⚠️ Warning: This is a draft ⚠️

This means it might contain formatting issues, incorrect code, conceptual problems, or other severe issues.

If you want to help to improve and eventually enable this page, please fork RosettaGit's repository and open a merge request on GitHub.

[[Category:String algorithms]] [[Category:Palindromes]] {{task}}

An '''eertree''' is a data structure designed for efficient processing of certain palindrome tasks, for instance counting the number of sub-palindromes in an input string.

The data structure has commonalities to both ''tries'' and ''suffix trees''. See links below.

;Task: Construct an eertree for the string "eertree", then output all sub-palindromes by traversing the tree.

;See also:

  • Wikipedia entry: [https://en.wikipedia.org/wiki/Trie trie].
  • Wikipedia entry: [https://en.wikipedia.org/wiki/Suffix_tree suffix tree]
  • [https://arxiv.org/abs/1506.04862 Cornell University Library, Computer Science, Data Structures and Algorithms ───► EERTREE: An Efficient Data Structure for Processing Palindromes in Strings].

C++

{{trans|D}}

#include <iostream>
#include <functional>
#include <map>
#include <vector>

struct Node {
    int length;
    std::map<char, int> edges;
    int suffix;

    Node(int l) : length(l), suffix(0) {
        /* empty */
    }

    Node(int l, const std::map<char, int>& m, int s) : length(l), edges(m), suffix(s) {
        /* empty */
    }
};

constexpr int evenRoot = 0;
constexpr int oddRoot = 1;

std::vector<Node> eertree(const std::string& s) {
    std::vector<Node> tree = {
        Node(0, {}, oddRoot),
        Node(-1, {}, oddRoot)
    };
    int suffix = oddRoot;
    int n, k;

    for (size_t i = 0; i < s.length(); ++i) {
        char c = s[i];
        for (n = suffix; ; n = tree[n].suffix) {
            k = tree[n].length;
            int b = i - k - 1;
            if (b >= 0 && s[b] == c) {
                break;
            }
        }

        auto it = tree[n].edges.find(c);
        auto end = tree[n].edges.end();
        if (it != end) {
            suffix = it->second;
            continue;
        }
        suffix = tree.size();
        tree.push_back(Node(k + 2));
        tree[n].edges[c] = suffix;
        if (tree[suffix].length == 1) {
            tree[suffix].suffix = 0;
            continue;
        }
        while (true) {
            n = tree[n].suffix;
            int b = i - tree[n].length - 1;
            if (b >= 0 && s[b] == c) {
                break;
            }
        }
        tree[suffix].suffix = tree[n].edges[c];
    }

    return tree;
}

std::vector<std::string> subPalindromes(const std::vector<Node>& tree) {
    std::vector<std::string> s;

    std::function<void(int, std::string)> children;
    children = [&children, &tree, &s](int n, std::string p) {
        auto it = tree[n].edges.cbegin();
        auto end = tree[n].edges.cend();
        for (; it != end; it = std::next(it)) {
            auto c = it->first;
            auto m = it->second;

            std::string pl = c + p + c;
            s.push_back(pl);
            children(m, pl);
        }
    };
    children(0, "");

    auto it = tree[1].edges.cbegin();
    auto end = tree[1].edges.cend();
    for (; it != end; it = std::next(it)) {
        auto c = it->first;
        auto n = it->second;

        std::string ct(1, c);
        s.push_back(ct);

        children(n, ct);
    }

    return s;
}

int main() {
    using namespace std;

    auto tree = eertree("eertree");
    auto pal = subPalindromes(tree);

    auto it = pal.cbegin();
    auto end = pal.cend();

    cout << "[";
    if (it != end) {
        cout << it->c_str();
        it++;
    }
    while (it != end) {
        cout << ", " << it->c_str();
        it++;
    }
    cout << "]" << endl;

    return 0;
}

{{out}}

[ee, e, r, t, rtr, ertre, eertree]

C#

{{trans|Java}}

using System;
using System.Collections.Generic;

namespace Eertree {
    class Node {
        public Node(int length) {
            this.Length = length;
            // empty or
            this.Edges = new Dictionary<char, int>();
        }

        public Node(int length, Dictionary<char, int> edges, int suffix) {
            this.Length = length;
            this.Edges = edges;
            this.Suffix = suffix;
        }

        public int Length { get; set; }
        public Dictionary<char, int> Edges { get; set; }
        public int Suffix { get; set; }
    }

    class Program {
        const int EVEN_ROOT = 0;
        const int ODD_ROOT = 1;

        static List<Node> Eertree(string s) {
            List<Node> tree = new List<Node> {
                //new Node(0, null, ODD_ROOT), or
                new Node(0, new Dictionary<char, int>(), ODD_ROOT),
                //new Node(-1, null, ODD_ROOT) or
                new Node(-1, new Dictionary<char, int>(), ODD_ROOT)
            };
            int suffix = ODD_ROOT;
            int n, k;
            for (int i = 0; i < s.Length; i++) {
                char c = s[i];
                for (n = suffix; ; n = tree[n].Suffix) {
                    k = tree[n].Length;
                    int b = i - k - 1;
                    if (b >= 0 && s[b] == c) {
                        break;
                    }
                }
                if (tree[n].Edges.ContainsKey(c)) {
                    suffix = tree[n].Edges[c];
                    continue;
                }
                suffix = tree.Count;
                tree.Add(new Node(k + 2));
                tree[n].Edges[c] = suffix;
                if (tree[suffix].Length == 1) {
                    tree[suffix].Suffix = 0;
                    continue;
                }
                while (true) {
                    n = tree[n].Suffix;
                    int b = i - tree[n].Length - 1;
                    if (b >= 0 && s[b] == c) {
                        break;
                    }
                }
                tree[suffix].Suffix = tree[n].Edges[c];
            }
            return tree;
        }

