i = 0 to ny   : drawLine area, lx,    y*i, lz+y*i, "-" : Next
For i = 0 to nx-1 : drawLine area, lz,    x*i,      0, "|" : Next
For i = 0 to ny   : drawLine area, lz, lx+y*i,    y*i, "|" : Next
For i = 0 to nz-1 : drawLine area, ly,     lx,    z*i, "/" : Next
For i = 0 to nx   : drawLine area, ly,    x*i,     lz, "/" : Next

'output the cuboid (in reverse)
For i = UBound(area,1) to 0 Step -1
linOut = ""
For j = 0 to UBound(area,2) : linOut = linOut & area(i,j) : Next
WScript.StdOut.WriteLine linOut
Next
End Sub

Sub drawLine(arr, n, sx, sy, c)
Select Case c
Case "-"
dx = 1 : dy = 0
Case "|"
dx = 0 : dy = 1
Case "/"
dx = 1 : dy = 1
End Select
For i = 0 to n
xi = sx + (i * dx) : yi = sy + (i * dy)
If arr(yi, xi) = " " Then
arr(yi, xi) = c
Else
arr(yi, xi) = "+"
End If
Next
End Sub

cuboid 2,3,4

{{Out}}

Cuboid 2 3 4:
+-----+-----+
/     /     /|
+-----+-----+ |
/     /     /| +
+-----+-----+ |/|
/     /     /| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/
|     |     |/| +
+-----+-----+ |/
|     |     | +
|     |     |/
+-----+-----+

## XPL0

[[File:CuboidXPL0.gif|right]]

include c:\cxpl\codes;                  \intrinsic 'code' declarations
real X, Y, Z, Farthest;                 \arrays: 3D coordinates of vertices
int  I, J, K, SI, Segment;
def  Size=50.0, Sz=0.008, Sx=-0.013;    \drawing size and tumbling speeds
[X:= [-2.0, +2.0, +2.0, -2.0,  -2.0, +2.0, +2.0, -2.0];
Y:= [-1.5, -1.5, +1.5, +1.5,  -1.5, -1.5, +1.5, +1.5];
Z:= [-1.0, -1.0, -1.0, -1.0,  +1.0, +1.0, +1.0, +1.0];
Segment:= [0,1, 1,2, 2,3, 3,0, 4,5, 5,6, 6,7, 7,4, 0,4, 1,5, 2,6, 3,7];
SetVid(\$101);                           \set 640x480 graphics with 256 colors
repeat  Farthest:= 0.0;                 \find the farthest vertex
for I:= 0 to 8-1 do
if Z(I) > Farthest then [Farthest:= Z(I);  SI:= I];
Clear;                          \erase screen
for I:= 0 to 2*12-1 do          \for all the vertices...
[J:= Segment(I);  I:= I+1;  \get vertex number
Move(fix(X(J)*Size)+640/2, fix(Y(J)*Size)+480/2);
K:= Segment(I);
Line(fix(X(K)*Size)+640/2, fix(Y(K)*Size)+480/2,
if J=SI ! K=SI then \$F009 \dashed blue\ else \$C \red\);
];
Sound(0, 1, 1);                 \delay 1/18 second to prevent flicker
for I:= 0 to 8-1 do
[X(I):= X(I) + Y(I)*Sz;     \rotate vertices in X-Y plane
Y(I):= Y(I) - X(I)*Sz;
Y(I):= Y(I) + Z(I)*Sx;     \rotate vertices in Y-Z plane
Z(I):= Z(I) - Y(I)*Sx;
];
until KeyHit;                           \run until a key is struck
SetVid(3);                              \restore normal text mode (for DOS)
]

## zkl

Draws a wire frame PPM image, no hidden/dotted lines.
Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl

var [const] M=50.0;
fcn cuboid(w,h,z){
w*=M; h*=M; z*=M; // relative to abs dimensions
bitmap:=PPM(400,400);

clr:=0xff0000;  // red facing rectangle
bitmap.line(0,0, w,0, clr); bitmap.line(0,0, 0,h, clr);
bitmap.line(0,h, w,h, clr); bitmap.line(w,0, w,h, clr);

r,a:=(w+z).toFloat().toPolar(0);  // relative to the origin
clr=0xff; // blue right side of cuboid
bitmap.line(w,0, a,b, clr); bitmap.line(a,b, c,d, clr);
bitmap.line(w,h, c,d, clr);

e:=c-w;
clr=0xfff00; // green top of cuboid
bitmap.line(0,h, e,d, clr); bitmap.line(c,d, e,d, clr);

bitmap.write(File("foo.ppm","wb"));
}(2,3,4);

{{out}} http://www.zenkinetic.com/Images/RosettaCode/cuboid.jpg

## ZX Spectrum Basic

10 LET width=50: LET height=width*1.5: LET depth=width*2
20 LET x=80: LET y=10
30 PLOT x,y
40 DRAW 0,height: DRAW width,0: DRAW 0,-height: DRAW -width,0: REM Front
50 PLOT x,y+height: DRAW depth/2,height: DRAW width,0: DRAW 0,-height: DRAW -width,-height
60 PLOT x+width,y+height: DRAW depth/2,height

[[Category:Geometry]]