        static List<string> SubPalindromes(List<Node> tree) {
            List<string> s = new List<string>();
            SubPalindromes_children(0, "", tree, s);
            foreach (var c in tree[1].Edges.Keys) {
                int m = tree[1].Edges[c];
                string ct = c.ToString();
                s.Add(ct);
                SubPalindromes_children(m, ct, tree, s);
            }
            return s;
        }

        static void SubPalindromes_children(int n, string p, List<Node> tree, List<string> s) {
            foreach (var c in tree[n].Edges.Keys) {
                int m = tree[n].Edges[c];
                string p1 = c + p + c;
                s.Add(p1);
                SubPalindromes_children(m, p1, tree, s);
            }
        }

        static void Main(string[] args) {
            List<Node> tree = Eertree("eertree");
            List<string> result = SubPalindromes(tree);
            string listStr = string.Join(", ", result);
            Console.WriteLine("[{0}]", listStr);
        }
    }
}

{{out}}

[ee, e, r, t, rtr, ertre, eertree]

D

{{trans|Go}}

import std.array;
import std.stdio;

void main() {
    auto tree = eertree("eertree");
    writeln(subPalindromes(tree));
}

struct Node {
    int length;
    int[char] edges;
    int suffix;
}

const evenRoot = 0;
const oddRoot = 1;

Node[] eertree(string s) {
    Node[] tree = [
        Node(0, null, oddRoot),
        Node(-1, null, oddRoot),
    ];
    int suffix = oddRoot;
    int n, k;
    foreach (i, c; s) {
        for (n=suffix; ; n=tree[n].suffix) {
            k = tree[n].length;
            int b = i-k-1;
            if (b>=0 && s[b]==c) {
                break;
            }
        }
        if (c in tree[n].edges) {
            suffix = tree[n].edges[c];
            continue;
        }
        suffix = tree.length;
        tree ~= Node(k+2);
        tree[n].edges[c] = suffix;
        if (tree[suffix].length == 1) {
            tree[suffix].suffix = 0;
            continue;
        }
        while (true) {
            n = tree[n].suffix;
            int b = i-tree[n].length-1;
            if (b>=0 && s[b]==c) {
                break;
            }
        }
        tree[suffix].suffix = tree[n].edges[c];
    }
    return tree;
}

auto subPalindromes(Node[] tree) {
    auto s = appender!(string[]);
    void children(int n, string p) {
        foreach (c, n; tree[n].edges) {
            p = c ~ p ~ c;
            s ~= p;
            children(n, p);
        }
    }
    children(0, "");
    foreach (c, n; tree[1].edges) {
        string ct = [c].idup;
        s ~= ct;
        children(n, ct);
    }
    return s.data;
}

{{out}}

["ee", "e", "r", "t", "rtr", "ertre", "eertree"]

Go

package main

import "fmt"

func main() {
    tree := eertree([]byte("eertree"))
    fmt.Println(subPalindromes(tree))
}

type edges map[byte]int

type node struct {
    length int
    edges
    suffix int
}

const evenRoot = 0
const oddRoot = 1

func eertree(s []byte) []node {
    tree := []node{
        evenRoot: {length: 0, suffix: oddRoot, edges: edges{}},
        oddRoot:  {length: -1, suffix: oddRoot, edges: edges{}},
    }
    suffix := oddRoot
    var n, k int
    for i, c := range s {
        for n = suffix; ; n = tree[n].suffix {
            k = tree[n].length
            if b := i - k - 1; b >= 0 && s[b] == c {
                break
            }
        }
        if e, ok := tree[n].edges[c]; ok {
            suffix = e
            continue
        }
        suffix = len(tree)
        tree = append(tree, node{length: k + 2, edges: edges{}})
        tree[n].edges[c] = suffix
        if tree[suffix].length == 1 {
            tree[suffix].suffix = 0
            continue
        }
        for {
            n = tree[n].suffix
            if b := i - tree[n].length - 1; b >= 0 && s[b] == c {
                break
            }
        }
        tree[suffix].suffix = tree[n].edges[c]
    }
    return tree
}

func subPalindromes(tree []node) (s []string) {
    var children func(int, string)
    children = func(n int, p string) {
        for c, n := range tree[n].edges {
            c := string(c)
            p := c + p + c
            s = append(s, p)
            children(n, p)
        }
    }
    children(0, "")
    for c, n := range tree[1].edges {
        c := string(c)
        s = append(s, c)
        children(n, c)
    }
    return
}

{{out}}


[ee e r t rtr ertre eertree]

Java

{{trans|D}}

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class Eertree {
    public static void main(String[] args) {
        List<Node> tree = eertree("eertree");
        List<String> result = subPalindromes(tree);
        System.out.println(result);
    }

    private static class Node {
        int length;
        Map<Character, Integer> edges = new HashMap<>();
        int suffix;

        public Node(int length) {
            this.length = length;
        }

        public Node(int length, Map<Character, Integer> edges, int suffix) {
            this.length = length;
            this.edges = edges != null ? edges : new HashMap<>();
            this.suffix = suffix;
        }
    }

    private static final int EVEN_ROOT = 0;
    private static final int ODD_ROOT = 1;

    private static List<Node> eertree(String s) {
        List<Node> tree = new ArrayList<>();
        tree.add(new Node(0, null, ODD_ROOT));
        tree.add(new Node(-1, null, ODD_ROOT));
        int suffix = ODD_ROOT;
        int n, k;
        for (int i = 0; i < s.length(); ++i) {
            char c = s.charAt(i);
            for (n = suffix; ; n = tree.get(n).suffix) {
                k = tree.get(n).length;
                int b = i - k - 1;
                if (b >= 0 && s.charAt(b) == c) {
                    break;
                }
            }
            if (tree.get(n).edges.containsKey(c)) {
                suffix = tree.get(n).edges.get(c);
                continue;
            }
            suffix = tree.size();
            tree.add(new Node(k + 2));
            tree.get(n).edges.put(c, suffix);
            if (tree.get(suffix).length == 1) {
                tree.get(suffix).suffix = 0;
                continue;
            }
            while (true) {
                n = tree.get(n).suffix;
                int b = i - tree.get(n).length - 1;
                if (b >= 0 && s.charAt(b) == c) {
                    break;
                }
            }
            tree.get(suffix).suffix = tree.get(n).edges.get(c);
        }
        return tree;
    }

    private static List<String> subPalindromes(List<Node> tree) {
        List<String> s = new ArrayList<>();
        subPalindromes_children(0, "", tree, s);
        for (Map.Entry<Character, Integer> cm : tree.get(1).edges.entrySet()) {
            String ct = String.valueOf(cm.getKey());
            s.add(ct);
            subPalindromes_children(cm.getValue(), ct, tree, s);
        }
        return s;
    }

    // nested methods are a pain, even if lambdas make that possible for Java
    private static void subPalindromes_children(final int n, final String p, final List<Node> tree, List<String> s) {
        for (Map.Entry<Character, Integer> cm : tree.get(n).edges.entrySet()) {
            Character c = cm.getKey();
            Integer m = cm.getValue();
            String pl = c + p + c;
            s.add(pl);
            subPalindromes_children(m, pl, tree, s);
        }
    }
}

{{out}}

[ee, r, t, rtr, ertre, eertree, e]

Julia

{{trans|Python}}

mutable struct Node
    edges::Dict{Char, Node}
    link::Union{Node, Missing}
    sz::Int
    Node() = new(Dict(), missing, 0)
end

sizednode(x) = (n = Node(); n.sz = x; n)

function eertree(str)
    nodes = Vector{Node}()
    oddroot = sizednode(-1)
    evenroot = sizednode(0)
    oddroot.link = evenroot
    evenroot.link = oddroot
    S = "0"
    maxsuffix = evenroot

    function maxsuffixpal(startnode,a::Char)
        # Traverse the suffix-palindromes of tree looking for equality with a
        u = startnode
        i = length(S)
        k = u.sz
        while u !== oddroot && S[i - k] != a
            if u === u.link
                throw("circular reference above oddroot")
            end
            u = u.link
            k = u.sz
        end
        u
    end

    function addchar(a::Char)
        Q = maxsuffixpal(maxsuffix, a)
        creatednode = !haskey(Q.edges, a)
        if creatednode
            P = sizednode(Q.sz + 2)
            push!(nodes, P)
            if P.sz == 1
                P.link = evenroot
            else
                P.link = maxsuffixpal(Q.link, a).edges[a]
            end
            Q.edges[a] = P            # adds edge (Q, P)
        end
        maxsuffix = Q.edges[a]        # P becomes the new maxsuffix
        S *= string(a)
        creatednode
    end

    function getsubpalindromes()
        result = Vector{String}()
        getsubpalindromes(oddroot, [oddroot], "", result)
        getsubpalindromes(evenroot, [evenroot], "", result)
        result
    end

    function getsubpalindromes(nd, nodestohere, charstohere, result)
        for (lnkname, nd2) in nd.edges
            getsubpalindromes(nd2, vcat(nodestohere, nd2), charstohere * lnkname, result)
        end
        if nd !== oddroot && nd !== evenroot
            assembled = reverse(charstohere) *
                (nodestohere[1] === evenroot ? charstohere : charstohere[2:end])
            push!(result, assembled)
        end
    end

    println("Results of processing string \"$str\":")
    for c in str
        addchar(c)
    end
    println("Number of sub-palindromes: ", length(nodes))
    println("Sub-palindromes: ", getsubpalindromes())
end

eertree("eertree")

{{output}}


Results of processing string "eertree":
Number of sub-palindromes: 7
Sub-palindromes: ["e", "r", "eertree", "ertre", "rtr", "t", "ee"]

Kotlin

{{trans|Python}}

// version 1.1.4

class Node {
    val edges = mutableMapOf<Char, Node>()  // edges (or forward links)
    var link: Node? = null                  // suffix link (backward links)
    var len = 0                             // the length of the node
}

class Eertree(str: String) {
    val nodes = mutableListOf<Node>()

    private val rto = Node()                // odd length root node, or node -1
    private val rte = Node()                // even length root node, or node 0
    private val s = StringBuilder("0")      // accumulated input string, T = S[1..i]
    private var maxSufT = rte               // maximum suffix of tree T

    init {
        // Initialize and build the tree
        rte.link = rto
        rto.link = rte
        rto.len  = -1
        rte.len  = 0
        for (ch in str) add(ch)
    }

    private fun getMaxSuffixPal(startNode: Node, a: Char): Node {
        // We traverse the suffix-palindromes of T in the order of decreasing length.
        // For each palindrome we read its length k and compare T[i-k] against a
        // until we get an equality or arrive at the -1 node.
        var u = startNode
        val i = s.length
        var k = u.len
        while (u !== rto && s[i - k - 1] != a) {
            if (u === u.link!!) throw RuntimeException("Infinite loop detected")
            u = u.link!!
            k = u.len
        }
        return u
    }

    private fun add(a: Char): Boolean {
        // We need to find the maximum suffix-palindrome P of Ta
        // Start by finding maximum suffix-palindrome Q of T.
        // To do this, we traverse the suffix-palindromes of T
        // in the order of decreasing length, starting with maxSuf(T)
        val q = getMaxSuffixPal(maxSufT, a)

        // We check Q to see whether it has an outgoing edge labeled by a.
        val createANewNode = a !in q.edges.keys

        if (createANewNode) {
            // We create the node P of length Q + 2
            val p = Node()
            nodes.add(p)
            p.len = q.len + 2
            if (p.len == 1) {
                // if P = a, create the suffix link (P, 0)
                p.link = rte
            }
            else {
                // It remains to create the suffix link from P if |P|>1. Just
                // continue traversing suffix-palindromes of T starting with the
                // the suffix link of Q.
                p.link = getMaxSuffixPal(q.link!!, a).edges[a]
            }

            // create the edge (Q, P)
            q.edges[a] = p
        }

        // P becomes the new maxSufT
        maxSufT = q.edges[a]!!

        // Store accumulated input string
        s.append(a)

        return createANewNode
    }

    fun getSubPalindromes(): List<String> {
        // Traverse tree to find sub-palindromes
        val result = mutableListOf<String>()
        // Odd length words
        getSubPalindromes(rto, listOf(rto), "", result)
        // Even length words
        getSubPalindromes(rte, listOf(rte), "", result)
        return result
    }

    private fun getSubPalindromes(nd: Node, nodesToHere: List<Node>,
                          charsToHere: String, result: MutableList<String>) {
        // Each node represents a palindrome, which can be reconstructed
        // by the path from the root node to each non-root node.

        // Traverse all edges, since they represent other palindromes
        for ((lnkName, nd2) in nd.edges) {
            getSubPalindromes(nd2, nodesToHere + nd2, charsToHere + lnkName, result)
        }

        // Reconstruct based on charsToHere characters.
        if (nd !== rto && nd !== rte) { // Don't print for root nodes
            val assembled = charsToHere.reversed() +
                if (nodesToHere[0] === rte)  // Even string
                    charsToHere
                else  // Odd string
                    charsToHere.drop(1)
            result.add(assembled)
        }
    }
}

fun main(args: Array<String>) {
    val str = "eertree"
    println("Processing string '$str'")
    val eertree = Eertree(str)
    println("Number of sub-palindromes: ${eertree.nodes.size}")
    val result = eertree.getSubPalindromes()
    println("Sub-palindromes: $result")
}

{{out}}


Processing string 'eertree'
Number of sub-palindromes: 7
Sub-palindromes: [e, r, eertree, ertre, rtr, t, ee]

M2000 Interpreter


If Version<9.5 Then exit
If Version=9.5 And Revision<2 Then Exit
Class Node {
      inventory myedges
      length, suffix=0
      Function edges(s$) {
            =-1 : if exist(.myedges, s$) then =eval(.myedges)
      }
      Module edges_append (a$, where) {
            Append .myedges, a$:=where
      }
Class:
      Module Node(.length) {
            Read ? .suffix, .myedges
      }
}
function eertree(s$) {
      Const evenRoot=0, oddRoot=1
      Inventory Tree= oddRoot:=Node(-1,1),evenRoot:=Node(0,1)
      k=0
      suffix=oddRoot
      for i=0 to len(s$)-1 {
            c$=mid$(s$,i+1,1)
            n=suffix
            Do {
                 k=tree(n).length
                 b=i-k-1
                  if b>=0 then if mid$(s$,b+1,1)=c$ Then exit
                  n =tree(n).suffix
            } Always
            e=tree(n).edges(c$)
            if e>=0 then suffix=e :continue
            suffix=len(Tree)

            Append Tree, len(Tree):=Node(k+2)
            Tree(n).edges_append c$, suffix
            If tree(suffix).length=1 then tree(suffix).suffix=0 : continue
            Do {
                  n=tree(n).suffix
                  b=i-tree(n).length-1
                  if b>0 Then If  mid$(s$, b+1,1)=c$ then exit
            } Always
            e=tree(n).edges(c$)
            if e>=0 then tree(suffix).suffix=e

      }
      =tree
}
children=lambda (s, tree,  n, root$="")->{
            L=Len(tree(n).myEdges)
            if L=0 then =s : exit
            L--
            For i=0 to L {
                  c=tree(n).myEdges
                  c$=Eval$(c, i)  ' read keys at position i
                  nxt=c(i!)   '  read value using position
                  p$ = if$(n=1 -> c$, c$+root$+c$)
                  append s, (p$,)
                  \\ better use lambda() and not children()
                  \\ for recursion when we copy this lambda to other identifier.
                  s = lambda(s, tree, nxt, p$)
            }
         = s
      }
aString=Lambda ->{
          Push Quote$(Letter$)
}
aLine=Lambda ->{
      Shift 2  ' swap two top stack items
      if stackitem$()="" then  { Drop}  Else Push letter$+", "+Letter$
}
Palindromes$=Lambda$ children, aString, aLine (Tree)-> {
            ="("+children(children((,), Tree, 0), Tree, 1)#Map(aString)#Fold$(aline,"")+")"
 }

Print Palindromes$(eertree("eertree"))

{{out}}


("ee", "e", "r", "t", "rtr", "ertre", "eertree")

Objeck

{{trans|Java}}

use Collection.Generic;

class Eertree {
  function : Main(args : String[]) ~ Nil {
    tree := GetEertree("eertree");
    Show(SubPalindromes(tree));
  }

  function : GetEertree(s : String) ~ Vector<Node> {
    tree := Vector->New()<Node>;
    tree->AddBack(Node->New(0, Nil, 1));
    tree->AddBack(Node->New(-1, Nil, 1));
    suffix := 1;

    n : Int; k : Int;
    for(i := 0; i < s->Size(); ++i;) {
      c := s->Get(i);

      done := false;
      for (j := suffix; <>done; j := tree->Get(j)->GetSuffix();) {
        k := tree->Get(j)->GetLength();
        b := i - k - 1;
        if (b >= 0 & s->Get(b) = c) {
          n := j;
          done := true;
        };
      };
      skip := false;
      if (tree->Get(n)->GetEdges()->Has(c)) {
        suffix := tree->Get(n)->GetEdges()->Find(c)->Get();
        skip := true;
      };

      if(<>skip) {
        suffix := tree->Size();
        tree->AddBack(Node->New(k + 2));
        tree->Get(n)->GetEdges()->Insert(c, suffix);
        if (tree->Get(suffix)->GetLength() = 1) {
          tree->Get(suffix)->SetSuffix(0);
          skip := true;
        };

        if(<>skip) {
          done := false;
          while (<>done) {
            n := tree->Get(n)->GetSuffix();
            b := i - tree->Get(n)->GetLength() - 1;
            if (b >= 0 & s->Get(b) = c) {
              done := true;
            };
          };
          tree->Get(suffix)->SetSuffix(tree->Get(n)->GetEdges()->Find(c)->Get());
        };
      };
    };

    return tree;
  }

  function : SubPalindromes(tree : Vector<Node>) ~ Vector<String> {
    s := Vector->New()<String>;
    SubPalindromesChildren(0, "", tree, s);

    keys := tree->Get(1)->GetEdges()->GetKeys()<CharHolder>;
    each(k : keys) {
      key := keys->Get(k);
      str := key->Get()->ToString();
      s->AddBack(str);
      value := tree->Get(1)->GetEdges()->Find(key)->As(IntHolder)->Get();
      SubPalindromesChildren(value, str, tree, s);
    };

    return s;
  }

  function : SubPalindromesChildren(n : Int, p : String, tree : Vector<Node>, s : Vector<String>)  ~ Nil {
    keys := tree->Get(n)->GetEdges()->GetKeys()<CharHolder>;
    each(k : keys) {
      key := keys->Get(k);
      c := key->Get();
      value := tree->Get(n)->GetEdges()->Find(key)->As(IntHolder)->Get();
      str := ""; str += c; str += p; str += c;
      s->AddBack(str);
      SubPalindromesChildren(value, str, tree, s);
    };
  }

  function : Show(result : Vector<String>) ~ Nil {
    out := "[";
    each(i : result) {
      out += result->Get(i);
      if(i + 1 < result->Size()) {
        out += ", ";
      };
    };
    out += "]";
    out->PrintLine();
  }
}

class Node {
  @length : Int;
  @edges : Map<CharHolder, IntHolder>;
  @suffix : Int;

  New(length : Int, edges : Map<CharHolder, IntHolder>, suffix : Int) {
    @length := length;
    @edges := edges <> Nil ? edges : Map->New()<CharHolder, IntHolder>;
    @suffix := suffix;
  }

  New(length : Int) {
    @length := length;
    @edges := Map->New()<CharHolder, IntHolder>;
  }

  method : public : GetLength() ~ Int {
    return @length;
  }

  method : public : GetSuffix() ~ Int {
    return @suffix;
  }

  method : public : SetSuffix(suffix : Int) ~ Nil {
    @suffix := suffix;
  }

  method : public : GetEdges() ~ Map<CharHolder, IntHolder> {
    return @edges;
  }
}

{{output}}


[ee, e, r, t, rtr, ertre, eertree]

Perl

{{trans|Perl 6}}

$str = "eertree";

for $n (1 .. length($str)) {
   for $m (1 .. length($str)) {
      $strrev = "";
      $strpal = substr($str, $n-1, $m);
      if ($strpal ne "") {
         for $p (reverse 1 .. length($strpal)) {
            $strrev .= substr($strpal, $p-1, 1);
         }
         ($strpal eq $strrev) and push @pal, $strpal;
      }
   }
}

print join ' ', grep {not $seen{$_}++} @pal, "\n";

{{out}}

e ee eertree ertre r rtr t

Perl 6

{{trans|Ring}}

#!/usr/bin/env perl6

use v6;

my $str = "eertree";
my @pal = ();
my ($strrev,$strpal);

for (1 .. $str.chars) -> $n {
   for (1 .. $str.chars) -> $m {
      $strrev = "";
      $strpal = $str.substr($n-1, $m);
      if ($strpal ne "") {
         for ($strpal.chars ... 1) -> $p {
            $strrev ~= $strpal.substr($p-1,1);
         }
         ($strpal eq $strrev) and @pal.push($strpal);
      }
   }
}

say @pal.unique;

{{out}}


(e ee eertree ertre r rtr t)

Phix

If you use this in anger it may be wise to replace {string chars, sequence next} with a dictionary, which can obviously be either a new dictionary for each node, or perhaps better a single/per tree dictionary keyed on {n,ch}.

enum LEN,SUFF,CHARS,NEXT

function node(integer len, suffix=1, string chars="", sequence next={})
    return {len,suffix,chars,next} -- must match above enum!
end function

function eertree(string s)
sequence tree = {node(-1),  -- odd lengths
                 node(0)}   -- even lengths
integer suff = 2    -- max suffix palindrome

    for i=1 to length(s) do
        integer cur = suff, curlen, ch = s[i], k
        while (true) do
            curlen = tree[cur][LEN]
            k = i-1-curlen
            if k>=1 and s[k]==ch then
                exit
            end if
            cur = tree[cur][SUFF]
        end while
        k = find(ch,tree[cur][CHARS])
        if k then
            suff = tree[cur][NEXT][k]
        else
            tree = append(tree,node(curlen+2))
            suff = length(tree)
            tree[cur][CHARS] &= ch
            tree[cur][NEXT] &= suff

            if tree[suff][LEN]==1 then
                tree[suff][SUFF] = 2
            else
                while (true) do
                    cur = tree[cur][SUFF]
                    curlen = tree[cur][LEN]
                    k = i-1-curlen
                    if k>=0 and s[k]==ch then
                        k = find(ch,tree[cur][CHARS])
                        if k then
                            tree[suff][SUFF] = tree[cur][NEXT][k]
                        end if
                        exit
                    end if
                end while
            end if
        end if
    end for
    return tree
end function

function children(sequence s, tree, integer n, string root="")
    for i=1 to length(tree[n][CHARS]) do
        integer c = tree[n][CHARS][i],
                nxt = tree[n][NEXT][i]
        string p = iff(n=1 ? c&""
                           : c&root&c)
        s = append(s, p)
        s = children(s, tree, nxt, p)
    end for
    return s
end function

procedure main()
    sequence tree = eertree("eertree")
    puts(1,"tree:\n")
    for i=1 to length(tree) do
        sequence ti = tree[i]
        ti[NEXT] = sprint(ti[NEXT])
        printf(1,"[%d]: len:%2d  suffix:%d  chars:%-5s next:%s\n",i&ti)
    end for
    puts(1,"\n")

    -- odd then even lengths:
    ?children(children(s,tree,1), tree, 2)
end procedure
main()

{{out}} The tree matches Fig 1 in the pdf linked above.


tree:
[1]: len:-1  suffix:1  chars:ert   next:{3,5,6}
[2]: len: 0  suffix:1  chars:e     next:{4}
[3]: len: 1  suffix:2  chars:      next:{}
[4]: len: 2  suffix:3  chars:      next:{}
[5]: len: 1  suffix:2  chars:      next:{}
[6]: len: 1  suffix:2  chars:r     next:{7}
[7]: len: 3  suffix:5  chars:e     next:{8}
[8]: len: 5  suffix:3  chars:e     next:{9}
[9]: len: 7  suffix:4  chars:      next:{}

{"e","r","t","rtr","ertre","eertree","ee"}

Python

#!/bin/python
from __future__ import print_function

class Node(object):
	def __init__(self):
		self.edges = {} # edges (or forward links)
		self.link = None # suffix link (backward links)
		self.len = 0 # the length of the node

class Eertree(object):
	def __init__(self):
		self.nodes = []
		# two initial root nodes
		self.rto = Node() #odd length root node, or node -1
		self.rte = Node() #even length root node, or node 0

		# Initialize empty tree
		self.rto.link = self.rte.link = self.rto;
		self.rto.len = -1
		self.rte.len = 0
		self.S = [0] # accumulated input string, T=S[1..i]
		self.maxSufT = self.rte # maximum suffix of tree T

	def get_max_suffix_pal(self, startNode, a):
		# We traverse the suffix-palindromes of T in the order of decreasing length.
		# For each palindrome we read its length k and compare T[i-k] against a
		# until we get an equality or arrive at the -1 node.
		u = startNode
		i = len(self.S)
		k = u.len
		while id(u) != id(self.rto) and self.S[i - k - 1] != a:
			assert id(u) != id(u.link) #Prevent infinte loop
			u = u.link
			k = u.len

		return u

	def add(self, a):

		# We need to find the maximum suffix-palindrome P of Ta
		# Start by finding maximum suffix-palindrome Q of T.
		# To do this, we traverse the suffix-palindromes of T
		# in the order of decreasing length, starting with maxSuf(T)
		Q = self.get_max_suffix_pal(self.maxSufT, a)

		# We check Q to see whether it has an outgoing edge labeled by a.
		createANewNode = not a in Q.edges

		if createANewNode:
			# We create the node P of length Q+2
			P = Node()
			self.nodes.append(P)
			P.len = Q.len + 2
			if P.len == 1:
				# if P = a, create the suffix link (P,0)
				P.link = self.rte
			else:
				# It remains to create the suffix link from P if |P|>1. Just
				# continue traversing suffix-palindromes of T starting with the suffix
				# link of Q.
				P.link = self.get_max_suffix_pal(Q.link, a).edges[a]

			# create the edge (Q,P)
			Q.edges[a] = P

		#P becomes the new maxSufT
		self.maxSufT = Q.edges[a]

		#Store accumulated input string
		self.S.append(a)

		return createANewNode

	def get_sub_palindromes(self, nd, nodesToHere, charsToHere, result):
		#Each node represents a palindrome, which can be reconstructed
		#by the path from the root node to each non-root node.

		#Traverse all edges, since they represent other palindromes
		for lnkName in nd.edges:
			nd2 = nd.edges[lnkName] #The lnkName is the character used for this edge
			self.get_sub_palindromes(nd2, nodesToHere+[nd2], charsToHere+[lnkName], result)

		#Reconstruct based on charsToHere characters.
		if id(nd) != id(self.rto) and id(nd) != id(self.rte): #Don't print for root nodes
			tmp = "".join(charsToHere)
			if id(nodesToHere[0]) == id(self.rte): #Even string
				assembled = tmp[::-1] + tmp
			else: #Odd string
				assembled = tmp[::-1] + tmp[1:]
			result.append(assembled)

if __name__=="__main__":
	st = "eertree"
	print ("Processing string", st)
	eertree = Eertree()
	for ch in st:
		eertree.add(ch)

	print ("Number of sub-palindromes:", len(eertree.nodes))

	#Traverse tree to find sub-palindromes
	result = []
	eertree.get_sub_palindromes(eertree.rto, [eertree.rto], [], result) #Odd length words
	eertree.get_sub_palindromes(eertree.rte, [eertree.rte], [], result) #Even length words
	print ("Sub-palindromes:", result)

{{out}}

Processing string eertree
Number of sub-palindromes: 7
Sub-palindromes: ['r', 'e', 'eertree', 'ertre', 'rtr', 't', 'ee']

Racket

{{trans|Python}}

#lang racket
(struct node (edges ; edges (or forward links)
              link ; suffix link (backward links)
              len) ; the length of the node
  #:mutable)

(define (new-node link len) (node (make-hash) link len))

(struct eertree (nodes
                 rto ; odd length root node, or node -1
                 rte ; even length root node, or node 0
                 S ; accumulated input string, T=S[1..i]
                 max-suf-t) ; maximum suffix of tree T
  #:mutable)

(define (new-eertree)
  (let* ((rto (new-node #f -1))
         (rte (new-node rto 0)))
    (eertree null rto rte (list 0) rte)))

(define (eertree-get-max-suffix-pal et start-node a)
  #| We traverse the suffix-palindromes of T in the order of decreasing length.
     For each palindrome we read its length k and compare T[i-k] against a
     until we get an equality or arrive at the -1 node. |#
  (match et
    [(eertree nodes rto rte (and S (app length i)) max-suf-t)
     (let loop ((u start-node))
       (let ((k (node-len u)))
         (if (or (eq? u rto) (= (list-ref S (- i k 1)) a))
             u
             (let ((u→ (node-link u)))
               (when (eq? u u→) (error 'eertree-get-max-suffix-pal "infinite loop"))
               (loop u→)))))]))

(define (eertree-add! et a)
  #| We need to find the maximum suffix-palindrome P of Ta
     Start by finding maximum suffix-palindrome Q of T.
     To do this, we traverse the suffix-palindromes of T
     in the order of decreasing length, starting with maxSuf(T) |#
  (match (eertree-get-max-suffix-pal et (eertree-max-suf-t et) a)
    [(node Q.edges Q.→ Q.len)
     ;; We check Q to see whether it has an outgoing edge labeled by a.
     (define new-node? (not (hash-has-key? Q.edges a)))
     (when new-node?
       (define P (new-node #f (+ Q.len 2))) ; We create the node P of length Q+2
       (set-eertree-nodes! et (append (eertree-nodes et) (list P)))
       (define P→
         (if (= (node-len P) 1)
             (eertree-rte et) ; if P = a, create the suffix link (P,0)
             ;; It remains to c reate the suffix link from P if |P|>1.
             ;; Just continue traversing suffix-palindromes of T starting with the suffix link of Q.
             (hash-ref (node-edges (eertree-get-max-suffix-pal et Q.→ a)) a)))
       (set-node-link! P P→)
       (hash-set! Q.edges a P)) ; create the edge (Q,P)

     (set-eertree-max-suf-t! et (hash-ref Q.edges a)) ; P becomes the new maxSufT
     (set-eertree-S! et (append (eertree-S et) (list a))) ; Store accumulated input string
     new-node?]))

(define (eertree-get-sub-palindromes et)
  (define (inr nd (node-path (list nd)) (char-path/rev null))
    ;; Each node represents a palindrome, which can be reconstructed by the path from the root node to
    ;; each non-root node.
    (let ((deeper ; Traverse all edges, since they represent other palindromes
           (for/fold ((result null)) (([→-name nd2] (in-hash (node-edges nd))))
             ; The lnk-name is the character used for this edge
             (append result (inr nd2 (append node-path (list nd2)) (cons →-name char-path/rev)))))
          (root-node? (or (eq? (eertree-rto et) nd) (eq? (eertree-rte et) nd))))
      (if root-node? ; Don't add root nodes
          deeper
          (let ((even-string? (eq? (car node-path) (eertree-rte et)))
                (char-path (reverse char-path/rev)))
            (cons (append char-path/rev (if even-string? char-path (cdr char-path))) deeper)))))
  inr)

(define (eertree-get-palindromes et)
  (define sub (eertree-get-sub-palindromes et))
  (append (sub (eertree-rto et))
          (sub (eertree-rte et))))

(module+ main
  (define et (new-eertree))
  ;; eertree works in integer space, so we'll map to/from char space here
  (for ((c "eertree")) (eertree-add! et (char->integer c)))
  (map (compose list->string (curry map integer->char)) (eertree-get-palindromes et)))

{{out}}

'("t" "rtr" "ertre" "eertree" "r" "e" "ee")

REXX

This REXX program is modeled after the '''Ring''' example.

/*REXX program creates a list of (unique) sub─palindromes that exist in an input string.*/
parse arg x .                                    /*obtain optional input string from CL.*/
if x=='' | x==","  then x= 'eertree'             /*Not specified?  Then use the default.*/
L= length(x)                                     /*the length (in chars) of input string*/
@.= .                                            /*@ tree indicates uniqueness of pals. */
$=                                               /*list of unsorted & unique palindromes*/
   do     j=1  for L                             /*start at the left side of the string.*/
       do k=1  for L                             /*traverse from left to right of string*/
       parse var  x   =(j)  y   +(k)             /*extract a substring from the string. */
       if reverse(y)\==y | @.y\==.  then iterate /*Partial string a palindrome?  Skip it*/
       @.y= y                                    /*indicate a sub─palindrome was found. */
       $= $' '  y                                /*append the sub─palindrome to the list*/
       end   /*k*/                               /* [↑]  an extra blank is inserted.    */
   end       /*j*/

say '──────── The input string that is being used: '     space(x)
say '──────── The number of sub─palindromes found: '     words($)
say '──────── The  list  of sub─palindromes found: '     strip($)
                                                 /*stick a fork in it,  we're all done. */

{{out|output|text= when using the default input:}}


──────── The input string that is being used:  eertree
──────── The number of sub─palindromes found:  7
──────── The  list  of sub─palindromes found:  e  ee  eertree  ertre  r  rtr  t

Ring


# Project : Eertree

str = "eertree"
pal = []
for n=1 to len(str)
    for m=1 to len(str)
        strrev = ""
        strpal = substr(str, n, m)
        if strpal != ""
           for p=len(strpal) to 1 step -1
               strrev = strrev + strpal[p]
           next
           if strpal = strrev
              add(pal, strpal)
           ok
        ok
    next
next
sortpal = sort(pal)
for n=len(sortpal) to 2 step -1
    if sortpal[n] = sortpal[n-1]
       del(sortpal, n)
    ok
next
see sortpal + nl

Output:


e
ee
eertree
ertre
r
rtr
t

zkl

{{trans|Python}}

class Node{
   fcn init(length){
      var edges=Dictionary(),	# edges (or forward links). (char:Node)
          link=Void,		# suffix link (backward links)
	  sz  =length;		# node length.
    }
}
class Eertree{
   fcn init(string=Void){
      var nodes=List(),
		# two initial root nodes
	  rto=Node(-1), # odd  length root node, or node -1
	  rte=Node(0);  # even length root node, or node  0

      rto.link=rte.link=rto;    # Initialize empty tree
      var S      =Data(Void,0), # accumulated input string, T=S[1..i], byte buffer
          maxSufT=rte;          # maximum suffix of tree T
      if(string) string.pump(addChar);  // go ahead and build the tree
   }
   fcn get_max_suffix_pal(startNode,a){
    # We traverse the suffix-palindromes of T in the order of decreasing length.
    # For each palindrome we read its length k and compare T[i-k] against a
    # until we get an equality or arrive at the -1 node.
      u,i,k := startNode, S.len(), u.sz;
      while(u.id!=rto.id and S.charAt(i - k - 1)!=a){
	 _assert_(u.id!=u.link.id);    # Prevent infinte loop
	 u,k = u.link,u.sz;
      }
      return(u);
   }
   fcn addChar(a){
	# We need to find the maximum suffix-palindrome P of Ta
	# Start by finding maximum suffix-palindrome Q of T.
	# To do this, we traverse the suffix-palindromes of T
	# in the order of decreasing length, starting with maxSuf(T)
      Q:=get_max_suffix_pal(maxSufT,a);
        # We check Q to see whether it has an outgoing edge labeled by a.
      createANewNode:=(not Q.edges.holds(a));
      if(createANewNode){
	 P:=Node(Q.sz + 2); nodes.append(P);
	 if(P.sz==1) P.link=rte;  # if P = a, create the suffix link (P,0)
	 else # It remains to create the suffix link from P if |P|>1. Just
	      # continue traversing suffix-palindromes of T starting with the suffix
	      # link of Q.
	    P.link=get_max_suffix_pal(Q.link,a).edges[a];
	 Q.edges[a]=P;    # create the edge (Q,P)
      }
      maxSufT=Q.edges[a]; # P becomes the new maxSufT
      S.append(a);	  # Store accumulated input string
      return(createANewNode);  // in case anyone wants to know a is new edge
   }
   fcn get_sub_palindromes{
      result:=List();
      sub_palindromes(rto, T(rto),"", result); # Odd length words
      sub_palindromes(rte, T(rte),"", result); # Even length words
      result
   }
   fcn [private] sub_palindromes(nd, nodesToHere, charsToHere, result){
        // nodesToHere needs to be read only
	# Each node represents a palindrome, which can be reconstructed
	# by the path from the root node to each non-root node.

	# Traverse all edges, since they represent other palindromes
      nd.edges.pump(Void,'wrap([(lnkName,nd2)]){
	 sub_palindromes(nd2, nodesToHere+nd2, charsToHere+lnkName, result);
      });

      # Reconstruct based on charsToHere characters.
      if(nd.id!=rto.id and nd.id!=rte.id){ # Don't print for root nodes
	 if(nodesToHere[0].id==rte.id) # Even string
	    assembled:=charsToHere.reverse() + charsToHere;
	 else assembled:=charsToHere.reverse() + charsToHere[1,*]; # Odd string
	 result.append(assembled);
      }
   }
}
st:="eertree";
println("Processing string \"", st,"\"");
eertree:=Eertree(st);
println("Number of sub-palindromes: ", eertree.nodes.len());
println("Sub-palindromes: ", eertree.get_sub_palindromes());

{{out}}


Processing string "eertree"
Number of sub-palindromes: 7
Sub-palindromes: L("e","r","eertree","ertre","rtr","t","ee")